JPH06256842A - Production of light-gaged high-strength steel sheet having excellent sour resistance - Google Patents

Production of light-gaged high-strength steel sheet having excellent sour resistance

Info

Publication number
JPH06256842A
JPH06256842A JP4381393A JP4381393A JPH06256842A JP H06256842 A JPH06256842 A JP H06256842A JP 4381393 A JP4381393 A JP 4381393A JP 4381393 A JP4381393 A JP 4381393A JP H06256842 A JPH06256842 A JP H06256842A
Authority
JP
Japan
Prior art keywords
rolling
less
steel
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4381393A
Other languages
Japanese (ja)
Other versions
JP3009558B2 (en
Inventor
Akihiko Kojima
明彦 児島
Yoshio Terada
好男 寺田
Hiroshi Tamehiro
博 為広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12674187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06256842(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5043813A priority Critical patent/JP3009558B2/en
Publication of JPH06256842A publication Critical patent/JPH06256842A/en
Application granted granted Critical
Publication of JP3009558B2 publication Critical patent/JP3009558B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the light-gaged high-strength steel sheet having excellent sour resistance at a low cost by hot rolling and cooling a low-carbon steel having a specific compsn. contg. Nb and Ti as essential components under prescribed conditions. CONSTITUTION:A steel slab composed of the compsn. contg., by weight %, 0.02 to 0.10% C, <0.5% Si, 0.8 to 1.5% Mn, <0.010% P, <0.001% S, <0.05% Al, 0.001 to 0.005% both Ca and N and <0.0025% O, satisfying 1.0<=[Ca](1-124[O])/1.25 [S]<=7.0, contg. 0.005 to 0.03% Ti and 0.01 to 0.08% Nb as essential components or further contg. specific low ratios of >=1 kinds among Ni, Mo, Cr, Cu and V is heated at 1050 to 1300 deg.C, is subjected to the hot rolling of executing >=3 passes of rolling down at 760% cumulative draft at <=100 deg.C, at >15% draft per pass in the final 5 passes of rolling and ending the rolling at 980 deg.C and is then cooled with water at 3 to 40 deg.C/sec cooling rate in a 350 to 600 deg.C temp. range from >=Ar3 point temp.; thereafter, the rolled steel is allowed to cool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐水素誘起割れ(HI
C)性及び耐硫化物応力腐食割れ(SSC)性の優れた
耐サワーラインパイプ用高強度鋼板(米国石油協会(A
PI)規格X60以上の強度、厚み15mm以下)の製造
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to hydrogen-induced cracking (HI).
C) High-strength steel sheet for sour line pipes with excellent resistance to sulfide stress corrosion cracking (SSC) (American Petroleum Institute (A
PI) Strength of standard X60 or more, thickness 15 mm or less).

【0002】[0002]

【従来の技術】寒冷地、オフショアーにおける原油、天
然ガス輸送用大径ラインパイプに対しては高強度ととも
に優れた低温靭性、現地溶接性が要求される。さらに近
年、海水の注入による原油・ガス井戸のサワー化や劣質
資源の開発に伴って、パイプラインのサワー化が進行
し、HIC,SSCに対する優れた抵抗(耐サワー性)
が求められるようになった。
2. Description of the Related Art A large diameter line pipe for transporting crude oil and natural gas in cold regions and offshore is required to have high strength as well as excellent low temperature toughness and field weldability. Furthermore, in recent years, with the sourization of crude oil and gas wells by the injection of seawater and the development of inferior resources, the sourization of pipelines has progressed, and excellent resistance to HIC and SSC (sour resistance)
Came to be demanded.

【0003】従来、優れた耐サワー性を有するラインパ
イプは、(1)鋼の高純化、介在物の低減、(2)硫化
物系介在物のCa添加による形態制御、(3)連続鋳造
時の軽圧下や加速冷却による中心偏析の改善などの技術
を駆使して製造されてきた(たとえば特公昭63−00
1369号公報、特開昭62−112722号公報)。
Conventionally, line pipes having excellent sour resistance are (1) high-purity steel, reduction of inclusions, (2) morphology control by adding Ca of sulfide-based inclusions, (3) during continuous casting It has been manufactured by making full use of the technology of improving the center segregation by light pressure reduction and accelerated cooling (for example, JP-B-63-00).
1369, JP-A-62-112722).

