JPS6169918A - Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness - Google Patents

Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness

Info

Publication number
JPS6169918A
JPS6169918A JP59189776A JP18977684A JPS6169918A JP S6169918 A JPS6169918 A JP S6169918A JP 59189776 A JP59189776 A JP 59189776A JP 18977684 A JP18977684 A JP 18977684A JP S6169918 A JPS6169918 A JP S6169918A
Authority
JP
Japan
Prior art keywords
rolling
toughness
rough rolling
slab
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59189776A
Other languages
Japanese (ja)
Other versions
JPH0148335B2 (en
Inventor
Makoto Fukai
深井 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59189776A priority Critical patent/JPS6169918A/en
Publication of JPS6169918A publication Critical patent/JPS6169918A/en
Publication of JPH0148335B2 publication Critical patent/JPH0148335B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high-strength extra-thick coil having an excellent HIC resistant characteristic and toughness by executing respective stages for rolling roughly a heated steel slab to an intermediate stage, waiting for temp. and subjecting further the same to rough rolling, finish rolling and coiling under specific conditions. CONSTITUTION:The steel slab is heated to about 1,150-1,300 deg.C and is waited for temp. down to <=950 deg.C in the intermediate stage when the slab is rolled down to the thickness of about >=4 times the thickness of the product coil by rough rolling. The slab is then subjected successively to the rough rolling and finish rolling in such a manner that the outlet temp. of a finishing mill in the finish rolling stage in succession to the remaining rough rolling attains >=720 deg.C. The rolled sheet is coiled at 450 deg.C. The component compsn. of the blank steel material contains preferably about <=0.15% C, about 0.05-0.50% Si, about 0.50-1.50% Mn, about 0.10-0.50% Ni, about 0.005-0.100% Nb, about 0.10-0.50% Cu, about <=0.070% Al, about 0.025% P, about <=0.003% S and about 0.0010-0.0060% Ca.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、石油、天然ガスなどの輸送を行うパイプラ
インに使用するラインパイプ用コイル、すなわち耐水紫
誘起割れ特性及びじん性に優れた高強度極厚コイルの製
造方法を技術内容とする。
Detailed Description of the Invention (Field of Industrial Application) This invention relates to a coil for line pipes used in pipelines for transporting oil, natural gas, etc. The technical content is a method for manufacturing strong, extra-thick coils.

近年、例えばサワーガス用ラインパイプは大規模サワー
ガス井戸の開発に伴いサワーガスを消費地まで長距離輸
送するため、ラインパイプは大径厚肉化の傾向にあり、
高張力化の如き強度の向上が図られている。
In recent years, line pipes for sour gas, for example, have tended to have larger diameters and thicker walls to transport sour gas over long distances to consumption areas due to the development of large-scale sour gas wells.
Efforts are being made to improve strength by increasing tensile strength.

また、ラインパイプ内を流れる石油、天然ガスなどにH
,Sが多量に含まれている場合、ラインパイプノイワゆ
る水素誘起割れ(Hyarogen InducedC
rackxng s以下)IIGと略す)に起因する漏
洩事故や爆発事故がしばしば発生して問題になっている
0 このHICは、従来知られている高張力鋼のいわゆる硫
化物腐食割れとは異なる現象であって、はとんど応力が
負荷されていない状態でも認められ、また鋼材の強度や
硬度にほとんど影響されずに発生するのが特徴である。
In addition, H
, S is contained in a large amount, line pipe hydrogen induced cracking (Hyarogen Induced C
rackxng s (hereinafter referred to as IIG), which often causes leakage and explosion accidents, has become a problem.0 This HIC is a phenomenon different from the conventionally known so-called sulfide corrosion cracking of high-strength steel. This phenomenon is observed even when no stress is applied, and is characterized by its occurrence almost unaffected by the strength and hardness of the steel material.

