JPS581014A - Production of hot coil having high hydrogen induced cracking resistance - Google Patents

Production of hot coil having high hydrogen induced cracking resistance

Info

Publication number
JPS581014A
JPS581014A JP9835181A JP9835181A JPS581014A JP S581014 A JPS581014 A JP S581014A JP 9835181 A JP9835181 A JP 9835181A JP 9835181 A JP9835181 A JP 9835181A JP S581014 A JPS581014 A JP S581014A
Authority
JP
Japan
Prior art keywords
induced cracking
hydrogen
steel
hot coil
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9835181A
Other languages
Japanese (ja)
Inventor
Hirosuke Inagaki
稲垣 裕輔
Toshio Nakazawa
中沢 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9835181A priority Critical patent/JPS581014A/en
Publication of JPS581014A publication Critical patent/JPS581014A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a hot coil having high hydrogen induced cracking resistance by reducing the content of S in steel, adding Ca, finish rolling the steel and coiling the rolled steel plate in the stage of producing said hot coil. CONSTITUTION:In the steel material contg. 0.05-0.20% C, <0.5% Si, 0.5-1.0% Mn, <0.02% P, <0.002% S, <0.10% Nb, <0.1% Al, 0.001-0.006% Ca and further 1 or >2 kinds of 0.2-0.6% Cu, <0.2% Ni, <0.5% Mo, <0.5% Cr, and <0.1% V, the content of S is minimized, and a small amt. of Ca is added to control the shape of harmful non-metallic inclusions such as MnS. Such steel ingot is finish rolled in >=850 deg.C austenite recrystallization temp. region, and the rolled steel plate is coiled at >=650 deg.C or after it is finish-rolled in unrecrystallization gamma region, at 750-850 deg.C, it is coiled at 600 deg.C.

Description

【発明の詳細な説明】 コイルの製造方法に係り、電縫管用ホットコイル材、特
に耐水素誘起割れ特性が優れていて石油や天然ガス等の
輸送管ないしその貯蔵用タンクの如きを形成するための
素材として適したホットコイル材の有利な製造方法を提
供しようとするものである。
[Detailed Description of the Invention] A hot coil material for electric resistance welded pipes, which has excellent resistance to hydrogen-induced cracking, and is used to form pipes for transporting oil, natural gas, etc., or storage tanks thereof, etc. The purpose of this invention is to provide an advantageous method for producing hot coil material suitable as a material for.

近年石油消費量の増加に伴う油田の開発とパイプライン
の敷設が多く計画されているが、このような場会におい
てその石油や天然ガス等のパイプ輸送や貯幀タンクなど
はそれらに含有される硫化水素と水との共存栄件下にあ
って鋼表面が著しく腐食される。即ち−F記したような
条件下における腐食によって発生した水素は鋼中に侵入
し、伸延されたMn8などの硫化物系介在物の周辺に凝
集して内圧を高める結果、板厚方向に平行な水素誘起割
れを生じ、場合によって板厚方向に貫通して鋼材を破壊
する。このような湿性硫化水素腐食環境における鋼中へ
の水素侵入防止手段として従来から鋼K 0.251以
上のCoを添加して耐食性および耐水素透過性の高い保
繰皮膜を形成させることにより水素誘起割れの発生を防
止するものである。然し実用鋼塊の中央偏析部はS、C
,Mnなどの不純物元素ないし水素誘起割れ感受性な増
大する元素が偏集しているためこのCo添加処理だけで
割れ発生を完全に防止することは困難であって、即ちC
u添加鋼でもその使用される環境条件が厳しく、例えば
共存水分の酸性度がpli4.6以下の場合には上述の
耐食性皮膜が形成されないため水素誘起割れの多発する
可能性か大きい。このため斯かる苛酷な腐食環境に使用
される鋼にはS含有量を低下させて水素誘起割れの発生
起点となる硫化物系介在物を減少させたり、或いはC1
や希土類元素を添加してこれら非金属介在物の形状を制
御し水素誘起割れ感受性を低下させる必要がある。然し
実用鋼塊全体について均一なレベルでそのS含有量低下
を図ることは困難であり、又鋼塊全体にわたって効果的
な非金属介在物の形態制御を行うことも非常に難かしい
ものであって、特に鋼塊沈澱乙部にはCaや希土類元素
の介在物が集積し易いため却って割れ感受性を高める結
果になることは公知の通りである。
In recent years, with the increase in oil consumption, many plans have been made to develop oil fields and lay pipelines. Under the coexistence of hydrogen sulfide and water, the steel surface is severely corroded. In other words, hydrogen generated by corrosion under the conditions described in -F penetrates into the steel and aggregates around the elongated sulfide inclusions such as Mn8, increasing the internal pressure. Hydrogen-induced cracking occurs, and in some cases, it penetrates through the thickness direction and destroys the steel material. Conventionally, as a means to prevent hydrogen from entering steel in such a wet hydrogen sulfide corrosive environment, hydrogen induction is achieved by adding Co of 0.251 or more to steel K to form a retentive film with high corrosion resistance and hydrogen permeation resistance. This prevents cracks from occurring. However, the central segregation part of a practical steel ingot is S, C
, Mn, and other impurity elements or elements that increase susceptibility to hydrogen-induced cracking are concentrated, so it is difficult to completely prevent cracking with this Co addition treatment alone.
Even with u-added steel, the environmental conditions in which it is used are severe, for example, if the acidity of coexisting moisture is pli 4.6 or less, the above-mentioned corrosion-resistant film will not be formed, so there is a high possibility that hydrogen-induced cracking will occur frequently. For this reason, the steel used in such a severe corrosive environment must have a lower S content to reduce sulfide-based inclusions, which are the starting point for hydrogen-induced cracking, or a C1
It is necessary to control the shape of these nonmetallic inclusions by adding metals and rare earth elements to reduce the susceptibility to hydrogen-induced cracking. However, it is difficult to reduce the S content of the entire steel ingot at a uniform level, and it is also extremely difficult to effectively control the morphology of nonmetallic inclusions throughout the entire steel ingot. It is well known that inclusions of Ca and rare earth elements tend to accumulate particularly in the steel ingot precipitate part, which actually increases the cracking susceptibility.

一方ホットコイル材における水素誘起割れ感受性はプレ
ート材よりも大であって、その割れ形態は階段状に連結
し易いため板厚方向に貫通する危険性は頗る大である。
On the other hand, the susceptibility to hydrogen-induced cracking in hot coil material is greater than that in plate material, and the cracks tend to connect in a step-like manner, so the risk of penetration in the thickness direction is extremely high.

蓋しこのホット:コイル材とプレート材における水素誘
起割れ感受性について説明すると、ホットコイル材にお
いてはプレート材における如く幅方向圧延という工程か
なく一方向に強圧下されるため前記Mn8がプレート材
に比し格段に伸長されているから割れ感受性力1それだ
け高くなる。又ホットコイル材+Sプレート材に比し一
般的に板厚が薄いので介在物の含有量カー同一であると
しても単位板厚方向断面積当りでみるとホットコイル材
の方力1相当多くなるとともに板厚方向に平行な割れと
して発生した水素誘起割れ同志が階段状に連結して板厚
な貫通する割れに発展する危険性もそれだけ太きい。更
にホットコイルは既述のように一方向強圧下条件で薄肉
に圧延されるためその圧延長も相当のものとなり、同−
鋼板内でもその産地初期と終点近傍とでは圧延条件カミ
相当に変動する場合があり、又ホットコイルの製造にお
いてはランアウトテーブル上での水冷による急冷工程と
それに続(コイ1)ングという独自の工程かあり、これ
らの圧延仕上り温間、捲取り温度のような圧延条件の制
御により広範囲の材質のものか得られる第1」点&↓あ
るか、その同一コイル内での圧延条件の変動かあると、
該変動が不可避的であると意識的であるとを問わず、割
れ感受性の高(・ベイナイト組織がバンド状に形成され
、耐水素誘起割れ特性が著しく劣化する危険力)ある。
Hot on the lid: To explain the susceptibility to hydrogen-induced cracking in coil material and plate material, hot coil material is strongly rolled down in one direction without the process of rolling in the width direction like in plate material, so the Mn8 is higher than in plate material. Since it has been significantly elongated, its cracking susceptibility increases accordingly. Also, since the plate thickness is generally thinner than hot coil material + S plate material, even if the inclusion content is the same, the hot coil material's direct force will be equivalent to 1 more per unit cross-sectional area in the thickness direction. There is also a greater risk that hydrogen-induced cracks that occur as cracks parallel to the plate thickness will connect in a step-like manner and develop into cracks that penetrate through the plate thickness. Furthermore, as mentioned above, the hot coil is rolled into a thin wall under conditions of strong reduction in one direction, so the rolling length is considerable, and the same
Even within a steel plate, the rolling conditions may vary considerably between the initial stage of production and the vicinity of the final stage, and hot coil manufacturing requires a unique process of rapid cooling with water on a run-out table followed by (coiling 1). The first point is that a wide range of materials can be obtained by controlling the rolling conditions such as warm finishing and winding temperature, or there are variations in rolling conditions within the same coil. and,
Regardless of whether this variation is unavoidable or intentional, there is a high degree of cracking susceptibility (a risk that the bainite structure is formed in a band shape and the hydrogen-induced cracking resistance is significantly deteriorated).

本発明は上記したような実情に鑑み検討な重ねて創案さ
れたものである。即ち本発明&ま鋼成分組成と圧延法の
両面から検討をなし、既述したような苛酷な腐食環境条
件下での使用に充分耐え、圧畑粂件の変動に対しても優
れた耐水素誘起割れ特性を示すAPI規格X42〜x6
s相当s度のホットコイル材を得ることに成功した。
The present invention was created after repeated studies in view of the above-mentioned circumstances. In other words, the present invention has been studied from both the steel composition and the rolling method, and has been developed to withstand use under the harsh corrosive environment conditions mentioned above, and has excellent hydrogen resistance against changes in the rolling properties. API standards X42 to x6 indicating induced cracking characteristics
We succeeded in obtaining a hot coil material with a degree of s equivalent to s.

斯かる本発明について更に説明すると、ホットコイル材
における水素誘起割れ発生要因には一般的に、台金元素
、非金属介在物(%に伸延されたMnS介在物とホット
コイル製造時における圧延条件の変動に伴う顕微鏡組織
の変化とがあるが、本発明では特に鋼のS量な0.00
20  唾未満に低下し、caft添加することによっ
て上記した非金属介在物を制卸し、耐水素誘起割れ性の
向上を図り、しかも鋼のMn量、圧延榮件を適切に選ん
で顕微鏡組織な制卸することにより上記極低S化とC&
添加の効果がより顕著に発揮せしめられ、耐水素誘起割
れ特性を著しく向上し得ることな確認した。特にホット
コイル製造時における熱間圧延条件の変動は水素誘起割
れに対して敏感であり、後述する実施例で明かにされる
ように仕上圧延と捲取りとの温度差が大である程割れ感
受性が増大する。然し夫々の仕上げ圧延温度を考直した
一定の温度以上で捲取ることKより好ましい耐水素誘起
割れ性の改良結果が得られ、例えば850℃以上の再結
晶r領域で仕上圧延を終了した場合には捲取温度を65
0℃以上とし、又750’C以上の未再結晶r領域で仕
上圧延を終了した場合の捲取温度を600℃以上とする
ことにより何れにしても卓越した耐水素誘起割れ特性を
示すことを見出した。
To further explain the present invention, the causes of hydrogen-induced cracking in hot coil materials generally include base metal elements, non-metallic inclusions (MnS inclusions stretched to 100%), and rolling conditions during hot coil manufacturing. Although there are changes in the microscopic structure due to fluctuations, in the present invention, the S content of steel is particularly reduced to 0.00.
By adding CAFT, the above-mentioned non-metallic inclusions are controlled, and the hydrogen-induced cracking resistance is improved. Moreover, by appropriately selecting the Mn content of the steel and rolling conditions, the microscopic structure can be controlled. By wholesale, the above-mentioned extremely low S and C&
It was confirmed that the effect of the addition was more pronounced and the hydrogen-induced cracking resistance could be significantly improved. In particular, variations in hot rolling conditions during hot coil manufacturing are sensitive to hydrogen-induced cracking, and as will be clarified in the examples described later, the greater the temperature difference between finish rolling and winding, the more susceptible to cracking. increases. However, by reconsidering the respective finish rolling temperatures, rolling at a certain temperature or higher results in a more favorable improvement in hydrogen-induced cracking resistance. The winding temperature is 65
By setting the rolling temperature to 0°C or higher and setting the winding temperature to 600°C or higher when finish rolling is completed in the non-recrystallized r region of 750'C or higher, excellent hydrogen-induced cracking resistance is exhibited. I found it.

