JP3819529B2 - Case-hardened steel with excellent cold workability - Google Patents

Case-hardened steel with excellent cold workability Download PDF

Info

Publication number
JP3819529B2
JP3819529B2 JP11154097A JP11154097A JP3819529B2 JP 3819529 B2 JP3819529 B2 JP 3819529B2 JP 11154097 A JP11154097 A JP 11154097A JP 11154097 A JP11154097 A JP 11154097A JP 3819529 B2 JP3819529 B2 JP 3819529B2
Authority
JP
Japan
Prior art keywords
less
excluding
steel
case
hardened steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11154097A
Other languages
Japanese (ja)
Other versions
JPH10306342A (en
Inventor
義武 松島
廣志 藏本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11154097A priority Critical patent/JP3819529B2/en
Publication of JPH10306342A publication Critical patent/JPH10306342A/en
Application granted granted Critical
Publication of JP3819529B2 publication Critical patent/JP3819529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱間圧延ままの状態で高い変形能および低い変形抵抗を有する冷間加工性に優れた肌焼鋼に関するものである。
【0002】
【従来の技術】
従来、自動車、建設機械、各種産業機械等に用いられる機械部品は、鋳造された鋼を熱間鍛造により粗加工し、その後切削により所望の形状に成形する工程により製造されていた。この様にして機械部品を製造する場合、前記粗加工後の切削時にかなりの削りしろが必要であり、該機械部品の粗加工後と切削後で鋼量を比べると、鋼の歩留まりは約50%程度であった。
【0003】
近年、地球環境問題への関心の高まりや低コスト化の要求から、前記機械部品の製造にあたっても、エネルギーの低減や機械加工の廃止・低減、歩留まり向上等が求められる様になってきた。これらの課題に対応するため、圧延後または焼きならし後の鋼をそのまま冷間加工により所望の形状に成形しようとするネットシェイプ化技術が注目を集めている。
【0004】
しかしながら、前記圧延後または焼きならし後の鋼は成形荷重が大きく、また変形能が低いため、そのまま冷間加工が可能となるのは低加工品に限定される。高加工が必要とされる部品については、鋼中の炭化物を球状化させて硬さを低下させる球状化焼きなまし処理を1回以上施してから加工を施しているが、この様な熱処理は製造コストの増大につながり、ネットシェイプ化技術のメリットを損なうものである。
更に、切削等の加工を施さずに冷間鍛造ままで仕上加工される様な場合には、機械部品の表面肌が荒れ、部品精度の点で問題となることがある。
【0005】
また、冷間加工性を重視して合金元素含有量をあまり低減し過ぎると、該加工の後に行われる浸炭や浸炭窒化等の表面硬化処理の効果が不十分となる場合もある。
【0006】
【発明が解決しようとする課題】
本発明は上記の様な事情に着目してなされたものであって、その目的は、圧延ままの状態で冷間加工性に優れる肌焼鋼を提供することであり、特に、高加工部品の製造に際しても冷間加工前に球状化焼きなまし処理を施す必要がなく、また、冷間鍛造ままで仕上加工した場合にも表面肌荒れが生じることなく、更に、冷間加工後の表面硬化処理の効果が十分に発揮される様な肌焼鋼を提供することである。
【0007】
【課題を解決するための手段】
上記のような課題を達成し得た、本発明に係る冷間加工性に優れた肌焼鋼とは、
鋼の成分が、C:0.05〜0.35%(質量%、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:2.0%以下(0%を含まない)、P:0.030%以下(0%を含まない)、Al:0.015%〜0.06%、N:0.005〜0.03%、を含有し、残部がFe及び不可避的不純物からなり、熱間圧延後の鋼の金属組織中に占めるフェライト面積率が90%以上であって、且つ、フェライトの平均結晶粒径が20μm以上40μm以下であることを特徴とするものである。
【0008】
また、鋼の成分が、Cr,Mo,V,Nb,Tiからなる群から選択される1種以上の元素を下記(1)式で求められるAの値が3.0以上となるように含むものであると共に、前記群を構成する個々の元素の含有量が、
Cr:1.98%以下(0%を含まない)、
Mo:2.0%以下(0%を含まない)、
V :2.0%以下(0%を含まない)、
Nb:2.0%以下(0%を含まない)、
Ti:2.0%以下(0%を含まない)、
を満たすものであることは本発明の好ましい態様の一つである。
A=[Cr]+3[Mo]+5[V]+4[Nb]+4[Ti]・・・(1)
(ただし、[X]は鋼中に含まれる元素Xの質量%を示す)
【0009】
更に、
Ni:2.5%以下(0%を含まない)、
を含むものであることも好ましく、
Cu:1.0%以下(0%を含まない)、
を含むものであることも一層好ましい。
また更に、鋼の成分が、
Ca:0.01%以下(0%を含まない)、
Zr:0.08%以下(0%を含まない)、
Pb:0.30%以下(0%を含まない)、
Sb:0.10%以下(0%を含まない)、
よりなる群から選択される1種以上を含有するものであることも本発明の好ましい態様の一つとして推奨される。
【0010】
【発明の実施の形態】
本発明者らは、熱間圧延材の冷間加工性の向上を目的に研究・開発を進めてきた。その結果、従来の熱間圧延材は、熱間圧延ままの状態ではパーライト、ベイナイト、マルテンサイト等(以下、パーライト等ということがある)の硬質相が面積率で30%以上生成しており、そのため変形抵抗が高く、変形能が低くなっていることが分かった。そして、冷間加工時の変形能の向上および変形抵抗の低減には、熱間圧延後の鋼の金属組織において、パーライト等を出来るだけ少なくして軟質のフェライト相が主体となる様にすると共に、該フェライト相の平均結晶粒径を小さくすることが有効であることを見出し、本発明を完成したものである。
【0011】
即ち、熱間圧延後の鋼の金属組織中に占めるフェライト面積率が90%以上であって、且つ、フェライトの平均結晶粒径が40μm以下である様な肌焼鋼である。この様にすることで、熱間圧延ままであっても、球状化焼きなまし処理を行った鋼と同等の変形能、変形抵抗にすることができる。
【0012】
ここで、金属組織中に占めるフェライト面積率が90%未満では、残部に出現するパーライト等のために硬度が高くなり、変形抵抗が増大してしまう。また、フェライトの平均結晶粒径が40μmを超えると変形能が低下すると共に、金属組織が粗くなって製品の表面荒れの問題が生じる様になる。
【0013】
フェライト面積率は95%以上であることが好ましく、97%以上であれば更に好ましい。フェライトの平均結晶粒径は40μm以下であれば、本発明の効果を発揮し得るものであって、下限値は特に限定されないが、冷間加工後に施される浸炭或いは浸炭窒化等の表面硬化処理の効果を一層発揮させるためには、平均結晶粒径が好ましくは20μm以上、更に好ましくは25μm以上であることが望ましい。また、該平均結晶粒径の好ましい上限値は35μmである。
【0014】
従来の肌焼鋼の金属組織においては、熱間圧延条件が通常以下の様なものであったため、パーライト等が30%以上生成していた。
仕上温度:950℃以上
冷却速度:10℃/秒以上
仕上加工率:20〜50%
本発明に係る肌焼鋼を製造するには、熱間圧延条件は少なくとも下記の条件を満足させる必要がある。
仕上温度:950℃以下
冷却速度:0.2〜5℃/秒
仕上加工率:30%以上
尚、詳細な熱間圧延条件は鋼の組成、厚さ等にも依存するので、それらを考慮して適宜調節する必要がある。
【0015】
また、鋼の成分が、Cr,Mo,V,Nb,Tiからなる群から選択される1種以上の元素を前記(1)式で求められるAの値が3.0以上となるように含むものであると共に、前記群を構成する個々の元素の含有量が、
Cr:1.98%以下(0%を含まない)、
Mo:2.0%以下(0%を含まない)、
V :2.0%以下(0%を含まない)、
Nb:2.0%以下(0%を含まない)、
Ti:2.0%以下(0%を含まない)、
を満たすものであることも本発明の好ましい態様の一つである。
【0016】
Cr,Mo,V,Nb,Tiはいずれも炭窒化物を生成する元素であり、硬質なパーライトを凝集・低減する効果を有しており、熱間圧延ままの肌焼鋼の変形能の向上および変形抵抗の低減の効果を向上させるものである。これら元素の効果は少量の添加によっても得られるものであるが、更に有効に発揮させるためには、前記(1)式で求められるAの値が3.0以上とすることが望ましい。また、過剰に含有させると逆に冷間加工性を劣化させると共に、その後に施される表面硬化処理の効果を不十分にする恐れがあるので、各々の元素に上記の様な上限値が必要である。また、A値としては、10.0以下であることが望ましい。
【0017】
また、本発明の実施にあたっては、
Ni:2.5%以下(0%を含まない)、
を含有させることも好ましい。Niは冷間加工後に施される浸炭あるいは浸炭窒化等の表面硬化処理の効果を一層向上させると共に、熱間圧延材の組織を微細化して靭性を高めて冷間加工性を向上させる。しかしながら、それらの効果は2.5%程度で飽和し、それ以上に含有させても経済的に無駄であるので、上限を2.5%とした。
【0018】
更に、
Cu:1.0%以下(0%を含まない)、
を含有させることも好ましい。CuもNi同様、冷間加工の後に行われる浸炭あるいは浸炭窒化等の表面硬化処理の効果を一層向上させるものである。更に、Cuは耐食性の向上効果も有しているが、その効果は1.0%程度で飽和し、逆に過剰に含有させると熱間圧延時の加工性を劣化させることがあるので、上限を1.0%とした。ただし、Cuは単独で含有させると熱間加工性への影響が出易いので、Niと同時に含有させることが望まれる。両者を同時に含有させると熱間加工性への影響が発生しにくくなるからである。
【0019】
また更に、
Ca:0.01%以下(0%を含まない)、
Zr:0.08%以下(0%を含まない)、
Pb:0.30%以下(0%を含まない)、
Sb:0.10%以下(0%を含まない)、
よりなる群から選択される1種以上を含有することも好ましい。これらの元素はいずれも本発明に係る肌焼鋼の被削性を一層向上させるものである。しかしながら、いずれの元素についても過剰の含有は好ましくない理由があるため、上記のような上限値を設けている。以下、それぞれの元素の上限値について詳述する。
【0021】
Caは硬質介在物を軟質な介在物で包み込む効果を有し、その結果、被削性を高める元素であるが、この効果は0.01%程度で飽和するので、それ以上の含有は経済的に無駄である。
【0022】
ZrはMnSを球状化させ異方性を改善することによって被削性を高める効果を有するが、この効果も0.08%程度で飽和するので、それ以上の含有は経済的に無駄である。
PbはPbSを生成して被削性の向上に寄与するが、過剰に含有させると疲労強度を劣化させる原因となるので、0.30%以下とする必要がある。
【0023】
Sbも被削性の向上に寄与するが、過剰に含有させても効果が飽和するばかりか、粗大な非金属介在物を生成して表面破壊の起点となることがあるので、0.10%を上限とする。
【0024】
本発明で対象とする肌焼鋼は、上記のような構成であれば優れた冷間加工性を得ることができるが、該肌焼鋼から製造される機械部品の用途等に応じて鋼組成は選択される必要がある。一般に肌焼鋼が使用されているシャフト、ギヤ、ドラム、スパイダー等の機械部品の場合には、下記のような元素を含有する鋼を用いることが推奨される。
C:0.05〜0.35%、
Si:1.0%以下(0%を含まない)、
Mn:2.0%以下(0%を含まない)、
P:0.030%以下(0%を含まない)、
Al:0.015%〜0.06%、
N:0.005〜0.03%
上記各成分の含有率の限定理由を以下に詳述する。
【0025】
Cは上記の様な機械部品としての内部強度を確保する上で欠くことのできない元素であり、0.05%未満では十分な強度が得られなくなる。しかしながら、過剰に含有させると靭性や被削性が低下して加工性を損なうので、0.35%を上限とする。0.30%以下であれば、より好ましい。
【0026】
Siは鋼溶製時の脱酸元素として必要な元素であるが、過剰に含有させると冷間加工性を劣化させるので、1.0%以下にしなければならない。0.35%以下がより好ましく、0.15%以下が更に好ましい。
【0027】
MnはSiと同様、脱酸元素として含有させるが、過剰に含有させると冷間加工性を劣化させるので、2.0%以下にしなければならない。1.0%以下がより好ましい。
【0028】
Pは結晶粒界に偏析して靭性を低下させる元素であり、その様な影響を生じさせないようにするには、含有量を0.03%以下に抑えなければならない。より好ましくは0.02%以下、更に好ましくは0.01%以下に抑えることが望まれる。他の元素と異なり、含有量が0であっても構わないが、鋼の製造工程においては不可避的に混入する元素であり、含有量を0にすることが逆に困難であるので、上記上限内に抑えればよい。
【0029】
Alは脱酸のために0.015%以上必要であるが、多すぎるとAlNが局部的に凝集し、結晶粒の異常成長を起こすことがある。AlN結晶粒があまり大型化すると、該結晶粒が割れの起点となる等の悪影響を起こすことがあるので、含有量は0.06%を上限とする。
【0030】
Nは窒化物を形成して靭性を向上させる元素であり、この効果を有効に発揮させるため0.005%以上含有させることが必要である。しかしながら、過剰に含有させると冷間加工性が劣化するため、0.03%を上限とする。
【0031】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、本発明は下記実施例によって制限されるものではなく、前・後記の趣旨に徴して変更することはいずれも本発明の技術的範囲に含まれる。
【0032】
(実験例1)
表1に示す鋼種A〜Lの化学成分を有する鋼材を仕上温度900〜1050℃、冷却速度0.1〜10℃/秒、仕上加工率40%で熱間圧延し、直径20mm、長さ30mmの試験片(試料No.1〜17)を作製し、組織観察、硬さ測定、仕上後の表面粗さ測定、変形抵抗および変形能の測定を行った。
【0033】
【表1】

Figure 0003819529
【0034】
ここで、フェライト面積率およびフェライトの平均結晶粒径は、光学顕微鏡を用いて倍率400倍で任意に4視野観察した平均値である。硬さは、20kgfの荷重をかけて測定したヴィッカース硬度であり、各試料4点ずつ測定した値の平均値である。変形抵抗および表面粗さは、上記試験片を各試料3個ずつ使用し、冷間にて圧縮率60%まで一気に鍛造した際の値で、3個の平均値である。変形能は、上記試験片を各試料10個ずつ使用し、図1に示す様な深さ0.3mmの溝加工を試料に施し、冷間にて圧縮率35%まで一気に鍛造した後、2.5%刻みで圧縮率を増加させながら冷間鍛造を繰り返し、下記▲1▼〜▲3▼のいずれかに該当する割れが10個の試験片のいずれにも発生しない加工率である。
▲1▼幅0.01mm以上、長さ0.5mm以上
▲2▼幅0.02mm以上
▲3▼長さ1.0mm以上
これらの結果を表2に示す。
【0035】
【表2】
Figure 0003819529
【0036】
試料No.1〜11は、本発明の要件を満足するものであり、いずれも変形抵抗が低く、且つ優れた変形能を有している。これらに対して、No.12は、熱間圧延時の冷却速度が速いため、金属組織が硬質のベイナイト主体となり、硬度および変形抵抗が高く、変形能は低い。No.13は、熱間圧延時の冷却速度が遅いため、フェライトの結晶粒径が大きくなり、変形能が低く、表面が粗い。No.14は、熱間圧延時の仕上温度が高いため、フェライトの結晶粒径が大きくなり、変形能が低く、表面が粗い。No.15〜17は鋼の化学組成と熱間圧延条件のバランスがよくなかったため、フェライト面積率が低くなり、硬さおよび変形抵抗が高く、変形能が低い。
【0037】
【発明の効果】
本発明は以上説明してきた通り、熱間圧延後の鋼の金属組織中に占めるフェライト面積率が90%以上であって、且つ、フェライトの平均結晶粒径が40μm以下である様に構成されているので、熱間圧延ままの状態で優れた冷間加工性を有すると共に、高加工部品の製造に際しても冷間加工前に球状化焼きなまし処理を施す必要がなく、また、冷間鍛造ままで仕上加工した場合にも表面肌荒れが生じることなく、更に、冷間加工後の表面硬化処理の効果が十分に発揮される様な肌焼鋼を提供することが可能となった。
【図面の簡単な説明】
【図1】実験例1の変形能測定に用いた試験片の形状を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a case-hardened steel excellent in cold workability having high deformability and low deformation resistance in a hot-rolled state.
[0002]
[Prior art]
Conventionally, machine parts used in automobiles, construction machines, various industrial machines, and the like have been manufactured by a process in which cast steel is roughly processed by hot forging and then formed into a desired shape by cutting. When manufacturing machine parts in this way, a considerable cutting margin is required at the time of cutting after the rough machining, and the steel yield is about 50 when the amount of steel is compared after the rough machining of the machine parts and after the cutting. %.
[0003]
In recent years, due to the growing interest in global environmental issues and demands for cost reduction, there has been a demand for energy reduction, abolishment / reduction of machining, and yield improvement in the manufacture of the machine parts. In order to cope with these problems, attention has been paid to a net shaping technique in which steel after rolling or normalizing is formed as it is into a desired shape by cold working.
[0004]
However, since the steel after rolling or normalizing has a large forming load and low deformability, the ability to cold work as it is is limited to low-worked products. For parts that require high processing, the spheroidizing annealing treatment that reduces the hardness by spheroidizing the carbides in steel is performed at least once, but this heat treatment is a manufacturing cost. This leads to an increase in the number of products and damages the benefits of net shaping technology.
Further, when finishing is performed in the cold forging state without performing processing such as cutting, the surface skin of the machine part becomes rough, which may cause a problem in terms of part accuracy.
[0005]
Further, if the alloying element content is excessively reduced with emphasis on cold workability, the effect of surface hardening treatment such as carburizing or carbonitriding performed after the working may be insufficient.
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to the circumstances as described above, and its purpose is to provide a case-hardened steel that is excellent in cold workability in a rolled state. There is no need to perform spheroidizing annealing before cold working during manufacturing, and there is no surface roughness even when finishing with cold forging, and the effect of surface hardening treatment after cold working It is to provide a case-hardened steel that can be fully demonstrated.
[0007]
[Means for Solving the Problems]
The case-hardened steel excellent in cold workability according to the present invention, which can achieve the above-mentioned problems,
Steel components are C: 0.05 to 0.35% (mass%, the same applies hereinafter), Si: 1.0% or lower (not including 0%), Mn: 2.0% or lower (including 0%) Not included), P: 0.030% or less (excluding 0%), Al: 0.015% to 0.06%, N: 0.005 to 0.03%, the balance being Fe and inevitable The ferrite area ratio in the metal structure of the steel after hot rolling is 90% or more and the average crystal grain size of ferrite is 20 μm or more and 40 μm or less. is there.
[0008]
Further, the steel component contains one or more elements selected from the group consisting of Cr, Mo, V, Nb and Ti so that the value of A obtained by the following formula (1) is 3.0 or more. And the content of each element constituting the group is
Cr: 1.98% or less (excluding 0%),
Mo: 2.0% or less (excluding 0%),
V: 2.0% or less (excluding 0%),
Nb: 2.0% or less (excluding 0%),
Ti: 2.0% or less (excluding 0%),
It is one of the preferable embodiments of the present invention to satisfy the above.
A = [Cr] +3 [Mo] +5 [V] +4 [Nb] +4 [Ti] (1)
(However, [X] indicates mass% of element X contained in steel)
[0009]
Furthermore,
Ni: 2.5% or less (excluding 0%),
It is also preferable that it contains,
Cu: 1.0% or less (excluding 0%),
It is further more preferable that it contains.
Still further, the components of the steel are
Ca: 0.01% or less (excluding 0%),
Zr: 0.08% or less (excluding 0%),
Pb: 0.30% or less (excluding 0%),
Sb: 0.10% or less (excluding 0%),
It is also recommended as one of the preferred embodiments of the present invention that it contains one or more selected from the group consisting of.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have advanced research and development for the purpose of improving the cold workability of hot rolled material. As a result, the conventional hot-rolled material has produced a hard phase of pearlite, bainite, martensite, etc. (hereinafter sometimes referred to as pearlite) in an area ratio of 30% or more in the hot-rolled state, Therefore, it was found that the deformation resistance was high and the deformability was low. And in order to improve the deformability during cold working and reduce deformation resistance, in the metal structure of the steel after hot rolling, the pearlite etc. should be reduced as much as possible to make the soft ferrite phase the main component. The inventors have found that it is effective to reduce the average crystal grain size of the ferrite phase and have completed the present invention.
[0011]
That is, it is a case-hardened steel in which the ferrite area ratio in the metal structure of the steel after hot rolling is 90% or more and the average crystal grain size of ferrite is 40 μm or less. By doing in this way, even if it is hot-rolling, it can be set as the deformability and deformation resistance equivalent to steel which performed the spheroidizing annealing process.
[0012]
Here, if the ferrite area ratio in the metal structure is less than 90%, the hardness increases due to pearlite or the like appearing in the remainder, and the deformation resistance increases. On the other hand, when the average crystal grain size of ferrite exceeds 40 μm, the deformability is lowered and the metal structure becomes rough, resulting in a problem of surface roughness of the product.
[0013]
The ferrite area ratio is preferably 95% or more, and more preferably 97% or more. If the average crystal grain size of ferrite is 40 μm or less, the effect of the present invention can be exhibited, and the lower limit is not particularly limited, but surface hardening treatment such as carburizing or carbonitriding performed after cold working. In order to further exhibit the above effect, the average crystal grain size is preferably 20 μm or more, more preferably 25 μm or more. The preferable upper limit of the average crystal grain size is 35 μm.
[0014]
In the metal structure of conventional case-hardened steel, the hot rolling conditions are usually as follows, so that 30% or more of pearlite or the like was generated.
Finishing temperature: 950 ° C. or more Cooling rate: 10 ° C./second or more Finishing rate: 20 to 50%
In order to produce the case hardening steel according to the present invention, the hot rolling conditions must satisfy at least the following conditions.
Finishing temperature: 950 ° C. or less Cooling rate: 0.2 to 5 ° C./sec Finishing rate: 30% or more The detailed hot rolling conditions depend on the steel composition, thickness, etc. Need to be adjusted accordingly.
[0015]
Further, the steel component contains one or more elements selected from the group consisting of Cr, Mo, V, Nb, and Ti so that the value of A obtained by the formula (1) is 3.0 or more. And the content of each element constituting the group is
Cr: 1.98% or less (excluding 0%),
Mo: 2.0% or less (excluding 0%),
V: 2.0% or less (excluding 0%),
Nb: 2.0% or less (excluding 0%),
Ti: 2.0% or less (excluding 0%),
It is one of the preferable embodiments of the present invention to satisfy the above.
[0016]
Cr, Mo, V, Nb, and Ti are all elements that generate carbonitrides, and have the effect of agglomerating and reducing hard pearlite, improving the deformability of hot-rolled case-hardened steel. In addition, the effect of reducing deformation resistance is improved. Although the effect of these elements can be obtained even by adding a small amount, it is desirable that the value of A calculated by the above formula (1) is 3.0 or more in order to exhibit it more effectively. In addition, if excessively contained, the cold workability is adversely affected and the effect of the surface hardening treatment applied thereafter may be insufficient, so the upper limit as described above is required for each element. It is. The A value is preferably 10.0 or less.
[0017]
In carrying out the present invention,
Ni: 2.5% or less (excluding 0%),
It is also preferable to contain. Ni further improves the effect of surface hardening treatment such as carburizing or carbonitriding performed after cold working, and refines the structure of the hot-rolled material to improve toughness and improve cold workability. However, these effects saturate at about 2.5%, and it is economically wasteful to contain more than that, so the upper limit was made 2.5%.
[0018]
Furthermore,
Cu: 1.0% or less (excluding 0%),
It is also preferable to contain. Cu, like Ni, further improves the effect of surface hardening treatment such as carburizing or carbonitriding performed after cold working. Furthermore, Cu also has an effect of improving the corrosion resistance, but the effect is saturated at about 1.0%, and conversely if excessively contained, the workability at the time of hot rolling may be deteriorated. Was 1.0%. However, if Cu is contained alone, it tends to affect the hot workability, so it is desirable to contain it simultaneously with Ni. It is because it will become difficult to generate | occur | produce the influence on hot workability when both are included simultaneously.
[0019]
Furthermore,
Ca: 0.01% or less (excluding 0%),
Zr: 0.08% or less (excluding 0%),
Pb: 0.30% or less (excluding 0%),
Sb: 0.10% or less (excluding 0%),
It is also preferable to contain one or more selected from the group consisting of: These elements all improve the machinability of the case hardening steel according to the present invention. However, since there is a reason that excessive inclusion of any element is not preferable, the upper limit as described above is set. Hereinafter, the upper limit value of each element will be described in detail.
[0021]
Ca has an effect of wrapping hard inclusions with soft inclusions, and as a result, is an element that improves machinability, but since this effect is saturated at about 0.01%, it is economical to contain more than that It is useless.
[0022]
Zr has the effect of enhancing machinability by spheroidizing MnS and improving anisotropy, but this effect is also saturated at about 0.08%, so the further inclusion is economically wasteful.
Pb generates PbS and contributes to the improvement of machinability. However, if excessively contained, it causes deterioration of fatigue strength, so it is necessary to make it 0.30% or less.
[0023]
Sb also contributes to the improvement of machinability. However, even if it is excessively contained, not only the effect is saturated, but also coarse non-metallic inclusions may be generated and become the starting point of surface destruction, so 0.10% Is the upper limit.
[0024]
The case-hardened steel that is the subject of the present invention can obtain excellent cold workability as long as it is configured as described above, but the steel composition depends on the use of the machine parts produced from the case-hardened steel. Needs to be selected. In the case of mechanical parts such as shafts, gears, drums, spiders, etc., in which case-hardened steel is generally used, it is recommended to use steel containing the following elements.
C: 0.05 to 0.35%,
Si: 1.0% or less (excluding 0%),
Mn: 2.0% or less (excluding 0%),
P: 0.030% or less (excluding 0%),
Al: 0.015% to 0.06%,
N: 0.005 to 0.03%
The reasons for limiting the content of each component will be described in detail below.
[0025]
C is an element indispensable for securing the internal strength as a mechanical part as described above, and if it is less than 0.05%, sufficient strength cannot be obtained. However, if it is contained excessively, toughness and machinability are reduced and workability is impaired, so 0.35% is made the upper limit. If it is 0.30% or less, it is more preferable.
[0026]
Si is an element necessary as a deoxidizing element at the time of steel melting, but if contained excessively, cold workability deteriorates, so it must be made 1.0% or less. 0.35% or less is more preferable, and 0.15% or less is still more preferable.
[0027]
Mn is contained as a deoxidizing element in the same manner as Si, but if it is contained excessively, the cold workability deteriorates, so it must be made 2.0% or less. 1.0% or less is more preferable.
[0028]
P is an element that segregates at the grain boundaries and lowers the toughness. In order not to cause such an effect, the content must be suppressed to 0.03% or less. More preferably it is 0.02% or less, more preferably 0.01% or less. Unlike other elements, the content may be 0, but it is an element inevitably mixed in the steel manufacturing process, and it is difficult to make the content 0, so the above upper limit Just keep it inside.
[0029]
Al needs to be 0.015% or more for deoxidation, but if it is too much, AlN aggregates locally and may cause abnormal growth of crystal grains. If the AlN crystal grains become too large, the crystal grains may cause adverse effects such as cracking starting points. Therefore, the upper limit is 0.06%.
[0030]
N is an element that improves the toughness by forming a nitride. It is necessary to contain 0.005% or more in order to effectively exhibit this effect. However, if it is excessively contained, the cold workability deteriorates, so 0.03% is made the upper limit.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples, and any modifications made in accordance with the gist of the preceding and following descriptions are within the technical scope of the present invention. included.
[0032]
(Experimental example 1)
Steel materials having chemical components of steel types A to L shown in Table 1 are hot-rolled at a finishing temperature of 900 to 1050 ° C., a cooling rate of 0.1 to 10 ° C./second, and a finishing rate of 40%, and have a diameter of 20 mm and a length of 30 mm. Specimens (Sample Nos. 1 to 17) were prepared, and the structure observation, hardness measurement, surface roughness measurement after finishing, deformation resistance, and deformability were measured.
[0033]
[Table 1]
Figure 0003819529
[0034]
Here, the ferrite area ratio and the average crystal grain size of the ferrite are average values obtained by arbitrarily observing four visual fields using an optical microscope at a magnification of 400 times. The hardness is a Vickers hardness measured by applying a load of 20 kgf, and is an average value of values measured for four samples. Deformation resistance and surface roughness are values when three specimens are used for each of the above specimens and forged at a stretch to a compression rate of 60% in the cold, and are average values of the three specimens. Deformability is determined by using 10 specimens for each of the above specimens, subjecting the specimen to a groove with a depth of 0.3 mm as shown in FIG. It is a processing rate in which cold forging is repeated while increasing the compression rate in increments of 5%, and cracks corresponding to any of the following (1) to (3) do not occur in any of the ten test pieces.
(1) Width 0.01 mm or more, Length 0.5 mm or more (2) Width 0.02 mm or more (3) Length 1.0 mm or more These results are shown in Table 2.
[0035]
[Table 2]
Figure 0003819529
[0036]
Sample No. Nos. 1 to 11 satisfy the requirements of the present invention, and all have low deformation resistance and excellent deformability. On the other hand, no. No. 12 has a high cooling rate during hot rolling, so that the metal structure is mainly composed of hard bainite, has high hardness and deformation resistance, and has low deformability. No. No. 13 has a slow cooling rate during hot rolling, so the crystal grain size of ferrite is large, the deformability is low, and the surface is rough. No. No. 14 has a high finishing temperature during hot rolling, so the crystal grain size of ferrite is large, the deformability is low, and the surface is rough. No. Since Nos. 15 to 17 had a poor balance between the chemical composition of steel and the hot rolling conditions, the ferrite area ratio was low, the hardness and deformation resistance were high, and the deformability was low.
[0037]
【The invention's effect】
As described above, the present invention is configured such that the ferrite area ratio in the metal structure of steel after hot rolling is 90% or more and the average crystal grain size of ferrite is 40 μm or less. Therefore, it has excellent cold workability in the state of hot rolling, and it is not necessary to perform spheroidizing annealing before cold working when manufacturing high-working parts. Even when processed, it is possible to provide a case-hardened steel that does not cause surface roughening and that sufficiently exhibits the effect of surface hardening after cold working.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shape of a test piece used for deformability measurement in Experimental Example 1. FIG.

Claims (5)

鋼の成分が、
C :0.05〜0.35%(質量%、以下同じ)、
Si:1.0%以下(0%を含まない)、
Mn:2.0%以下(0%を含まない)、
P :0.030%以下(0%を含まない)、
Al:0.015%〜0.06%、
N :0.005〜0.03%、
を含有し、残部がFe及び不可避的不純物からなり、
熱間圧延後の鋼の金属組織中に占めるフェライト面積率が90%以上であって、且つ、フェライトの平均結晶粒径が20μm以上40μm以下であることを特徴とする冷間加工性に優れた肌焼鋼。
Steel composition is
C: 0.05 to 0.35% (mass%, the same shall apply hereinafter)
Si: 1.0% or less (excluding 0%),
Mn: 2.0% or less (excluding 0%),
P: 0.030% or less (excluding 0%),
Al: 0.015% to 0.06%,
N: 0.005 to 0.03%,
And the balance consists of Fe and inevitable impurities,
Excellent in cold workability, characterized in that the ferrite area ratio in the metal structure of steel after hot rolling is 90% or more and the average crystal grain size of ferrite is 20 μm or more and 40 μm or less Case-hardened steel.
鋼の成分が、更に、Cr,Mo,V,Nb,Tiからなる群から選択される1種以上の元素を下記(1)式で求められるAの値が3.0以上となるように含むものであると共に、前記群を構成する個々の元素の含有量が、
Cr:1.98%以下(0%を含まない)、
Mo:2.0%以下(0%を含まない)、
V :2.0%以下(0%を含まない)、
Nb:2.0%以下(0%を含まない)、
Ti:2.0%以下(0%を含まない)、
を満たすものである請求項1に記載の肌焼鋼。
A=[Cr]+3[Mo]+5[V]+4[Nb]+4[Ti]・・・(1)
(ただし、[X]は鋼中に含まれる元素Xの質量%を示す)
The steel component further includes one or more elements selected from the group consisting of Cr, Mo, V, Nb, and Ti so that the value of A obtained by the following formula (1) is 3.0 or more. And the content of each element constituting the group is
Cr: 1.98% or less (excluding 0%),
Mo: 2.0% or less (excluding 0%),
V: 2.0% or less (excluding 0%),
Nb: 2.0% or less (excluding 0%),
Ti: 2.0% or less (excluding 0%),
The case-hardened steel according to claim 1, wherein:
A = [Cr] +3 [Mo] +5 [V] +4 [Nb] +4 [Ti] (1)
(However, [X] indicates mass% of element X contained in steel)
鋼の成分が、更に、Ni:2.5%以下(0%を含まない)、を含むものである請求項1または2に記載の肌焼鋼。  The case hardening steel according to claim 1 or 2, wherein the steel component further contains Ni: 2.5% or less (not including 0%). 鋼の成分が、更に、Cu:1.0%以下(0%を含まない)、を含むものである請求項1〜3のいずれかに記載の肌焼鋼。  The case hardening steel according to any one of claims 1 to 3, wherein the steel component further contains Cu: 1.0% or less (not including 0%). 鋼の成分が、更に、
Ca:0.01%以下(0%を含まない)、
Zr:0.08%以下(0%を含まない)、
Pb:0.30%以下(0%を含まない)、
Sb:0.10%以下(0%を含まない)、
よりなる群から選択される1種以上を含有するものである請求項1〜4のいずれかに記載の肌焼鋼。
The steel component
Ca: 0.01% or less (excluding 0%),
Zr: 0.08% or less (excluding 0%),
Pb: 0.30% or less (excluding 0%),
Sb: 0.10% or less (excluding 0%),
The case-hardened steel according to any one of claims 1 to 4, which contains at least one selected from the group consisting of:
JP11154097A 1997-04-28 1997-04-28 Case-hardened steel with excellent cold workability Expired - Lifetime JP3819529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11154097A JP3819529B2 (en) 1997-04-28 1997-04-28 Case-hardened steel with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11154097A JP3819529B2 (en) 1997-04-28 1997-04-28 Case-hardened steel with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH10306342A JPH10306342A (en) 1998-11-17
JP3819529B2 true JP3819529B2 (en) 2006-09-13

Family

ID=14563963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11154097A Expired - Lifetime JP3819529B2 (en) 1997-04-28 1997-04-28 Case-hardened steel with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3819529B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5965117B2 (en) * 2011-08-15 2016-08-03 山陽特殊製鋼株式会社 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP6343946B2 (en) * 2014-01-30 2018-06-20 大同特殊鋼株式会社 Rolled steel for case hardening and carburized parts using the same
JP6414319B2 (en) * 2015-03-09 2018-10-31 新日鐵住金株式会社 Hot rolled steel and steel parts
JP7135485B2 (en) * 2018-06-18 2022-09-13 日本製鉄株式会社 Carburizing steel and parts

Also Published As

Publication number Publication date
JPH10306342A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
JPH1112684A (en) Case hardening steel for cold forging
EP1156125A2 (en) Austenitic stainless steel excellent in fine blankability
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3432950B2 (en) Steel material for induction hardened shaft parts that has both cold workability and torsional fatigue strength characteristics
JP2015166495A (en) Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
JP7151885B2 (en) steel wire
JPH09263875A (en) High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JP3819529B2 (en) Case-hardened steel with excellent cold workability
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JPH1017928A (en) Production of gear steel stock for induction hardening, excellent in machinability and fatigue strength
JP2000008140A (en) Linear or bar-shaped steel and machine parts
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP2008240129A (en) Non-heat treated steel material
JP4450217B2 (en) Non-tempered steel for soft nitriding
JPS60106952A (en) Process hardenable stainless steel of substantially austenite and manufacture
JPH09287056A (en) Wire rod and bar steel excellent on cold forgeability and their production
JP3432944B2 (en) Steel material for induction hardened shaft parts with excellent torsional fatigue strength
JP2000008139A (en) Linear or bar-shaped steel or machine parts
JP3675707B2 (en) Roll for rolled steel sheet straightener
JP2001234284A (en) Steel excellent in crystal grain size characteristic and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

EXPY Cancellation because of completion of term