JPS5827327B2 - Manufacturing method of controlled rolled high strength steel without separation - Google Patents

Manufacturing method of controlled rolled high strength steel without separation

Info

Publication number
JPS5827327B2
JPS5827327B2 JP52138881A JP13888177A JPS5827327B2 JP S5827327 B2 JPS5827327 B2 JP S5827327B2 JP 52138881 A JP52138881 A JP 52138881A JP 13888177 A JP13888177 A JP 13888177A JP S5827327 B2 JPS5827327 B2 JP S5827327B2
Authority
JP
Japan
Prior art keywords
separation
rolling
less
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52138881A
Other languages
Japanese (ja)
Other versions
JPS5471714A (en
Inventor
定弘 山本
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP52138881A priority Critical patent/JPS5827327B2/en
Publication of JPS5471714A publication Critical patent/JPS5471714A/en
Publication of JPS5827327B2 publication Critical patent/JPS5827327B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はセパレーションの生じない制御圧延高張力鋼の
製造法に係り、板厚方向における靭性劣化、耐応力腐食
割特性低下、不安定延性破壊等の原因となるセパレーシ
ョンの生じない制御圧延による高張力鋼を適切に製造す
ることのできる方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing controlled-rolled high-strength steel that does not cause separation, and is intended to prevent separation, which causes deterioration of toughness in the thickness direction, deterioration of stress corrosion cracking resistance, unstable ductile fracture, etc. It is an object of the present invention to provide a method capable of appropriately manufacturing high-strength steel by controlled rolling that does not occur.

寒冷地や深海に埋蔵される石油や天然ガスその他のエネ
ルギー源を輸送するパイプライン等は近時次第に大径化
し、高強度高靭性のものが要求され6と共に厚肉化の傾
向にあり斯様なラインパイプ等を得るための原板を得る
主な製造方法としては制拝圧延がある。
Pipelines, etc. that transport oil, natural gas, and other energy sources buried in cold regions or deep seas have gradually become larger in diameter in recent years, and are required to have high strength and high toughness. The main manufacturing method for obtaining the original plate for producing line pipes, etc. is ferrule rolling.

即ちこの制御圧延によるものは比較的低温下でのγ域又
はγ十α域で圧延を行うことにより組織を微細化せしめ
、強度の上昇と靭性の改善を同時に得しめ、特に後者の
改善が著しいことよりして上記したような用途に好適し
た製品を得ることができる。
In other words, the controlled rolling method refines the structure by rolling in the γ range or γ+α range at relatively low temperatures, and simultaneously increases strength and improves toughness, with the latter being particularly remarkable. In particular, a product suitable for the above-mentioned uses can be obtained.

ところでこのような制御圧延技術に従い低温領域での累
積圧下によって組織を微細化し靭性を改善するにはオー
ステナイトの未再結晶温度域で3o%以上の累積圧下率
を採った圧延を加えることが必要であるところ、このよ
うにして低温領域での累積圧下率が増加され靭性が改善
されるにつれて集合組織が発生し、所謂セパレーション
が生ずることとなる。
By the way, in order to refine the structure and improve toughness by cumulative reduction in a low temperature region according to such controlled rolling technology, it is necessary to apply rolling at a cumulative reduction rate of 30% or more in the non-recrystallized temperature region of austenite. At some point, as the cumulative reduction rate in the low-temperature region increases and the toughness is improved, a texture is generated, resulting in so-called separation.

蓋しこのセパレーションとは制御圧延材特有のものであ
って靭性の高い厚鋼板についてシャルピー試験、DWT
T試験(大型の脆性破壊壊試験であって、Drop W
eipht Tear Te5tの略)を行った際にお
いて試験温度の低下と共に破面内に生ずる圧延面に平行
な割れであって、特に脆性破面の出始める直上の温度で
多発する傾向があり、斯様なセパレーションが発生する
ことによって板厚方向の靭性劣化、耐応力腐食割特性低
下等を招来する。
The separation in the cap is unique to controlled rolled materials, and is used in Charpy tests and DWT on thick steel plates with high toughness.
T test (large brittle fracture test, Drop W
This is a crack that occurs parallel to the rolling surface as the test temperature decreases when testing (abbreviation for eipht tear Te5t), and tends to occur frequently at temperatures just above the point at which a brittle fracture surface begins to appear. The occurrence of such separation leads to deterioration of toughness in the thickness direction and deterioration of stress corrosion cracking resistance.