今迄の研究によると、HIOは、環境から腐食にともな
って鋼中に浸入した水素が非金属介在物と地鉄の境界に
集まり、そのガス圧によって生じるものであり非金属介
在物のうち介在物先端の形状効果(切欠き効果)による
応力集中が生じゃすいMnSなどのいわゆるA系硫化物
介在物がHICニ対して最も有害である。このようにH
I OG;!、MnSの量および展延度と強い相関があ
り、伸長したMnSが少ない程割れ感受性は低下する。
According to research to date, HIO is caused by hydrogen infiltrating steel from the environment due to corrosion, gathering at the boundary between nonmetallic inclusions and the steel base, and resulting from the gas pressure. So-called A-based sulfide inclusions, such as MnS, are most harmful to HIC because of the stress concentration caused by the shape effect (notch effect) at the tip of the material. Like this H
IOG;! , there is a strong correlation with the amount of MnS and the degree of elongation, and the less elongated MnS is, the lower the cracking susceptibility is.

さらに、石油、天然ガスなどのエネルギー資源の開発が
寒冷地においても広範囲に行われるようになり、ライン
パイプを低温下に設置するため、じん性に対する要求も
高まってきている。
Furthermore, development of energy resources such as oil and natural gas has become widespread even in cold regions, and as line pipes are installed at low temperatures, requirements for toughness have also increased.

このように、ラインパイプには様々な特性が要求されて
いるため、ラインパイプ用のコイルは強度は勿論のこと
、耐I(IC特性に優れていることが要求され、場合に
よってはじん性に対する要求も厳しいものがある。
In this way, line pipes are required to have various properties, so coils for line pipes are required to have not only strength but also excellent I (IC) resistance, and in some cases, toughness. There are also strict requirements.

(従来の技術) 従来この種コイルの製造は、通常法の諸条件下で行って
いた。
(Prior Art) Conventionally, this type of coil has been manufactured under normal conditions.

(1) Nbのような結晶粒微細化元素を添加、(2)
スラブ加熱温度を低くする、 (3)仕上圧延における仕上ミル入側温度(以下FET
と略す)を950℃以下に規制し、シートバー厚を厚く
して仕上圧下率を大きくする、(4)仕上圧延における
仕上ミル出側温度(以下FDTと略す)を低くする、及
び (5)巻取温度(以下OTと略す)を低くする。
(1) Adding grain refining elements such as Nb, (2)
Lowering the slab heating temperature (3) Finishing mill entrance temperature (hereinafter referred to as FET) in finish rolling
(abbreviated as "FDT") is regulated to 950°C or less, and the sheet bar thickness is increased to increase the finishing reduction ratio; (4) the finish mill outlet temperature (hereinafter abbreviated as FDT) in finish rolling is lowered; and (5) Lower the winding temperature (hereinafter abbreviated as OT).

上記諸条件は、良好なじん性を得ることができるが、反
面次のような耐HIC特性の劣化という問題があった。
Although good toughness can be obtained under the above conditions, there is the problem of deterioration of HIC resistance as described below.

まず、スラブ加熱温度を低くするとじん性は向上するが
、Nbが完全固溶しないため、圧延過程でNbOが析出
せず強度が低下する。この強度の低下を補うにはMnを
増加すればよいが、Mnの増加はMnSの生成を招くた
め、耐HIC特性には不利となる。
First, lowering the slab heating temperature improves toughness, but since Nb is not completely dissolved, NbO does not precipitate during the rolling process, resulting in a decrease in strength. Although this decrease in strength can be compensated for by increasing Mn, increasing Mn causes the formation of MnS, which is disadvantageous for HIC resistance.

コイルの板厚が厚い場合に圧下率を大きくすると、圧延
時の抵抗が大きくなりすぎて圧延不能となる。
If the rolling reduction ratio is increased when the thickness of the coil is thick, the resistance during rolling becomes too large and rolling becomes impossible.

FDTを下げるとベイナイト組織となり、耐HIC特性
が劣化する。
When the FDT is lowered, a bainite structure is formed, and the HIC resistance deteriorates.

(3Tを下げると、やはりベイナイト組織となり耐HI
C特性が劣化する。
(When 3T is lowered, it becomes a bainite structure and has high resistance to HI.
C characteristics deteriorate.

(発明が解決しようとする問題点) そこでこの発明では、強度とともに耐HIC特性にも優
れた極厚コイルを製造する方法を提供することを目的と
する。
(Problems to be Solved by the Invention) Therefore, it is an object of the present invention to provide a method for manufacturing an extremely thick coil having excellent strength and HIC resistance.

さらにこの発明では、上記特性に加えてじん性に対して
も優れた極厚コイルの製造方法を提供することも目的と
する。
A further object of the present invention is to provide a method for manufacturing an extra-thick coil that has excellent toughness in addition to the above properties.

(問題点を解決するための手段) この発明は上記問題点を解決するために、鋼スラブを加
熱して該スラブを粗圧延する際、この粗圧延で製品コイ
ル厚みに対し4倍以上の厚みまで圧下した中間段階にて
950℃以下に至るまで温度待ちをし、 後続する粗圧延に引続く仕上圧延での仕上ミル出側温度
が720℃以上となる残りの粗圧延と仕上圧延とを遂次
続行し、 しかるのち、巻取り温度4506C以上で巻取るように
したものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides that when a steel slab is heated and the slab is roughly rolled, the thickness of the steel slab is four times or more greater than the thickness of the product coil in this rough rolling. Wait until the temperature reaches 950°C or less at the intermediate stage where the rolling is completed, and then perform the remaining rough rolling and finish rolling in which the finishing mill exit temperature in the finishing mill following the subsequent rough rolling is 720°C or higher. The process continues and is then wound at a winding temperature of 4506C or higher.

さらにこの発明について、第1図を参照して説明する。Further, this invention will be explained with reference to FIG.

まず、鋼スラブを加熱炉lで加熱する。加熱温度は、熱
間圧延における一般的な範囲(例えば1150〜130
0°C)で行う。
First, a steel slab is heated in a heating furnace l. The heating temperature is a general range in hot rolling (for example, 1150 to 130
0°C).

次いで、上記鋼スラブに粗圧延を施す。粗圧延は、リバ
ースロールR0及び1パス圧延ノR2,R8並°びにタ
ンデムロールR,、R,により行い、中間段階、例えば
リバースロールR工及びlパス圧延のR,、R,での圧
延を製品フィル厚の4倍以上とし、タンデムロールR1
の手前(図中R,FTで示す)で950℃以下に至るま
で温度待ちをして後続の粗圧延を行う。
Next, the steel slab is subjected to rough rolling. Rough rolling is performed by reverse roll R0, one-pass rolling R2, R8, and tandem rolls R,, R, and rolling is performed at an intermediate stage, for example, reverse roll R and one-pass rolling R,, R,. At least 4 times the product film thickness, tandem roll R1
Before this (indicated by R and FT in the figure), the temperature is waited until the temperature reaches 950°C or less, and then the subsequent rough rolling is performed.

次に仕上ロール列F ないしF7により仕上圧延を行う
が、このときFDTを720℃以上に保持して圧延を行
うようにする。FDTの上限はとくに設定しないが、粗
圧延の中間段階で950℃以下に規制しているため、実
際にはFDTの上限は800℃程度になる。
Next, finish rolling is performed using finishing roll rows F 1 to F 7 , and at this time, the FDT is maintained at 720° C. or higher to perform rolling. Although the upper limit of FDT is not particularly set, since it is regulated to 950°C or less in the intermediate stage of rough rolling, the upper limit of FDT is actually about 800°C.

最後にコイラーにより巻取りを行い、このときのGTを
450℃以上とする。この場合も上限はとくに設けない
Finally, winding is performed using a coiler, and the GT at this time is set to 450° C. or higher. In this case as well, no upper limit is set.

次に本発明に使用するに好適な素材成分並びに望ましい
成分範囲について述べるO Co、15wt%(以下単に俤と示す)以下、Si0.
05〜0.50%、Mn O,50〜1.50 %、N
i0110〜0.50%、Nb0.005〜0.100
%、cu O,10〜0.50 %、A10.070%
以下、PO,025%以下、so、ooa%以下、及び
aaO,0010〜0.0060係を含有する組成の鋼
スラブ、又はMO0,01〜0.3091+、Vo、0
05〜0.100%及びBo、0005〜0.0050
%のうちから選んだ少なくとも一種をさらに含む銅スラ
ブを使用するがよい。
Next, the material components suitable for use in the present invention and the desirable range of components will be described.
05-0.50%, MnO, 50-1.50%, N
i0110~0.50%, Nb0.005~0.100
%, cu O, 10-0.50%, A10.070%
Below, a steel slab with a composition containing PO, 025% or less, so, ooa% or less, and aaO, 0010 to 0.0060, or MO 0,01 to 0.3091+, Vo, 0
05-0.100% and Bo, 0005-0.0050
It is preferable to use a copper slab further comprising at least one selected from %.

Cは、0.15%をこえるとじん性及び溶接性に問題が
生じるため、0.15%以下とするO3iは、脱酸剤と
して添加するが、0.50%をこえるとぜい性が増すた
め、0.05〜0.50%とする。
If C exceeds 0.15%, problems will occur in toughness and weldability, so O3i is added as a deoxidizing agent to keep it below 0.15%, but if it exceeds 0.50%, it will cause brittleness. To increase the amount, it is set to 0.05 to 0.50%.

Mnは、0.50%未満では強度を得ることができない
が、1.50%をこえると耐HIG特性が劣化するため
、0.50〜1.50%とする。
If Mn is less than 0.50%, strength cannot be obtained, but if it exceeds 1.50%, HIG resistance deteriorates, so it is set to 0.50 to 1.50%.

Nbは、メーステナイト粒の細粒化及び変態後のフェラ
イト粒の細粒化によるじん性向上と炭化物の析出強化に
よる強度向上のために0.005%以上は必要であるが
、0.100%をこえるとじん性が劣化するため、0.
005〜0.100%とするOaUは、HIOに対して
有効な元素であり0.10−以上は必要であるが、0.
50%をこえると溶接性が劣化するため、0.10〜0
.50%とするONiは、(Uによるぜい化防止のため
、Ouと等量添加する。
Nb is required in an amount of 0.005% or more to improve toughness by refining maestenite grains and refining ferrite grains after transformation, and to improve strength by strengthening carbide precipitation, but 0.100% Nb is necessary. If it exceeds 0.0, the toughness will deteriorate.
OaU, which is set at 0.005 to 0.100%, is an effective element for HIO and 0.10- or more is necessary, but OaU is set at 0.005 to 0.100%.
If it exceeds 50%, weldability deteriorates, so 0.10 to 0.
.. ONi (50%) is added in the same amount as O (to prevent embrittlement due to U).

AIは、Siと同様脱酸剤として添加するが、0.07
%をこえると鋼質が変化するため、0.50チ以下とす
るO Pは、II(3の大きな要因となる元素であり、低く抑
える程良いが工業製造上0.025%以下とする。
AI is added as a deoxidizing agent like Si, but at 0.07
If it exceeds 0.5%, the quality of the steel changes, so OP is set to 0.50% or less. It is an element that is a major factor in II (3), and although it is better to keep it as low as possible, it should be 0.025% or less for industrial manufacturing purposes.

Sは、RIGの主要因となる元素であり、低い程HIO
に対して有利であるため、o、ooa%以下に抑えるこ
とを必須条件とする。
S is an element that is the main factor of RIG, and the lower the value, the higher the HIO
Therefore, it is essential to keep it below o, ooa%.

qaは、硫化物の形態制御を行いRIGに対して有効で
あり、Ca/S≧2.0となるように添加することが必
要だが、0.0060%をこえると清浄度が劣化するた
め、0.0010−0.0060チとする。
qa controls the form of sulfides and is effective for RIG, and it is necessary to add it so that Ca/S≧2.0, but if it exceeds 0.0060%, the cleanliness will deteriorate. It is assumed to be 0.0010-0.0060chi.

以上の各成分は、本発明方法の適用に必要であり、耐H
IO特性を備えた高じん性の鋼を製造することができる
Each of the above components is necessary for applying the method of the present invention, and
High toughness steel with IO properties can be produced.

さらに、じん性に対する要求が厳しいときには、以下の
成分を選択して添加すればじん性の向上を図ることがで
きる。
Furthermore, when the requirements for toughness are severe, the toughness can be improved by selectively adding the following components.

Moは、じん性を向上する効果があり、じん性向上には
0.01%未満では効果がなく、O,aO%をこえると
熱間加工性が劣化するため、0.01〜0.30%とす
る。なおMOの添加により強度の向上も図ることができ
るO ■は、オーステナイト粒及び変態後のフェライト粒の細
粒化によるじん性向上を図れるが、0.100%をこえ
るとじん性が劣化するため、0.005〜0.100チ
とする。
Mo has the effect of improving toughness, and if it is less than 0.01%, it has no effect on improving toughness, and if it exceeds O, aO%, hot workability deteriorates, so Mo is 0.01 to 0.30%. %. Note that the addition of MO can also improve the strength. O (2) can improve the toughness by making the austenite grains and ferrite grains finer after transformation, but if it exceeds 0.100%, the toughness will deteriorate. , 0.005 to 0.100 chi.

Tiは、0.005%以上の添加によって鋼中の遊%i
INを固定しじん性の向上に有効であるが、0.100
%をこえるとぜい化するため、0.005〜0.100
%とするO Bは、0.0005%以上の添加によって溶接部のしん
性向上に有効であるが、0.0050%をこえるとじん
性が劣化するため、0.0005〜0.0050チとす
る0 上記MO1V1Ti及びBの各成分は、同様の作用効果
を示す。
Ti increases the free %i in steel by adding 0.005% or more.
It is effective in fixing IN and improving toughness, but 0.100
If it exceeds 0.005 to 0.100, it becomes brittle.
% O B is effective in improving the toughness of welds when added in an amount of 0.0005% or more, but if it exceeds 0.0050%, the toughness deteriorates, so it is added in an amount of 0.0005 to 0.0050%. Each component of MO1V1Ti and B above exhibits similar effects.

(作用) この発明において粗圧延の中間段階での制御温度を95
0℃以下としたのは、950℃が未再結晶域の上部温度
であり、じん性向上にはこの温度以下での圧下が必要な
ことによる0 そして950℃以下で圧下を行う場合、破[I¥i道移
温度(vTrs)を安定させるためには、第2図かられ
かるように、圧下率を75チ以上に保つことが必要であ
り、粗圧延の中間段階での厚さを製品コイル厚の4倍に
すれば、このときの圧下率は75%に相当し、後続する
粗圧延及び仕上圧延を圧下率75チ以上で行うことがで
きる。なお第2図は、950℃以下でのvTrsに及ぼ
す圧下率の影響を示すものである。
(Function) In this invention, the control temperature at the intermediate stage of rough rolling is set to 95%.
The reason for setting the temperature below 0°C is that 950°C is the upper temperature of the non-recrystallized region, and rolling down below this temperature is necessary to improve toughness. In order to stabilize the I\i transition temperature (vTrs), it is necessary to maintain the rolling reduction at 75 inches or more, as shown in Figure 2, and the thickness at the intermediate stage of rough rolling is If it is made four times the coil thickness, the rolling reduction at this time corresponds to 75%, and the subsequent rough rolling and finishing rolling can be performed at a rolling reduction of 75 inches or more. Note that FIG. 2 shows the influence of the rolling reduction rate on vTrs at temperatures below 950°C.

次に第3図かられかるように、FDTを下げわばじん性
の向上を図ることができるが、第4図に示すように、F
DTが720℃未満に下がるとH2C割れ面積率が増大
するため、耐HIG特性の維持からFDTは720℃以
上とすることが望ましい。ここにHIO割れ面積率とい
うのは、NAGE試験溶液(5%Napl+ 0.5 
% 0H8COOI(+ H,S飽和水溶液、pH3,
0〜4.0)中にコイルから切り出した試験片を応力無
負荷状態で96時間浸漬後、連続走査型水浸式超音波探
傷装置を用いて圧延面に平行な面を全面走査して圧延面
に平行な面に投影された割れを自動的に作図させた、走
査面積に対する割れ面積の百分率である0 次に第5図よりCTを下げればじん性が向上することが
わかるが、500℃以下ではじん性向上の効果はみられ
ず、CTが450℃より下がるとHIC割n面積が増大
(第6図参照)するため、(3Tは450℃以上とする
0なお第6図は、第4図の場合と同様の方法によりHT
、C割れ面積率を測定した結果である。
Next, as shown in Fig. 3, it is possible to improve the stiffness by lowering the FDT, but as shown in Fig. 4,
If the DT falls below 720°C, the H2C crack area ratio increases, so in order to maintain HIG resistance, it is desirable that the FDT be 720°C or higher. The HIO crack area ratio here refers to the NAGE test solution (5% Napl + 0.5
% 0H8COOI (+ H,S saturated aqueous solution, pH 3,
After immersing the test piece cut from the coil in 0 to 4.0) for 96 hours in a stress-free state, it was rolled by scanning the entire surface parallel to the rolling surface using a continuous scanning water immersion ultrasonic flaw detector. This is the percentage of the crack area relative to the scanned area, which is the percentage of the crack area relative to the scanned area, where the cracks projected onto a plane parallel to the plane are automatically plotted.Next, from Figure 5, it can be seen that the toughness improves if the CT is lowered, but at 500°C Below, the effect of improving toughness is not seen, and when CT falls below 450℃, the HIC ratio n area increases (see Figure 6). HT by the same method as in Figure 4.
, which is the result of measuring the C crack area ratio.

(実施例) 以下にこの発明の実施例について示す。(Example) Examples of the present invention will be shown below.

下記表1に示す化学組成に溶製した鋼スラブを用い、同
じく下記表2に示す圧延加工条件で、グレードAPI5
LIXX65、板厚16.0朋に圧延した各コイルに関
して、じん性、強度、及び耐H工Cの特性について調べ
た結果を表2に示す。
Using a steel slab melted to the chemical composition shown in Table 1 below, and under the rolling conditions shown in Table 2 below, grade API5 was obtained.
Table 2 shows the results of investigating the toughness, strength, and H-work resistance C properties of each coil rolled to LIXX65 and plate thickness 16.0.

表2から明らかなように、この発明の圧延方法を実施し
たフィルは、vTrsが−180〜−140℃で比較材
(従来め圧延方法)よりも大巾に向上している0又、N
AOE試験溶液でのHICiの発生は全て皆無である0 比較材においてスラブ加熱温度(SR’I’ )を11
50℃に下げたコイルA6は、vTrsが一115℃ま
で向上するが、強度不足となりAP工5LXX65の規
格を満足しない0さらに、FDTを710℃まで下げた
フィルB5は、vTrsが一110℃となるが、HIO
が発生してしまう。
As is clear from Table 2, the fill processed by the rolling method of the present invention has a significantly improved vTrs of -180 to -140°C than the comparative material (conventional rolling method).
There was no HICi generation in the AOE test solution.0 In the comparison material, the slab heating temperature (SR'I') was set to 11.
Coil A6, whose temperature was lowered to 50°C, improved its vTrs to 1115°C, but it lacked strength and did not meet the standards for AP 5LXX65.Furthermore, coil B5, whose FDT was lowered to 710°C, had a vTrs of 1110°C. Naru, HIO
will occur.

(効果) 以上のようにこの発明によれば、耐HIO特性に優れた
高強度の極厚フィルを製造することができ、石油、天然
ガスなどのラインパイプに最適なコイルを提供できる0
又、必要に応じてさらにじん性の向上を図ることも可能
である0
(Effects) As described above, according to the present invention, it is possible to manufacture a high-strength, extra-thick film with excellent HIO resistance, and to provide coils that are optimal for oil, natural gas, etc. line pipes.
It is also possible to further improve the toughness if necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の圧延方法釜示す説明図、第2図は破
面遷移温度(vTrs )に及ぼす圧下・率の影響を示
すグラフ、 第8図はvTrsに及ぼすFD’l’の影響を示すグラ
フ、 第4図はHICに及ぼすFD’I’の影響を示すグラフ
、 第5図はv’Frsに及ぼすCjTの影響を示すグラフ
 、 第6図はHICに及ぼすCTの影響を示すグラフである
Fig. 1 is an explanatory diagram showing the rolling method of the present invention, Fig. 2 is a graph showing the influence of rolling reduction and rate on the fracture surface transition temperature (vTrs), and Fig. 8 is a graph showing the influence of FD'l' on vTrs. Figure 4 is a graph showing the effect of FD'I' on HIC, Figure 5 is a graph showing the effect of CjT on v'Frs, and Figure 6 is a graph showing the effect of CT on HIC. be.

Claims (1)

【特許請求の範囲】 1、鋼スラブを加熱して該スラブを粗圧延する際、この
粗圧延で製品コイル厚みに対し4倍以上の厚みまで圧下
した中間段階にて950℃以下に至るまで温度待ちをし
、 後続する粗圧延に引続く仕上圧延での仕上ミル出側温度
が720℃以上となる残りの粗圧延と仕上圧延とを遂次
続行し、 しかるのち、巻取り温度450℃以上で巻取る、 ことを特徴とする耐HIO特性及びじん性に優れた高強
度極厚コイルの製造方法。
[Claims] 1. When heating a steel slab and rough rolling the slab, the temperature is increased to 950°C or less at an intermediate stage where the rough rolling reduces the thickness to 4 times or more the thickness of the product coil. Then, the remaining rough rolling and finishing rolling are continued one after another in which the finishing mill exit temperature in the finishing mill following the rough rolling is 720°C or higher, and then the coiling temperature is 450°C or higher. A method for manufacturing a high-strength, extra-thick coil with excellent HIO resistance and toughness, characterized by: winding.
JP59189776A 1984-09-12 1984-09-12 Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness Granted JPS6169918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189776A JPS6169918A (en) 1984-09-12 1984-09-12 Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189776A JPS6169918A (en) 1984-09-12 1984-09-12 Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness

Publications (2)

Publication Number Publication Date
JPS6169918A true JPS6169918A (en) 1986-04-10
JPH0148335B2 JPH0148335B2 (en) 1989-10-18

Family

ID=16247005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189776A Granted JPS6169918A (en) 1984-09-12 1984-09-12 Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness

Country Status (1)

Country Link
JP (1) JPS6169918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250424A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Ni-free steel for low-temperature pressure vessel and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581015A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide
JPS58157948A (en) * 1982-03-16 1983-09-20 Kawasaki Steel Corp Steel material with superior resistance to cracking due to hydrogen embrittlement
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS6070122A (en) * 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581015A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of high-toughness ultralow carbon hot coil having high hydrogen-induced cracking resistance
JPS581014A (en) * 1981-06-26 1983-01-06 Nippon Kokan Kk <Nkk> Production of hot coil having high hydrogen induced cracking resistance
JPS5877530A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of steel plate with superior resistance to hydrogen embrittlement and stress corrosion cracking due to sulfide
JPS58157948A (en) * 1982-03-16 1983-09-20 Kawasaki Steel Corp Steel material with superior resistance to cracking due to hydrogen embrittlement
JPS58199813A (en) * 1982-05-17 1983-11-21 Sumitomo Metal Ind Ltd Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPS6070122A (en) * 1983-09-26 1985-04-20 Sumitomo Metal Ind Ltd Manufacture of steel having superior resistance to hydrogen induced cracking

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250424A (en) * 2020-09-21 2022-03-29 宝山钢铁股份有限公司 Ni-free steel for low-temperature pressure vessel and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0148335B2 (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US7879287B2 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
CN111094610B9 (en) Steel pipe and steel plate
US5820703A (en) Production method of steel pipe excellent in corrosion resistance and weldability
EP2505681B1 (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing same
CN110462080B (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
CN110475894B (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
CA2620049A1 (en) Seamless steel pipe for line pipe and a method for its manufacture
JP2006299415A (en) Method for producing hot-rolled steel sheet for low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness
JP6575734B1 (en) ERW steel pipe for line pipe
CN112752858B (en) High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
US5849116A (en) Production method for steel material and steel pipe having excellent corrosion resistance and weldability
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
JPS589919A (en) Production of high tensile hot rolled steel strip of superior low temperature toughness
JPS5827327B2 (en) Manufacturing method of controlled rolled high strength steel without separation
JPH1017980A (en) Welded steel pipe with low yield ratio, and its production
JPS6169918A (en) Production of high-strength extra thick coil having excellent hic resistant characteristic and toughness
JP3214353B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP4899885B2 (en) Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same
JPS6338520A (en) Production of steel plate having excellent hydrogen induced cracking resistance
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPS61157628A (en) Manufacture of hot coil for high-toughness sour-resistant steel pipe
JPH04191320A (en) Manufacture of low carbon martensitic stainless steel oil well pipe
JPH0730391B2 (en) Method for manufacturing high strength hot coil materials with excellent hydrogen sulfide resistance and toughness
JPH02240211A (en) Production of resistance welded tube excellent in hydrogen-induced cracking resistance