即ち本発明によるものは、c:o、os〜0.20%、
83:0.5’i以下、Mn : 0.5〜1. OS
、P :0.02係以下、S : 0,0021以下、
Nb : 0.10 %以下、At:0゜1%以下、C
亀: 0.001〜0.0064を含有し、残部が鉄お
よび不可避不純物よりなる鋼又はこのような成分系の鋼
に更にCu : 0.20〜0.60 %、Ni : 
0.20%以下、Mo : 0.50’4以下、Cr 
:0.50%以下、V:0.11以下の何れか1種又は
2種以上をも含有した鋼を熱間圧延し、その仕上温度条
件下における一足の耐水素誘起割れ特性を改善する温度
以上で捲取るものであり、具体的には850℃以上のオ
ーステナイト再結晶温度域で仕上圧延した場合には捲取
り温度を650℃以上とし、又前記仕上温度を750℃
以上850℃未満の未再結晶r領域とした場合は捲取温
I#な600℃とするものである。
That is, the one according to the present invention has c:o, os ~ 0.20%,
83: 0.5'i or less, Mn: 0.5-1. OS
, P: 0.02 or less, S: 0,0021 or less,
Nb: 0.10% or less, At: 0°1% or less, C
Cu: 0.20-0.60%, Ni:
0.20% or less, Mo: 0.50'4 or less, Cr
: 0.50% or less, V: 0.11 or less, and the temperature at which the hydrogen-induced cracking resistance of a pair of shoes is improved under the finishing temperature conditions of hot rolling. The above is the rolling process. Specifically, when finishing rolling is performed in the austenite recrystallization temperature range of 850°C or higher, the rolling temperature is set to 650°C or higher, and the finishing temperature is set to 750°C.
In the case of the unrecrystallized r region below 850°C, the winding temperature I# is 600°C.

本発明における鋼の成分範囲限足理由について説明する
と以下の如くである。
The reason for the limited range of steel components in the present invention is as follows.

Cは、0.20%以上となると靭性や溶接性KJI点が
生じ、又大型鋼塊や連続鋳造材では中央偏析帯での異状
組織(マルテンサイトやベイナイト)の発生を防止する
のに好ましくない、然して0.05嗟以下では必要強度
が得られない場合がある。
When C exceeds 0.20%, toughness and weldability KJI point occurs, and in large steel ingots and continuous cast materials, it is not preferable to prevent abnormal structures (martensite and bainite) from forming in the central segregation zone. However, if it is less than 0.05 mo, the required strength may not be obtained.

Siは、脱酸剤として添加するが、0.504以上では
靭性を劣化するのでこれを上限とする。
Si is added as a deoxidizing agent, but if it exceeds 0.504, the toughness deteriorates, so this is set as the upper limit.

Muも、脱酸剤として添加され、靭性の増加に寄与する
が、0.54以下では充分な靭性が傅られず、又大型鋼
塊や連続鋳造材での異状組織はこのMI&とPとの濃厚
偏析によるものであって、1.04以上の添加では水素
誘起割れに有害なこの中央部異常組織の発達を助長する
Mu is also added as a deoxidizing agent and contributes to increasing toughness, but if it is less than 0.54, sufficient toughness cannot be achieved, and the abnormal structure in large steel ingots and continuous cast materials is caused by the combination of MI& and P. This is due to dense segregation, and addition of 1.04 or more promotes the development of this central abnormal structure that is harmful to hydrogen-induced cracking.

Pは、焼戻脆性を悪化させる有害な元素であり、又i1
r記のように中央部での異状組織発達を促進させて耐水
素誘起割れ性を著しく劣化するのでその含有量を低(す
ることか必要であるけれども製鋼上の制約もあり、そ゛
の上限を0.020嘔とする。
P is a harmful element that worsens tempering brittleness, and i1
As shown in R, it promotes the development of abnormal structures in the central part and significantly deteriorates the hydrogen-induced cracking resistance, so it is necessary to reduce its content, but there are constraints in steel manufacturing, so the upper limit cannot be set. 0.020 vomit.

