JPH0121849B2 - - Google Patents

Info

Publication number
JPH0121849B2
JPH0121849B2 JP58177702A JP17770283A JPH0121849B2 JP H0121849 B2 JPH0121849 B2 JP H0121849B2 JP 58177702 A JP58177702 A JP 58177702A JP 17770283 A JP17770283 A JP 17770283A JP H0121849 B2 JPH0121849 B2 JP H0121849B2
Authority
JP
Japan
Prior art keywords
steel
less
temperature
transformation point
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58177702A
Other languages
Japanese (ja)
Other versions
JPS6070122A (en
Inventor
Teruo Kaneko
Akio Ikeda
Tamotsu Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP17770283A priority Critical patent/JPS6070122A/en
Publication of JPS6070122A publication Critical patent/JPS6070122A/en
Publication of JPH0121849B2 publication Critical patent/JPH0121849B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、サワーオイルやサワーガスの輸送
に好適な、耐水素誘起割れ性に優れた高強度ライ
ンパイプ用鋼の製造方法に関するものである。 近年、エネルギー事情の変化にともなつて新た
な油田やガス田の開発が盛んに行われており、従
来放置されていた硫化水素(H2S)等の腐食性の
強いガスを含む油(サワーオイル)やガス(サワ
ーガス)にまで開発の目が向けられるようになつ
て、これらを輸送するラインパイプの需要も増加
の一途をたどるようになつてきた。 ところが、このようなサワー環境下で使用され
る鋼材は、湿潤H2Sの影響によつて割れを生ずる
場合があり、これが重大な破壊事故につながる高
い危険性を有していることから、油田或はガス田
開発上の大きな問題となつていた。その中でも、
ラインパイプ材のような比較的低強度の鋼では、
特に水素誘起割れ(以下、“HIC”と略称する)
が問題であり、最近の使用環境の益々の苛酷化に
ともなつて一層高い耐HIC性能が要求されるよう
になつている。 しかしながら、これまで、所望とされる良好な
耐HIC性を備えた鋼を安定かつ経済的に製造する
ことは極めて困難であるとされており、耐HIC性
に優れたラインパイプ用鋼を工業的規模で量産す
るための研究開発が競われているのが現状であ
る。 ところで、HICは、湿潤H2Sを含むサワー環境
下での腐食により発生した水素が鋼中に侵入して
非金属介圧物の界面等に集積したときの内圧で生
じる水素脆性の一種であつて、外部応力がなくて
も発生することが知られており、また、HICの発
生は使用環境条件に依存し、例えばH2S濃度、
CO2濃度、塩素イオン濃度、或いは温度等の多く
の因子に支配されていることも解明されているこ
とからみても、最近のラインパイプ使用環境にお
けるHIC発生の危険性は益々高まつているものと
考えられる。 即ち、HIC発生に対する環境条件の厳しさの程
度は、一般に鋼中への侵入水素量を指標として評
価されており、従つて鋼材の耐HIC性を評価する
場合、腐食反応で発生する水素量レベルの異なる
各種の試験浴(具体的には、PH値の異なる液)が
用いられているわけであるが、前述のような状況
から、これまで許容されていたよりも更に低いPH
条件(PH3.0〜3.5の、H2Sを飽和した0.5%酢酸−
5%食塩の水溶液中に、浸漬するという条件)で
の耐HIC性が要求されるようになつてきたのであ
る。 一方、近年の高圧操業化傾向を反映して、ライ
ンパイプ材にも従来以上の高強度を要求されるよ
うになつたが、一般に、鋼材の強度が高くなるほ
どHIC感受性も増加する傾向にある。即ち、鋼材
強度を上げるためには各種の合金元素を添加する
のが普通であるが、これらの合金元素には、鋼材
中で偏析しやすく、その部分の硬さを上昇させて
耐HIC性劣化を招くものが多いので、高強度鋼ほ
ど耐HIC性が劣化する傾向にあり、特に、環境が
厳しくなつて鋼中への侵入水素量が増加するよう
な状況では、HICの完全防止が極めて困難な課題
となつていたのである。 従来、HIC防止策としては、 微量のCu添加によつて、環境からの侵入水
素量を抑制する方法、 割れ起点となる非金属介在物を減少したり、
CaやREM(希土類元素)を添加して非金属介
在物の形態制御を行つて、鋼自体の割れ感受性
を低減させる方法、 等が試みられていたが、前者における効果には強
い環境依存性があり、最近になつて要求されてい
るような苛酷な環境条件(例えばPH4以下の条
件)に対しては効力を失つてしまうものであつ
た。他方、後者の場合には、苛酷な環境条件(例
えばNACE条件)に対しては必ずしも十分とは
言えず、特に高強度材になるほど割れの防止が困
難になるという問題があつた。高強度鋼の割れ
は、前述のように鋼材内の成分偏析の影響を強く
受けるものであり、例えば大型鋼塊や連続鋳造鋼
片を経て製造されたものでは、V偏析や中心部偏
析のためにMnやP等の偏析を生じているので割
れ感受性が極めて高くなつている。このため、圧
延前に鋼片を高温に加熱保持するスラブリーキン
グ処理によつて偏析を軽減する試みもなされてい
るが、その効果は十分とは言えず、しかも多大な
コスト上昇を招くものであつた。 この発明は、上述のような問題点をふまえて、
NACE条件にも十分に耐え得る優れた耐HIC性と
API規格のX−52鋼以上の高強度とを兼備するラ
インパイプ用鋼を工業的規模でコスト安く量産す
る方法を見出すべく、特に、HIC感受性の軽減に
有効であるとみられる偏析の解消に着目して行つ
た、偏析の小さい成分系と組織の均一微細化最適
条件とに関する本発明者等の研究の結果なされた
ものであり、その特徴とするところは、 C:0.04%以下(以下、成分割合を表わす%は
重量%とする)、 Si:0.01〜0.50%、Mn:0.8〜2.0%、 Al:0.01〜0.10%、 Ca:0.0005〜0.0050%、 P:0.015%以下、S:0.002%以下、 を含むとともに、更に必要により Cu:0.05〜0.50%、Ni:0.05〜0.50%、 Cr:0.05〜0.50%、Mo:0.05〜0.50%、 Nb:0.01〜0.10%、V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0005〜0.0080% のうちの1種以上をも含有し、 Fe及びその他の不可避的不純物:残り、 から成る鋼をAc3変態点以上に加熱した後、圧延
仕上温度が〔Ar3変態点±50℃〕の範囲で、かつ
950℃以下での圧下率が50%以上である熱間圧延
を施し、次いで、パーライト生成温度以上から冷
却速度:3〜15℃/secで600℃以下の任意の温度
まで冷却するか、或いはその後更に〔500℃〜
Ac1変態点〕の温度にて焼もどすことにより、耐
水素誘起割れ性に優れた高強度ラインパイプ用鋼
を製造する点にある。 即ち、この発明は、強度確保にために高Mn系
鋼を前提とし、その低C、低P化により偏析を軽
減するとともに強度調整元素も特定のものに限定
した成分系にてラインパイプ用鋼を構成して偏析
を極力抑制し、一方で、圧延後の冷却条件を特定
のものにコントロールして組織の均一微細化を図
るか、更にその後の焼もどしによつて中心偏析部
の影響軽減を図るという複数の手段を組合せるこ
とによつて、個々の手段から得られる効果を単に
加算しただけでは推し量れない極めて優れた耐
HIC特性を備えた高強度ラインパイプ用鋼を実現
したものであつて、NACE条件を十分に満足し、
かつAPIX−52以上の高強度を有するラインパイ
プ用鋼を工業的期模で量産することが可能とな
り、エネルギー産業分野にもたらす効果は量り知
れないものである。 以下、この発明の方法において、鋼の成分組成
割合及び圧延・熱処理条件を前述のように数値限
定した理由を説明する。 (A) 鋼の成分組成 (a) C Cは、鋼の偏析増大に関与し、耐HIC性を
劣化する元素であり、その含有量は低ければ
低いほど好ましい。そして、C含有量が0.03
%以上になると偏析が急激に増大し、所望の
耐HIC性を確保できなくなることから、その
含有量を0.03%未満と定めた。 このように、耐HIC性向上の面からはC含
有量を極力抑えることが推奨されるが、強度
確保という見地からはC含有量の下限を
0.005%程度とするのが望ましい。 (b) Si Si成分は鋼の脱酸剤として有効なものであ
るが、その含有量が0.01%未満では脱酸剤と
しての所望の効果を得ることができず、他方
の0.50%を越えて含有させると鋼の靭性劣化
を招くことから、Si含有量を0.01〜0.50%と
定めた。 (c) Mn Mn成分は、鋼の強度を向上する作用を有
しているほか、脱酸剤としても有効なもので
あるが、その含有量が0.8%未満では鋼に所
望の強度を確保することができず、他方2.0
%を越えて含有させると偏析が増大して耐
HIC性を劣化するようになることに加えて、
靭性劣化、或いは溶接性劣化をも招くように
なることから、Mn含有量を0.8〜2.0%と定
めた。 (d) Al Al成分は酸の脱酸剤として有効なもので
あるが、その含有量が0.01%未満では脱酸作
用に所望の効果が得られず、他方の0.10%を
越えて含有させると靭性劣化を招くようにな
ることから、Al含有量を0.01〜0.10%と定め
た。 (e) Ca Ca成分には、介在物を球状化して割れ起
点となることを防止し、これによつて鋼の耐
HIC性を向上する作用があるが、その含有量
が0.0005%未満では前記作用に所望の効果を
得ることができず、他方0.0050%を越えて含
有させると逆に耐HIC性が劣化するようにな
る上、靭性劣化をも招くことから、Ca含有
量を0.0005〜0.0050%と定めた。 (f) P Pは、偏析を生じて鋼の耐HIC性を劣化す
る不純物であるので、極力低減することが好
ましい元素である。特に、P含有量が0.015
%を越えると偏析が急増し、所望の耐HIC性
を確保できなくなることから、P含有量を
0.015%以下と定めた。 (g) S Sは、非金属介在物を形成して、やはり鋼
の耐HIC性を劣化する不純物であるので極力
低減する必要がある。特に、S含有量が
0.002%を越えると、非金属介在物増加のた
めに所望の耐HIC性を確保できなくなること
から、S含有量を0.002%以下と定めた。 (h) Cu、Ni、Cr、Mo、Nb、V、Ti、及びB これらの成分には、いずれも偏析を助長す
ることなく鋼の強度を向上させる作用がある
ので、鋼の強度をより向上させる必要のある
場合に、 Cu:0.05〜0.50%、Ni:0.05〜0.50%、 Cr:0.05〜0.50%、Mo:0.05〜0.50%、 Nb:0.01〜0.10%、V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0005〜0.0080% の範囲で1種以上添加含有せしめられるもの
であるが、その含有量が前記下限値未満では
強度向上効果が顕著ではなく、他方、上限値
を越える量で含有させても強度向上効果が飽
和してしまう上、経済的不利をも招くことか
ら、それぞれの成分の添加量を前記のように
限定した。 (B) 圧延・熱処理処条件 (a) 圧延加熱温度 圧延の際の加熱温度がAc3変態点未満の温
度であると、均一に溶体化がなされずにα+
γ組織となるので、圧延・熱処理後の製品組
織も均一なものとならないので、圧延加熱温
度をAc3変態点以上と定めた。 (b) 圧延仕上温度 圧延仕上温度が〔Ar3変態点−50℃〕未満
では鋼材に均一組織を実現することができ
ず、他方、〔Ar3変態点+50℃〕を越えた温
度で仕上げると所望の微細組織を実現でき
ず、いずれも耐HIC性を劣化することとなる
ので、圧延仕上温度を〔Ar3変態点±50℃〕
と定めた。 (c) 圧下率 組織の微細化のためには、低温域(仕上温
度〜950℃)において50%以上の圧下率を確
保する必要があるが、該低温域での圧下率が
50%未満では組織が粗くなつて所望の耐HIC
性を実現できないばかりでなく、靭性もが劣
化することから、950℃以下での圧下率を50
%以上と定めた。 (d) 冷却条件 パーライト形成を避けて耐HIC性の良好な
均一組織を得るためには、パーライト生成温
度以上から600℃以下(常温までをも含む)
までの間を3〜15℃/secで冷却する必要が
ある。 なぜなら、冷却速度が3℃/sec未満では
所望の微細組織と強度を確保できず、他方15
℃/secを越える速度で冷却すると偏析部の
組織不均一化を招くこととなる。 (e) 焼もどし温度 焼もどし温度が500℃未満では偏析部の組
織均一化が達成できず、従つて、所望の耐
HIC性向上効果が得られない。一方、焼もど
し温度がAc1変態点を越えると、鋼材強度が
大幅に変動する上、耐HIC性能も劣化するよ
うになる。このようなことから、焼もどし温
度を〔500℃〜Ac1変態点〕の範囲に定めた。 次いで、この発明を実施例により比較例と対比
しながら説明する。 実施例 1 まず、通常の方法によつて第1表に示される如
き成分組成の鋼A〜Pを溶製した。 次に、これらの鋼を1200℃に加熱した後、全圧
下率:90%、950〜800℃間の圧下率:70%、仕上
温度:800℃の熱間圧延を施し、仕上げ後直ちに、
水スプレーによつて10℃/secの冷却速度にて室
温まで冷却してから、更に650℃で焼もどし処理
した。
The present invention relates to a method for producing high-strength line pipe steel that is suitable for transporting sour oil and sour gas and has excellent hydrogen-induced cracking resistance. In recent years, new oil and gas fields have been actively developed in line with changes in the energy situation. As development attention has turned to oil (oil) and gas (sour gas), the demand for line pipes to transport these products has also continued to increase. However, steel materials used in such sour environments may crack due to the influence of wet H 2 S, which poses a high risk of leading to serious accidents. This had become a major problem in gas field development. Among them,
For relatively low strength steels such as line pipe materials,
In particular, hydrogen-induced cracking (hereinafter abbreviated as “HIC”)
This is a problem, and as usage environments have become increasingly harsh in recent years, even higher HIC resistance has been required. However, until now it has been extremely difficult to stably and economically produce steel with the desired good HIC resistance. Currently, there is competition in research and development for mass production on a large scale. By the way, HIC is a type of hydrogen embrittlement that occurs due to internal pressure when hydrogen generated by corrosion in a sour environment containing wet H 2 S penetrates into steel and accumulates at the interface of non-metallic inclusions. It is known that HIC occurs even in the absence of external stress, and the occurrence of HIC depends on the usage environmental conditions, such as H 2 S concentration,
The risk of HIC occurrence in recent line pipe usage environments is increasing, as it has been clarified that HIC is controlled by many factors such as CO 2 concentration, chloride ion concentration, and temperature. it is conceivable that. In other words, the degree of severity of environmental conditions for HIC generation is generally evaluated using the amount of hydrogen that has penetrated into steel as an index. Therefore, when evaluating the HIC resistance of steel materials, the level of hydrogen generated by corrosion reaction is evaluated. Various test baths with different PH values (specifically, liquids with different PH values) are used, but due to the situation described above, it is necessary to test baths with a PH value that is even lower than what was previously allowed.
Conditions (PH3.0-3.5, 0.5% acetic acid saturated with H2S )
HIC resistance has come to be required under conditions such as immersion in a 5% salt aqueous solution. On the other hand, reflecting the recent trend toward high-pressure operation, line pipe materials are now required to have even higher strength than before, and in general, the higher the strength of steel materials, the more susceptible they are to HIC. In other words, in order to increase the strength of steel materials, it is common to add various alloying elements, but these alloying elements tend to segregate in steel materials, increasing the hardness of that part and causing deterioration of HIC resistance. The higher the strength of the steel, the more likely it is that the HIC resistance will deteriorate, and it is extremely difficult to completely prevent HIC, especially in situations where the environment becomes harsher and the amount of hydrogen penetrating into the steel increases. This had become a major issue. Conventional measures to prevent HIC include adding a small amount of Cu to suppress the amount of hydrogen that enters from the environment, reducing non-metallic inclusions that become crack initiation points, and
Attempts have been made to reduce the cracking susceptibility of the steel itself by controlling the morphology of non-metallic inclusions by adding Ca or REM (rare earth elements), but the effectiveness of the former has a strong environmental dependence. However, they would lose their effectiveness under the harsh environmental conditions that have recently been required (for example, conditions with a pH of 4 or less). On the other hand, in the latter case, it is not necessarily sufficient to withstand harsh environmental conditions (for example, NACE conditions), and there is a problem in that the higher the strength of the material, the more difficult it is to prevent cracking. As mentioned above, cracks in high-strength steel are strongly affected by component segregation within the steel material. For example, in products manufactured through large steel ingots or continuously cast steel slabs, cracks may occur due to V segregation or center segregation. Because of the segregation of Mn, P, etc., the cracking susceptibility is extremely high. For this reason, attempts have been made to reduce segregation by applying slab re-king treatment, which heats and holds the steel billet at a high temperature before rolling, but the effect is not sufficient and it also results in a significant increase in costs. It was hot. This invention is based on the above-mentioned problems,
Excellent HIC resistance that can withstand NACE conditions
In order to find a way to mass-produce line pipe steel on an industrial scale at a low cost, with a strength higher than API standard X-52 steel, we focused in particular on eliminating segregation, which is considered to be effective in reducing HIC susceptibility. This was done as a result of the research conducted by the present inventors on the component system with small segregation and the optimal conditions for uniform refinement of the structure, and its characteristics are as follows: % expressed as weight%), Si: 0.01 to 0.50%, Mn: 0.8 to 2.0%, Al: 0.01 to 0.10%, Ca: 0.0005 to 0.0050%, P: 0.015% or less, S: 0.002% or less , Cu: 0.05-0.50%, Ni: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0.50%, Nb: 0.01-0.10%, V: 0.01-0.10%, A steel containing at least one of Ti: 0.005 to 0.050%, B: 0.0005 to 0.0080%, and the remainder containing Fe and other unavoidable impurities is heated to the Ac 3 transformation point or higher and then rolled and finished. The temperature is within the range of [Ar 3 transformation point ±50℃], and
Hot rolling with a reduction rate of 50% or more at 950°C or lower, then cooling from the pearlite formation temperature or higher to any temperature below 600°C at a cooling rate of 3 to 15°C/sec, or after that. Furthermore [500℃~
The purpose of this method is to manufacture high-strength line pipe steel with excellent resistance to hydrogen-induced cracking by tempering it at a temperature of [Ac 1 transformation point]. That is, the present invention is based on a high Mn-based steel to ensure strength, reduces segregation by lowering C and P, and creates line pipe steel with a composition system that limits strength-adjusting elements to specific ones. On the other hand, the cooling conditions after rolling are controlled to specific conditions to achieve a uniform and fine structure, and the influence of the center segregation area is further reduced by subsequent tempering. By combining multiple measures, we can achieve extremely high durability that cannot be estimated by simply adding up the effects obtained from each individual measure.
This is a high-strength line pipe steel with HIC properties that fully satisfies the NACE conditions.
Moreover, it has become possible to mass-produce line pipe steel with a strength higher than APIX-52 in an industrial scale, and the effects on the energy industry are immeasurable. Hereinafter, in the method of the present invention, the reason why the composition ratio of the steel and the rolling/heat treatment conditions are numerically limited as described above will be explained. (A) Component composition of steel (a) C C is an element that is involved in increasing segregation of steel and deteriorates HIC resistance, and the lower the content, the better. And the C content is 0.03
If the content exceeds 0.03%, segregation increases rapidly and the desired HIC resistance cannot be achieved, so the content was set at less than 0.03%. Thus, from the perspective of improving HIC resistance, it is recommended to suppress the C content as much as possible, but from the perspective of ensuring strength, it is recommended to limit the C content to the minimum.
It is desirable to set it at around 0.005%. (b) Si Although the Si component is effective as a deoxidizing agent for steel, if its content is less than 0.01%, the desired effect as a deoxidizing agent cannot be obtained, and if the content exceeds the other 0.50%, Since Si content causes deterioration in the toughness of steel, the Si content was set at 0.01 to 0.50%. (c) Mn The Mn component has the effect of improving the strength of steel and is also effective as a deoxidizing agent, but if its content is less than 0.8%, it will not ensure the desired strength of the steel. can't do the other 2.0
If the content exceeds %, segregation will increase and the resistance will decrease.
In addition to deteriorating HIC properties,
The Mn content was determined to be 0.8 to 2.0% since this would lead to deterioration of toughness or weldability. (d) Al Al component is effective as an acid deoxidizing agent, but if its content is less than 0.01%, the desired deoxidizing effect cannot be obtained, and if it is contained in excess of 0.10%, The Al content was set at 0.01 to 0.10% since this would lead to deterioration of toughness. (e) Ca Ca component is used to make inclusions spheroidal and prevent them from becoming crack initiation points, thereby increasing the durability of steel.
It has the effect of improving HIC resistance, but if the content is less than 0.0005%, the desired effect cannot be obtained, while if the content exceeds 0.0050%, the HIC resistance will deteriorate. Moreover, since it also causes toughness deterioration, the Ca content was set at 0.0005 to 0.0050%. (f) PP Since P is an impurity that causes segregation and deteriorates the HIC resistance of steel, it is an element that is preferably reduced as much as possible. In particular, the P content is 0.015
%, segregation will rapidly increase and the desired HIC resistance cannot be secured, so
It is set at 0.015% or less. (g) S S is an impurity that forms nonmetallic inclusions and deteriorates the HIC resistance of steel, so it must be reduced as much as possible. In particular, the S content
If it exceeds 0.002%, the desired HIC resistance cannot be ensured due to an increase in nonmetallic inclusions, so the S content was set at 0.002% or less. (h) Cu, Ni, Cr, Mo, Nb, V, Ti, and B These components all have the effect of improving the strength of steel without promoting segregation, so they further improve the strength of steel. In case it is necessary to B: 0.005 to 0.050% and B: 0.0005 to 0.0080%. However, if the content is less than the lower limit, the strength improvement effect will not be significant, whereas if it exceeds the upper limit, The amount of each component added was limited as described above, since the strength-improving effect would be saturated even if the amount of each component was added, and it would also cause economic disadvantage. (B) Rolling and heat treatment conditions (a) Rolling heating temperature If the heating temperature during rolling is below the Ac 3 transformation point, uniform solutionization will not occur and α+
Since the product has a γ structure, the structure of the product after rolling and heat treatment will not be uniform, so the rolling heating temperature was set at the Ac 3 transformation point or higher. (b) Rolling finishing temperature If the rolling finishing temperature is lower than [Ar 3 transformation point - 50℃], it is not possible to achieve a uniform structure in the steel material, while on the other hand, if it is finished at a temperature exceeding [Ar 3 transformation point + 50℃], Since the desired microstructure cannot be achieved and the HIC resistance will deteriorate in both cases, the rolling finishing temperature should be set to [Ar 3 transformation point ±50°C].
It was determined that (c) Reduction rate In order to refine the structure, it is necessary to ensure a reduction rate of 50% or more in the low temperature range (finishing temperature ~ 950℃), but the reduction rate in the low temperature range is
If it is less than 50%, the structure will become coarse and the desired HIC resistance will not be achieved.
Not only would it not be possible to achieve the desired toughness, but also the toughness would deteriorate, so the reduction rate at temperatures below 950°C should be reduced to 50°C.
% or more. (d) Cooling conditions In order to avoid pearlite formation and obtain a uniform structure with good HIC resistance, the cooling conditions must be from above the pearlite formation temperature to below 600℃ (including room temperature).
During this period, it is necessary to cool at a rate of 3 to 15°C/sec. This is because if the cooling rate is less than 3℃/sec, the desired microstructure and strength cannot be secured;
Cooling at a rate exceeding .degree. C./sec will cause the structure of the segregated portion to become non-uniform. (e) Tempering temperature If the tempering temperature is less than 500°C, it will not be possible to achieve a uniform structure in the segregated area, and therefore the desired durability will not be achieved.
The effect of improving HIC property cannot be obtained. On the other hand, when the tempering temperature exceeds the Ac 1 transformation point, the strength of the steel changes significantly and HIC resistance also deteriorates. For this reason, the tempering temperature was set in the range of [500°C to Ac 1 transformation point]. Next, the present invention will be explained by examples and in comparison with comparative examples. Example 1 First, steels A to P having the compositions shown in Table 1 were melted by a conventional method. Next, after heating these steels to 1200℃, hot rolling was performed at a total reduction rate of 90%, a reduction rate between 950 and 800℃: 70%, and a finishing temperature of 800℃, and immediately after finishing,
After cooling to room temperature by water spray at a cooling rate of 10°C/sec, it was further tempered at 650°C.

【表】 このようにして得られた鋼材について、機械的
性質及び耐HIC特性を調べ、その結果も第1表に
併せて示した。 なお、HIC試験は、15t×20w×100lの寸法の試
験片を切り出し、これをNACE浴(0.5%酢酸+
5%食塩の水溶液にH2Sを飽和したもの)中に96
時間浸漬し、その後、超音波探傷によつてHICを
探傷する方法を採用した。そして、その結果は、
〇:割れなし、×:割れ発生、として第1表に記
号で示した。 第1表に示される結果からも、本発明の条件を
満足する鋼A〜Hを使用したものはいずれも割れ
を生ぜず、良好な耐HIC性を示すことが明らかで
ある。これに対して、C、Mn、P及びSのいず
れかの含有量の高いもの、そしてCa含有量が本
発明の範囲から外れているものは、いずれも耐
HIC性に劣つていることがわかる。また、Mn含
有量が本発明の範囲から外れて低いものは強度不
足を招くことも明らかである。 この実施例においては、強度調整元素である
Cu、Ni、Cr、Mo、Nb、V、Ti及びBのうち、
単独添加の例を示さなかつたが、これらの元素を
それぞれ単独に添加した場合、或いは如何なる組
合せで2種以上複合添加した場合のいずれにおい
ても、十分満足し得る強度向上効果を確認できた
ことはもちろんのことである。 実施例 2 常法で溶製したところの、第1表中の鋼Fに、
第2表に示される如き条件の熱間圧延及び熱処理
を施して、得られた鋼材の機械的性質並びに耐
HIC性を実施例1と同様にして調べた。その結果
を第2表に併せて示す(なお、耐HIC性の表示
は、第1表におけると同様、〇:割れなし、×:
割れ発生、とした)。 第2表に示される結果からも、熱間圧延、及び
熱処理の条件が本発明範囲内であれば、良好な耐
HIC性と機械的性質を示す鋼材が得られるのに対
して、前記条件が本発明範囲から外れた場合には
それらの特性に劣る鋼材しか得られないことがわ
かる。
[Table] The mechanical properties and HIC resistance characteristics of the thus obtained steel materials were investigated, and the results are also shown in Table 1. In the HIC test, a test piece with dimensions of 15 t x 20 w x 100 l is cut out and placed in a NACE bath (0.5% acetic acid +
96 in a 5% aqueous solution of common salt saturated with H2S )
A method was adopted in which the HIC was immersed for a period of time and then the HIC was detected using ultrasonic flaw detection. And the result is
The symbols are shown in Table 1 as ○: No cracking, ×: Cracking occurred. From the results shown in Table 1, it is clear that none of the steels A to H satisfying the conditions of the present invention were cracked and exhibited good HIC resistance. On the other hand, those with a high content of any one of C, Mn, P, and S, and those with a Ca content outside the range of the present invention, are resistant to
It can be seen that the HIC property is inferior. Furthermore, it is clear that a material with a low Mn content outside the range of the present invention results in insufficient strength. In this example, the strength adjusting element is
Among Cu, Ni, Cr, Mo, Nb, V, Ti and B,
Although we did not show examples of individual additions, we were able to confirm that a sufficiently satisfactory strength improvement effect was confirmed whether these elements were added individually or in any combination of two or more. Of course. Example 2 Steel F in Table 1, melted by a conventional method,
The mechanical properties and resistance of the steel obtained by hot rolling and heat treatment under the conditions shown in Table 2 are as follows:
HIC properties were investigated in the same manner as in Example 1. The results are also shown in Table 2 (The display of HIC resistance is the same as in Table 1, 〇: No cracking, ×:
cracking occurred). From the results shown in Table 2, it is clear that if the hot rolling and heat treatment conditions are within the range of the present invention, good durability can be achieved.
It can be seen that while a steel material exhibiting HIC properties and mechanical properties can be obtained, when the above conditions are out of the scope of the present invention, a steel material with inferior properties can only be obtained.

【表】 (注) *印は、本発明の条件から外れているこ
とを示す。
上述のように、この発明によれば、苛酷な腐食
環境にも十分に耐える優れた耐HIC性を有する高
強度ラインパイプ用鋼を、コスト安く量産するこ
ととができ、サワー環境下のエネルギー資源開発
にともなう構造物破壊事故防止等に大きく貢献す
ることが期待できるなど、産業上有用な効果がも
たらされるのである。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
As described above, according to the present invention, it is possible to mass-produce high-strength line pipe steel with excellent HIC resistance that can withstand severe corrosive environments at a low cost, and to save energy resources in sour environments. This will bring about industrially useful effects, such as the expectation that it will greatly contribute to the prevention of structural destruction accidents associated with development.

Claims (1)

【特許請求の範囲】 1 重量割合で、 C:0.03%未満、 Si:0.01〜0.50%、 Mn:0.8〜2.0%、 Al:0.01〜0.10%、 Ca:0.0005〜0.0050%、 P:0.015%以下、 S:0.002%以下、 Fe及びその他の不可避的不純物:残り、 から成る鋼をAc3変態点以上に加熱した後、圧延
仕上温度が〔Ar3変態点±50℃〕の範囲で、かつ
950℃以下での圧下率が50%以上である熱間圧延
を施し、次いで、パーライト生成温度以上から冷
却速度:3〜15℃/secで600℃以下の任意の温度
まで冷却することを特徴とする、耐水素誘起割れ
性に優れた高強度ラインパイプ用鋼の製造方法。 2 重量割合で、 C:0.03%未満、 Si:0.01〜0.50%、 Mn:0.8〜2.0%、 Al:0.01〜0.10%、 Ca:0.0005〜0.0050%、 P:0.015%以下、 S:0.002%以下、 を含むとともに、更に Cu:0.05〜0.50%、 Ni:0.05〜0.50%、 Cr:0.05〜0.50%、 Mo:0.05〜0.50%、 Nb:0.01〜0.10%、 V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0005〜0.0080%、 のうちの1種以上をも含有し、 Fe及びその他の不可避的不純物:残り、 から成る鋼をAc3変態点以上に加熱した後、圧延
仕上温度が〔Ar3変態点±50℃〕の範囲で、かつ
950℃以下での圧下率が50%以上である熱間圧延
を施し、次いで、パーライト生成温度以上から冷
却速度:3〜15℃/secで600℃以下の任意の温度
まで冷却することを特徴とする、耐水素誘起割れ
性に優れた高強度ラインパイプ用鋼の製造方法。 3 重量割合で、 C:0.03%未満、 Si:0.01〜0.50%、 Mn:0.8〜2.0%、 Al:0.01〜0.10%、 Ca:0.0005〜0.0050%、 P:0.015%以下、 S:0.002%以下、 Fe及びその他の不可避的不純物:残り、 から成る鋼をAc3変態点以上に加熱した後、圧延
仕上温度が〔Ar3変態点±50℃〕の範囲で、かつ
950℃以下での圧下率が50%以上である熱間圧延
を施し、次いで、パーライト生成温度以上から冷
却速度:3〜15℃/secで600℃以下の任意の温度
まで冷却した後、更に〔500℃〜Ac1変態点〕の
温度にて焼もどすことを特徴とする耐水素割れ性
に優れた高強度パイプライン用鋼の製造方法。 4 重量割合で、 C:0.03%未満、 Si:0.01〜0.50%、 Mn:0.8〜2.0%、 Al:0.01〜0.10%、 Ca:0.0005〜0.0050%、 P:0.015%以下、 S:0.002%以下、 を含むとともに、更に Cu:0.05〜0.50%、 Ni:0.05〜0.50%、 Cr:0.05〜0.50%、 Mo:0.05〜0.50%、 Nb:0.01〜0.10%、 V:0.01〜0.10%、 Ti:0.005〜0.050%、 B:0.0005〜0.0080%、 のうちの1種以上をも含有し、 Fe及びその他の不可避的不純物:残り、 から成る鋼をAc3変態点以上に加熱した後、圧延
仕上温度が〔Ar3変態点±50℃〕の範囲で、かつ
950℃以下での圧下率が50%以上である熱間圧延
を施し、次いで、パーライト生成温度以上から冷
却速度:3〜15℃/secで600℃以下の任意の温度
まで冷却した後、更に〔500℃〜Ac1変態点〕の
温度にて焼もどすことを特徴とする、耐水素誘起
割れ性に優れた高強度ラインパイプ用鋼の製造方
法。
[Claims] 1. In weight percentage: C: less than 0.03%, Si: 0.01-0.50%, Mn: 0.8-2.0%, Al: 0.01-0.10%, Ca: 0.0005-0.0050%, P: 0.015% or less , S: 0.002% or less, Fe and other unavoidable impurities: the remainder, after heating the steel to above the Ac 3 transformation point, the rolling finishing temperature is within the range of [Ar 3 transformation point ± 50 ° C], and
It is characterized by hot rolling with a reduction rate of 50% or more at 950°C or lower, and then cooling from the pearlite formation temperature or higher to an arbitrary temperature of 600°C or lower at a cooling rate of 3 to 15°C/sec. A method for manufacturing high-strength line pipe steel with excellent resistance to hydrogen-induced cracking. 2 Weight percentage: C: less than 0.03%, Si: 0.01-0.50%, Mn: 0.8-2.0%, Al: 0.01-0.10%, Ca: 0.0005-0.0050%, P: 0.015% or less, S: 0.002% or less , and further contains Cu: 0.05-0.50%, Ni: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0.50%, Nb: 0.01-0.10%, V: 0.01-0.10%, Ti: 0.005 to 0.050%, B: 0.0005 to 0.0080%, and Fe and other unavoidable impurities: After heating the steel to above the Ac3 transformation point, the rolling finish temperature is is within the range of [Ar 3 transformation point ±50℃], and
It is characterized by hot rolling with a reduction rate of 50% or more at 950°C or lower, and then cooling from the pearlite formation temperature or higher to an arbitrary temperature of 600°C or lower at a cooling rate of 3 to 15°C/sec. A method for manufacturing high-strength line pipe steel with excellent resistance to hydrogen-induced cracking. 3 Weight percentage: C: less than 0.03%, Si: 0.01-0.50%, Mn: 0.8-2.0%, Al: 0.01-0.10%, Ca: 0.0005-0.0050%, P: 0.015% or less, S: 0.002% or less , Fe and other unavoidable impurities: after heating the steel to above the Ac 3 transformation point, the rolling finishing temperature is within the range of [Ar 3 transformation point ±50℃], and
After hot rolling with a reduction rate of 50% or more at 950°C or lower, and then cooling from the pearlite formation temperature or higher to an arbitrary temperature of 600°C or lower at a cooling rate of 3 to 15°C/sec, further [ A method for producing high-strength pipeline steel with excellent hydrogen cracking resistance, characterized by tempering at a temperature of 500°C to Ac 1 transformation point]. 4 Weight percentage: C: less than 0.03%, Si: 0.01-0.50%, Mn: 0.8-2.0%, Al: 0.01-0.10%, Ca: 0.0005-0.0050%, P: 0.015% or less, S: 0.002% or less , and further contains Cu: 0.05-0.50%, Ni: 0.05-0.50%, Cr: 0.05-0.50%, Mo: 0.05-0.50%, Nb: 0.01-0.10%, V: 0.01-0.10%, Ti: 0.005 to 0.050%, B: 0.0005 to 0.0080%, the remainder being Fe and other unavoidable impurities: After heating the steel to the Ac 3 transformation point or higher, the rolling finishing temperature is is within the range of [Ar 3 transformation point ±50℃], and
After hot rolling with a reduction rate of 50% or more at 950°C or lower, and then cooling from the pearlite formation temperature or higher to an arbitrary temperature of 600°C or lower at a cooling rate of 3 to 15°C/sec, further [ A method for producing high-strength line pipe steel with excellent resistance to hydrogen-induced cracking, characterized by tempering at a temperature of 500°C to Ac 1 transformation point].
JP17770283A 1983-09-26 1983-09-26 Manufacture of steel having superior resistance to hydrogen induced cracking Granted JPS6070122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17770283A JPS6070122A (en) 1983-09-26 1983-09-26 Manufacture of steel having superior resistance to hydrogen induced cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17770283A JPS6070122A (en) 1983-09-26 1983-09-26 Manufacture of steel having superior resistance to hydrogen induced cracking

Publications (2)

Publication Number Publication Date
JPS6070122A JPS6070122A (en) 1985-04-20
JPH0121849B2 true JPH0121849B2 (en) 1989-04-24

Family

ID=16035606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17770283A Granted JPS6070122A (en) 1983-09-26 1983-09-26 Manufacture of steel having superior resistance to hydrogen induced cracking

Country Status (1)

Country Link
JP (1) JPS6070122A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169918A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness
JPH0730392B2 (en) * 1988-06-30 1995-04-05 株式会社神戸製鋼所 Method for producing steel sheet having excellent resistance to hydrogen-induced cracking
KR100979046B1 (en) 2007-12-27 2010-08-30 주식회사 포스코 Hot Rolled Steel Sheet having Excellent HIC Resistance Properties in Cold Deformation and Manufacturing Method Thereof
CN107876720B (en) * 2017-10-12 2019-04-23 首钢集团有限公司 A kind of production technology of anti-hydrogen induced cracking C-Mn steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118325A (en) * 1978-03-08 1979-09-13 Nippon Kokan Kk <Nkk> Production of hydrogen crack resistant nonrefined steel plate
JPS5538901A (en) * 1978-03-17 1980-03-18 Nippon Kokan Kk <Nkk> Manufacture of unrefined steel sheet having excellent hydrogen cracking resistance in wet hydrogen sulfide environment of high hydrogen ion concentration
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide
JPS58120726A (en) * 1982-01-13 1983-07-18 Nippon Kokan Kk <Nkk> Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118325A (en) * 1978-03-08 1979-09-13 Nippon Kokan Kk <Nkk> Production of hydrogen crack resistant nonrefined steel plate
JPS5538901A (en) * 1978-03-17 1980-03-18 Nippon Kokan Kk <Nkk> Manufacture of unrefined steel sheet having excellent hydrogen cracking resistance in wet hydrogen sulfide environment of high hydrogen ion concentration
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide
JPS58120726A (en) * 1982-01-13 1983-07-18 Nippon Kokan Kk <Nkk> Manufacture of nontemper steel superior in sulfide corrosion crack resistance

Also Published As

Publication number Publication date
JPS6070122A (en) 1985-04-20

Similar Documents

Publication Publication Date Title
JP2018506642A (en) Heat-treated steel, ultra-high-strength molded article with excellent durability and manufacturing method thereof
WO2015098531A1 (en) Rolled steel material for high-strength spring and wire for high-strength spring using same
CN112226676B (en) Low-cost L320MS/X46MS hot-rolled steel strip for hydrogen sulfide corrosion resistant welded pipe and manufacturing method thereof
JP2020509162A (en) High strength cold rolled steel sheet for automobiles
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
CN107460412A (en) A kind of high-strength anticorrosion steel and its milling method
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JPH0453929B2 (en)
JP2001164334A (en) Steel for structure purpose excellent in corrosion resistance and corrosion fatigue resistance and producing method therefor
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JPH05271766A (en) Manufacture of high strength steel plate excellent in hydrogen induced cracking resistance
JPS6033310A (en) Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
CN113930684B (en) Economical aging-resistant high-strain precipitation-strengthened pipeline steel and production method thereof
JPH07292416A (en) Production of ultrahigh strength steel plate for line pipe
JPH0121849B2 (en)
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH01100248A (en) Two-phase stainless steel and its production
JP2001020035A (en) Steel for structural purpose excellent in corrosion resistance and corrosion fatigue resistance and its production
JPH0225968B2 (en)
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH09296216A (en) Production of high strength steel plate excellent in hydrogen induced cracking resistance
JP2000144309A (en) Steel excellent in corrosion resistance for structural purpose and its production