【0004】加速冷却の適用は中心偏析を含めたミクロ
組織を改善し、耐HIC性の向上に非常に有効な手段で
あり、このためにはAr3 以上の温度からの冷却開始が
必須である。しかしながら、従来の圧延では、板厚が1
5mm以下の薄手鋼板は圧延中の鋼板温度の低下が大き
く、Ar3 以上からの加速冷却を開始するためには、仕
上圧延の開始温度を上昇させて圧延終了温度を高温化し
なければならなかった。このような圧延温度域の上昇は
γ低温域での累積圧下量を減少させ、組織の微細化にと
って不利であり、靭性を劣化させる。そこで、従来、薄
手耐サワー鋼板の製造には、耐サワー性と靭性の両立の
観点から、スラブの均熱拡散処理によって耐サワー性を
確保し、圧延終了温度の低温化によって靭性を確保して
きた(たとえば特開昭61−279621号公報)。し
かしながらスラブの均熱拡散処理は、高温で長時間にわ
たるために、大幅なコストの上昇を招くという問題点が
あった。
The application of accelerated cooling is a very effective means for improving the microstructure including center segregation and for improving the HIC resistance. For this purpose, it is essential to start cooling from a temperature of Ar 3 or higher. . However, with conventional rolling, the plate thickness is 1
The thin steel plate of 5 mm or less has a large decrease in the temperature of the steel plate during rolling, and in order to start accelerated cooling from Ar 3 or more, the start temperature of finish rolling must be increased to raise the end temperature of rolling. . Such an increase in the rolling temperature range reduces the cumulative rolling reduction in the γ low temperature range, which is disadvantageous for the refinement of the structure and deteriorates the toughness. Therefore, in the past, in the production of thin sour-resistant steel sheets, from the viewpoint of achieving both sour resistance and toughness, sour resistance was secured by soaking and diffusion treatment of the slab, and toughness was secured by lowering the rolling end temperature. (For example, JP-A-61-279621). However, the soaking and diffusing treatment of the slab has a problem that it causes a significant increase in cost because it takes a long time at a high temperature.

【0005】[0005]

【発明が解決しようとする課題】本発明は耐サワー性の
優れたAPI規格5L−X60以上の高強度を有する薄
手鋼管(電縫鋼管、UOE鋼管など)用鋼板の製造法を
提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a steel sheet for thin steel pipes (electric resistance welded pipes, UOE steel pipes, etc.) having high strength of API standard 5L-X60 or more, which is excellent in sour resistance. is there.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、重量%
でC:0.02〜0.10%、Si:0.5%以下、M
n:0.8〜1.5%、P:0.010%以下、S:
0.001%以下、Al:0.05%以下、Ti:0.
005〜0.03%、Nb:0.01〜0.08%、C
a:0.001〜0.005%、N:0.001〜0.
005%、O:0.0025%以下を含有し、かつ1.
0≦〔Ca〕(1−124〔O〕)/1.25〔S〕≦
7.0を満足し、さらに必要に応じて、Ni:0.1〜
0.5%、Mo:0.1〜0.5%、Cr:0.1〜
0.5%、Cu:0.1〜0.5%、V:0.01〜
0.1%の一種または二種以上を含有する残部が鉄及び
不可避的不純物からなる鋼を、1050〜1300℃の
温度範囲に加熱し、1000℃以下の累積圧下量を60
%以上とし、かつ圧延最終5パスにおいて1パス当たり
の圧下率が15%以上の圧下を3回以上行い、980℃
以下で圧延を終了した後、Ar3 以上の温度から冷却速
度3〜40℃/秒で350〜600℃まで水冷、その後
放冷することである。
SUMMARY OF THE INVENTION The gist of the present invention is the weight%
C: 0.02 to 0.10%, Si: 0.5% or less, M
n: 0.8 to 1.5%, P: 0.010% or less, S:
0.001% or less, Al: 0.05% or less, Ti: 0.
005 to 0.03%, Nb: 0.01 to 0.08%, C
a: 0.001 to 0.005%, N: 0.001 to 0.
005%, O: 0.0025% or less, and 1.
0 ≦ [Ca] (1-124 [O]) / 1.25 [S] ≦
Satisfies 7.0, and if necessary, Ni: 0.1 to 0.1
0.5%, Mo: 0.1 to 0.5%, Cr: 0.1
0.5%, Cu: 0.1 to 0.5%, V: 0.01 to
Steel containing 0.1% of one kind or two kinds or more and the balance consisting of iron and unavoidable impurities is heated to a temperature range of 1050 to 1300 ° C., and a cumulative reduction amount of 1000 ° C. or less is set to 60.
%, And in the final 5 passes of rolling, the reduction rate of 15% or more per pass was performed 3 times or more, and 980 ° C.
After the rolling is completed below, water cooling is performed from a temperature of Ar 3 or higher at a cooling rate of 3 to 40 ° C./second to 350 to 600 ° C., and then, cooling is performed.