Sは、その含有量か増加するに伴い水素誘起割れの発生
か助長され、又大型鋼塊や連続鋳造材においては中央部
異状組織中での水素誘起割れ発生の起点ともなる。なお
このS含有量を0.005憾程#まで低下させると水素
誘起割れの発生防止が一層確実となるが、ホットコイル
材の場合は独自の圧抵方法で製造されるために割れ感受
性が高(、Caを添加しても割れを完全に防止すること
は難しい。従ってこのS童上限を工業的に可能な0.0
02嘔とし% NKCsを添加することKより水素誘起
割れの発生防止をより確実なものとした。
As its content increases, S promotes the occurrence of hydrogen-induced cracking, and in large steel ingots and continuous cast materials, it also becomes the starting point of hydrogen-induced cracking in the irregular structure in the center. Note that reducing the S content to 0.005 # will further ensure the prevention of hydrogen-induced cracking, but hot coil materials are manufactured using a unique piezo resistance method and are therefore more susceptible to cracking. (Even if Ca is added, it is difficult to completely prevent cracking. Therefore, the upper limit of this S temperature is set to 0.0
02% Addition of NKCs made prevention of hydrogen-induced cracking more reliable than K.

Atは、脱酸剤として必要であり、又顕微鏡組織の微細
化にも有効な元素ではあるが、0.1016以上の含有
で靭性の劣化と非金属介在物の増加が認められ好ましく
ないので、これを上限とした。
At is necessary as a deoxidizing agent and is an effective element for refining the microscopic structure, but if it is contained in an amount of 0.1016 or more, it is undesirable because it causes deterioration in toughness and increases in nonmetallic inclusions. This was set as the upper limit.

Nbは、結晶粒の微細化と鋼の強度、靭性の改11に寄
与する元素であるが、0.1011以上な添加してもそ
の効果か飽和状態となり、経済的にも不利であるから、
これを上限とする。
Nb is an element that contributes to grain refinement and improvement of the strength and toughness of steel, but even if it is added in an amount of 0.1011 or more, its effect will be saturated and it is economically disadvantageous.
This is the upper limit.

Caは、鋼中の硫化物系介在物の形態および組成を効果
的に制御する目的で添加し、このためには0.001嗟
以上を必要とするが、0.006優以上を添加するとそ
の効果が飽和し、C4介什物のクラスターが形成される
ため割れ感受性か高まるのでこれを上限とする。
Ca is added for the purpose of effectively controlling the morphology and composition of sulfide inclusions in steel, and for this purpose, an amount of 0.001 mm or more is required, but adding 0.006 mm or more increases the The effect is saturated and clusters of C4 inclusions are formed, increasing cracking susceptibility, so this is set as the upper limit.

任意元素である011%N1、Mo%Or、Vは製造さ
れる鋼の性質に一層の改善を与えるため必要に応じて添
加するものであり、これらの元素は耐水素誘起割れ性、
強度、靭性の向上に寄与し、鋼に要求される諸物件、使
用環境条件等を考慮して適正な範囲内で1種又は2種以
上を組合わせて含有させることができる。即ち以下の通
りである。
The optional elements 011%N1, Mo%Or, and V are added as necessary to further improve the properties of the manufactured steel, and these elements improve hydrogen-induced cracking resistance,
They contribute to improving strength and toughness, and can be contained alone or in combination of two or more within an appropriate range, taking into consideration various properties required for steel, usage environmental conditions, etc. That is, as follows.

Cuは、強度の向上と水素誘起割れ防止に効果を有する
元素であるが、0.20嘔9下の添加では効果が薄(、
一方0.6011以上では溶接性と熱間加工性に悪影響
を与える。
Cu is an element that is effective in improving strength and preventing hydrogen-induced cracking, but the effect is weak when added below 0.20% (,
On the other hand, if it is 0.6011 or more, weldability and hot workability are adversely affected.

Crは、強度の向1に有効な元素であるが、0.50優
以上を添加してもその効果が少く経済的に不利であるか
らこれを上限とした。
Cr is an element that is effective in improving strength, but even if it is added in an amount of 0.50 or more, the effect is small and it is economically disadvantageous, so this is set as the upper limit.

Niは、鋼の強度、靭性を向上させる元素であるが、一
方において鋼の水:X誘起割れの発生を促進させる元素
でもあり、上記目的で添加する場合にもその添加量は少
い方がよく、上限を0.20%に抑えることが好ましい
Ni is an element that improves the strength and toughness of steel, but on the other hand, it is also an element that promotes the occurrence of water: It is preferable to keep the upper limit to 0.20%.

Mo%Vは、−に必要な強度レベルな得る目的で添加す
るものであるが% MOはO,S畳、Vは0.1%を超
えて添加してもその効果゛は飽和状態となり、経済的に
も不利である。
Mo%V is added for the purpose of obtaining the strength level required for -, but %MO is O, S, and even if V is added in excess of 0.1%, the effect is saturated, It is also economically disadvantageous.

次に本発明における圧延条件について説明すると、最終
仕上げ温度は750℃以上とてるか、具体的には850
1:以上の場合と750〜850℃の場合とかある。即
ちこの最終仕上111度が750℃未満となると、フェ
ライト・オーステナイト2相域で圧下が行われることと
なり、ホットコイルとなった状態でもフェライトは圧延
による歪みが相当残留しているので耐水素誘起割れ特性
を悪化せしめるところとなる。具体的な仕上温度として
850℃以上の場合と750〜850℃のi合について
は、次の捲取温度と関係するものであって、850℃以
上の貴結晶r領域で仕上圧延した場合には捲取温度な6
50℃以上とし、又750〜850℃の未再結晶r領域
で仕上圧延を終了した場合はその捲取温度を600℃以
上とすることは既述の通りである。即ち前記したような
本発明の鋼成分条件な満足した鋼を用いた場合において
も常法に従って圧延し、その捲取温度が継路仕上温度と
の関係において前記条件を満足しない、より低温である
場合においては耐水素誘起割れ性が充分に得られず、少
くともH,S飽和の0.5優酢酸+5%食塩水の如きに
よる試験結果においてそれなりの割れ発生が認められる
。これに対し捲取温度を上記のように厳科仕上温度を考
慮して650℃以上又は600℃以上とすることにより
優れた耐水素誘起割れ特性を発揮し、何れの試験条件に
おいても割れの発生か皆無である。即ちこれらの関係は
第1図と第2図に示す通りであって、本発明でいう成分
組成を有する鋼な比較的高温の850℃で仕上圧延した
ものを700℃で捲取ったものか第1図の(4)、65
0℃で捲取ったものか同図■)、550℃で捲取ったも
のが同図(C)のような顕微鏡組m(倍率200倍)を
有し、これらのものを0.5嘔酢酸+5悌食塩水溶液に
硫化水素を飽和させた腐食環境中に応力無負荷状態で9
6時間浸漬した稜の水素誘起割れ発生状態は上記(4)
に対し テG’l (A’ ) 、(Bl ハ(B’)
 % (C)は(C’) トして第1図に対応させて示
す通りであり% (A’)、(B’)のものでは全く誘
起割れな求め得ないが、(C′)のものでは長さ数−の
誘起割れが複数個発生している。又仕上温度750℃と
したものは第2図の如くであって、捲取温度650℃が
同図(4)、600℃が同図の)、550℃が同図(C
)であるか、これらのものについての第1図の場合と同
じ試験榮件での水素誘起割れ発生状態は囚に対しては(
A’ ) 、(B)に対しては(B’)、(C)K対し
ては(C′)として夫々併せて示す通りであり、600
℃以上で捲取った(A′)(B′)のものは何れも誘起
割れかないのに対し、600℃以下で捲取った(σ)の
ものはやはり長さ数■の複数個の誘起割れが発生してい
る。
Next, to explain the rolling conditions in the present invention, the final finishing temperature is 750°C or higher, specifically 850°C or higher.
There are cases where the temperature is 1: or higher and cases where the temperature is 750 to 850°C. In other words, if this final finish of 111 degrees becomes less than 750 degrees Celsius, rolling will occur in the ferrite-austenite two-phase region, and even in the hot coil state, the ferrite still retains considerable strain from rolling, making it resistant to hydrogen-induced cracking. This results in deterioration of the characteristics. The specific finishing temperatures of 850°C or higher and the range of 750 to 850°C are related to the following winding temperature. Winding temperature 6
As mentioned above, the winding temperature is set at 50°C or higher, and when finish rolling is completed in the non-recrystallized r region of 750 to 850°C, the winding temperature is set at 600°C or higher. That is, even when a steel that satisfies the steel composition conditions of the present invention as described above is used, it is rolled according to a conventional method, and the winding temperature is lower than that which does not satisfy the conditions in relation to the joint finish temperature. In some cases, sufficient hydrogen-induced cracking resistance is not obtained, and some cracking is observed at least in test results using H, S-saturated 0.5 euacetic acid + 5% saline. On the other hand, by setting the winding temperature to 650°C or higher or 600°C or higher in consideration of the strict finishing temperature as mentioned above, excellent hydrogen-induced cracking resistance is exhibited, and cracking does not occur under any of the test conditions. Or none at all. In other words, these relationships are as shown in Figures 1 and 2, and the steel having the chemical composition referred to in the present invention is finished rolled at a relatively high temperature of 850°C and then rolled at 700°C. (4), 65 in Figure 1
The one rolled up at 0℃ or the one rolled up at 550℃ has a microscope set m (200x magnification) as shown in the same figure (C). +5 Under no stress load in a corrosive environment in which a saline solution is saturated with hydrogen sulfide, 9
The state of hydrogen-induced cracking on the edge after 6 hours of immersion is shown in (4) above.
For TeG'l (A'), (Bl Ha(B')
% (C) and (C') are shown in Fig. 1, and % (A') and (B') cannot be found to have induced cracking at all, but (C') In some cases, multiple induced cracks with a length of -3 have occurred. Also, the finishing temperature is 750℃ as shown in Figure 2.The winding temperature is 650℃ (4) in the same figure, 600℃ is in the same figure (C).
), or the hydrogen-induced cracking conditions for these materials under the same test conditions as in Figure 1 are (
A' ) and (B) are shown as (B'), and (C) and K are shown as (C'), respectively, and 600
The samples (A') and (B') that were rolled up at temperatures above ℃ showed no induced cracks, whereas the samples (σ) that were rolled up at temperatures below 600 degrees Celsius still showed multiple induced cracks with a length of several ■. is occurring.

本発明によるものの具体的な実施例にライて説明すると
以下の通りである。
The following is a description of specific embodiments of the present invention.

先ず本発明者等か具体的に採用した本発明における成分
組成限足範囲内の鋼およびそれに対する比較鋼としての
供試鋼は次の第1表に示す通りであって、A−Dは比較
鋼、E〜Hに本発明における鋼であり、E、Jま基本成
分によるもの、FはMo、Cr、Vを含有させたもの、
GはC嶌Niを含有させたもの、HはCu。
First, the steels within the composition limit range of the present invention specifically adopted by the present inventors and the test steels as comparative steels are as shown in Table 1 below, and A-D are the comparative steels. Steel, E to H are steels in the present invention, E and J are those with basic components, F is one containing Mo, Cr, and V,
G is C-containing Ni, H is Cu.

Niと共fCCr%V を含有させたものである。It contains fCCr%V together with Ni.

上記したような各鋼片は1150〜1250℃に夫々加
熱しL後、最終板厚9.3■のホットコイルとするよう
に圧延し、その際のホットストリップミルにおける最終
圧延温度を750℃〜850℃ の温度範囲とし、又そ
の後の捲取温fを本発明に従ったものと従来からの常法
によるものに従い、550〜700℃の範囲内における
種々のものとした。
Each of the above-mentioned steel slabs was heated to 1150-1250°C, and then rolled into a hot coil with a final plate thickness of 9.3cm, and the final rolling temperature in the hot strip mill was set at 750°C-1250°C. The temperature range was 850 DEG C., and the subsequent winding temperature f was varied within the range of 550 DEG to 700 DEG C., depending on the present invention and conventional methods.

又このようなホットコイル材又はこれによって造管され
た電縫管について人工海水および0.5暢酢酸+5囁食
塩水f#液に硫化水素を飽和させた腐食環境中で水素誘
起割れ試験を行った。なおこの水素誘起割れ試験につい
ては試験片形状がioo■t×20■W X 7.5 
wtとし、上記腐食環境中へ応力無負荷の状態で96時
間浸漬した後、1鋼種あたり9断面の検鐘をなし、水素
誘起割れの利足をなした。
In addition, hydrogen-induced cracking tests were conducted on such hot coil materials or ERW pipes made using the hot coil materials in a corrosive environment in which artificial seawater and 0.5 ml of acetic acid + 5 ml of saline solution were saturated with hydrogen sulfide. Ta. For this hydrogen-induced cracking test, the test piece shape was ioo ■t x 20■W x 7.5
After being immersed in the above corrosive environment for 96 hours with no stress applied, nine cross-sections were examined per steel type, and hydrogen-induced cracking was successfully detected.

即ち上記したような圧延条件および試験結果を要約して
示すと、比較鋼については次の、@2表、又本発明方法
による鋼を用いた場合については第3表の通りである。
That is, the rolling conditions and test results as described above are summarized as shown in Table 2 below for the comparison steel, and Table 3 for the steel produced by the method of the present invention.

@2表 第3表 即ち割れ感受性はホットコイル製造時の圧延条件に大き
な影響を受け、仕上圧延温度が低く、又その後の捲取温
度との温度差が大きい程割れ感受性か高まり、史に捲取
りが600℃以下の低い温度の場合に:は何れにしても
割れ感受性か高まって水素誘起割れが多発する。
@2 Table 3 In other words, cracking susceptibility is greatly influenced by the rolling conditions during hot coil manufacturing, and the lower the finishing rolling temperature and the larger the temperature difference from the subsequent winding temperature, the higher the cracking susceptibility, which has been known in history. In the case of a low temperature of 600° C. or lower, the cracking susceptibility increases and hydrogen-induced cracking occurs frequently.

しかし本発明による成分範囲の鋼はMn、 S量の抑制
とNb、 C亀を添加したことにより、前記のようなホ
ットコイル製造時の圧延条件と相俟って優れた耐水素誘
起割れ特性を示し、腐食環境の酸性度がpu < 4.
6の厳しい場合でも水素誘起割れの発生は皆無となる。
However, by suppressing the amount of Mn and S and adding Nb and C, the steel with the composition range according to the present invention has excellent hydrogen-induced cracking resistance in conjunction with the rolling conditions during hot coil manufacturing as described above. and the acidity of the corrosive environment is pu < 4.
Even in the severe case of No. 6, no hydrogen-induced cracking occurs.

これに対し本発明における成分範囲の1つでも満足して
いない鋼のホットコイル材又はそれによる電縫管は腐食
性の比較的軽微な硫化水素飽和の人工海水(pH中5.
2)中でも、そのホットコイル圧延条件によってはA、
B鋼の場合のように水素誘起割れが多発し、腐食性が更
に厳しい硫化水素飽和の0.51酢醗+51i食塩水溶
液(pil中3.8)中では仮りに本発明による圧延条
件に従って割れを防止することができない。
On the other hand, hot coil materials of steel that do not satisfy even one of the component ranges according to the present invention or electric resistance welded pipes made of the same are manufactured using artificial seawater saturated with hydrogen sulfide (pH: 5.
2) Among them, A, depending on the hot coil rolling conditions.
As in the case of steel B, hydrogen-induced cracking occurs frequently, and in a hydrogen sulfide-saturated 0.51 vinegar + 51i salt aqueous solution (3.8 in pil), which is even more corrosive, it is assumed that cracking does not occur according to the rolling conditions according to the present invention. cannot be prevented.

史にCu添加鋼はH,S飽和人工海水中では優れた耐水
素誘起割れ性を示すか、前記−く4.6の腿食環境の場
合にはCu添加による保護皮膜か形成されないため耐水
素誘起割れ性を著しく劣化する場合があり、特に大型鋼
塊材や連続鋳造材では中央部異状組織の形成防止と硫化
−系介在物の形状制御は不可欠の条件である。
Historically, Cu-added steel exhibits excellent hydrogen-induced cracking resistance in H and S-saturated artificial seawater, or it has poor hydrogen resistance because a protective film due to Cu addition is not formed in the thigh corrosion environment described in Section 4.6 above. In some cases, the induced cracking resistance may be significantly deteriorated, and prevention of the formation of abnormal structures in the center and control of the shape of sulfide-based inclusions are essential conditions, especially in large steel ingots and continuous cast materials.

以−LItI2明したような本発明によるときは耐水素
誘起割れ性の著しく^められたホットコイル材を適切に
製造することができ、HtSと水の共存する石油や天然
ガスに関する輸送用ラインパイゾ材又は貯絨タンク素材
の如きに利用するに適した熱延材を有利に提供し得るも
のであるから工業的にその効果の大きい発明である。
According to the present invention as explained below, a hot coil material with significantly improved hydrogen-induced cracking resistance can be appropriately manufactured, and it can be used as a line piezo material for transportation of petroleum and natural gas where HtS and water coexist. The present invention is also industrially highly effective since it can advantageously provide a hot-rolled material suitable for use as a storage tank material.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
は850℃で仕上圧延し、700℃で捲取ったもの(4
)、650℃で捲取ったもの(B)、および550℃で
捲取ったもの(C)の各倍率200倍による顕微鏡組織
を示した写真並びにこれらのコイル材による水素誘起割
れ試験結果の水素誘起割れ発生状態な示す倍率5倍の断
面拡大図(Aつ(Bつ(び)な併せて示すものであり、
又第2図は750℃で仕上圧処し、650℃で捲取った
もの(A)、600℃で捲取ったもの(B)および55
0℃で捲取ったものC)の各倍率200倍による顕微鏡
組織を示した写真並びにこれらのホットコイル材につい
て水素誘起割れ試験を行った結果の水素誘起割れ発生状
態を示す倍率5倍の断面拡大図(A′)(B’)(σ)
である。 特許出願人 日本鋼管株式会社 発  明  者 稲  垣  裕  輪間      
  中  沢  利  雄#ミh 代理人弁理士 白 川 −−t・4j1+特許庁長官島
 1)春 樹 殿 1.事件の表示゛ 昭和発f1゜   、願第q♂犬〃号 3、補正をする者 事件との関係特許出願人 名称(氏釦日本鋼管株式会社 4、代理人 昭和妬年/7月2(右1日 発送 6、補正の対象 紹特i秒・・1λ信 7、補正の内容 別紙の通り 補  正  の  内  容 、乙本願明#l書中第14負13行目及び14行行目こ
それぞれr(A)Jとあるのをそれぞれr  (D)」
と訂正する□ 2、同頁13行目及び14行行目こそ几ぞAr(B)」
とあるのをそれぞれr  (E)Jと訂正する。 5同頁13行目及び16行目−こそれぞれ「(C)」と
あるのをそれぞ7″Lr (F)Jと訂正する◇6同第
15頁2行目及び4行目JこそれぞA「(A)」とある
のをそれぞt−Lr  (D)Jと訂正する。 ジ同頁3行目及び5行目lこそれぞれr(BiJとある
のをそれぞnr CE)jと訂正する。 あるのをそ九ぞAr’(F)Jと訂正する02同第22
頁6行目及び同頁13行目から14行あるのをそれぞn
r  (J))l)(F)Jと訂正する0 と本願頭初の添付図面第1図及び第2図をそれぞれ別紙
赤字の如く訂正する0
The drawings show the technical content of the present invention, and Figure 1 shows a sample finished rolled at 850°C and rolled at 700°C (4
), photographs showing the microscopic structures of the coiled at 650°C (B) and the coiled at 550°C (C) at a magnification of 200x, and the hydrogen-induced cracking test results of these coil materials. An enlarged cross-sectional view with a magnification of 5 times showing the state of cracking (A (B))
Figure 2 shows the final pressure treated at 750°C and rolled up at 650°C (A), the rolled up at 600°C (B) and 55°C.
Photographs showing the microscopic structure of C) rolled at 0°C at 200x magnification, and cross-sectional enlargement at 5x magnification showing the state of hydrogen-induced cracking as a result of a hydrogen-induced cracking test on these hot coil materials. Figure (A') (B') (σ)
It is. Patent applicant Nippon Kokan Co., Ltd. Inventor Yutaka Inagaki Wama
Toshio Nakazawa #Mih Agent Patent Attorney Shirakawa --t・4j1+Chief of the Japan Patent Office Shima 1) Haruki Tono1. Display of the case ゛Showa origin f1゜, Application number q♂dog〃ッ3, Person making the amendment Name of the patent applicant related to the case (Mr. Button Nippon Steel Tube Co., Ltd. 4, Agent Showa Jie/July 2 (right) 1st Dispatch 6, Introducing the subject of the amendment Special i second...1 Lambda letter 7, Contents of the amendment As shown in the attached sheet, Contents of the amendment, Otsu main application number 1, line 14, line 13 and line 14, respectively. ``r(A)J'' and ``r(D)'' respectively.
Correct □ 2. Lines 13 and 14 of the same page are correct Ar(B).”
Correct each to r (E) J. 5 Lines 13 and 16 of the same page - Correct “(C)” to 7″Lr (F)J respectively ◇ 6 Lines 2 and 4 of page 15 of the same page: This is J. Correct ``(A)'' to t-Lr (D)J. In the third and fifth lines of the same page, correct r(BiJ to nr CE)j. Correct that as Ar'(F)J 02 same No. 22
There are 14 lines from the 6th line of the page and the 13th line of the same page, respectively.
r (J)) l) (F) Correct 0 to J and correct the attached drawings Figures 1 and 2 from the beginning of this application, respectively, as indicated in red in the attached sheet 0

Claims (4)

【特許請求の範囲】[Claims] (1)  C: 0,05〜0.204.81:0.5
1以下、Mn:0.5〜1.0m、 P:0,0211
以下、82、(k、OG2+1)以下、Nb : 0.
101G以下、ムt:0.1%以下、Ca:0.001
〜0.006 *  を含有し、残部が鉄および不可避
不純物からなる鋼を熱間圧延し、その仕上圧延温度条件
下における一定の温度以上で捲取ることを特徴とする耐
水素誘起割れ性の優れたホットコイルの製造方法。
(1) C: 0.05-0.204.81:0.5
1 or less, Mn: 0.5-1.0m, P: 0,0211
Below, 82, (k, OG2+1) or below, Nb: 0.
101G or less, Mut: 0.1% or less, Ca: 0.001
-0.006*, with the balance consisting of iron and unavoidable impurities, is hot-rolled and rolled at a certain temperature or higher under the finish rolling temperature condition, and has excellent hydrogen-induced cracking resistance. A method for manufacturing hot coils.
(2)  Co : 0.2〜0.6”ll、Nl :
 0.2 嘔以下、Mo:0.5畳以下、Cr:0.5
96以下、v : o、 i’s以下の何れか1種又は
2種以上をも含有した鋼を用いる特許請求の範囲第1項
に記載の耐水素誘起割れ性の優れたホットコイルの製造
方法。
(2) Co: 0.2-0.6”ll, Nl:
0.2 or less, Mo: 0.5 tatami or less, Cr: 0.5
96 or less, v: o, i's or less, the method for producing a hot coil with excellent hydrogen-induced cracking resistance according to claim 1, using steel containing one or more of the following: .
(3)  仕上圧延温度を850℃以上とし、捲取温度
な650℃以上とする特許請求の範囲第1項又は第2項
の何れかに記載の耐水素誘起割れ性の優れたホットコイ
ルの製造方法。
(3) Production of a hot coil with excellent hydrogen-induced cracking resistance according to claim 1 or 2, wherein the finish rolling temperature is 850°C or higher and the winding temperature is 650°C or higher. Method.
(4)  仕上圧延温度を730以上850℃未満とし
、捲取温度を600℃以上と、する特許請求の範囲第1
項又は第2項の倒れかに記載の耐水素誘起割れ性の優れ
たホットコイルの製造方法。
(4) Claim 1 in which the finish rolling temperature is 730 or more and less than 850°C, and the winding temperature is 600°C or more.
A method for producing a hot coil with excellent hydrogen-induced cracking resistance as described in item 1 or 2.
JP9835181A 1981-06-26 1981-06-26 Production of hot coil having high hydrogen induced cracking resistance Pending JPS581014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9835181A JPS581014A (en) 1981-06-26 1981-06-26 Production of hot coil having high hydrogen induced cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9835181A JPS581014A (en) 1981-06-26 1981-06-26 Production of hot coil having high hydrogen induced cracking resistance

Publications (1)

Publication Number Publication Date
JPS581014A true JPS581014A (en) 1983-01-06

Family

ID=14217467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9835181A Pending JPS581014A (en) 1981-06-26 1981-06-26 Production of hot coil having high hydrogen induced cracking resistance

Country Status (1)

Country Link
JP (1) JPS581014A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174404A (en) * 1983-02-02 1984-10-02 イ−エル.ピ−オ− エス.ア−ル.エル. Device for filling vessel with liquefied and/or pasty substance under germless state
JPS6169918A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness
JPS61157628A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Manufacture of hot coil for high-toughness sour-resistant steel pipe
JPS61203304A (en) * 1985-03-05 1986-09-09 シ−ケ−デイ株式会社 Pressure-welding sealing packaging method
EP0616042A1 (en) * 1993-03-16 1994-09-21 Sumitomo Chemical Company, Limited Steel product excellent in sulfide cracking resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274521A (en) * 1975-12-18 1977-06-22 Sumitomo Metal Ind Ltd Productin of hot coil material for line pipe having high resistance to hydrogen induced cracking
JPS5747827A (en) * 1980-09-05 1982-03-18 Nippon Steel Corp Production of steel material for electric welded steel tube of superior sour resistance characteristics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274521A (en) * 1975-12-18 1977-06-22 Sumitomo Metal Ind Ltd Productin of hot coil material for line pipe having high resistance to hydrogen induced cracking
JPS5747827A (en) * 1980-09-05 1982-03-18 Nippon Steel Corp Production of steel material for electric welded steel tube of superior sour resistance characteristics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59174404A (en) * 1983-02-02 1984-10-02 イ−エル.ピ−オ− エス.ア−ル.エル. Device for filling vessel with liquefied and/or pasty substance under germless state
JPS6169918A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness
JPH0148335B2 (en) * 1984-09-12 1989-10-18 Kawasaki Steel Co
JPS61157628A (en) * 1984-12-28 1986-07-17 Nippon Steel Corp Manufacture of hot coil for high-toughness sour-resistant steel pipe
JPH0359124B2 (en) * 1984-12-28 1991-09-09 Nippon Steel Corp
JPS61203304A (en) * 1985-03-05 1986-09-09 シ−ケ−デイ株式会社 Pressure-welding sealing packaging method
JPH0520282B2 (en) * 1985-03-05 1993-03-19 Ckd Corp
EP0616042A1 (en) * 1993-03-16 1994-09-21 Sumitomo Chemical Company, Limited Steel product excellent in sulfide cracking resistance
US5555916A (en) * 1993-03-16 1996-09-17 Sumitomo Metal Industries, Ltd. Steel product excellent in sulfide cracking resistance

Similar Documents

Publication Publication Date Title
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
AU2014294080B2 (en) High-strength steel material for oil well and oil well pipes
EP2520684B1 (en) Austenite steel material having superior ductility
KR20110102483A (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
KR20170107070A (en) A steel plate having high crack-controllability and a manufacturing method thereof
JP3732424B2 (en) Manufacturing method of hot-rolled steel sheet with high weather resistance and high workability
KR101940880B1 (en) Sour resistance steel sheet having excellent low temperature toughness and post weld heat treatment property, and method of manufacturing the same
US5117874A (en) Flexible fluid transport pipe having hydrogen-induced cracking resistant high-strength steel
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JP3879723B2 (en) High-strength seamless steel pipe excellent in hydrogen-induced crack resistance and method for producing the same
JPH0375337A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture
US20160199892A1 (en) High-strength hot-rolled plated steel sheet and method for manufacturing the same
JP4016770B2 (en) Seawater resistant steel and manufacturing method thereof
JPS581014A (en) Production of hot coil having high hydrogen induced cracking resistance
WO2016052271A1 (en) Steel material, and oil-well steel pipe for expansion
JP2620809B2 (en) High-strength martensitic stainless steel excellent in high-temperature high-chloride-ion-concentration wet high-pressure carbon dioxide gas environment corrosion resistance and stress corrosion cracking resistance, and method for producing the same
JPH0770697A (en) High strength hot rolled steel strip excellent in hic resistance and its production
JPS581168B2 (en) Greta Line Pipe Hot Coil Size Seizou Hohou
JP2003293078A (en) Steel pipe having excellent weld heat affected zone toughness and deformability and method of producing steel sheet for steel pipe
JP2618785B2 (en) Method for producing high Ni alloy clad steel sheet with excellent sour resistance and low temperature toughness
JPH07233452A (en) Ferritic stainless steel excellent in magnetic property
JPS581015A (en) Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance
JPH0121849B2 (en)
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance