JPH0359124B2 - - Google Patents

Info

Publication number
JPH0359124B2
JPH0359124B2 JP59274296A JP27429684A JPH0359124B2 JP H0359124 B2 JPH0359124 B2 JP H0359124B2 JP 59274296 A JP59274296 A JP 59274296A JP 27429684 A JP27429684 A JP 27429684A JP H0359124 B2 JPH0359124 B2 JP H0359124B2
Authority
JP
Japan
Prior art keywords
hic
temperature
less
toughness
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59274296A
Other languages
Japanese (ja)
Other versions
JPS61157628A (en
Inventor
Akira Ito
Kazuomi Toyoda
Takaharu Konno
Takehiro Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27429684A priority Critical patent/JPS61157628A/en
Publication of JPS61157628A publication Critical patent/JPS61157628A/en
Publication of JPH0359124B2 publication Critical patent/JPH0359124B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、ラインパイプ用として使用される
ホツトコイルに関し、特に寒冷地でしかも硫化水
素や二酸化炭素を含む湿潤環境(以下サワー環境
という)において使用されるものの、耐水素誘起
割れ性及び低温靭性を著しく向上させようとする
ものである。 (従来の技術) サワー環境において使用されるラインパイプ等
の鋼材には、水素誘起割れ(以後HICという)と
称する割れが発生し、漏洩やバースト事故の原因
となることが知られている。HICの発生機構は、
サワー環境下で起る鋼材表面の腐食によつて生じ
た原子状の水素が鋼材中に侵入し、鋼材中の
MnSや酸化物系クラスター状介在物のような層
状な広がりを持つ介在物のまわりに集積して、割
れが生じるものと考えられている。 介在物を起点に発生したHICは、鋼材中の成
分、組織、硬さ等の不均質な部分に沿つて伝播、
成長する。この不均質部分は、特に鋳片の最終凝
固部、つまり均等冷却で凝固した連鋳鋳片の中心
部に相当する位置(以下中心偏析帯という)に発
生しやすい。この位置は、MnSのような介在物
と中心偏析帯という不均質部分が共存するため、
最もHICを発生しやすい。さらに近年では、天然
資源の枯渇化から、さらに硫化水素や炭酸ガスの
含有量の多いガス田の開発や、寒冷地での資源開
発が増加していることから、耐HIC性及び低温靭
性の両特性を有する鋼板の要求が高まつている。 以上のような耐HIC鋼を製造するために、従来
(1)鋼材表面の腐食を抑制するか、あるいは、表面
に安定被膜を形成する元素であるCu、Ni等を添
加して腐食に伴う鋼中への侵入水素を低減させる
方法で、例えば、特公昭54−38572号公報に示さ
れている方法。(2)S含有量の低減、またはCa、
REM等の添加により、MnSを減少、あるいは有
害度の小さい球状介在物に形態制御し、HICの発
生を抑制する方法で、例えば、特公昭57−161846
号公報、特公昭57−14747号公報に示されている
Ca添加法。(3)C、Mn、P等の含有量を低減し、
あるいは鋳片を均熱拡散処理して、中心偏析帯の
濃縮した成分を稀釈し、HICの伝播、成長を抑制
する方法で、例えば、特開昭57−104653号公報、
特開昭58−221260号公報、特開昭58−221261号公
報、特公昭55−49129号公報に示されている方法。
(4)適切な熱延方法により鋼材の組織や硬さを均一
化し、HICの伝播、成長を抑制する方法で、例え
ば特開昭57−47827号公報に示されている方法が
ある。 (発明が解決しようとする問題点) 石油、天然ガス用ラインパイプでは、定期的に
行われる内部清掃の際に、内部を通す器具(ピ
グ)によつてパイプ内面に傷を生じることがあ
る。従つてCu、Ni等によりパイプ内面に安定し
た腐食被膜を形成させても、この傷の部分では被
膜がはがれてしまい、新たな局部腐食が発生する
ため、水素の侵入を完全に防止することは不可能
である。そのため、従来技術の(2)〜(4)で述べた
HICの発生起点の減少及び伝播、成長の抑制が必
要となる。 HICの発生起点としては、圧延によつて伸延す
るMnSが最も有害であり、MnSを完全に消滅さ
せることができれば、HICは、ほとんど発生しな
いと考えられる。しかし、工業的には、溶鋼のS
を0.0010%以下として、Caを添加しても溶鋼の凝
固過程では成分の濃縮が起こり、中心偏析部のよ
うな最終凝固位置では、MnとSの濃縮による
MnSの析出は避けられず、HICの発生起点を完
全に消滅することはできない。 従つて、HICの伝播、成長の抑制が最も重要な
問題であるが、特開昭58−221260号公報、特開昭
58−221261号公報で述べられているMn量の上限
規制だけでは、HICの伝播、成長の経路となる異
常組織の発生は避けられない。また特開昭57−
104653号公報のように、C≦0.05%とすると、現
地溶接での溶接金属の高温割れを起こしやすい。
また、スラブを均熱加熱してHICの伝播、成長を
抑制させるためには、特公昭55−49129号公報に
示されているように、1300℃まで30分〜10時間、
1150℃で5時間から150時間というように、極め
て高温、または、長時間の均熱拡散が必要であ
り、製造コスト、さらに省エネルギーの観点から
問題である。 従つて特開昭57−47827号公報に示されている
ように、圧延によつて組織制御する方法が有効で
あるが、熱間加工終了温度が870℃以上では、低
温での高靭性を得ることができない。またホツト
コイルと厚板を比較すると、ホツトコイルは連続
圧延プロセスで大圧下を行うため、HICの発生原
因となる伸延介在物及びHICの伝播、成長経路と
なる層状組織を形成しやすい。 またホツトコイルは、厚板の制御冷却にはない
巻取工程が存在するため、厚板の制御冷却材に比
べ、水冷停止後の冷却速度が著しく小さい。その
ため、C.P等の粒界偏析の増加による粒界脆化及
び析出物の粗大化等が起こりやすく、これらは耐
HIC性を劣化させる原因となる。従つて、ただ単
に、厚板での制御冷却技術の適用だけでは、ホツ
トコイルの材質を向上させることはできない。 以上より、本発明により解決しようとする問題
点は、ホツトコイル特有の問題を解決し、従来の
技術では得られていない耐HIC性と低温靭性の両
特性を同時に発揮するホツトコイルを得ようとす
ることにある。 (問題点を解決するための手段) 本発明の要旨は、C:0.05〜0.12%、Si:0.10
〜0.40%、Mn:0.5〜1.20%、Al:0.005〜0.10%、
P≦0.010%、S≦0.0009%、Ca:0.0020〜0.0060
%、さらにNi≦0.60%、Cu≦0.60%、Cr:≦1.00
%、Mo:≦0.60%、Nb≦0.10%、V≦0.10%、
Zr:≦0.10%、Ti:≦0.10%のうち1種または2
種以上を含み、残部は鉄及び不純物より成るスラ
ブを1200℃以下のオーステナイト域で、断面減少
率20%以上の熱間加工を施し、その後スラブの中
心温度を1100〜1250℃で30分以上、2時間未満保
定した後、950℃以下で50%以上の圧下を行い、
熱間加工を720〜820℃の範囲で終了し、引き続い
て、平均冷却速度5〜30℃/secで冷却した後、
400〜600℃の範囲で巻取ることを特徴とする高靭
性耐サワー鋼管用ホツトコイルの製造方法であ
る。 次に本発明の成分及び圧延条件の限定理由につ
いて述べる。 Cは強度元素として重要な元素であるが、0.12
%を超えると靭性を劣化させ、0.05%未満では必
要な強度を確保することができないだけでなく、
現地溶接での高温割れが発生しやすくなるため、
0.05〜0.12%とした。 Siは脱酸材として添加するもので、0.1%以上
でないと脱酸の効果がなく、0.4%を超えると靭
性を劣化させるため、0.10〜0.40%とした。 Mnは脱酸剤としても必要であるが、Cと同様
に強度元素として重要な元素であり、0.5%未満
では必要な強度を確保することができず、1.20%
を超えると、耐HIC性を劣化させるため0.5〜1.20
%とした。 Alは脱酸上必要であり、結晶粒の粗大化防止
の効果もある。0.005%未満では脱酸の効果がな
く、0.10%を超すと、靭性を劣化させるため、
0.005〜0.10%とした。 発明者らの研究によればHICはS≧0.0010%の
鋼では、圧延の熱間加工終了温度の低下に伴つて
悪化するという熱間加工終了温度依存性が見ら
れ、特に靭性の向上が大きい820℃以下でその傾
向が大きいが、S≦0.0009%の鋼では、上記の傾
向が全く見られなくなることを発見した。そこで
S≦0.0009%とした。 後述する冷却速度及び巻取温度による組織制御
を行つても、偏析が大きい場合には、偏析部が硬
化し、HICが伝播、成長する。しかし、組織制御
を行い、かつ溶鋼のP含有量をP≦0.006%とす
ると、PH4.0未満のきびしいサワー環境で、HIC
の伝播、成長を防止できることを見出した(第3
図参照)。 さらに、連鋳製スラブを1200℃以下のオーステ
ナイト域で、断面減少率20%以上の熱間加工を行
うことにより、Pの拡散係数が増加するため、
1100〜1250℃で30分以上2時間未満という比較的
低温短時間で均熱でもP偏析の拡散効果が得られ
るため、この工程を加えることにより、Pの上限
を0.010%まで引き上げられることを見出した
(第3図参照)。 Caは、Al2O3を形態制御して大型化し、MnS
を球状無害化するために加えるが、0.0020%以下
ではその効果がなく、0.0060%を超えると、Ca系
のクラスター状介在物を形成し耐HIC性を劣化さ
せるため、0.0020〜0.0060%とした。Niは耐食性
の向上、強度の同化、靭性の向上に有効である
が、0.6%を超えると局部腐食が増大するため、≦
0.6%とした。Cuは、耐食性の向上、強度の増加
に有効であるが、0.6%を超えると、圧延欠陥を
生じやすいため、≦0.6%とした。Crは、耐HIC性
及び靭性を劣化させずに強度を増加させることが
できるが、1.00%を超えると靭性を劣化させるた
め、≦1.00%とした。Moは焼き入れ性、強度の向
上に効果があるが、0.60%を超えると靭性の劣化
をまねくので、≦0.60%とした。Nb、V及びZr
は、Moと同様な効果があるが、0.10%を超える
と靭性の劣化をまねくため≦0.10%とした。 Tiは、溶接熱影響部の靭性向上に効果がある
が、0.10%を超えると逆に靭性を劣化させるた
め、≦0.10%とした。 本発明は950℃以下の圧下率:≧50%とするが、
50%以上取ることによつて靭性が向上するので、
50%以上とした。最終熱間加工温度は720〜820℃
とするが、S≦0.0009%とすれば、HICの最終熱
間加工温度依存性がなくなるため、低温靭性の得
られる720〜820℃の範囲とした(第1図、第2図
参照)。 平均冷却速度は5〜30℃/secとする。平均冷
却速度が5℃/sec未満ではフエライトパーライ
トの2相分離が進むため、中心偏析部でフエライ
トのバンド状組織が形成されやすく、30℃/sec
超では硬化したベイナイト状組織が形成されやす
く、耐HIC性が劣化するため、5〜30℃/secと
した(第4図参照)。 巻取温度は400〜600℃とする。ホツトコイルは
巻取工程があるため、厚板と比べて水冷停止後の
冷却速度が極端に遅い。そのため、Ar1変態点以
上の温度で巻取ると、フエライトとパーライトの
2相分離が進み、フエライト・パーライトのバン
ド状組織が形成される。特に中心偏析帯ではこの
傾向が著しいため、耐HIC性が劣化する。従つて
巻取温度の上限はAr1変態の完了している600℃
とした。さらに、巻取温度が400℃未満の領域で
は、平均冷却速度が30℃/sec超の場合と同様に、
硬化したベイナイト状組織を形成しやすく耐HIC
性が劣化する。以上より巻取温度は400〜600℃と
した(第5図参照)。 (作用) 発明者らはPH4.0未満の厳しいサワー環境でS
≧0.0010%の鋼に発生するHICは、圧延の熱加工
終了温度の低下に伴つて増加するという熱間加工
終了温度依存性が有り、特に低温靭性の向上が大
きい820℃以下の温度範囲でその傾向が著しいが、
S≦0.0009%の鋼では、上記の傾向が全く見られ
ないことを発見した。 この発見により、950℃以下で50%以上の圧化
を行い、720〜820℃の温度で熱間加工を終了する
ことにより、耐HIC性を損なわずに低温靭性を得
ることを可能にした。しかしS≦0.0009%として
も、連鋳製スラブの中心偏析部では、MnSの析
出が避けられない部分もあり、このような場所で
はHICが発生する。 このようなHICをなくすためには、P≦0.006
%とすることによりPの偏析を軽減させ、かつ熱
間加工終了後引き続いて冷却速度5〜30℃/sec
で冷却し、巻取温度400〜600℃で巻取つて、中心
偏析部の組織をHICが伝播、成長しない組織にコ
ントロールすることによつて初めて抑制できるこ
とを発見した。 さらに、0.006%<P≦0.010%でも、スラブを
1200℃以下のオーステナイト域で、断面減少率20
%以上の熱間加工を施して拡散起点を作り込み、
その後スラブの中心温度を1100℃以上1250℃未満
で、30分以上2時間未満保定し、不可避的に生成
した偏析を拡散して消滅又は軽減させた後、最終
熱間加工を行い、引き続いて冷却速度5〜30℃/
secで冷却し、巻取温度400〜600℃で巻取ること
により、HICを防止できる。 以上のように、本発明は、PH4.0未満のきびし
いサワー環境での耐HIC性と、低温靭性の両特性
がすぐれたホツトコイルの製造を可能としたもの
である。 (実施例) 発明者らは、耐HIC性に及ぼすS,R及び圧延
条件の影響を明らかにするため、S及びP含有量
を変えた鋼を用い、実験を行つた。試料はすべて
連続鋳造法により鋳造し、Caは粒状合金をタン
デイツシユに連続添加する方法により行つた。 次に、この様に製造したスラブをホツトミルに
て圧延し、ホツトコイルとして得た板を用いて、
耐HIC性評価試験を行なつた。耐HIC性評価試験
は、いわゆるBP試験法に準じた方法で行つた。
すなわち、試料をNACE液(0.5%酢酸−5%塩
化ナトリウム溶液に、H2Sを飽和させた溶液でPH
は約3.8)中に96時間浸漬した。 HIC発生の有無は、浸漬を完了した試験片を
USTで探傷することにより、試片表面に対する
欠陥の割合(以下CARという)で評価した。 表1〜2に実施例を示す。
(Industrial Application Field) The present invention relates to hot coils used for line pipes, particularly those used in cold regions and in humid environments containing hydrogen sulfide and carbon dioxide (hereinafter referred to as sour environments). The aim is to significantly improve crackability and low-temperature toughness. (Prior Art) It is known that cracks called hydrogen-induced cracking (hereinafter referred to as HIC) occur in steel materials such as line pipes used in sour environments, which can cause leakage and burst accidents. The mechanism of HIC occurrence is
Atomic hydrogen generated by corrosion of the steel surface in a sour environment penetrates into the steel, causing
It is thought that cracks occur when they accumulate around layered inclusions such as MnS or oxide cluster inclusions. HIC that originates from inclusions propagates along parts of the steel material that are heterogeneous in composition, structure, hardness, etc.
grow up. This inhomogeneous portion is particularly likely to occur in the final solidified part of the slab, that is, a position corresponding to the center of the continuously cast slab solidified by uniform cooling (hereinafter referred to as the center segregation zone). This position is due to the coexistence of inclusions such as MnS and a heterogeneous region called the central segregation zone.
Most likely to cause HIC. Furthermore, in recent years, due to the depletion of natural resources, the development of gas fields with high contents of hydrogen sulfide and carbon dioxide, and the increase in resource development in cold regions, both HIC resistance and low temperature toughness have increased. Demand for steel sheets with special properties is increasing. In order to manufacture HIC-resistant steel as described above, conventional
(1) A method of suppressing corrosion on the steel surface or adding elements such as Cu, Ni, etc. that form a stable film on the surface to reduce the amount of hydrogen penetrating into the steel due to corrosion. The method disclosed in Publication No. 54-38572. (2) Reduction of S content or Ca,
This is a method of suppressing the occurrence of HIC by reducing MnS or controlling its morphology into less harmful spherical inclusions by adding REM, etc.
Publication No. 14747, Special Publication No. 57-14747
Ca addition method. (3) Reduce the content of C, Mn, P, etc.
Alternatively, the slab is soaked and diffused to dilute the concentrated components in the central segregation zone, thereby suppressing the propagation and growth of HIC.
Methods disclosed in JP-A-58-221260, JP-A-58-221261, and JP-A-55-49129.
(4) A method for suppressing the propagation and growth of HIC by uniformizing the structure and hardness of the steel material using an appropriate hot rolling method, such as the method disclosed in JP-A-57-47827. (Problems to be Solved by the Invention) In oil and natural gas line pipes, during periodic internal cleaning, the inner surface of the pipe may be damaged by the instrument (pig) used to pass through the pipe. Therefore, even if a stable corrosion film is formed on the inner surface of the pipe using Cu, Ni, etc., the film will peel off at the scratched areas and new local corrosion will occur, so it is impossible to completely prevent hydrogen intrusion. It's impossible. Therefore, as described in (2) to (4) of the conventional technology,
It is necessary to reduce the origin of HIC and suppress its propagation and growth. As a starting point for HIC, MnS elongated by rolling is the most harmful, and if MnS can be completely eliminated, HIC will hardly occur. However, industrially, S of molten steel
Even if Ca is added to 0.0010% or less, components will be concentrated during the solidification process of molten steel, and at the final solidification position such as the central segregation area, concentration of Mn and S will occur.
Precipitation of MnS is unavoidable, and the origin of HIC cannot be completely eliminated. Therefore, the most important issue is to suppress the spread and growth of HIC.
The upper limit regulation on the amount of Mn described in Publication No. 58-221261 alone cannot avoid the generation of abnormal tissues that serve as a route for the propagation and growth of HIC. Also, JP-A-57-
As in Publication No. 104653, if C≦0.05%, hot cracking of the weld metal during on-site welding is likely to occur.
In addition, in order to suppress the propagation and growth of HIC by uniformly heating the slab, it is necessary to heat the slab to 1300℃ for 30 minutes to 10 hours, as shown in Japanese Patent Publication No. 55-49129.
This requires extremely high temperature or long-time soaking and diffusion at 1150° C. for 5 to 150 hours, which is problematic from the viewpoint of manufacturing cost and energy saving. Therefore, as shown in JP-A No. 57-47827, a method of controlling the structure by rolling is effective, but if the hot working end temperature is 870°C or higher, high toughness at low temperatures cannot be obtained. I can't. In addition, when comparing hot coils and thick plates, hot coils undergo large reductions during the continuous rolling process, so they are more likely to form distraction inclusions that cause HIC, and a layered structure that serves as a path for HIC propagation and growth. Furthermore, since hot coils require a winding process that is not present in controlled cooling of thick plates, the cooling rate after water cooling is stopped is significantly lower than that of controlled coolant for thick plates. Therefore, grain boundary embrittlement and coarsening of precipitates are likely to occur due to increased grain boundary segregation of CP, etc., and these are
This causes deterioration of HIC properties. Therefore, it is not possible to improve the material quality of hot coils simply by applying controlled cooling technology to thick plates. From the above, the problem to be solved by the present invention is to solve the problems peculiar to hot coils and to obtain a hot coil that simultaneously exhibits both HIC resistance and low-temperature toughness, which have not been achieved with conventional techniques. It is in. (Means for solving the problems) The gist of the present invention is that C: 0.05 to 0.12%, Si: 0.10%
~0.40%, Mn: 0.5~1.20%, Al: 0.005~0.10%,
P≦0.010%, S≦0.0009%, Ca: 0.0020-0.0060
%, further Ni≦0.60%, Cu≦0.60%, Cr:≦1.00
%, Mo: ≦0.60%, Nb≦0.10%, V≦0.10%,
One or two of Zr: ≦0.10%, Ti: ≦0.10%
A slab containing at least 100% of iron and impurities with the remainder being iron and impurities is hot worked in the austenite region at 1200°C or less with a cross-section reduction rate of 20% or more, and then the center temperature of the slab is maintained at 1100 to 1250°C for 30 minutes or more. After holding for less than 2 hours, reduce the pressure by 50% or more at 950℃ or less,
After finishing hot working in the range of 720 to 820°C and subsequently cooling at an average cooling rate of 5 to 30°C/sec,
This is a method for manufacturing a hot coil for high-toughness, sour-resistant steel pipe, which is characterized by winding at a temperature in the range of 400 to 600°C. Next, the reasons for limiting the components and rolling conditions of the present invention will be described. C is an important element as a strength element, but 0.12
If it exceeds 0.05%, the toughness will deteriorate, and if it is less than 0.05%, it will not only be impossible to secure the necessary strength.
Because hot cracking is more likely to occur during on-site welding,
It was set at 0.05-0.12%. Si is added as a deoxidizing agent, and if it is less than 0.1%, there is no deoxidizing effect, and if it exceeds 0.4%, the toughness deteriorates, so it was set at 0.10 to 0.40%. Mn is also necessary as a deoxidizing agent, but like C, it is an important element as a strength element, and if it is less than 0.5%, the necessary strength cannot be secured;
If it exceeds 0.5 to 1.20, the HIC resistance will deteriorate.
%. Al is necessary for deoxidation and also has the effect of preventing coarsening of crystal grains. If it is less than 0.005%, there is no deoxidizing effect, and if it exceeds 0.10%, the toughness will deteriorate.
It was set at 0.005 to 0.10%. According to the inventors' research, in steels with S≧0.0010%, HIC is dependent on the hot working end temperature, which worsens as the hot working end temperature of rolling decreases, and the improvement in toughness is particularly large. It was discovered that this tendency is significant at temperatures below 820°C, but in steel with S≦0.0009%, the above tendency is completely absent. Therefore, it was set as S≦0.0009%. Even if the structure is controlled by cooling rate and coiling temperature, which will be described later, if segregation is large, the segregated portion will harden and HIC will propagate and grow. However, if the structure is controlled and the P content of molten steel is P≦0.006%, HIC
We found that it is possible to prevent the spread and growth of
(see figure). Furthermore, by hot working the continuously cast slab in the austenite region at temperatures below 1200°C with a reduction in area of 20% or more, the diffusion coefficient of P increases.
It was discovered that the diffusion effect of P segregation can be obtained even by soaking at a relatively low temperature and short time of 30 minutes to 1250 degrees Celsius and less than 2 hours, and by adding this step, the upper limit of P can be raised to 0.010%. (See Figure 3). Ca is made by controlling the morphology of Al 2 O 3 to make it larger, and then converting it to MnS
is added to make the spherical shape harmless, but if it is less than 0.0020%, it has no effect, and if it exceeds 0.0060%, it forms Ca-based cluster inclusions and deteriorates HIC resistance, so it was set at 0.0020 to 0.0060%. Ni is effective in improving corrosion resistance, assimilating strength, and improving toughness, but if it exceeds 0.6%, local corrosion will increase, so ≦
It was set at 0.6%. Cu is effective in improving corrosion resistance and increasing strength, but if it exceeds 0.6%, rolling defects are likely to occur, so it was set at ≦0.6%. Cr can increase strength without deteriorating HIC resistance and toughness, but if it exceeds 1.00%, toughness deteriorates, so it was set to ≦1.00%. Mo is effective in improving hardenability and strength, but if it exceeds 0.60%, the toughness deteriorates, so it was set to ≦0.60%. Nb, V and Zr
Although Mo has the same effect as Mo, if it exceeds 0.10%, the toughness deteriorates, so it was set to ≦0.10%. Ti is effective in improving the toughness of the weld heat affected zone, but if it exceeds 0.10%, the toughness deteriorates, so it was set to ≦0.10%. In the present invention, the rolling reduction ratio of 950°C or less is ≧50%,
Toughness improves by taking more than 50%, so
50% or more. Final hot working temperature is 720~820℃
However, if S≦0.0009%, the dependence of HIC on the final hot working temperature is eliminated, so the temperature was set in the range of 720 to 820° C., where low-temperature toughness can be obtained (see FIGS. 1 and 2). The average cooling rate is 5 to 30°C/sec. If the average cooling rate is less than 5℃/sec, the two-phase separation of ferrite pearlite will proceed, so a band-like structure of ferrite will be easily formed in the central segregation area, and the cooling rate will be lower than 30℃/sec.
If the temperature is higher than that, a hardened bainitic structure is likely to be formed and the HIC resistance is deteriorated, so the temperature was set at 5 to 30°C/sec (see Fig. 4). The winding temperature is 400 to 600°C. Because hot coils require a winding process, the cooling rate after water cooling is stopped is extremely slow compared to thick plates. Therefore, when the material is wound at a temperature equal to or higher than the Ar 1 transformation point, two-phase separation of ferrite and pearlite progresses, and a band-like structure of ferrite and pearlite is formed. This tendency is particularly pronounced in the central segregation zone, resulting in deterioration of HIC resistance. Therefore, the upper limit of the winding temperature is 600℃, which is the temperature at which Ar 1 transformation is completed.
And so. Furthermore, in the region where the winding temperature is less than 400℃, as in the case where the average cooling rate is over 30℃/sec,
Easy to form a hardened bainite structure, resistant to HIC
sex deteriorates. Based on the above, the winding temperature was set at 400 to 600°C (see Fig. 5). (Effect) The inventors discovered that the S
The HIC that occurs in steel with ≧0.0010% is dependent on the end temperature of hot working, increasing as the end temperature of hot working during rolling decreases, and it increases in the temperature range below 820°C, where low-temperature toughness is particularly improved. Although the trend is remarkable,
It was discovered that the above tendency was not observed at all in steel with S≦0.0009%. This discovery has made it possible to obtain low-temperature toughness without sacrificing HIC resistance by applying 50% or more compression at temperatures below 950°C and completing hot working at temperatures between 720 and 820°C. However, even if S≦0.0009%, there are areas where MnS precipitation is unavoidable in the central segregation area of the continuously cast slab, and HIC occurs in such areas. In order to eliminate such HIC, P≦0.006
%, the segregation of P is reduced, and the cooling rate is 5 to 30℃/sec after the hot working is completed.
We discovered that suppression can only be achieved by controlling the structure of the center segregation area to a structure that does not allow HIC to propagate or grow, by cooling it at a temperature of 400 to 600°C and winding it. Furthermore, even if 0.006%<P≦0.010%, the slab
In the austenite region below 1200℃, the cross-section reduction rate is 20
% or more to create a diffusion starting point,
After that, the center temperature of the slab is maintained at 1100°C or more and less than 1250°C for 30 minutes or more and less than 2 hours to diffuse and eliminate or reduce the unavoidable segregation, and then final hot working is performed, followed by cooling. Speed 5-30℃/
HIC can be prevented by cooling at sec and winding at a winding temperature of 400 to 600°C. As described above, the present invention makes it possible to manufacture a hot coil that has both excellent HIC resistance in a harsh sour environment with a pH of less than 4.0 and low-temperature toughness. (Example) In order to clarify the effects of S, R and rolling conditions on HIC resistance, the inventors conducted experiments using steels with varying S and P contents. All samples were cast by continuous casting, and Ca was continuously added to the tundish. Next, the slab manufactured in this way was rolled in a hot mill, and using the plate obtained as a hot coil,
A HIC resistance evaluation test was conducted. The HIC resistance evaluation test was conducted in accordance with the so-called BP test method.
That is, the sample was PH-treated with NACE solution (0.5% acetic acid-5% sodium chloride solution saturated with H2S ).
3.8) for 96 hours. To check whether HIC has occurred, test the specimen after it has been immersed.
By performing flaw detection with UST, we evaluated the ratio of defects to the specimen surface (hereinafter referred to as CAR). Examples are shown in Tables 1 and 2.

【表】【table】

【表】 * ○割れなし ×割れ有り
表2には、本発明鋼及び比較鋼の靭性及び耐
HIC性評価を示す。 この表から明らかなように、本発明鋼A,B
は、比較例C,D,Eに比し優れた靭性及び耐
HIC性を得ることができる。 (発明の効果) 以上述べたように、本発明により、PH4.0未満
のきびしいサワー環境での耐HIC性と、低温靭性
の両特性にすぐれたホツトコイルが製造でき、寒
冷地のサワー環境でHICの発生及び低温脆性破壊
によるバースト事故が発生しないラインパイプの
製造が可能である。
[Table] * ○No cracks ×Cracks Table 2 shows the toughness and resistance of the invention steel and comparative steel.
Indicates HIC evaluation. As is clear from this table, the invention steels A and B
has superior toughness and durability compared to Comparative Examples C, D, and E.
HIC properties can be obtained. (Effects of the Invention) As described above, according to the present invention, a hot coil can be manufactured that has both excellent HIC resistance in harsh sour environments with a pH of less than 4.0 and low-temperature toughness. It is possible to manufacture line pipes that do not cause burst accidents due to low-temperature brittle fractures or low-temperature brittle fractures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、耐HIC性に及ぼす熱間加工終了温度
の影響の図表、第2図は、靭性に及ぼす熱間加工
終了温度の影響の図表、第3図は、耐HIC性に及
ぼすP含有量の影響の図表、第4図は耐HIC性に
及ぼす平均冷却速度の影響の図表、第5図は耐
HIC性に及ぼす巻取温度の影響の図表である。
Figure 1 is a chart showing the effect of hot working end temperature on HIC resistance, Figure 2 is a chart showing the effect of hot working ending temperature on toughness, and Figure 3 is a chart showing the effect of P content on HIC resistance. Figure 4 is a diagram of the influence of average cooling rate on HIC resistance, Figure 5 is a diagram of the influence of average cooling rate on HIC resistance.
2 is a chart showing the influence of coiling temperature on HIC properties.

Claims (1)

【特許請求の範囲】 1 重量比で C:0.05〜0.12%、 Si:0.10〜0.40%、 Mn:0.5〜1.20%、 Al:0.005〜0.10%、 P≦0.010%、 S≦0.0009%、 Ca:0.0020〜0.0060%、 さらに Ni≦0.60%、 Cu≦0.60%、 Cr≦1.00%、 Mo≦0.60%、 Nb≦0.10%、 V≦0.10%、 Zr≦0.10%、 Zr≦0.10%、 のうち1種または2種以上を含み、残部は鉄及び
不純物より成るスラブを1200℃以下のオーステナ
イト域で断面減少率20%以上の熱間加工を施し、
その後スラブの中心温度を1100〜1250℃で30分以
上、2時間未満保定した後、950℃以下で50%以
上の圧下を行い、熱間加工を720〜820℃の範囲で
終了し、引き続いて、平均冷却速度5〜30℃/
secで冷却した後、400〜600℃の範囲で巻取るこ
とを特徴とする高靭性耐サワー鋼管用ホツトコイ
ルの製造方法。
[Claims] 1. C: 0.05-0.12%, Si: 0.10-0.40%, Mn: 0.5-1.20%, Al: 0.005-0.10%, P≦0.010%, S≦0.0009%, Ca: 0.0020~0.0060%, and one of the following: Ni≦0.60%, Cu≦0.60%, Cr≦1.00%, Mo≦0.60%, Nb≦0.10%, V≦0.10%, Zr≦0.10%, Zr≦0.10% Or hot working a slab containing two or more types, the remainder consisting of iron and impurities in the austenite region at 1200°C or less with a cross-section reduction rate of 20% or more,
After that, the center temperature of the slab was maintained at 1100 to 1250℃ for 30 minutes or more but less than 2 hours, and then the reduction was performed at 950℃ or less by 50% or more, and the hot working was completed in the range of 720 to 820℃, and then , average cooling rate 5-30℃/
A method for manufacturing a hot coil for high toughness and sour-resistant steel pipes, which comprises cooling at sec and then winding at a temperature in the range of 400 to 600°C.
JP27429684A 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe Granted JPS61157628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27429684A JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27429684A JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Publications (2)

Publication Number Publication Date
JPS61157628A JPS61157628A (en) 1986-07-17
JPH0359124B2 true JPH0359124B2 (en) 1991-09-09

Family

ID=17539666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27429684A Granted JPS61157628A (en) 1984-12-28 1984-12-28 Manufacture of hot coil for high-toughness sour-resistant steel pipe

Country Status (1)

Country Link
JP (1) JPS61157628A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3883051T2 (en) * 1987-04-24 1993-12-02 Nippon Steel Corp Process for the production of steel sheets with good toughness at low temperatures.
KR100544419B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A METHOD FOR MANUFACTURING HOT ROLLED STEEL SHEET OF TENSILE STRENGTH 80kg/? GRADE WITH EXCELLENT WEATHER RESISTANCE AND LOW TEMPERATURE TOUGHNESS
EP1325967A4 (en) * 2001-07-13 2005-02-23 Jfe Steel Corp High strength steel pipe having strength higher than that of api x65 grade
CN100402688C (en) * 2002-09-04 2008-07-16 杰富意钢铁株式会社 Steel material for high heat input welding and its manufacturing method
JP4305216B2 (en) * 2004-02-24 2009-07-29 Jfeスチール株式会社 Hot-rolled steel sheet for sour-resistant high-strength ERW steel pipe with excellent weld toughness and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149423A (en) * 1981-03-10 1982-09-16 Sumitomo Metal Ind Ltd Manufacture of thick high-tensile steel plate having excellent low-temperature matting property
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability
JPS6134116A (en) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd Manufacture of high toughness hot rolled coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149423A (en) * 1981-03-10 1982-09-16 Sumitomo Metal Ind Ltd Manufacture of thick high-tensile steel plate having excellent low-temperature matting property
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability
JPS6134116A (en) * 1984-07-24 1986-02-18 Sumitomo Metal Ind Ltd Manufacture of high toughness hot rolled coil

Also Published As

Publication number Publication date
JPS61157628A (en) 1986-07-17

Similar Documents

Publication Publication Date Title
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JPS5810444B2 (en) Manufacturing method for steel sheets with excellent hydrogen-induced cracking resistance
JPS581012A (en) Production of homogeneous steel
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JPS631369B2 (en)
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPH0359124B2 (en)
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH07286214A (en) Production of high strength thick hot coil excellent in hydrogen induced cracking resistance and dwtt property
JP3697030B2 (en) Manufacturing method of continuous cast steel plate
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JP3526723B2 (en) Ultra high strength steel pipe with excellent low temperature crack resistance
JPS62274049A (en) Continuously-cast steel for resistance welded tube excellent in sour resistance and toughness at low temperature
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JPH09324216A (en) Manufacture of high strength steel or line pipe, excellent in hic resistance
JPH08232042A (en) Corrosion resisting steel for resistance welded tube
KR100345704B1 (en) A method of manufacturing high strength hot rolled steel strip with low susceptibility of SSCC