【0007】以下、本発明について詳細に説明する。高
強度、優れた低温靭性、現地溶接性とともに優れた耐サ
ワー性を得るためには、まず第一にその化学成分を限定
する必要がある。このためC,Mn,P量を低減した。
この理由は連続鋳造(CC)スラブの中心偏析を改善
し、HICの発生・伝播を防止するためである。X60
以上の高強度鋼では必然的にC量が高くなるが、C量の
増加はCCスラブの中心偏析帯におけるMn,P偏析を
強め、硬化組織の生成を助長して耐サワー性を著しく劣
化させる。
The present invention will be described in detail below. In order to obtain high strength, excellent low temperature toughness, and excellent sour resistance along with in-situ weldability, it is necessary to first of all limit its chemical composition. Therefore, the amounts of C, Mn, and P are reduced.
The reason for this is to improve the center segregation of the continuous casting (CC) slab and prevent the generation and propagation of HIC. X60
In the above high-strength steels, the C content inevitably increases, but an increase in the C content strengthens Mn and P segregation in the central segregation zone of the CC slab, promotes the formation of a hardened structure, and significantly deteriorates the sour resistance. .

【0008】これを防止するためC量の上限は0.10
%としなければならない。C量の下限0.02%は強度
・靭性を確保するための最小量である。C量の低減に加
えて、さらにMn,P量を低減することは中心偏析を軽
減、すなわち硬化組織の生成抑制に有効である。
To prevent this, the upper limit of the amount of C is 0.10.
It must be%. The lower limit of 0.02% of the amount of C is the minimum amount for ensuring strength and toughness. In addition to reducing the amount of C, further reducing the amounts of Mn and P is effective in reducing center segregation, that is, suppressing the formation of a hardened structure.

【0009】このためMn,P量の上限を、それぞれ
1.5%,0.010%に限定した。Mn量の下限0.
8%は母材・溶接部の強度を確保するための最小量であ
る。一方、P量は低いほど、耐サワー性は向上する。
Therefore, the upper limits of the amounts of Mn and P are limited to 1.5% and 0.010%, respectively. Lower limit of Mn amount 0.
8% is the minimum amount for securing the strength of the base material and the welded portion. On the other hand, the lower the P content, the better the sour resistance.

【0010】本発明鋼は必須の元素としてNb:0.0
1〜0.08%、Ti:0.005〜0.03%を含有
する。Nbは制御圧延における結晶粒の微細化や析出硬
化に寄与し、鋼を強靭化する。またTi添加は微細なT
iNを形成し、スラブ加熱時、溶接時のγ粒粗大化を抑
制して母材靭性、HAZ靭性の改善に効果がある。
The steel of the present invention contains Nb: 0.0 as an essential element.
1-0.08%, Ti: 0.005-0.03% is contained. Nb contributes to refinement of crystal grains and precipitation hardening in controlled rolling, and strengthens steel. In addition, Ti addition is fine T
iN is formed, and it is effective in improving the base material toughness and HAZ toughness by suppressing γ grain coarsening during slab heating and welding.

【0011】とくに良好な低温靭性を必要とする本発明
鋼では、Nb,Ti添加は必須であることがわかった。
Nb,Ti量の下限は、これらの元素がその効果を発揮
するための最小量であり、その上限はHAZ靭性や現地
溶接性を劣化させない添加量の限界である。
It has been found that the addition of Nb and Ti is essential for the steel of the present invention which requires particularly good low temperature toughness.
The lower limits of the amounts of Nb and Ti are the minimum amounts for these elements to exert their effects, and the upper limits thereof are the limits of the addition amounts that do not deteriorate the HAZ toughness and field weldability.

【0012】つぎに、その他元素の限定理由について説
明する。Siは多く添加すると現地溶接性、HAZ靭性
を劣化させるため、その上限を0.5%とした。鋼の脱
酸はAl,Tiのみでも十分であり、Siは必ずしも添
加する必要はない。本発明鋼においては不純物であるS
を0.001%以下とし、かつCaを添加して、1.0
≦〔Ca〕(1−124〔O〕)/1.25〔S〕≦
7.0とする。SはMnS系介在物を形成し、MnSは
圧延で伸長してHICの発生起点となる。これを防止す
るには、介在物の絶対量を低減するとともに、硫化物の
形態を制御して圧延で延伸化し難いCaS(−O)とし
なければならない。
Next, the reasons for limiting other elements will be described. If a large amount of Si is added, the field weldability and HAZ toughness deteriorate, so the upper limit was made 0.5%. Only Al and Ti are sufficient for deoxidizing steel, and Si is not necessarily added. In the steel of the present invention, S which is an impurity
To 0.001% or less, and adding Ca to 1.0
≦ [Ca] (1-124 [O]) / 1.25 [S] ≦
Set to 7.0. S forms MnS inclusions, and MnS is elongated by rolling and becomes a starting point of HIC generation. In order to prevent this, the absolute amount of inclusions must be reduced, and the form of sulfide must be controlled to obtain CaS (-O) that is difficult to be stretched by rolling.

【0013】そこでS量を0.001%以下とし、Ca
を0.001〜0.005%添加し、Caによる硫化物
の形態制御を十分に行うため、ESSP=〔Ca〕(1
−124〔O〕)/1.25〔S〕≧1.0とした。し
かしESSPが大きすぎると、Ca系介在物が増加、H
ICの発生起点となるので、その上限を7.0とした。
上記に関連してO量を0.0025%以下に限定した。
これはHICの起点となる酸化物系介在物を低減し、C
a量で硫化物の形態制御を行うためである。Alは脱酸
元素として鋼に含まれる元素であるが、脱酸はTiある
いはSiでも可能であり、必ずしも添加する必要はな
い。Al量が0.05%以上になるとAl系非金属介在
物が増加して鋼の清浄度を害するので、その上限を0.
05%とした。
Therefore, the amount of S is set to 0.001% or less and Ca
Is added in an amount of 0.001 to 0.005% to sufficiently control the morphology of sulfide by Ca, therefore ESSP = [Ca] (1
-124 [O]) / 1.25 [S] ≧ 1.0. However, if ESSP is too large, Ca-based inclusions increase and H
Since this is the starting point of IC generation, its upper limit was set to 7.0.
In relation to the above, the amount of O was limited to 0.0025% or less.
This reduces oxide inclusions that are the starting point of HIC, and
This is because the sulfide morphology is controlled by the amount of a. Al is an element contained in steel as a deoxidizing element, but deoxidizing is also possible with Ti or Si, and it is not always necessary to add it. If the Al content is 0.05% or more, Al-based nonmetallic inclusions increase and impair the cleanliness of steel, so the upper limit is set to 0.
It was set to 05%.

【0014】NはTiNを形成しスラブ再加熱時や溶接
時のγ粒の粗大化抑制を通じて母材、HAZ靭性を向上
させる。このために必要な最小量は0.001%であ
る。しかし多すぎるとスラブ表面疵や固溶NによるHA
Z靭性劣化の原因となるので、その上限は0.005%
以下に抑える必要がある。
N forms TiN and improves the base metal and HAZ toughness by suppressing the coarsening of γ grains during slab reheating and welding. The minimum amount required for this is 0.001%. However, if it is too much, HA will be caused by slab surface defects and solid solution N.
Since it causes deterioration of Z toughness, its upper limit is 0.005%.
It is necessary to keep below.

【0015】次に選択元素であるNi,Mo,Cr,C
u,Vを添加する理由について説明する。基本となる成
分にさらにこれらの元素を添加する主な目的は、本発明
鋼の優れた特徴を損なうことなく強度、靭性などの特性
の向上を図るためである。従って、その添加量は自ら制
限されるべき性質のものであり、下限はこれらの実質的
な効果が得られる最小量である。
Next, Ni, Mo, Cr and C which are selective elements
The reason for adding u and V will be described. The main purpose of adding these elements to the basic composition is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be limited by itself, and the lower limit is the minimum amount at which these substantial effects can be obtained.

【0016】Niは溶接性及びHAZ靭性に悪影響を及
ぼすことなく母材の強度、靭性を向上させるが、過剰な
添加は溶接性に好ましくないため上限を0.5%とし
た。Moは母材の強度、靭性をともに向上させるが、過
剰な添加は母材及びHAZ靭性、溶接性の劣化を招くた
め、上限を0.5%とした。
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but excessive addition is not preferable for weldability, so the upper limit was made 0.5%. Mo improves both strength and toughness of the base material, but excessive addition causes deterioration of the base material, HAZ toughness, and weldability, so the upper limit was made 0.5%.

【0017】CrはCCスラブにおいて中心偏析し難
く、かつ母材の強度を向上させるが、過剰な添加は母材
及びHAZ靭性、溶接性を劣化させるため、上限を0.
5%とした。CuはNiとほぼ同様の効果を有するが、
過剰な添加は熱間圧延時にCu−クラックを発生し製造
が困難となるため、上限を0.5%とした。VはNbと
ほぼ同様な効果を有し、ミクロ組織の微細化による靭性
の向上や、焼入れ性の増大、析出硬化による強度の向上
を可能とする。しかし、過剰な添加はHAZ靭性、溶接
性の劣化を招くため、上限を0.1%とした。
Cr is not easily segregated in the center of the CC slab and improves the strength of the base material, but excessive addition deteriorates the base material, HAZ toughness and weldability, so the upper limit is set to 0.
It was set to 5%. Cu has almost the same effect as Ni,
Since excessive addition causes Cu-cracks during hot rolling and makes production difficult, the upper limit was made 0.5%. V has almost the same effect as Nb, and makes it possible to improve the toughness by increasing the fineness of the microstructure, increase the hardenability, and improve the strength by precipitation hardening. However, excessive addition causes deterioration of HAZ toughness and weldability, so the upper limit was made 0.1%.

【0018】上記のような鋼において母材の低温靭性を
改善するためには、さらに製造法が適切でなければなら
ない。このため鋼(スラブ)の再加熱、圧延、冷却条件
を限定する必要がある。まず再加熱温度を1050〜1
300℃の範囲に限定する。再加熱温度はNb析出物を
固溶させ、かつ圧延終了温度を確保するために1050
℃以上としなければならない(望ましい再加熱温度は1
150〜1250℃である)。しかし再加熱温度が13
00℃以上では、γ粒が著しく粗大化し圧延によっても
完全に微細化できないため、優れた低温靭性が得られな
い。このため再加熱温度を1300℃以下とした。
In order to improve the low temperature toughness of the base material in the above steel, the manufacturing method must be appropriate. Therefore, it is necessary to limit reheating, rolling, and cooling conditions for steel (slab). First, set the reheating temperature to 1050-1
Limit to 300 ° C range. The reheating temperature is 1050 in order to form a solid solution with Nb precipitates and to secure the rolling end temperature.
Must be above ℃ (the preferred reheating temperature is 1
150-1250 ° C). However, the reheating temperature is 13
At 00 ° C. or higher, the γ grains are remarkably coarsened and cannot be completely refined by rolling, so that excellent low temperature toughness cannot be obtained. Therefore, the reheating temperature is set to 1300 ° C. or lower.

【0019】さらに1000℃以下での累積圧下量を6
0%以上とし、かつ圧延最終5パスにおいて1パス当た
りの圧下率が15%以上の圧下を3回以上行い、980
℃以下で圧延を終了した後、Ar3 以上の温度から加速
冷却されなければならない。1000℃以下での累積圧
下量を60%以上とすることにより、γ再結晶域では再
結晶の繰り返しによりγ粒の細粒化及び整粒化を、γ未
再結晶域ではγ粒の延伸化及び粒内への歪の導入を促進
し、組織を微細化して靭性を改善する。1000℃以下
での累積圧下量が60%未満であると、組織の微細化が
不十分であり、靭性が劣化する。
Further, the cumulative rolling reduction at 1000 ° C. or less is 6
0% or more, and in the final 5 passes of rolling, reduction of 15% or more per pass was performed 3 times or more, and 980
After finishing the rolling at a temperature of ℃ or less, it must be accelerated cooled from a temperature of Ar 3 or higher. By setting the cumulative reduction amount at 1000 ° C. or less to 60% or more, the γ grains are refined and sized by repeating the recrystallization in the γ recrystallization region, and the γ grains are stretched in the γ unrecrystallized region. It also promotes the introduction of strain into the grains and refines the structure to improve toughness. If the cumulative reduction amount at 1000 ° C. or less is less than 60%, the micronization of the structure is insufficient and the toughness deteriorates.

【0020】圧延最終5パスにおいて1パス当たりの圧
下率が15%以上の圧下を3回以上行うことは本発明の
特徴である。発明者らの検討の結果、このような1パス
当たりの圧下率が大きい圧延においては、パス回数の減
少に伴うロール抜熱量の低下や圧下率の増大に伴う加工
発熱量の増加により鋼板温度が低下し難くなり、板厚が
15mm以下の薄手鋼板においても、仕上噛込み温度が従
来のままで圧延終了温度の高温化が可能となることがわ
かった。
It is a feature of the present invention that the rolling reduction of 15% or more per pass is performed three or more times in the final five passes of rolling. As a result of the study by the inventors, in such rolling with a large reduction ratio per pass, the steel sheet temperature is decreased due to a decrease in the amount of heat removed from the roll as the number of passes decreases and an increase in the amount of heat generated during processing as the reduction ratio increases. It has been found that it becomes difficult to lower the temperature, and even in the case of a thin steel plate having a plate thickness of 15 mm or less, it is possible to increase the rolling end temperature with the finish biting temperature unchanged.

【0021】さらに、1パス当たりの圧下率の上昇によ
ってγ再結晶の繰り返しや、未再結晶γ粒の延伸化及び
歪の導入が促進され、圧延最終温度が高温化しても組織
は微細化し、靭性の確保が可能であることがわかった。
以上の結果、本発明法によって、板厚15mm以下の薄手
鋼板において靭性を劣化させずに圧延終了温度の高温化
が図れ、Ar3 以上からの加速冷却の適用によって耐サ
ワー性の確保が可能となった。
Further, the increase in the rolling reduction per pass promotes the repetition of γ-recrystallization, the stretching of unrecrystallized γ-grains and the introduction of strain, and the structure becomes finer even if the final rolling temperature rises. It was found that it is possible to secure toughness.
As a result, according to the method of the present invention, it is possible to increase the rolling end temperature without deteriorating the toughness of a thin steel plate having a thickness of 15 mm or less, and it is possible to secure sour resistance by applying accelerated cooling from Ar 3 or more. became.

【0022】図1に本発明法と従来法の圧延・冷却工程
における鋼板温度履歴模式図を示す。圧延最終パス5パ
スにおいて15%以上の圧下が2回以下、あるいは1パ
ス当たりの圧下率が15%未満であると、圧延終了温度
の高温化と組織の微細化による靭性の確保との両立は不
可能である。
FIG. 1 shows a schematic diagram of steel plate temperature history in the rolling and cooling steps of the method of the present invention and the conventional method. If the reduction of 15% or more in the final five passes of the rolling is two times or less, or if the reduction ratio per pass is less than 15%, it is possible to achieve both the high rolling end temperature and the toughness by the refinement of the structure. It is impossible.

【0023】圧延終了温度が980℃を超えるような高
温仕上げでは、たとえ1000℃以下の累積圧下量や1
パス当たりの圧下率が大きくても、組織は粗大化してし
まい、靭性は劣化する。加速冷却はAr3 以上の温度か
ら冷却速度3〜40℃/秒で350〜600℃まで水
冷、その後空冷しなければならない。加速冷却は中心偏
析帯を含めたミクロ組織の改善に有効であり、耐HIC
性の向上と、靭性を損なわずに強度の増加を可能とす
る。
In high-temperature finishing where the rolling end temperature exceeds 980 ° C., the cumulative reduction amount of 1000 ° C. or less or 1
Even if the rolling reduction per pass is large, the structure becomes coarse and the toughness deteriorates. The accelerated cooling must be water-cooled from a temperature of Ar 3 or higher to 350 to 600 ° C. at a cooling rate of 3 to 40 ° C./second, and then air-cooled. Accelerated cooling is effective in improving the microstructure including the center segregation zone,
It is possible to improve the toughness and increase the strength without impairing the toughness.

【0024】冷却速度が遅すぎたり、冷却停止温度が高
すぎると加速冷却の効果が十分に得られず、適正なミク
ロ組織を得ることができない。一方、冷却速度が大きす
ぎたり、停止温度が低すぎると硬化組織が生成して低温
靭性や耐HIC性が大幅に劣化する。なお、この鋼を製
造後、焼戻、脱水素などの目的でAc1 点以下の温度で
再加熱処理しても本発明の特徴を損なうものではない。
また省エネルギーなどを目的としてCCスラブを加熱炉
にホットチャージ圧延してもよい。
If the cooling rate is too slow or the cooling stop temperature is too high, the effect of accelerated cooling cannot be sufficiently obtained and an appropriate microstructure cannot be obtained. On the other hand, if the cooling rate is too high or the stopping temperature is too low, a hardened structure is formed and the low temperature toughness and HIC resistance are significantly deteriorated. It should be noted that the characteristics of the present invention will not be impaired even if the steel is reheated at a temperature of Ac 1 point or lower for the purpose of tempering, dehydrogenation, etc. after the production.
The CC slab may be hot-charge rolled in a heating furnace for the purpose of energy saving.

【0025】本発明は厚板ミルに適用することがもっと
も好ましいが、ホットコイルにも適用できる(この場
合、圧延冷却後の鋼板は巻き取られ、冷却される)。ま
た、この方法で製造した鋼板は低温靭性、現地溶接性も
優れているので、寒冷地におけるパイプラインのほか圧
力容器などにも適用できる。
Although the present invention is most preferably applied to a thick plate mill, it can also be applied to a hot coil (in this case, the steel plate after rolling and cooling is wound and cooled). Further, since the steel sheet manufactured by this method has excellent low temperature toughness and field weldability, it can be applied not only to pipelines in cold regions but also to pressure vessels.

【0026】[0026]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(板厚10〜15mm)を製造し、その強度、靭性、
耐HIC性を調査した。なお、スラブの均熱拡散処理は
実施していない。表1,表2に実施例を示す。
[Examples] Steel sheets (sheet thickness 10 to 15 mm) of various steel components were manufactured in a converter-continuous casting-thick plate process, and the strength, toughness,
The HIC resistance was investigated. Note that the slab was not subjected to soaking and diffusion treatment. Examples are shown in Tables 1 and 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】本発明法に従って製造した鋼板(本発明鋼
板)はすべて良好な特性を有する。これに対して本発明
によらない比較鋼は強度、靭性、耐HIC性のいずれか
が劣る。比較鋼9〜20において、鋼9,10はそれぞ
れC量,Mn量が高すぎるため、靭性あるいは耐HIC
性が劣る。鋼11はP,S量が高く、かつ硫化物の形態
制御の指数であるESSPが1.0以上を満足しないた
め、耐HIC性が劣る。鋼12はNbを含有しないた
め、靭性が劣る。鋼13はCaが添加されていないた
め、耐HIC性が劣る。
The steel sheets manufactured according to the method of the present invention (the steel sheet of the present invention) all have good properties. In contrast, the comparative steels not according to the present invention are inferior in strength, toughness and HIC resistance. In Comparative Steels 9 to 20, Steels 9 and 10 have too high a C content and a Mn content, respectively, so that the toughness or the HIC resistance is high.
Inferior in nature. Steel 11 has a high P and S content and does not satisfy ESSP, which is an index for morphology control of sulfide, of 1.0 or more, and therefore has poor HIC resistance. Steel 12 does not contain Nb and therefore has poor toughness. Steel 13 is inferior in HIC resistance because Ca is not added.

【0032】鋼14〜20は成分は本発明と同様である
が、製造条件が適当でないために、強度、靭性、耐HI
C性のいずれかが劣る。鋼14はスラブ再加熱温度が低
いために、Nbの固溶が不十分で、かつ水冷開始温度が
低すぎ、靭性、耐HIC性が劣る。鋼15は1000℃
以下の累積圧下量が小さいため、靭性が劣る。
The components of Steels 14 to 20 are the same as those of the present invention, but since the manufacturing conditions are not appropriate, the strength, toughness, and HI resistance are high.
Either of the C characteristics is inferior. Since steel 14 has a low slab reheating temperature, solid solution of Nb is insufficient, and the water cooling start temperature is too low, resulting in poor toughness and HIC resistance. Steel 15 is 1000 ° C
Since the following cumulative reduction amount is small, the toughness is poor.

【0033】鋼16,17は圧延最終5パスにおいて1
パス当たりの圧下率が小さい、あるいは15%以上の圧
下の回数が少ないために、水冷開始温度が低すぎ、耐H
IC性が劣る。鋼18は圧延終了温度が高すぎるため、
靭性が劣る。鋼19は加速冷却を適用しないため、強
度、耐HIC性が劣る。鋼20は水冷停止温度が高すぎ
るため、耐HIC性が劣る。
Steels 16 and 17 have 1 in the final 5 passes of rolling.
Since the reduction rate per pass is small or the number of times of reduction of 15% or more is small, the water cooling start temperature is too low and the H resistance is high.
The IC property is inferior. Steel 18 has too high a rolling end temperature,
Inferior toughness. Since steel 19 does not apply accelerated cooling, its strength and HIC resistance are poor. Steel 20 has an inferior HIC resistance because the water cooling stop temperature is too high.

【0034】[0034]

【発明の効果】本発明によって、薄手耐サワー高強度鋼
板の製造に従来余儀なくされていたスラブの均熱拡散処
理が省略でき、これに代えて生産性の高い加速冷却の適
用が可能となった。その結果、低コストで優れた特性を
有する薄手耐サワー高強度鋼板を製造することが可能と
なった。
According to the present invention, the soaking and diffusing treatment of the slab, which was conventionally required to manufacture thin sour-resistant high-strength steel sheets, can be omitted, and instead, accelerated cooling with high productivity can be applied. . As a result, it has become possible to manufacture a thin sour-resistant high-strength steel sheet having excellent characteristics at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧延・冷却工程における鋼板温度履歴模式図で
ある。
FIG. 1 is a schematic diagram of a steel plate temperature history in a rolling / cooling process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.02〜0.10% Si:0.5%以下 Mn:0.8〜1.5% P :0.010%以下 S :0.001%以下 Al:0.05%以下 Ti:0.005〜0.03% Nb:0.01〜0.08% Ca:0.001〜0.005% N :0.001〜0.005% O :0.0025%以下 を含有し、かつ 1.0≦〔Ca〕(1−124〔O〕)/1.25
〔S〕≦7.0 残部が鉄及び不可避的不純物からなる鋼を、1050〜
1300℃の温度範囲に加熱し、1000℃以下の累積
圧下量を60%以上とし、かつ圧延最終5パスにおいて
1パス当たりの圧下率が15%以上の圧下を3回以上行
い、980℃以下で圧延を終了した後、Ar3 以上の温
度から冷却速度3〜40℃/秒で350〜600℃まで
水冷、その後放冷することを特徴とする耐サワー性の優
れた薄手高強度鋼板の製造方法。
1. By weight%, C: 0.02 to 0.10% Si: 0.5% or less Mn: 0.8 to 1.5% P: 0.010% or less S: 0.001% or less Al : 0.05% or less Ti: 0.005-0.03% Nb: 0.01-0.08% Ca: 0.001-0.005% N: 0.001-0.005% O: 0. 0.25% or less and 1.0 ≦ [Ca] (1-124 [O]) / 1.25
[S] ≦ 7.0 The steel whose balance is iron and unavoidable impurities is
When heated to a temperature range of 1300 ° C., the cumulative rolling reduction of 1000 ° C. or less is 60% or more, and the rolling reduction of 15% or more per pass is performed 3 times or more in the final 5 passes of rolling, and the rolling reduction is performed at 980 ° C. or less. After the rolling is finished, a method for producing a thin high-strength steel sheet excellent in sour resistance, characterized by water cooling from Ar 3 or higher to 350 to 600 ° C. at a cooling rate of 3 to 40 ° C./second, and then allowing to cool. .
【請求項2】 鋼成分が、さらに、重量%で Ni:0.1〜0.5% Mo:0.1〜0.5% Cr:0.1〜0.5% Cu:0.1〜0.5% V :0.01〜0.1% の一種あるいは二種以上を含有することを特徴とする請
求項1記載の耐サワー性の優れた薄手高強度鋼板の製造
方法。
2. The steel composition further comprises, by weight%, Ni: 0.1-0.5% Mo: 0.1-0.5% Cr: 0.1-0.5% Cu: 0.1. 0.5% V: 0.01-0.1% of 1 type (s) or 2 or more types are contained, The manufacturing method of the thin high strength steel plate excellent in the sour resistance of Claim 1 characterized by the above-mentioned.
JP5043813A 1993-03-04 1993-03-04 Manufacturing method of thin high-strength steel sheet with excellent sour resistance Expired - Fee Related JP3009558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043813A JP3009558B2 (en) 1993-03-04 1993-03-04 Manufacturing method of thin high-strength steel sheet with excellent sour resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043813A JP3009558B2 (en) 1993-03-04 1993-03-04 Manufacturing method of thin high-strength steel sheet with excellent sour resistance

Publications (2)

Publication Number Publication Date
JPH06256842A true JPH06256842A (en) 1994-09-13
JP3009558B2 JP3009558B2 (en) 2000-02-14

Family

ID=12674187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043813A Expired - Fee Related JP3009558B2 (en) 1993-03-04 1993-03-04 Manufacturing method of thin high-strength steel sheet with excellent sour resistance

Country Status (1)

Country Link
JP (1) JP3009558B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290546A (en) * 2004-03-09 2005-10-20 Jfe Steel Kk Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same
US7879287B2 (en) * 2004-02-24 2011-02-01 Jfe Steel Corporation Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
JP2011105963A (en) * 2009-11-12 2011-06-02 Nippon Steel Corp Method for manufacturing low yield ratio high tensile strength steel plate excellent in low temperature toughness
WO2020003499A1 (en) 2018-06-29 2020-01-02 日本製鉄株式会社 Steel pipe and steel sheet
WO2023286536A1 (en) * 2021-07-16 2023-01-19 Jfeスチール株式会社 Thick steel sheet and method for producing thick steel sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879287B2 (en) * 2004-02-24 2011-02-01 Jfe Steel Corporation Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
JP2005290546A (en) * 2004-03-09 2005-10-20 Jfe Steel Kk Hot rolled steel sheet for low yr type electric resistance welded steel tube having excellent aging resistance and method for manufacturing the same
JP2011105963A (en) * 2009-11-12 2011-06-02 Nippon Steel Corp Method for manufacturing low yield ratio high tensile strength steel plate excellent in low temperature toughness
WO2020003499A1 (en) 2018-06-29 2020-01-02 日本製鉄株式会社 Steel pipe and steel sheet
KR20210021068A (en) 2018-06-29 2021-02-24 닛폰세이테츠 가부시키가이샤 Steel pipe and steel plate
WO2023286536A1 (en) * 2021-07-16 2023-01-19 Jfeスチール株式会社 Thick steel sheet and method for producing thick steel sheet

Also Published As

Publication number Publication date
JP3009558B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
CA2295582C (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP2001511479A (en) Method for producing weldable super-strength steel with excellent toughness
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP2020509181A (en) Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH0920922A (en) Production of high toughness steel plate for low temperature use
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JP3218447B2 (en) Method of producing sour resistant thin high strength steel sheet with excellent low temperature toughness
JPS6144123B2 (en)
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JPS6144122B2 (en)
JP3393314B2 (en) Manufacturing method of sour resistant high strength steel sheet with excellent low temperature toughness
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JPH07268467A (en) Production of hot coil for steel tube having high toughness and sour resistance
JPH07286213A (en) Production of thick hot coil good in dwtt property
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH09296216A (en) Production of high strength steel plate excellent in hydrogen induced cracking resistance
JPH08209240A (en) Production of steel plate for line pipe excellent in co2 corrosion resistance and low temperature toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees