JP5965117B2 - Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness - Google Patents

Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness Download PDF

Info

Publication number
JP5965117B2
JP5965117B2 JP2011177728A JP2011177728A JP5965117B2 JP 5965117 B2 JP5965117 B2 JP 5965117B2 JP 2011177728 A JP2011177728 A JP 2011177728A JP 2011177728 A JP2011177728 A JP 2011177728A JP 5965117 B2 JP5965117 B2 JP 5965117B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
carburizing
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177728A
Other languages
Japanese (ja)
Other versions
JP2013040376A (en
Inventor
康弘 松本
康弘 松本
藤松 威史
威史 藤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2011177728A priority Critical patent/JP5965117B2/en
Publication of JP2013040376A publication Critical patent/JP2013040376A/en
Application granted granted Critical
Publication of JP5965117B2 publication Critical patent/JP5965117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車などの動力伝達装置の浸炭用部品に用いられる耐結晶粒粗大化特性および靱性に優れた機械構造用鋼に関する。   The present invention relates to a steel for machine structure excellent in grain coarsening resistance and toughness used for carburizing parts of power transmission devices such as automobiles.

冷間鍛造や冷間加工といった冷間工法は自動車の駆動系部品などの部品製造コストダウンに対して有利な工法である。ところで、冷間加工後に直接的に浸炭処理を施して部品を製造する場合、冷間加工の影響により浸炭初期に微細なオーステナイト粒が形成されることにより、浸炭時にかえって結晶粒が粗大化しやすいという問題を有する。結晶粒が粗大化すると部品強度が低下する場合があるので、結晶粒粗大化を抑制することが不可欠である。この問題があるために、冷間工法のコストメリットを十分に活かすことができていないのが現状である。ところで、部品を冷間加工後に浸炭温度まで加熱する過程で、冷間加工時のひずみの影響によって、いったんフェライトが微細に再結晶する段階を経てからオーステナイトに変態することが浸炭初期の微細なオーステナイト粒の形成を促している。そこで、従来技術として冷間加工後に浸炭温度に加熱する過程で焼なましを行い、前述のフェライト再結晶の駆動力となるひずみエネルギーを解放させることを通じて、浸炭時の結晶粒粗大化を抑制する方法がある(例えば、非特許文献1参照)。しかし、これにより新たな工程が追加されるため、部品コストダウンの観点からは利用しにくい。   Cold working methods such as cold forging and cold working are advantageous methods for reducing the manufacturing cost of parts such as automobile drive system parts. By the way, when parts are manufactured by carburizing directly after cold working, the fine austenite grains are formed at the initial stage of carburizing due to the influence of cold working, so that the crystal grains tend to be coarsened instead of carburizing. Have a problem. Since the strength of a part may decrease when the crystal grains become coarse, it is essential to suppress the coarsening of the crystal grains. Due to this problem, the cost merit of the cold work method cannot be fully utilized. By the way, in the process of heating the parts to the carburizing temperature after cold working, the ferrite is transformed into austenite once through the stage of fine recrystallization due to the influence of strain during cold working. It encourages the formation of grains. Therefore, as a conventional technique, annealing is performed in the process of heating to the carburizing temperature after cold working, and the strain energy that becomes the driving force of the above-mentioned ferrite recrystallization is released, thereby suppressing grain coarsening during carburizing. There is a method (for example, refer nonpatent literature 1). However, since a new process is added by this, it is hard to use from a viewpoint of cost reduction of components.

一方、発明者らは部品素材となる浸炭処理用途の機械構造用鋼に対して、冷間加工に先立って加工性向上を目的として実施する球状化焼鈍に関して、そのミクロ組織が不均一であることが浸炭時の結晶粒粗大化を促進していることを見出した。通常、浸炭処理用途の機械構造用鋼に球状化焼鈍を施すと部分的なラメラーパーライトの生成が避けられず、結果として得られる球状化焼鈍組織は不均一なものとなる。鋼中でラメラー状に炭化物が存在するパーライトの部分は硬く、母相の鋼に比べて変形しにくいことにより、部品を冷間鍛造する過程で、ラメラーパーライト周辺に局所的に不均一なひずみが集中しやすい。その結果、冷間鍛造もしくは冷間加工、および必要に応じた切削加工を行って所定の形状に加工してから浸炭温度まで加熱する際に、ラメラーパーライト周囲で特に微細にフェライトが再結晶する過程を経るので、浸炭初期のオーステナイト粒が特に微細に形成される。この影響により、浸炭中に結晶粒が成長して粗大化しやすくなってしまう。   On the other hand, the inventors have a non-uniform microstructure with respect to spheroidizing annealing performed for the purpose of improving workability prior to cold working for carburizing steel for structural use as a component material. Has been found to promote grain coarsening during carburizing. Usually, when spheroidizing annealing is applied to machine structural steel for carburizing treatment, partial lamellar pearlite is inevitably generated, and the resulting spheroidizing annealing structure is non-uniform. The part of pearlite in which carbides exist in lamellar form in the steel is hard, and is harder to deform than the parent phase steel, so locally uneven strain is generated around the lamellar pearlite in the process of cold forging the parts. Easy to concentrate. As a result, a process in which ferrite is recrystallized particularly finely around the lamellar pearlite when cold forging or cold working and cutting to the required shape by heating to the carburizing temperature. Therefore, austenite grains at the initial stage of carburizing are formed particularly finely. Due to this influence, crystal grains grow and become coarser during carburizing.

そこで、本発明の出願人は、化学成分の限定、球状化焼鈍後のラメラーパーライト面積率の制限、球状化焼鈍条件の限定を加えることにより、冷間鍛造もしくは冷間加工、および必要に応じた切削加工を行って所定の形状に加工した後、浸炭処理を行った場合に、結晶粒粗大化を起こしにくい機械構造用鋼およびその製造方法を既に提案している(例えば、特許文献1参照。)。この提案の技術は、浸炭処理用途の機械構造用鋼に少なからず含有されている結晶粒界をピン止めする微細析出物、例えばAlN、NbC、Nb(CN)による結晶粒粗大化抑制作用によって、優れた耐結晶粒粗大化特性を発揮する機械構造用鋼とするものである。   Therefore, the applicant of the present invention added a limitation of the chemical composition, a limitation of the lamellar pearlite area ratio after spheroidizing annealing, a limitation of the spheroidizing annealing conditions, and cold forging or cold working, and as required. There has already been proposed a steel for machine structural use and a method for manufacturing the same that are less likely to cause crystal grain coarsening when carburizing is performed after cutting into a predetermined shape (see, for example, Patent Document 1). ). This proposed technique is based on the effect of suppressing grain coarsening by fine precipitates, such as AlN, NbC, and Nb (CN), which pin the grain boundaries contained in the machine structural steel for carburizing treatment. It is a steel for machine structural use that exhibits excellent grain coarsening resistance.

特開2010−242209号公報JP 2010-242209 A

K.C.Evanson,G.Krauss and D.K.Matlock:Grain Growth in Policrystallin Materials III,ed.by H. Weiland,B.L.Adams and A.D.Rollet,TMS,Warrendale,PA(1993),599.K. C. Evanson, G.M. Krauss and D.C. K. Matlock: Grain Growth in Polycrystalline Materials III, ed. by H.M. Weiland, B.M. L. Adams and A.M. D. Rollet, TMS, Warrendale, PA (1993), 599. J.JPN.Soc.Technol.Plast.22(1981),p.139.冷間鍛造分科会材料研究班編「鍛造分科会基準」J. et al. JPN. Soc. Technol. Plast. 22 (1981), p. 139. Cold Forging Subcommittee Materials Research Group “Forging Subcommittee Standards”

本発明が解決しようとする課題は、発明者の一部が本願と同一である特許文献1に記載の発明とは、化学成分の一部の元素量を変えることで、球状化焼鈍が行われず、かつベイナイトが析出しないフェライト・パーライト組織となる熱処理方法(焼準あるいは焼鈍)が行われた後、冷間加工の一つである冷間鍛造を行ない、さらに切削加工を行って、所定の形状に加工してから浸炭処理を行った場合に、結晶粒粗大化を起こしにくくし、かつ結晶粒界をピン止めするAlN、NbC、Nb(CN)による結晶粒粗大化抑制作用と相まって優れた耐結晶粒粗大化特性および靱性に優れた浸炭部品用の機械構造用鋼を提供することである。   The problem to be solved by the present invention is that spheroidizing annealing is not performed by changing the amount of a part of chemical components from the invention described in Patent Document 1 in which a part of the inventor is the same as the present application. And after the heat treatment method (normalization or annealing) to become a ferrite and pearlite structure in which bainite does not precipitate, cold forging, which is one of the cold work, is performed, and further cut to obtain a predetermined shape. When carburizing treatment is performed after processing, it is difficult to cause crystal grain coarsening, and it has excellent resistance to crystal grain coarsening by AlN, NbC, Nb (CN) that pin the grain boundaries. It is to provide a machine structural steel for carburized parts having excellent grain coarsening characteristics and toughness.

上記の課題を解決するための手段では、請求項1の発明は、質量%で、C:0.10〜0.30%、Si:0.05〜2.0%、Mn:0.10〜0.50%、P:0.030%以下、S:0.030%以下、Cr:1.80〜3.00%、Al:0.005〜0.050%、Nb:0.02〜0.10%を含有し、さらに、N:0.0300%以下を含有し、残部FeおよびNi:0.25%未満、Mo:0.05%未満を含有する不可避不純物からなる鋼であり、焼準組織又は焼鈍組織がフェライト・パーライト組織であり、そのフェライト粒径の平均値が15μm以上であることを特徴とする耐結晶粒粗大化特性および靱性に優れた浸炭部品用の機械構造用鋼である。 In the means for solving the above-mentioned problems, the invention of claim 1 is, in mass%, C: 0.10 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.10 0.50%, P: 0.030% or less, S: 0.030% or less, Cr: 1.80 to 3.00%, Al: 0.005 to 0.050%, Nb: 0.02 to 0 containing .10%, further, N: containing 0.0300% or less, and the balance Fe and Ni: less than 0.25%, Mo: a ing steel incidental impurities containing less than 0.05%, Machine structural steel for carburized parts with excellent grain coarsening characteristics and toughness, characterized in that the normalized structure or annealed structure is a ferrite-pearlite structure and the average value of the ferrite grain size is 15 μm or more. It is.

請求項2の発明は、請求項1の手段の鋼の化学成分において、質量%で、N:0.0300%以下に代えてN:0.010%未満とし、さらに、請求項1の手段の鋼の化学成分に加えて、Ti:0.050%未満、B:0.0010〜0.0050%を含有し、残部FeおよびNi:0.25%未満、Mo:0.05%未満を含有する不可避不純物からなる鋼であり、焼準組織又は焼鈍組織がフェライト・パーライト組織であり、そのフェライト粒径の平均値が15μm以上であることを特徴とする耐結晶粒粗大化特性および靱性に優れた浸炭部品用の機械構造用鋼である。 The invention of claim 2 is the chemical composition of the steel of the means of claim 1 in mass%, N: 0.0300% or less, N: less than 0.010%, further, of the means of claim 1 in addition to the chemical components of the steel, Ti: less than 0.050% B: containing from 0.0010 to 0.0050%, the balance being Fe and Ni: less than 0.25% Mo: less than 0.05% a ing steel incidental impurities containing, normalizing tissue or annealed structure is ferrite-pearlite structure, resistance to grain growth characteristics and toughness average of the ferrite grain size is equal to or is 15μm or more It is an excellent steel for machine structural use for carburized parts.

次いで、本発明の機械構造用鋼の化学成分の限定理由並びに機械構造用鋼の熱処理条件について説明する。なお、成分の%は質量%である。   Next, the reasons for limiting the chemical components of the mechanical structural steel of the present invention and the heat treatment conditions of the mechanical structural steel will be described. In addition,% of a component is the mass%.

C:0.10〜0.30%
Cは機械構造用部品としての鋼材の浸炭処理後の芯部強度を確保するために必要な元素である。しかし、Cが0.10%未満ではその効果が十分に得られない。一方、Cが0.30%を超えると加工性を低下させ、かつ、靱性を低下させる。そこでCは0.10〜0.30%とする。
C: 0.10 to 0.30%
C is an element necessary for ensuring the core strength after carburizing treatment of steel as a machine structural component. However, if C is less than 0.10%, the effect cannot be sufficiently obtained. On the other hand, when C exceeds 0.30%, workability is lowered and toughness is lowered. Therefore, C is set to 0.10 to 0.30%.

Si:0.05〜2.0%、望ましくは0.05〜1.0%
Siは脱酸に必要な元素である。しかし、Siが0.05%未満では脱酸が十分に行われない。一方、Siが2.0%を超えると加工性を低下させる。そこでSiは0.05〜2.0%とし、望ましくは0.05〜1.0%とする。
Si: 0.05-2.0%, desirably 0.05-1.0%
Si is an element necessary for deoxidation. However, if Si is less than 0.05%, deoxidation is not sufficiently performed. On the other hand, if Si exceeds 2.0%, workability is lowered. Therefore, Si is set to 0.05 to 2.0%, preferably 0.05 to 1.0%.

Mn:0.10〜0.50%、望ましくは0.20〜0.50%
Mnは焼入れ性を確保するために必要な元素である。しかし、Mnが0.10%未満では焼入れ性の効果は十分に得られない。また、Mnが0.50%を超えると焼準あるいは焼鈍により現れるフェライト・パーライト組織の結晶粒が15μmよりも小さくなる。そこでMnは0.10〜0.50%とし、より望ましくは0.20〜0.50%とする。
Mn: 0.10 to 0.50%, desirably 0.20 to 0.50%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.10%, the effect of hardenability cannot be obtained sufficiently. Further, when Mn exceeds 0.50%, the crystal grains of the ferrite / pearlite structure appearing by normalization or annealing become smaller than 15 μm. Therefore, Mn is 0.10 to 0.50%, more preferably 0.20 to 0.50%.

P:0.030%以下
Pはスクラップから含有される不可避な元素であり、オーステナイト粒界に偏析して衝撃強度や曲げ強度などの靱性を低下する。そこで、Pは0.030%以下とする。
P: 0.030% or less P is an unavoidable element contained in scrap, and segregates at the austenite grain boundary to lower toughness such as impact strength and bending strength. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは被削性を向上させる元素である。しかし、SはMnと結合して非金属介在物であるMnSを生成して横方向の靱性および疲労強度を低下させる。そこでSは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability. However, S combines with Mn to form MnS, which is a non-metallic inclusion, and lowers the toughness and fatigue strength in the transverse direction. Therefore, S is set to 0.030% or less.

Cr:1.80〜3.00%
Crは鋼の焼入性を上昇させる元素であるが、1.80%未満ではその効果が十分得られない。また、Crが過剰に添加されると加工性を損なうだけでなく浸炭性を阻害する。そこで、Crは1.80〜3.0%とする。
Cr: 1.80 to 3.00%
Cr is an element that increases the hardenability of steel, but if it is less than 1.80%, the effect cannot be sufficiently obtained. Moreover, when Cr is added excessively, not only the workability is impaired, but also the carburizing property is inhibited. Therefore, Cr is 1.80 to 3.0%.

Ni:0.25%未満
Niは鋼の焼入性や靱性を上昇させる元素であるが、Niを0.25%以上添加すると本発明においては結晶粒度特性に不利なベイナイトが析出し、ベイナイトを核として結晶粒が粗大化する。そのため合金添加による靱性向上の効果よりも結晶粒粗大化による靱性の低下の方が大きく靱性が低下する。そこで、ベイナイトの析出を回避するため、Niは不可避的不純物量レベルとして0.25%未満とする。
Ni: Less than 0.25% Ni is an element that increases the hardenability and toughness of steel. However, when Ni is added in an amount of 0.25% or more, bainite that is disadvantageous to the grain size characteristics is precipitated in the present invention. Crystal grains become coarse as nuclei. For this reason, the toughness is greatly reduced when the toughness is reduced by the coarsening of the crystal grains rather than the effect of improving the toughness by adding the alloy. Therefore, in order to avoid the precipitation of bainite, Ni is set to an inevitable impurity amount level of less than 0.25%.

Mo:0.05%未満
Moは鋼の焼入性や靱性を上昇させる元素であるが、Moを0.05%以上添加すると本発明においては結晶粒度特性に不利なベイナイトが析出し、ベイナイトを核として結晶粒が粗大化する。そのため合金添加による靱性向上の効果よりも結晶粒粗大化による靱性の低下の方が大きく靱性が低下する。そこで、ベイナイトの析出を回避するため、Moは不可避的不純物量レベルとして0.05%未満とする。
Mo: Less than 0.05% Mo is an element that increases the hardenability and toughness of steel. However, when Mo is added in an amount of 0.05% or more, bainite that is disadvantageous to the grain size characteristics is precipitated in the present invention. Crystal grains become coarse as nuclei. For this reason, the toughness is greatly reduced when the toughness is reduced by the coarsening of the crystal grains rather than the effect of improving the toughness by adding the alloy. Therefore, in order to avoid precipitation of bainite, Mo is set to an inevitable impurity amount level of less than 0.05%.

Al:0.005〜0.050%、望ましくは0.015〜0.050%
Alは脱酸材として使用される元素であり、また後記するようにNと結合してAlNを析出してピン止め効果により結晶粒粗大化抑制効果をもたらす。この効果を得るためには、Alは0.005%以上を添加する必要がある。一方、Alは0.050%を超えるとアルミナ系酸化物が増加し、疲労特性および加工性を低下する。そこで、Alは0.005〜0.050%とし、望ましくは0.015〜0.050%とする。
Al: 0.005 to 0.050%, desirably 0.015 to 0.050%
Al is an element used as a deoxidizing material, and also binds to N to precipitate AlN as will be described later, and brings about an effect of suppressing grain coarsening by a pinning effect. In order to obtain this effect, it is necessary to add 0.005% or more of Al. On the other hand, when the Al content exceeds 0.050%, the alumina-based oxide increases, and the fatigue characteristics and workability deteriorate. Therefore, Al is made 0.005 to 0.050%, preferably 0.015 to 0.050%.

N:0.0300%以下、望ましくはN:0.0250%以下、ただし、TiおよびBを1種又は2種を含む鋼ではN:0.0100%未満
Nは鋼中でAlNやNb窒化物あるいはNb炭窒化物として微細析出し、そのピン止め効果により結晶粒粗大化を防止する効果をもたらす。しかし、0.030%を超えると窒化物が増加し、疲労強度や加工性が低下する。そこで、請求鋼1の発明で、Nは0.0300%以下とし、望ましくは0.0250%以下とする。しかしながら、請求項2の手段のように、TiやBを含有する鋼では、Nが0.0100%以上含有されると、TiNが過剰に生成して加工性や疲労強度を損なう。また、Bは固溶Bとして存在することで鋼の焼入性の向上効果があるが、Nが0.0100%以上含有されると、化合物のBNが生成して固溶Bが減少し、Bによる焼入性の向上効果が阻害される。そこで、請求項2の発明のTiおよびBを含む場合は、Nは0.0100%未満とする。
N: 0.0300% or less, desirably N: 0.0250% or less, but in steel containing one or two of Ti and B, N: less than 0.0100% N is AlN or Nb nitride in steel Or it precipitates finely as Nb carbonitride and brings about the effect which prevents a crystal grain coarsening by the pinning effect. However, if it exceeds 0.030%, nitrides increase, and fatigue strength and workability decrease. Therefore, in the invention of claim steel 1, N is 0.0300% or less, preferably 0.0250% or less. However, in the steel containing Ti or B as in the means of claim 2, when N is contained in an amount of 0.0100% or more, TiN is excessively generated and the workability and fatigue strength are impaired. Moreover, although B has the effect of improving the hardenability of steel by being present as solid solution B, when N is contained in an amount of 0.0100% or more, BN of the compound is generated and solid solution B is reduced. The effect of improving hardenability by B is hindered. Therefore, when Ti and B of the invention of claim 2 are included, N is made less than 0.0100%.

Nb:0.02〜0.10%、望ましくは0.02〜0.08%
NbはNb炭化物やNb窒化物あるいはNb炭窒化物を形成して、それらのピン止め効果により、結晶粒粗大化防止効果をもたらす。特に鋼中に微細に分散したナノオーダーのNbC又はNb(CN)が結晶粒の成長を抑制する。Nbが0.02%未満ではその効果が得られず、0.10%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.10%、望ましくは0.02〜0.08%とする。
Nb: 0.02 to 0.10%, desirably 0.02 to 0.08%
Nb forms Nb carbide, Nb nitride, or Nb carbonitride, and brings about the effect of preventing the coarsening of crystal grains by their pinning effect. In particular, nano-order NbC or Nb (CN) finely dispersed in steel suppresses the growth of crystal grains. If Nb is less than 0.02%, the effect cannot be obtained, and if it exceeds 0.10%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, Nb is 0.02 to 0.10%, preferably 0.02 to 0.08%.

Ti:0.050%未満
Tiは鋼中のfree−Nを固定して、Bが化合物BNとなることを抑制することにより、Bを焼入性向上に寄与させることができる。その効果を得るためには、Tiを0.050%未満添加する必要がある。
Ti: Less than 0.050% Ti can contribute to improving hardenability by fixing free-N in steel and suppressing B from becoming compound BN. In order to obtain the effect, it is necessary to add Ti less than 0.050%.

B:0.0010〜0.0050%
Bは極少量の含有によって鋼の焼入性を著しく向上させる元素で選択的に含有される。その効果を得るためには、0.0010%未満では焼入性向上の効果が小さく、一方、0.0050%を超えると強度を低下する。そこで、Bは0.0010〜0.0050%とする。
B: 0.0010 to 0.0050%
B is selectively contained as an element that remarkably improves the hardenability of the steel when contained in a very small amount. In order to obtain the effect, the effect of improving the hardenability is small if it is less than 0.0010%, while the strength is lowered if it exceeds 0.0050%. Therefore, B is 0.0010 to 0.0050%.

本願の請求項に係る発明の鋼では、上記したようにMnの含有量を0.10〜0.50%との低Mnとしている。したがって、圧延後に、通常の焼準処理又は焼鈍処理を行うことで、フェライトおよびパーライトの結晶粒からなるミクロ組織の大きな鋼が得られ、この鋼を冷間鍛造または他の冷間加工を行い、さらに浸炭処理が施される場合、浸炭時に結晶粒粗大化の要因となる浸炭初期のオーステナイト粒径の微細化を抑制出来る。そこで上記したように、この鋼の化学成分のMn量は0.10〜0.50%とし、望ましくは0.20〜0.50%とする。   In the steel of the invention according to the claims of the present application, the Mn content is as low as 0.10 to 0.50% as described above. Therefore, after rolling, by performing normal normalization treatment or annealing treatment, a steel with a large microstructure composed of ferrite and pearlite crystal grains is obtained, and this steel is subjected to cold forging or other cold work, Further, when carburizing treatment is performed, refinement of the austenite grain size at the initial stage of carburizing, which becomes a cause of grain coarsening during carburizing, can be suppressed. Therefore, as described above, the Mn content of the chemical component of this steel is 0.10 to 0.50%, preferably 0.20 to 0.50%.

本発明の鋼はA3点以上の温度である、例えば925℃に十分な時間、例えば1時間保持した後、空冷して焼準を行うか、あるいは、この焼準に代えて、焼鈍条件として880〜930℃に加熱して所定時間保持した後に徐冷を行って、フェライトおよびパーライトの組織とする。このように、本発明の鋼成分に加えて、上記条件の焼準あるいは焼鈍を行うことにより、均質なフェライトおよびパーライトからなる結晶粒の大きなミクロ組織が得られる。その結果、冷間鍛造もしくは冷間加工が行われた後、必要に応じた形状の部品に切削加工してから浸炭処理を行った場合に、浸炭初期のオーステナイト粒径の微細化を抑制することで、結晶粒が粗大化することはない。 Steel of the present invention is the temperature of the three or more points A, for example, sufficient time to 925 ° C., after holding for example 1 hour, or air to carry out the normalizing, or in place of the normalizing, as the annealing conditions After heating to 880 to 930 ° C. and holding for a predetermined time, annealing is performed to obtain a ferrite and pearlite structure. Thus, in addition to the steel component of the present invention, by carrying out normalization or annealing under the above conditions, a microstructure with large crystal grains composed of homogeneous ferrite and pearlite can be obtained. As a result, after cold forging or cold working, when carburizing treatment is performed after cutting into parts with the required shape, minimization of the austenite grain size at the beginning of carburizing is suppressed. Thus, the crystal grains do not become coarse.

上記の本発明の手段において、鋼成分の限定、焼準もしくは焼鈍の熱処理条件の限定により、焼準もしくは焼鈍に続いて冷間鍛造その他の冷間加工および必要に応じた切削加工を行って所定の形状に加工してから浸炭処理を行った場合に、AlN、NbCあるいはNb(CN)からなる化合物のピン止め効果により、従来鋼よりも微細な結晶粒度特性を有するので、冷間工法を利用した自動車、建設機械、工作機械などのギヤ、シャフトなどの駆動系部品の製造コストを低減させることが可能となり、本発明は従来にない優れた効果を奏する。   In the above-mentioned means of the present invention, the cold forging or other cold work and the cutting as required are carried out following the normalization or annealing by limiting the steel components, normalizing or annealing heat treatment conditions. When the carburizing process is performed after processing into the shape of the steel, the pinning effect of the compound consisting of AlN, NbC or Nb (CN) has finer grain size characteristics than conventional steel, so use the cold work method Therefore, it is possible to reduce the manufacturing cost of drive system parts such as gears and shafts of automobiles, construction machines, machine tools, etc., and the present invention has an unprecedented excellent effect.

本発明の熱処理条件を示す図で、(a)は焼きならし処理の温度パターンを示し、(b)は模擬浸炭処理の温度パターンを示す図である。It is a figure which shows the heat processing conditions of this invention, (a) shows the temperature pattern of a normalizing process, (b) is a figure which shows the temperature pattern of a simulated carburizing process. (a)は発明鋼の焼ならし処理した顕微鏡写真のミクロ組織のフェライト・パーライト粒を示す図で、(b)は比較鋼の焼ならし処理した顕微鏡写真のミクロ組織のフェライト・パーライト粒を示す図である。(A) is a figure which shows the ferrite pearlite grain of the microstructure of the micrograph of the normalization process of invention steel, (b) is the ferrite pearlite grain of the microstructure of the micrograph of the normalization process of the comparative steel. FIG. (a)は発明鋼を950℃で疑似浸炭したミクロ組織を示し、(b)は比較鋼の950℃で疑似浸炭したミクロ組織を示す。(A) shows the microstructure of the inventive steel pseudo-carburized at 950 ° C., and (b) shows the microstructure of the comparative steel pseudo-carburized at 950 ° C. (a)は発明鋼の975℃で疑似浸炭したミクロ組織を示し、(b)は比較鋼の975℃で疑似浸炭したミクロ組織を示す。(A) shows the microstructure of the invention steel pseudo-carburized at 975 ° C., and (b) shows the microstructure of the comparative steel pseudo-carburized at 975 ° C. (a)は浸炭焼入れ条件を示し、(b)はsの焼戻し条件を示す。(A) shows carburizing and quenching conditions, and (b) shows s tempering conditions. シャルピー衝撃試験片の大きさを示す図で(a)は正面図で、(b)は側面図である。It is a figure which shows the magnitude | size of a Charpy impact test piece, (a) is a front view, (b) is a side view.

本願発明を実施するための形態について、表および図面を参照して以下に説明する。先ず、本願発明の表1に示す化学成分を有する鋼からなる鋼材はフェライト・パーライト組織からなっている。この鋼材は冷間鍛造やその他の冷間加工が施されて部品に形状化される。その後、この形状化された部品は浸炭されて結晶粒特性において優れた部品とされている。それは、この部品を形成する鋼材において、この鋼の化学成分のMnを、質量%で、0.50%以下とすることにより、フェライト・パーライト粒を15μmより大きな粒とし、さらに結晶粒のピン止め粒子であるAlNやNb(CN)を利用することで、この鋼からなる鋼材は冷間鍛造やその他の冷間加工が施されることで、その後に浸炭されるこの鋼材からなる部品は優れた結晶粒度特性を有するものとなっている。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated below with reference to a table | surface and drawing. First, the steel material which consists of steel which has a chemical component shown in Table 1 of this invention consists of a ferrite pearlite structure | tissue. This steel material is subjected to cold forging and other cold working to form a part. Thereafter, the shaped part is carburized to make it excellent in grain characteristics. In the steel material forming this part, the Mn of the chemical component of this steel is 0.50% or less by mass, so that the ferrite pearlite grains are larger than 15 μm, and the crystal grains are pinned. By using particles such as AlN and Nb (CN), the steel material made of this steel is subjected to cold forging and other cold work, and the parts made of this steel material that are subsequently carburized are excellent. It has crystal grain size characteristics.

上記の表1に示す本願発明の発明鋼および比較鋼を、真空誘導溶解炉で溶製して100kgの鋼塊とした。この鋼塊を1250℃で5時間加熱した後、直径65mmの棒鋼に鍛伸した。次に、図1の(a)に示すパターンにより、この棒鋼を加熱して925℃に1時間すなわち3.6ks保持した後に空冷して焼ならし処理した。この焼ならし処理した棒鋼から供試材を作製して鏡面研磨し、5%ナイタールで腐食した後、光学顕微鏡でミクロ組織を観察して、視野内のフェライト・パーライト粒の大きさを測定した。   The invention steel and comparative steel of the present invention shown in Table 1 were melted in a vacuum induction melting furnace to form a 100 kg steel ingot. The ingot was heated at 1250 ° C. for 5 hours and then forged into a steel bar having a diameter of 65 mm. Next, according to the pattern shown in FIG. 1A, the steel bar was heated and held at 925 ° C. for 1 hour, that is, 3.6 ks, and then air-cooled and normalized. A specimen was prepared from this normalized steel bar, mirror-polished, corroded with 5% nital, and then the microstructure was observed with an optical microscope to measure the size of ferrite / pearlite grains in the field of view. .

上記の処理で得られた発明鋼および比較鋼のそれぞれの焼ならし処理した代表的な顕微鏡写真を図2に示している。この図2の(a)の発明鋼の焼ならし処理した組織は15μmより大きなフェライト・パーライトである。一方、図2の(b)の比較鋼の焼ならし処理した組織は15μm以下の大きさのフェライト・パーライトである。   FIG. 2 shows representative micrographs obtained by normalizing the inventive steel and the comparative steel obtained by the above treatment. The normalized structure of the invention steel of FIG. 2A is ferrite pearlite larger than 15 μm. On the other hand, the normalized structure of the comparative steel shown in FIG. 2B is ferrite pearlite having a size of 15 μm or less.

次に、上記の焼ならし処理した直径30mmの棒鋼の中周部の付近から、切削加工によって直径14mmで長さ21mmの円柱型試験片を作製した。試験片の長さ方向は母材の鍛伸方向と一致させた。万能試験機を用いて試験片に高さ比で70%の冷間据え込み加工を施した。なお、本発明において冷間加工率は特に70%に限定されるものではない。ところで、試験片の形状や冷間据え込み方法は、上記した非特許文献2の日本塑性加工学会の冷間鍛造分科会基準に準じて行なった。   Next, a cylindrical test piece having a diameter of 14 mm and a length of 21 mm was produced by cutting from the vicinity of the middle periphery of the above-described normalized steel bar having a diameter of 30 mm. The length direction of the specimen was matched with the forging direction of the base material. Using a universal testing machine, the test piece was cold upset 70% in height ratio. In the present invention, the cold working rate is not particularly limited to 70%. By the way, the shape of the test piece and the cold upsetting method were performed in accordance with the standards of the cold forging subcommittee of the Japan Society for Technology of Plasticity in Non-Patent Document 2.

次に、浸炭時の結晶粒粗大化温度を確認するために擬似浸炭試験を行った。この試験は浸炭処理の温度パターンンのみを模擬し、実際には浸炭せずに結晶粒度観察を行なう慣用的な疑似浸炭方法である。Mnの含有量が質量%で0.50%以下である発明鋼と、Mnの含有量が質量%で0.50%を超えている比較鋼のそれぞれを、冷間据え込み加工して試験片に形成し、この試験片を4分割し、その1片を300℃/Hrで950℃に昇温して、この950℃に10.8ks保持した後に水冷して、図1の(b)に示す、疑似浸炭処理を行った。この疑似浸炭処理後に、試験片の断面を鏡面研磨し、これを飽和ピクリン酸溶液で腐食して、旧オーステナイト粒界を現出させた。この試験片を光学顕微鏡で観察して、図3にその結晶粒の組織を示す。図3の(a)は発明鋼の結晶粒で、図3の(b)は比較鋼の結晶粒である。図3の(a)に示す発明鋼の結晶粒は、結晶粒ピン止め粒子であるAlNやNbCやNb(CN)により、950℃における擬似浸炭処理をしても結晶粒の粗大化は見られず、図3の(b)の比較鋼に比して結晶粒が小さく、図3の(a)に示す発明鋼は優れた結晶粒特性を有していた。   Next, a pseudo carburizing test was performed in order to confirm the grain coarsening temperature during carburizing. This test is a conventional pseudo carburizing method that simulates only the temperature pattern of the carburizing process and observes the grain size without actually carburizing. Specimens obtained by cold-working each of an inventive steel having a Mn content of 0.50% or less by mass and a comparative steel having a Mn content exceeding 0.50% by mass. The test piece was divided into four parts, and the one piece was heated to 950 ° C. at 300 ° C./Hr, held at 1950 ks at 950 ° C., and then water-cooled, as shown in FIG. The pseudo carburizing process shown was performed. After this pseudo carburizing treatment, the cross section of the test piece was mirror-polished, and this was corroded with a saturated picric acid solution to reveal prior austenite grain boundaries. This test piece was observed with an optical microscope, and the structure of the crystal grains is shown in FIG. 3A shows the crystal grains of the inventive steel, and FIG. 3B shows the crystal grains of the comparative steel. The crystal grains of the invention steel shown in FIG. 3 (a) are coarsened even when subjected to pseudo carburizing at 950 ° C. due to AlN, NbC and Nb (CN) which are crystal pinning particles. First, the crystal grains were smaller than that of the comparative steel shown in FIG. 3B, and the inventive steel shown in FIG. 3A had excellent crystal grain characteristics.

さらに、上記と同様に慣用的は疑似浸炭方法で、Mnの含有量が質量%で0.50%以下である発明鋼と、Mnの含有量が質量%で0.50%を超えている比較鋼のそれぞれを、冷間据え込み加工して試験片に形成し、この試験片を4分割し、その1片を300℃/Hrで、上記の950℃に代えて975℃に昇温し、この975℃に10.8ks保持した後に水冷して、図1の(b)に示す疑似浸炭処理を実施した。この疑似浸炭処理後に、試験片の断面を鏡面研磨し、これを飽和ピクリン酸溶液で腐食して、旧オーステナイト粒界を現出させた。この試験片を光学顕微鏡で観察して、図4にその結晶粒の組織を示す。図4の(a)は発明鋼の結晶粒で、図4の(b)は比較鋼の結晶粒である。図4の(a)に示す発明鋼の結晶粒は、結晶粒ピン止め粒子であるAlNやNbCやNb(CN)により、975℃における擬似浸炭処理をしても結晶粒の粗大化は見られず、図4の(b)の比較鋼に比して結晶粒が小さく、図4の(a)に示す発明鋼は優れた結晶粒特性を有していた。   In addition, the conventional steel carburizing method is used in the same manner as described above, and the Mn content is less than 0.50% by mass and the Mn content exceeds 0.50% by mass. Each of the steels was cold upset to form a test piece, this test piece was divided into four pieces, and one piece was heated to 975 ° C. instead of the above 950 ° C. at 300 ° C./Hr, After maintaining at 975 ° C. for 10.8 ks, it was cooled with water, and a pseudo carburizing process shown in FIG. After this pseudo carburizing treatment, the cross section of the test piece was mirror-polished, and this was corroded with a saturated picric acid solution to reveal prior austenite grain boundaries. This test piece was observed with an optical microscope, and the structure of the crystal grain is shown in FIG. 4A shows the crystal grains of the inventive steel, and FIG. 4B shows the crystal grains of the comparative steel. The crystal grains of the invention steel shown in FIG. 4 (a) are coarsened even when subjected to pseudo carburizing at 975 ° C. due to AlN, NbC and Nb (CN) which are crystal pinning particles. First, the crystal grains were smaller than that of the comparative steel shown in FIG. 4B, and the inventive steel shown in FIG. 4A had excellent crystal grain characteristics.

擬似浸炭試験における旧オーステナイト粒界の現出による結晶粒粗大化温度の測定結果を表2に示す。本発明鋼のフェライト粒径は全て15μm以上となっている。一方、本開発鋼に対する比較鋼のフェライト粒径は全て15μmより小さくなっている。さらに比較鋼のNo.16およびNo.17はNiが添加され、No.18〜No.20はMoが添加されているため、表2に見るようにベイナイト組織が析出している。なお、本発明鋼のNo.1〜10のNi量および、比較鋼のNo.11〜15、No.18〜20は不可避不純物量であり、さらに本発明鋼のNo.1〜10および比較鋼o.11〜17は不可避不純物量である。本発明鋼のNo.1〜4、No.7、No.8、1No.0はMnが0.5%以下に加えて結晶粒ピン止め粒子であるAlN、NbCおよびNb(CN)を利用していることで、結晶粒度特性は最も優れている。その他の発明鋼はピン止め粒子としてAlNを使用できないため、先述の発明鋼に比べるとやや劣るが、この場合でも、Mnが0.5%以下であるため、比較鋼より優れた結晶粒度特性を有している。比較鋼のNo.12、No.13、No.15の結晶粒粗大化温度がその他の比較鋼に比べて高いのはNbが添加されているためであるが、Mnが0.5%を超えているため、本発明鋼には及ばない結果となっている。また、比較鋼のNo.16〜20はMnが0.5%以下にも関わらず、NiあるいはMoの添加によるベイナイトの析出により結晶粒粗大化温度は本発明鋼に及ばない。   Table 2 shows the measurement results of the grain coarsening temperature due to the appearance of the prior austenite grain boundaries in the simulated carburization test. The ferrite grain size of the steel of the present invention is all 15 μm or more. On the other hand, the ferrite grain size of the comparative steel for the developed steel is all smaller than 15 μm. Furthermore, No. of comparative steel. 16 and no. No. 17 was added with Ni. 18-No. Since Mo is added to No. 20, as shown in Table 2, a bainite structure is precipitated. In addition, No. of this invention steel. The amount of Ni of 1 to 10 and No. of comparative steel. 11-15, no. 18 to 20 are inevitable impurity amounts. 1-10 and comparative steel o. 11 to 17 are inevitable impurity amounts. No. of the steel of the present invention. 1-4, no. 7, no. 8, 1No. 0 uses the crystal pinning particles AlN, NbC and Nb (CN) in addition to Mn of 0.5% or less, and has the best crystal grain size characteristics. Since other invention steels cannot use AlN as pinning particles, they are slightly inferior to the above-mentioned invention steels, but even in this case, since Mn is 0.5% or less, grain size characteristics superior to those of comparative steels are achieved. Have. No. of comparative steel. 12, no. 13, no. The grain coarsening temperature of 15 is higher than that of other comparative steels because Nb is added. However, since Mn exceeds 0.5%, the result is inferior to the steel of the present invention. It has become. Moreover, No. of comparative steel. 16-20, although Mn is 0.5% or less, the grain coarsening temperature does not reach the steel of the present invention due to precipitation of bainite by addition of Ni or Mo.

結晶粒度特性の異なる本発明鋼および比較鋼において、靭性を調査するため、シャルピー試験片の粗加工(幅14mm、高さ12mm、長さ55mm、10RCノッチ付与)を行い、図5の(a)に示す条件にて浸炭焼入を行い、次いで図5の(b)に示す焼戻しを行った。図5の浸炭条件は通常行われる一般的な条件であり、比較鋼では結晶粒の粗大化が起こる温度である。その後、図6の(a)、(b)に示すようにシャルピー試験片の仕上加工を行い、シャルピー試験を実施した。なお、試験は室温で行なった。表3にシャルピー衝撃試験結果を示す。本発明鋼のシャルピー衝撃値は比較鋼よりも優れており、結晶粒度特性に優れた本開発鋼は優れた靭性を有している。   In order to investigate the toughness of the steels of the present invention and the comparative steels having different grain size characteristics, rough processing (width 14 mm, height 12 mm, length 55 mm, 10 RC notches) was performed on the Charpy specimen, and FIG. Carburizing and quenching was performed under the conditions shown in Fig. 5, followed by tempering as shown in Fig. 5B. The carburizing conditions in FIG. 5 are general conditions that are usually performed, and are temperatures at which crystal grains become coarse in the comparative steel. Then, the Charpy test piece was finished as shown in FIGS. 6A and 6B, and the Charpy test was performed. The test was performed at room temperature. Table 3 shows the Charpy impact test results. The Charpy impact value of the steel of the present invention is superior to that of the comparative steel, and the newly developed steel having excellent crystal grain size characteristics has excellent toughness.

Claims (2)

質量%で、C:0.10〜0.30%、Si:0.05〜2.0%、Mn:0.10〜0.50%、P:0.030%以下、S:0.030%以下、Cr:1.80〜3.00%、Al:0.005〜0.050%、Nb:0.02〜0.10%、N:0.0300%以下を含有し、残部FeおよびNi:0.25%未満、Mo:0.05%未満を含有する不可避不純物からなる鋼であり、焼準組織又は焼鈍組織がフェライト・パーライト組織であり、そのフェライト粒径の平均値が15μm以上であることを特徴とする耐結晶粒粗大化特性および靱性に優れた浸炭部品用の機械構造用鋼。 In mass%, C: 0.10 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.10 to 0.50%, P: 0.030% or less, S: 0.030 %: Cr: 1.80 to 3.00%, Al: 0.005 to 0.050%, Nb: 0.02 to 0.10%, N: 0.0300% or less, and the balance Fe and Ni: less than 0.25% Mo: a ing steel incidental impurities containing less than 0.05%, normalizing tissue or annealed structure is ferrite-pearlite structure, 15 [mu] m is the average value of the ferrite grain size A machine structural steel for carburized parts with excellent grain coarsening characteristics and toughness characterized by the above. 請求項1に記載の化学成分において、質量%で、N:0.0300%以下に代えてN:0.010%未満とし、さらに、請求項1に記載の化学成分に加えて、質量%で、Ti:0.050%未満、B:0.0010〜0.0050%を含有し、残部FeおよびNi:0.25%未満、Mo:0.05%未満を含有する不可避不純物からなる鋼であり、焼準組織又は焼鈍組織がフェライト・パーライト組織であり、そのフェライト粒径の平均値が15μm以上であることを特徴とする耐結晶粒粗大化特性および靱性に優れた浸炭部品用の機械構造用鋼。 In the chemical component according to claim 1, N: 0.0300% or less instead of N: 0.0300% or less, and in addition to the chemical component according to claim 1, , Ti: less than 0.050% B: containing 0.0010 to 0.0050%, balance Fe and Ni: less than 0.25% Mo: ing incidental impurities containing less than 0.05% steel A machine for carburized parts excellent in crystal grain coarsening characteristics and toughness, characterized in that the normalized structure or the annealed structure is a ferrite / pearlite structure and the average value of the ferrite grain size is 15 μm or more. Structural steel.
JP2011177728A 2011-08-15 2011-08-15 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness Active JP5965117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177728A JP5965117B2 (en) 2011-08-15 2011-08-15 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177728A JP5965117B2 (en) 2011-08-15 2011-08-15 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness

Publications (2)

Publication Number Publication Date
JP2013040376A JP2013040376A (en) 2013-02-28
JP5965117B2 true JP5965117B2 (en) 2016-08-03

Family

ID=47889029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177728A Active JP5965117B2 (en) 2011-08-15 2011-08-15 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness

Country Status (1)

Country Link
JP (1) JP5965117B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192519B2 (en) * 2013-12-05 2017-09-06 山陽特殊製鋼株式会社 Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method
MX2017015016A (en) 2015-05-26 2018-04-13 Nippon Steel & Sumitomo Metal Corp Steel sheet and method for producing same.
CN107614726B (en) 2015-05-26 2020-02-07 日本制铁株式会社 Steel sheet and method for producing same
PL3305931T3 (en) 2015-05-26 2020-06-01 Nippon Steel Corporation Steel sheet and manufacturing method therefor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845354A (en) * 1981-09-10 1983-03-16 Daido Steel Co Ltd Case hardening steel
JP3819529B2 (en) * 1997-04-28 2006-09-13 株式会社神戸製鋼所 Case-hardened steel with excellent cold workability
JP3733229B2 (en) * 1998-01-21 2006-01-11 Jfe条鋼株式会社 Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance
JP3954772B2 (en) * 2000-04-26 2007-08-08 新日本製鐵株式会社 Shaped material for high-temperature carburized parts with excellent grain coarsening prevention characteristics and manufacturing method thereof
JP3907986B2 (en) * 2001-09-14 2007-04-18 山陽特殊製鋼株式会社 Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JP3821036B2 (en) * 2002-04-01 2006-09-13 住友金属工業株式会社 Hot rolled steel sheet, hot rolled steel sheet and cold rolled steel sheet
JP4057930B2 (en) * 2003-02-21 2008-03-05 新日本製鐵株式会社 Machine structural steel excellent in cold workability and method for producing the same
JP4448456B2 (en) * 2004-01-29 2010-04-07 新日本製鐵株式会社 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP5121123B2 (en) * 2005-03-14 2013-01-16 山陽特殊製鋼株式会社 High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP2007107042A (en) * 2005-10-13 2007-04-26 Sumitomo Metal Ind Ltd Steel for high temperature carburizing
JP2007277697A (en) * 2006-03-16 2007-10-25 Jfe Steel Kk High tensile strength thick steel plate having excellent fatigue crack propagation resistance and brittle crack propagation arrest property and its production method
JP2007291511A (en) * 2006-03-29 2007-11-08 Jfe Steel Kk High-tensile strength thick steel plate having excellent toughness and its production method
JP4910638B2 (en) * 2006-10-31 2012-04-04 Jfeスチール株式会社 Manufacturing method of thick steel plate with excellent brittle crack propagation stop properties
JP4445561B2 (en) * 2008-07-15 2010-04-07 新日本製鐵株式会社 Continuous casting slab of steel and method for producing the same
JP5495648B2 (en) * 2009-03-17 2014-05-21 山陽特殊製鋼株式会社 Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP2011225897A (en) * 2010-04-15 2011-11-10 Sumitomo Metal Ind Ltd Hot-rolled steel bar or wire rod for cold forging

Also Published As

Publication number Publication date
JP2013040376A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP6461360B2 (en) Spring steel wire and spring
JP5034308B2 (en) High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP5152441B2 (en) Steel parts for machine structure and manufacturing method thereof
JP6401143B2 (en) Method for producing carburized forging
WO2013077182A1 (en) Rolled steel bar for hot forging
WO2017047767A1 (en) Hard steel with excellent toughness
JP5965117B2 (en) Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP5152440B2 (en) Steel parts for machine structure and manufacturing method thereof
JP2012193404A (en) Seamless steel pipe and method for manufacturing the same
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP6192519B2 (en) Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP2015134945A (en) Carburizing steel
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2003201513A (en) High strength case hardening steel
JP4450217B2 (en) Non-tempered steel for soft nitriding
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
JP7149131B2 (en) Machine structural steel with excellent cold workability and resistance to grain coarsening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160701

R150 Certificate of patent or registration of utility model

Ref document number: 5965117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250