第1図には後述するような供試鋼Aを用いて1150℃
加熱後のオーステナイト未再結晶温度域下での累積圧下
率を変えた場合における靭性とセパレーションの変化を
示すが、この場合におけるセパレーション指数TSma
xとは標準の211t1rLvシヤルプー試験での破面
上において1間以上の長さのセパレーションの合計長さ
を破面面積で割算したも0であり、このようなセパレー
ション指数■Sm8Xは、圧下率が30係以上となり靭
性vTsが大幅に改善されるとともに次第に大きくなっ
ている。
Figure 1 shows the test temperature of 1150°C using test steel A as described later.
The changes in toughness and separation when the cumulative reduction rate is changed in the austenite non-recrystallization temperature range after heating are shown, and the separation index TSma in this case is
x is the total length of separations of one length or more on the fracture surface divided by the fracture surface area in the standard 211t1rLv Schalpou test, which is 0, and such a separation index ■Sm8X is the rolling reduction ratio is 30 or more, and the toughness vTs is greatly improved and gradually increases.

即ち圧下率が30係以下の低い場合にはセパレーション
が殆んどないのに30係以上となるとセパレーションの
発生が顕著となるわけである。
That is, when the rolling reduction ratio is as low as 30 parts or less, there is almost no separation, but when the reduction ratio is 30 parts or more, the occurrence of separation becomes noticeable.

然して斯かるセパレーション発生の原因としてはバンド
組織、混粒組織、集合組織、介在物などが考えられるが
、この中バンド組織はミクロ偏析に起因し、混粒組織は
変形したγ粒界又は変形帯から初析フェライトが析出す
ることによるものであり、又集合組織と介在物は低温領
域での圧下と関係があり、特にγ+αの2相領域での圧
下により強い集合組織が生じ、硫化物けい酸塩などの介
在物変形の度合も太きい。
However, the causes of such separation may be band structures, mixed grain structures, textures, inclusions, etc., but the medium band structures are caused by micro-segregation, and the mixed grain structures are caused by deformed γ grain boundaries or deformation zones. This is due to the precipitation of pro-eutectoid ferrite from the sulfide silicate, and the texture and inclusions are related to the reduction in the low-temperature region.In particular, the reduction in the γ+α two-phase region produces a strong texture, and the sulfide silicate The degree of deformation of inclusions such as salt is also large.

変態点以上で圧延を終了した場合は集合組織の程度も弱
く、これら介在物の変形も少い。
When rolling is completed at a temperature above the transformation point, the texture is weak and the deformation of these inclusions is small.

第2図には上記したような供試鋼Aに関して飽和H2S
雰囲気(0,5%酢酸水溶液に5係塩化ナトリウムを溶
解した溶液)中での硫化物応力腐食割れ試験(一般にN
ACE試験と呼ばれている)の結果を上記したようなセ
パレーション指数Ismaxと限界応力比σcrit/
ay(このσeritは応力腐食割れ試験において割れ
が発生しなくなる(試験時間が略数週間)限界応力であ
り、又σyはその材料の降伏応力〕との関係において示
すが、セパレーション指数が01以上では応力腐食割れ
特性(一般にSCCと呼ばれる)が著しく厚化している
Figure 2 shows saturated H2S for sample steel A as described above.
Sulfide stress corrosion cracking test (generally N
The results of the ACE test) are expressed as the separation index Ismax and the critical stress ratio σcrit/
It is shown in relation to ay (this σerit is the critical stress at which cracking does not occur in a stress corrosion cracking test (test time is approximately several weeks), and σy is the yield stress of the material), but if the separation index is 01 or more, Stress corrosion cracking characteristics (commonly referred to as SCC) are significantly thickened.

このようにセパレーションは耐応力腐食割れ特性を害し
、特にサワーガス用ラインパイプの如きにおいては問題
とならざるを得ないものであり、しかも板厚方向での低
温靭性劣化、不安定延性破壊における重列伝播停止特性
低下などの因子ともなる。
In this way, separation impairs stress corrosion cracking resistance and is a problem, especially in line pipes for sour gas, and it also causes deterioration of low-temperature toughness in the plate thickness direction and double alignment in unstable ductile fracture. It also becomes a factor such as deterioration of propagation stopping characteristics.

従って上記したような制御圧延材において上記したよう
なセパレーションの生じない非調質高帳力鋼を得ること
が要請されるが、従来この点に関し好ましい解決を図っ
た技術は未だ得られるに到っていない。
Therefore, there is a need to obtain non-tempered, high-strength steel that does not cause separation as described above in controlled-rolled materials, but no technology has hitherto been able to provide a preferable solution to this problem. Not yet.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものである。
The present invention was created after repeated studies in view of the above-mentioned circumstances.

即ち制御圧延材におけるセパレーション原因としては上
記したように、パーライトのバンド組織、混粒組織及び
介在物などがあるが、本発明者等はこれら0中でパーラ
イトのバンド組織と混粒組織については圧延後の加速冷
却によって改善できることを知った。
That is, as mentioned above, the causes of separation in controlled rolled materials include the pearlite band structure, mixed grain structure, and inclusions. I learned that it can be improved by subsequent accelerated cooling.

蓋し圧延後の加速冷却によって変態の駆動力が増し、オ
ーステナイトの粒界、粒内を問わずフェライトが均一に
核生成するのでバンド組織が消え整粒されることとなる
ものであり、この場合パーライトは細かく分散した状態
となる。
Accelerated cooling after rolling with a cap increases the driving force for transformation, and ferrite nucleates uniformly both at the grain boundaries and within the grains of austenite, so the band structure disappears and grain size is regularized. Pearlite is in a finely dispersed state.

この加速冷却は冷却所要時間を短縮する上から鋼材を送
行せしめながら行うことが好ましい。
This accelerated cooling is preferably performed while the steel material is being fed in order to shorten the time required for cooling.

又集合組織と介在物については変態点以上で圧延を終了
することによりγ+αの2相領域での圧下による集合組
織の大幅な増大と介在物の大きな変形を防ぐことが可能
となる。
Regarding the texture and inclusions, by terminating the rolling at or above the transformation point, it is possible to prevent a significant increase in the texture and large deformation of the inclusions due to rolling in the γ+α two-phase region.

従って制御圧延材におけるセパレーションの発生を防ぐ
には変態点以上で圧延を終了し、しかも加速冷却を行う
ことが不可欠であることが確認され、このような本発明
の技術によるときは安定してセパレーション指数■
≦0.06の非調maX 質高張力鋼を得ることができる。
Therefore, it has been confirmed that in order to prevent the occurrence of separation in controlled rolled materials, it is essential to finish rolling at a temperature above the transformation point and to perform accelerated cooling. Index■
It is possible to obtain high tensile strength steel with a non-tempered maX of ≦0.06.

本発明における化学成分限定理由は以下の通りである。The reason for limiting the chemical components in the present invention is as follows.

Cは強度を確保するために0.03%以上は必要であり
、又それか0.18%以上となると溶接性が悪くなる。
C is required to be 0.03% or more to ensure strength, and if it is 0.18% or more, weldability deteriorates.

又Siは脱酸元素として0.05係以上は必要であるが
、0.60%以上となると溶接性が悪くなることはCの
場合と同じであって、これを上限とする。
Further, as a deoxidizing element, Si is required to have a coefficient of 0.05 or more, but if it exceeds 0.60%, weldability deteriorates, as in the case of C, and this is the upper limit.

更にMnは高張力化に有効な元素であってo6o%以上
は必要である。
Furthermore, Mn is an effective element for increasing the tensile strength, and it is necessary to have an amount of 60% or more.

しかしそれが2.oo%以上となると溶接性が劣化する
But that's 2. When it exceeds oo%, weldability deteriorates.

Nb、V、Cu、Cr、Moの任意元素については高張
力化、靭性、溶接性を考慮してNbについては0.15
%以下、■は0.15%以下、Cu、Crは0.70%
以下、MOは0.30%以下を必要に応じて単独又は複
合含有せしめる。
For optional elements such as Nb, V, Cu, Cr, and Mo, 0.15 for Nb in consideration of high tensile strength, toughness, and weldability.
% or less, ■ is 0.15% or less, Cu, Cr is 0.70%
Hereinafter, 0.30% or less of MO may be contained singly or in combination as necessary.

Niについては強度、靭性の両面から有効な元素である
が経済性から2係を上限とすることが妥当である。
Ni is an effective element in terms of both strength and toughness, but from economical considerations it is appropriate to set the upper limit to 2.

本発明によるものの具体的な実施例について説明すると
以下の如くである。
Specific embodiments of the present invention will be described below.

本発明者等が具体的に採用した供試鋼の成分組成は次の
第1表に示す通りである。
The composition of the test steel specifically adopted by the inventors is shown in Table 1 below.

上記した供試鋼を用いて本発明者等が実施した実施例は
以下の通りである。
Examples carried out by the present inventors using the above-mentioned test steel are as follows.

なおこれらの実施例においてそのオーステナイト未再結
晶域はNb添加鋼ではNb量との関係より900℃以下
を用い、又51−Mn鋼(H鋼)では840℃以下を用
いた。
In these Examples, the austenite non-recrystallized region was set at 900° C. or lower for the Nb-added steel due to the relationship with the Nb content, and was set at 840° C. or lower for the 51-Mn steel (H steel).

実施例 1 第1表に示した供試鋼Aを用いて1150℃に加熱後、
900℃以下で60%の制御圧延を行い、仕上厚20m
mとした空冷材及び圧延後7808C〜600℃の間を
9℃/secで加速冷却したものについてその仕上温度
別によるセパレーション指数Φ関係は第3図に示す通り
である。
Example 1 After heating to 1150°C using test steel A shown in Table 1,
60% controlled rolling at 900℃ or less, finished thickness 20m
The separation index Φ relationship according to finishing temperature is as shown in FIG. 3 for the air-cooled material with m and the accelerated cooling at 9° C./sec between 7808° C. and 600° C. after rolling.

即ちその空冷材だけについてみると、変態点以上で圧延
を終了するとセパレーション指数が04から0.2に大
幅に減少しており、これは変態点以上で圧延が終了する
ことにより介在物の変形が少くなり又集合組織の影響も
減少するためである。
In other words, looking only at the air-cooled material, the separation index significantly decreases from 04 to 0.2 when rolling is finished above the transformation point, and this is because the deformation of inclusions is reduced by finishing rolling above the transformation point. This is because the influence of the texture is also reduced.

しかしバンド組織をもつ混流状態はなお残存するのでセ
パレーション指数は0.1〜0.2程度である。
However, since a mixed flow state with a band structure still remains, the separation index is about 0.1 to 0.2.

而して空冷材と加速冷却材とを比較すると変態点以上で
圧延を終了後、加速冷却したものはセパレーションが殆
んど生じないが、変態点以下で圧延終了後加速冷却した
ものは0.2程度のセパレーションが生じている。
Comparing air-cooled materials and accelerated cooling materials, those that are accelerated and cooled after finishing rolling at or above the transformation point have almost no separation, but those that are accelerated and cooled after finishing rolling at or below the transformation point have 0. A separation of about 2 degrees occurs.

即ち加速冷却を行うことにより変態の駆動力が増し、フ
ェライトがオーステナイトの粒界、粒内を問わずに核生
成し、混粒を生ぜず且つバンド組織を持たない組織とな
りセパレーションが低減することが理解される。
In other words, by performing accelerated cooling, the driving force for transformation is increased, ferrite is nucleated both at the grain boundaries and inside the austenite grains, and separation is reduced by creating a structure that does not produce mixed grains or have a band structure. be understood.

この第3図に示されたものの中で、その主だったものと
して第3図における指標に調香1,2.3と附記したも
のについてその機械的特性を測定した結果は次の第2表
に示す通りである。
Among the items shown in this Figure 3, the results of measuring the mechanical properties of the main ones marked as perfume 1, 2.3 in the index in Figure 3 are shown in Table 2 below. As shown.

変態点以下で圧延した空冷材(A−C)は強度が5kg
/rIL17を以上高くなっているが、セパレーション
指数は0.39と高いことは調香1に示される通りであ
り、変態点以上で圧延終了後加速冷却を行ったもの(調
香3)は変態点以下で圧延終了したものと略同じ強度で
ありながらセパレーションは殆んどない。
Air-cooled material (A-C) rolled below the transformation point has a strength of 5 kg.
/rIL17 is higher than that, but the separation index is as high as 0.39, as shown in perfume 1, and the product that was acceleratedly cooled after rolling at a temperature above the transformation point (fragrance 3) has a high separation index of 0.39. It has almost the same strength as the one finished rolling below the point, but there is almost no separation.

又靭性もこの変態点以下で圧延終了したものよりよいこ
とは鋼板3と1との比較で明かな通りである。
Furthermore, it is clear from the comparison between steel plates 3 and 1 that the toughness is better than that of steel plates finished rolling below this transformation point.

従って変態点以上で圧延終了後加速冷却を行う※ビこと
はより強度と靭性を改善し、しかもセパレーションを生
じないことが明かである。
Therefore, it is clear that performing accelerated cooling after rolling at a temperature above the transformation point improves strength and toughness, and does not cause separation.

実施例 2 前記した供試鋼Hを用い、1150℃で加熱後840°
C以下で60%の制御圧延を行い仕上厚25關とした空
冷材と圧延後750℃から600℃までの間を5℃/s
ecで加速冷却したものについて、その仕上温度を76
0℃ 710℃としたものの機械的特性を試験した結果
は次の第3表に示す通りである。
Example 2 Using the above-mentioned test steel H, heated at 1150°C and then heated to 840°C.
The air-cooled material was subjected to 60% controlled rolling at a temperature below C to a finished thickness of 25 mm, and after rolling it was rolled at 5°C/s from 750°C to 600°C.
For those acceleratedly cooled by EC, the finishing temperature is 76
The results of testing the mechanical properties at temperatures ranging from 0°C to 710°C are shown in Table 3 below.

即ち変態点以上で圧延終了後、5℃/seCで加速冷却
したものはセパレーションが生じていない。
That is, no separation occurs in the specimens which were acceleratedly cooled at 5° C./sec after completion of rolling at a temperature above the transformation point.

即ち5℃/secと加速冷却速度が低かったためベイナ
イトの生成が少く、同一条件の空冷材に比較して強度上
昇は1.5〜2.0kg/maと低いが、パーライトバ
ンド組織が消え整粒になっているのでセパレーション指
数は零である。
In other words, because the accelerated cooling rate was low at 5°C/sec, there was little bainite formation, and the increase in strength was low at 1.5 to 2.0 kg/ma compared to air-cooled materials under the same conditions, but the pearlite band structure disappeared and the grain size improved. Therefore, the separation index is zero.

蓋しセパレーションに関しては51−Mn鋼でもNb鋼
と同様の傾向があることを理解し得る。
It can be seen that 51-Mn steel has the same tendency as Nb steel with regard to lid separation.

実施例 3 供試鋼BとCとを用いて1100’C加熱1900°C
以下で50係の制御圧延を行い、変態点以上の790’
Cで圧延終了してから冷却速度を変化させたものについ
て、その冷却速度如何によるセパレーション指数の関係
は第4図に示されている通りである。
Example 3 Heating at 1100'C using test steels B and C at 1900°C
Controlled rolling of 50 steps is performed below, and 790'
When the cooling rate was changed after rolling was completed at C, the relationship between the separation index and the cooling rate is as shown in FIG.

なおこの場合の仕上厚は16關であり、冷却速度は78
0〜600℃の間の平均冷却速度である。
The finished thickness in this case is 16 mm, and the cooling rate is 78 mm.
Average cooling rate between 0 and 600°C.

即ち供試鋼B、Cの何れにおいても3℃/seC以上で
加速冷却することによりセパレーションを大幅に減少さ
せることができるものであり、これは3℃/sec以上
の加速冷却によりパーライトバンド組織が消え、整流さ
れたためである。
In other words, in both test steels B and C, separation can be significantly reduced by accelerated cooling at 3°C/sec or more, and this is because the pearlite band structure is reduced by accelerated cooling at 3°C/sec or more. This is because it disappeared and was rectified.

冷却停止温度については加速冷却によるバント組織の除
去、高張力化の観点より650℃以下が望ましいが、5
00℃以下では板厚方向の組織、硬度の均一性が損われ
る。
The cooling stop temperature is preferably 650°C or less from the viewpoint of removing the bunt structure by accelerated cooling and increasing the tensile strength.
If the temperature is below 00°C, the uniformity of the structure and hardness in the thickness direction will be impaired.

即ち圧延終了後直ちに3℃/sec以上の冷却速度で6
50〜500℃の温度域まで加速冷却することが必要で
あることは明かである。
That is, immediately after the rolling is completed, the cooling rate is 6° C./sec or more.
It is clear that accelerated cooling to a temperature range of 50 to 500°C is necessary.

実施例 4 供試鋼A−Gを用いて1150℃に加熱後900℃以下
で60%の制御圧延を行い、790°Cで圧延終了して
から空冷したものと同じ条件で圧延後7800C〜60
0℃の間を8〜b 冷却したものについてのセパレーション指数の関係は第
5図に示す通りである。
Example 4 Test steels A-G were heated to 1150°C, then subjected to 60% controlled rolling at 900°C or lower, and rolled at 7800°C to 60°C under the same conditions as those in which the rolling was completed at 790°C and then air cooled.
The relationship between the separation index for samples cooled between 0° C. and 8° C. is as shown in FIG.

即ち空冷材は01〜02である0に対し加速冷却材はO
−0,02であってセパレーションは殆んど発生してい
ない。
In other words, the air cooling material is 0, which is 01 to 02, while the accelerated cooling material is O.
-0.02, and almost no separation occurred.

又この場合の供試鋼Eによるものについて、空冷材の組
織は第7図の顕微鏡写真に示される通りであり、加速冷
却材は第8図の顕微鏡写真に示される通りであって、後
者においてはバンド組織が完全状態に消失していること
が明かである。
In addition, regarding the sample steel E in this case, the structure of the air-cooled material is as shown in the micrograph in Figure 7, and the structure of the accelerated cooling material is as shown in the micrograph in Figure 8. It is clear that the band structure has completely disappeared.

第6図には上記した総べての結果を図表として示すが、
変態点以下で圧延を終了し空冷したものはセパレーショ
ン指数が0.25〜045であり、変態点以上で圧延紙
了後空冷したものは0.1〜0.25であるに対し、変
態点以上で圧延終了してから加速冷却したものはセパレ
ーション指数がO〜0.05で極めて低い。
Figure 6 shows all the above results as a diagram.
Papers that are air-cooled after finishing rolling at or below the transformation point have a separation index of 0.25 to 045, and papers that are air-cooled after rolling at or above the transformation point have a separation index of 0.1 to 0.25. The separation index of those subjected to accelerated cooling after completion of rolling is extremely low at 0 to 0.05.

以上説明したような本発明によるときは制御圧延された
高帳力鋼において板厚方向の靭性劣化、耐応力腐食割特
性低下、不安定延性破壊等の原因となるセパレーション
の発生を有効に回避せしめて高強度、高靭性にして、し
かも前記したような不利を有しない鋼材を的確に製造す
ることができるものであって寒冷地や深海におけるエネ
ルギー源輸送ラインパイプその他に利用するに好ましい
製品を提供し得るものであるから工業的にその効果の大
きい発明である。
According to the present invention as described above, it is possible to effectively avoid the occurrence of separation that causes deterioration of toughness in the thickness direction, deterioration of stress corrosion cracking resistance, unstable ductile fracture, etc. in controlled rolled high strength steel. It is possible to precisely manufacture steel materials that have high strength and high toughness, and does not have the disadvantages mentioned above, and provides a product that is suitable for use in energy source transportation line pipes and other applications in cold regions and deep seas. This invention is industrially very effective.

【図面の簡単な説明】 図面は本発明及び比較例によるものの技術的関係を示す
ものであって、第1図は900℃以下における累積圧下
率と靭性及びセパレーション指数の関係を示した図表、
第2図はセパレーション指数と限界応力比の関係を示し
た図表、第3図は実施例1の場合における仕上げ温度と
セパレーション指数の関係を示した図表、第4図は実施
例3の場合における冷却速度とセパレーション指数の関
係を示す図表、第5図は実施例4の場合についてセパレ
ーション指数の空冷材と加速冷却材の関係を示した図表
、第6図は各実施例の結果について製造条件とセパレー
ション指数との関係を要約して示した図表、第7図は本
発明実施例における空冷材の組織を示す顕微鏡写真、第
8図はその加速冷却材の組織を示す顕微鏡写真である。
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings show the technical relationship between the present invention and the comparative example, and FIG. 1 is a chart showing the relationship between cumulative rolling reduction, toughness, and separation index at temperatures below 900°C;
Figure 2 is a chart showing the relationship between separation index and critical stress ratio, Figure 3 is a chart showing the relationship between finishing temperature and separation index in the case of Example 1, and Figure 4 is a chart showing the relationship between the separation index and the separation index in the case of Example 3. Figure 5 is a diagram showing the relationship between speed and separation index. Figure 5 is a diagram showing the relationship between separation index and air cooling material and accelerated cooling material for Example 4. Figure 6 is a diagram showing the relationship between manufacturing conditions and separation index for the results of each example. A diagram summarizing the relationship with the index, FIG. 7 is a microscopic photograph showing the structure of the air-cooled material in an example of the present invention, and FIG. 8 is a microscopic photograph showing the structure of the accelerated cooling material.

Claims (1)

【特許請求の範囲】[Claims] I C:0.03〜0.18係、Si:0.05〜0
.60%、Mn : 060〜2.0係を基本組成とし
、必要に応じてNb:0.15係以下、V:0.15φ
以下、Cu:0.7%以下、(J:0.7%以下、Mo
: 0.3 %以下、N i : 2.0係以下、A
l:0.1fO以下の倒れか1種又は2種以上を含有し
、残部が鉄及び不可避不純物より戒る鋼を加熱後圧延し
未再結晶温度域での累積圧下率が30係以上でしかも仕
上り温度Ar、PJ、上の圧延を行い、この圧延終了後
に冷却速度3℃/sec以上の加速冷却を500〜65
0℃の温度範囲内で停止することを特徴とするセパレー
ションの生じない制御圧延高張力鋼の製造法。
IC: 0.03-0.18, Si: 0.05-0
.. 60%, Mn: 060 to 2.0 ratio as the basic composition, Nb: 0.15 ratio or less, V: 0.15φ as necessary
Below, Cu: 0.7% or less, (J: 0.7% or less, Mo
: 0.3% or less, Ni: 2.0% or less, A
l: A steel containing one or more types of inclination of 0.1fO or less, with the remainder being iron and unavoidable impurities, is heated and rolled, and the cumulative reduction rate in the non-recrystallized temperature range is 30 factors or more. Rolling is performed at finishing temperatures Ar and PJ, and after this rolling is completed, accelerated cooling is performed at a cooling rate of 3°C/sec or higher to 500 to 65°C.
A method for producing controlled rolling high tensile strength steel without separation, characterized by stopping within a temperature range of 0°C.
JP52138881A 1977-11-21 1977-11-21 Manufacturing method of controlled rolled high strength steel without separation Expired JPS5827327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52138881A JPS5827327B2 (en) 1977-11-21 1977-11-21 Manufacturing method of controlled rolled high strength steel without separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52138881A JPS5827327B2 (en) 1977-11-21 1977-11-21 Manufacturing method of controlled rolled high strength steel without separation

Publications (2)

Publication Number Publication Date
JPS5471714A JPS5471714A (en) 1979-06-08
JPS5827327B2 true JPS5827327B2 (en) 1983-06-08

Family

ID=15232286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52138881A Expired JPS5827327B2 (en) 1977-11-21 1977-11-21 Manufacturing method of controlled rolled high strength steel without separation

Country Status (1)

Country Link
JP (1) JPS5827327B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0030309B1 (en) * 1979-12-06 1985-02-13 Preussag Stahl Aktiengesellschaft Hot rolled strip or plate of denitrided steel and process for its production
DE2949124C2 (en) * 1979-12-06 1985-11-21 Stahlwerke Peine-Salzgitter Ag, 3150 Peine Denitrided steel hot rolled strip or heavy plate and process for its manufacture
JPS601927B2 (en) * 1980-02-25 1985-01-18 川崎製鉄株式会社 Manufacturing method for non-temperature high tensile strength steel with excellent low-temperature toughness
JPS5792129A (en) * 1980-11-27 1982-06-08 Nippon Steel Corp Production of nonrefined high toughness steel
JPS5861223A (en) * 1981-10-07 1983-04-12 Nippon Steel Corp Manufacture of unnormalized high tension steel of higher weldability class than 50kg/mm2 with superior qualitative characteristic in z direction
JPS58136717A (en) * 1982-02-05 1983-08-13 Sumitomo Metal Ind Ltd Manufacture of high tensile hot rolled steel strip containing vanadium
JPS5976818A (en) * 1982-10-22 1984-05-02 Nippon Steel Corp Manufacture of steel material excellent in hydrogen induced crack resistance
JPS59170220A (en) * 1983-03-18 1984-09-26 Nippon Kokan Kk <Nkk> Production of un-tempered type low temperature steel plate
JPS6230849A (en) * 1985-08-01 1987-02-09 Nippon Kokan Kk <Nkk> Directly quenched and tempered steel having superior sscc resistance characteristic
JPS62290847A (en) * 1986-06-11 1987-12-17 Nippon Kokan Kk <Nkk> Steel having superior resistance to sulfide stress corrosion cracking and its manufacture
KR100435458B1 (en) * 1999-12-09 2004-06-10 주식회사 포스코 A method for manufacturing steel strip for linepipe with low yield ratio and superior low temperature toughness
JP4226626B2 (en) 2005-11-09 2009-02-18 新日本製鐵株式会社 High tensile strength steel sheet with low acoustic anisotropy and excellent weldability, including yield stress of 450 MPa or more and tensile strength of 570 MPa or more, including the central part of the plate thickness, and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126615A (en) * 1974-08-30 1976-03-05 Sumitomo Metal Ind HICHOSHITSUKOCHORYOKUKOHAN NO SEIZOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126615A (en) * 1974-08-30 1976-03-05 Sumitomo Metal Ind HICHOSHITSUKOCHORYOKUKOHAN NO SEIZOHO

Also Published As

Publication number Publication date
JPS5471714A (en) 1979-06-08

Similar Documents

Publication Publication Date Title
CN110114494B (en) High strength steel material with enhanced brittle crack propagation resistance and fracture initiation resistance at low temperature and method of making the same
JPH07173536A (en) Production of steel sheet for high strength line pipe excellent in sour resistance
JPS5827327B2 (en) Manufacturing method of controlled rolled high strength steel without separation
JPS62112722A (en) Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking
WO2017094593A1 (en) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed
JP2008095152A (en) HIGH TENSILE STRENGTH STEEL SHEET FOR LARGE HEAT INPUT WELDING HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN &gt;=570 MPa CLASS, AND ITS PRODUCTION METHOD
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JP3612115B2 (en) Manufacturing method of ultra high strength steel sheet with excellent low temperature toughness
CA3181338A1 (en) Economical low-yield ratio and high-strength steel and manufacturing method therefor
JP2005015823A (en) High strength steel pipe used for pipeline and having excellent deformability, and its production method
CA3087986C (en) Steel material for line pipes, method for producing the same, and method for producing line pipe
EP3889305A1 (en) High-strength steel plate having excellent low-temperature fracture toughness and elongation ratio, and manufacturing method therefor
JPH1088280A (en) Steel sheet for structural purpose excellent in brittle fracture resistance after plastic deformation and its production
JPS58734B2 (en) Manufacturing method of low alloy steel plate (strip) for precision punching
JP2004359992A (en) Wire rod for high strength steel wire, high strength steel wire, and their production method
JP3009569B2 (en) Method for producing CO2 corrosion resistant sour resistant steel sheet with excellent low temperature toughness
JPH06136440A (en) Production of high strength steel sheet excellent in sour resistance
JPH059575A (en) Production of high streangth steel plate excellent in corrosion resistance
JP3009558B2 (en) Manufacturing method of thin high-strength steel sheet with excellent sour resistance
JPH07242944A (en) Production of sour resistant high strength steel plate having excellent low temperature toughness
JP3819529B2 (en) Case-hardened steel with excellent cold workability
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance
JPH07278659A (en) Manufacture of steel plate for line pipe excellent in co2 corrosion resistance, sour resistance and low temperature toughness
JPH09324217A (en) Manufacture of high strength steel for line pipe, excellent in hic resistance
JPS585965B2 (en) The first and last day of the year.