JP6192519B2 - Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method - Google Patents

Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method Download PDF

Info

Publication number
JP6192519B2
JP6192519B2 JP2013252381A JP2013252381A JP6192519B2 JP 6192519 B2 JP6192519 B2 JP 6192519B2 JP 2013252381 A JP2013252381 A JP 2013252381A JP 2013252381 A JP2013252381 A JP 2013252381A JP 6192519 B2 JP6192519 B2 JP 6192519B2
Authority
JP
Japan
Prior art keywords
steel
less
carburizing
machine structure
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013252381A
Other languages
Japanese (ja)
Other versions
JP2015108182A (en
Inventor
悟 中名
悟 中名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013252381A priority Critical patent/JP6192519B2/en
Publication of JP2015108182A publication Critical patent/JP2015108182A/en
Application granted granted Critical
Publication of JP6192519B2 publication Critical patent/JP6192519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、冷間鍛造で成形される浸炭部品の浸炭鋼の製造方法およびおよび該製造方法からなる鋼材に関し、特に冷間鍛造後に焼ならし処理を追加しなくても、さらに浸炭しても、安定した結晶粒度特性が得られる機械構造用鋼材の製造方法および該鋼材に関する。   The present invention relates to a method for manufacturing a carburized steel of a carburized part formed by cold forging, and a steel material comprising the manufacturing method, and in particular, no additional normalizing treatment after cold forging or further carburizing. Furthermore, the present invention relates to a method for manufacturing a steel material for machine structure capable of obtaining stable grain size characteristics and the steel material.

冷間鍛造や冷間加工といった冷間工法は自動車駆動系部品などの部品製造におけるコストダウンに対して有利な工法である。しかし、冷間加工後に直接的に浸炭処理を施して部品を製造する場合、冷間加工の影響や、あるいは浸炭初期に微細なオーステナイト粒が形成される影響により、浸炭時にかえって結晶粒が粗大化しやすいという問題を有する。すなわち、結晶粒が粗大化すると部品強度が低下する場合があるので、結晶粒粗大化抑制が不可欠である。この課題があるために、冷間工法のコストメリットを十分に活かすことができていないのが現状である。   Cold methods such as cold forging and cold working are advantageous methods for cost reduction in the production of parts such as automobile drive system parts. However, when parts are manufactured by directly carburizing after cold working, the grains become coarser than carburizing due to the effects of cold working or the formation of fine austenite grains at the beginning of carburizing. Has the problem of being easy. That is, when the crystal grains are coarsened, the strength of the parts may be lowered, and thus it is essential to suppress the grain coarsening. Due to this problem, the cost merit of the cold work method cannot be fully utilized.

従来は、化学成分の限定、球状化焼なまし後のラメラーパーライト面積率の制限、球状化焼なまし条件の限定を加えることにより、冷間鍛造もしくは冷間加工、および必要に応じた切削加工を行って所定の形状に加工してから、浸炭処理を行った場合に、結晶粒粗大化を起こしにくい機械構造用鋼およびその製造方法が提案されている(例えば、特許文献1参照。)。
一方、第2相である析出物を制御することで結晶粒の粗大化防止を目指した技術が開発されて多数出願されている(例えば、特許文献2〜14参照。)。しかし、これら技術では、冷間鍛造もしくは冷間加工後に高温で直接浸炭を行った場合、浸炭後に整細粒を安定的に維持することは困難であり、それらの条件を限定する必要がある。
Conventionally, cold forging or cold working, and cutting as required, by limiting chemical components, limiting the area ratio of lamellar pearlite after spheroidizing annealing, and limiting spheroidizing annealing conditions A steel for machine structural use and a method for producing the same are proposed that are less likely to cause crystal grain coarsening when carburizing is performed after being processed into a predetermined shape (see, for example, Patent Document 1).
On the other hand, many technologies have been developed and applied for controlling the coarsening of crystal grains by controlling the precipitates as the second phase (see, for example, Patent Documents 2 to 14). However, in these techniques, when carburizing directly at a high temperature after cold forging or cold working, it is difficult to stably maintain the fine grain after carburizing, and it is necessary to limit those conditions.

ところで、部品を冷間加工後に浸炭温度まで加熱する過程で、冷間加工時のひずみの影響により、一旦フェライトが微細に再結晶する段階を経てからオーステナイトに変態することが浸炭初期の微細なオーステナイト粒の形成を促している。そこで、従来技術として冷間加工後に熱処理を行い、前述のフェライト再結晶の駆動力となるひずみエネルギーを解放させることを通じて、浸炭時の結晶粒粗大化を抑制する方法がある(例えば、非特許文献1参照)。しかし、この方法により新たな工程が追加されるため、この方法は部品コストダウンの観点からは利用しにくい。   By the way, in the process of heating the parts to the carburizing temperature after cold working, the ferrite is transformed into austenite once through the stage of fine recrystallization due to the influence of strain during cold working. It encourages the formation of grains. Therefore, as a conventional technique, there is a method of suppressing grain coarsening during carburization by performing heat treatment after cold working and releasing the strain energy that becomes the driving force of the above-mentioned ferrite recrystallization (for example, non-patent literature) 1). However, since a new process is added by this method, this method is difficult to use from the viewpoint of cost reduction of parts.

特開2010−242209号公報JP 2010-242209 A 特開平4−247848号公報JP-A-4-247848 特開平8−199303号公報JP-A-8-199303 特開平9−59745号公報JP-A-9-59745 特開平10−81938号公報Japanese Patent Laid-Open No. 10-81938 特開2000−63943号公報Japanese Patent Application Laid-Open No. 2000-63943 特開2001−20038号公報Japanese Patent Laid-Open No. 2001-20038 特開2001−279383号公報JP 2001-279383 A 特開平4−176816号公報JP-A-4-176816 特許第2716301号公報Japanese Patent No. 2716301 特開平10−130720号公報JP-A-10-130720 特開平10−152754号公報JP-A-10-152754 特開平11−50191号公報Japanese Patent Laid-Open No. 11-50191 特開2001−303174号公報JP 2001-303174 A

K.C.Evanson,G.Krauss and D.K.Matlock:Grain Growth in Policrystallin Materials III,ed.byH.Weiland,B.L.Adams and A.D.rollet,TMS,Warrendale,PA(1993),599.K. C. Evanson, G.M. Krauss and D.C. K. Matlock: Grain Growth in Polycrystalline Materials III, ed. byH. Weiland, B.M. L. Adams and A.M. D. rollet, TMS, Warrendale, PA (1993), 599.

本発明が解決しようとする課題は、冷間鍛造した後、焼ならしや焼なましを施すことなく、950℃以上で浸炭焼入れし得る機械構造用鋼材の製造方法およびその方法からなる鋼材であって、浸炭処理時に安定して結晶粒の粗大化を防止することのできる機械構造用鋼材の製造方法および該方法からなる機械構造用鋼材を提供することである。   The problem to be solved by the present invention is a method for producing a steel for machine structural use that can be carburized and quenched at 950 ° C. or higher without performing normalization or annealing after cold forging, and a steel material comprising the method. Then, it is providing the manufacturing method of the steel material for machine structures which can prevent the coarsening of a crystal grain stably at the time of a carburizing process, and the steel material for machine structures which consists of this method.

上記の課題を解決するための手段は、第1の手段では、質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、N:0.010〜0.020%を含有し、残部がFeおよび不可避不純物からなる鋼を鋳造し、鋳造した鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱後に圧延して、直径が100nm以上のAl窒化物とNb系炭窒化物の個数を0.05個/μm2未満としたことを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材の製造方法である。 Means for solving the above-mentioned problems are, in the first means, in mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0 .60%, P: 0.030% or less, S: 0.030% or less, Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0. The steel containing 08%, N: 0.010 to 0.020%, the balance being Fe and inevitable impurities is cast, the cast steel is heated at 1250 ° C. or more for 2 hours or more, and then rolled into a steel slab. Then, the steel slab is heated to a temperature range of 800 ° C. to 1050 ° C. and rolled, and the number of Al nitrides and Nb carbonitrides having a diameter of 100 nm or more is less than 0.05 / μm 2. In the carburizing and quenching process at 950 ° C. to 1000 ° C. after cold forging, the particle size number is 6 or less. This is a method for producing a steel for machine structure capable of stably controlling the generation of coarse grains.

第2の手段では、質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、Ti:0.02〜0.08%、B:0.0005〜0.0035%、N:0.008%以下を含有し、残部がFeおよび不可避不純物からなる鋼を鋳造し、鋳造した鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱後に圧延して、直径が100nm以上のNb系炭化物の個数を0.05個/μm2未満としたことを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材の製造方法である。 In the second means, by mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less , S: 0.030% or less, Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0.08%, Ti: 0.02-0. A steel containing 08%, B: 0.0005 to 0.0035%, N: 0.008% or less, the balance being Fe and inevitable impurities is cast, and the cast steel is heated at 1250 ° C. or more for 2 hours or more. after, and rolled steel strip was cooled, then rolling the steel piece after heating to a temperature range of 800 ° C. to 1050 ° C., 0.05 or the number of Nb-based carbide is not less than 100nm diameter / [mu] m 2 In the carburizing and quenching process at 950 ° C. to 1000 ° C. after the cold forging, the particle size number is 6 This is a method for producing a steel material for machine structure capable of stably controlling the generation of coarse grains having a size of less than that.

第3の手段では、質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、N:0.010〜0.020%を含有し、残部がFeおよび不可避不純物からなる鋼からなり、個数が0.05個/μm2未満である直径が100nm以上のAl窒化物とNb系炭窒化物を含有する鋼材であることを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材である。 In the third means, by mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less , S: 0.030% or less, Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0.08%, N: 0.010-0. A steel material containing 020%, the balance being made of steel consisting of Fe and inevitable impurities, the number of which is less than 0.05 pieces / μm 2 , and the diameter of which is 100 nm or more of Al nitride and Nb carbonitride It is a steel for machine structure capable of stably controlling the generation of coarse grains having a grain size number of 6 or less even in a carburizing and quenching process at 950 ° C. to 1000 ° C. after cold forging.

第4の手段では、質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、Ti:0.02〜0.08%、B:0.0005〜0.0035%、N:0.008%以下を含有し、残部がFeおよび不可避不純物からなる鋼からなり、個数が0.05個/μm2未満である直径が100nm以上のNb系窒化物を含有する鋼材であることを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材である。 In the fourth means, by mass, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less , S: 0.030% or less, Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0.08%, Ti: 0.02-0. The diameter of which is 08%, B: 0.0005 to 0.0035%, N: 0.008% or less, the balance being made of steel consisting of Fe and inevitable impurities, the number of which is less than 0.05 / μm 2 In a carburizing and quenching process at 950 ° C. to 1000 ° C. after cold forging, characterized by being a steel material containing Nb-based nitride of 100 nm or more in a stable manner. Steel material for machine structure that can be controlled.

本願発明の鋼材は、第1の手段の製造方法とすることで、第3の手段の直径が100nm以上のAl窒化物とNb系炭窒化物の個数が0.05個/μm2未満であり、かつ、浸炭処理を行なっても粒度番号が7以上に安定して微細な結晶粒の機械構造用鋼材が的確に得られる。さらに第2の手段の製造方法とすることで、第4の手段の直径が100nm以上のNb系炭化物の個数が0.05個/μm2未満であり、かつ、浸炭処理を行なっても粒度番号が7以上に安定して微細な結晶粒の機械構造用鋼材が的確に得られる。しかも、第1の手段および第2の手段の製造方法で得られた第3の手段および第4の手段の機械構造用鋼は共に耐結晶粒粗大化特性に優れた機械構造用のはだ焼鋼材である。 In the steel material of the present invention, the number of Al nitride and Nb carbonitride having a diameter of 100 nm or more of the third means is less than 0.05 / μm 2 by adopting the manufacturing method of the first means. And even if carburizing is performed, the grain size number is stable to 7 or more, and a steel material for mechanical structure with fine crystal grains can be obtained accurately. Further, by adopting the manufacturing method of the second means, the number of Nb-based carbides having a diameter of 100 nm or more of the fourth means is less than 0.05 / μm 2 , and even if carburizing treatment is performed, the particle size number However, it is possible to accurately obtain a steel material for mechanical structure having fine crystal grains stably at 7 or more. Moreover, the mechanical structural steels of the third means and the fourth means obtained by the manufacturing method of the first means and the second means are both the case-hardening for mechanical structure having excellent crystal grain coarsening resistance. It is a steel material.

先ず、本願発明における鋼材の化学成分の限定理由について、以下に説明する。なお、各化学成分元素の%は質量%である。   First, the reasons for limiting the chemical components of the steel material in the present invention will be described below. In addition,% of each chemical component element is the mass%.

C:0.12〜0.27%
Cは、機械構造用部品用の鋼材としての焼入焼戻し後の強度、もしくは浸炭焼入焼戻し後の芯部強度を確保するために必要な元素である。Cの範囲は0.12%未満では、強度を確保できず、0.27%を超えると、素材の硬度が上昇して加工性が低下する。そこでCは0.12〜0.27%とする。
C: 0.12-0.27%
C is an element necessary for ensuring the strength after quenching and tempering as a steel material for machine structural parts, or the core strength after carburizing and quenching and tempering. If the range of C is less than 0.12%, the strength cannot be ensured. If it exceeds 0.27%, the hardness of the material increases and the workability decreases. Therefore, C is set to 0.12 to 0.27%.

Si:0.30〜0.70%
Siは、脱酸に必要な元素であると共に、鋼に必要な強度焼入性を付与し、また一定量以上の添加で浸炭異常層深さを浅くする効果がある。その効果を得るため、Siは0.30%以上の添加が必要である。一方、Siは0.70%を超えると素材の硬度を高めるため、加工性を低下させる。そこでSiは0.30〜0.70%とする。
Si: 0.30 to 0.70%
Si is an element necessary for deoxidation, imparts the necessary strength hardenability to the steel, and has an effect of shallowing the carburizing abnormal layer depth by addition of a certain amount or more. In order to obtain the effect, Si needs to be added in an amount of 0.30% or more. On the other hand, if Si exceeds 0.70%, the hardness of the material is increased, so that the workability is lowered. Therefore, Si is set to 0.30 to 0.70%.

Mn:0.10〜0.60%
Mnは、焼入性を確保するために必要な元素である。しかし、Mnが0.10%未満では焼入性への効果は十分に得られず、0.60%を超えると機械加工性を低下させると同時に、浸炭時の結晶粒の粗大化が発生し易くなる。そこでMnは0.10〜0.60%とする。
Mn: 0.10 to 0.60%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.10%, the effect on hardenability cannot be obtained sufficiently, and if it exceeds 0.60%, the machinability deteriorates and at the same time coarsening of crystal grains occurs during carburizing. It becomes easy. Therefore, Mn is set to 0.10 to 0.60%.

P:0.030%以下
Pは、スクラップから含有される不可避な元素であるが、Pは0.030%より多いと粒界に偏析して衝撃強度や曲げ強度などの特性を低下させる。そこでPは0.030%以下とする。
P: 0.030% or less P is an inevitable element contained from scrap, but if P is more than 0.030%, it segregates at the grain boundary and deteriorates properties such as impact strength and bending strength. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは、被削性を向上させる元素であるが、Sは0.030%より多いと非金属介在物であるMnSを生成して横方向の靱性および疲労強度を低下する。そこでSは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability. However, if S exceeds 0.030%, MnS, which is a non-metallic inclusion, is generated to reduce the toughness and fatigue strength in the transverse direction. To do. Therefore, S is set to 0.030% or less.

Cr:0.80〜2.00%
Crは、焼入性を確保するためと浸炭時の結晶粒の粗大化を防止するために必要な元素である。しかし、Crが0.80%未満ではこれらの効果を十分に得られず、2.00%を超えると浸炭時に粗大な炭化物が生成し疲労特性の低下を招き、また素材硬度を上昇させて機械加工性を低下させる。そこでCrは0.80〜2.00%とする。
Cr: 0.80 to 2.00%
Cr is an element necessary for ensuring hardenability and preventing coarsening of crystal grains during carburizing. However, if Cr is less than 0.80%, these effects cannot be obtained sufficiently, and if it exceeds 2.00%, coarse carbides are generated during carburizing, leading to deterioration of fatigue characteristics, and increasing the material hardness. Reduces workability. Therefore, Cr is made 0.80 to 2.00%.

Al:0.010〜0.050%
Alは、脱酸材として使用される元素である。この効果を得るため、Alは0.010%以上の添加が必要である。一方、Alを0.050%を超えて添加すると大型のアルミナ系介在物を形成し、疲労特性および加工性を低下する。そこで、Alは0.010〜0.050%とする。
Al: 0.010 to 0.050%
Al is an element used as a deoxidizing material. In order to obtain this effect, Al needs to be added in an amount of 0.010% or more. On the other hand, if Al is added in excess of 0.050%, large alumina inclusions are formed, and fatigue characteristics and workability are deteriorated. Therefore, Al is made 0.010 to 0.050%.

Nb:0.02〜0.08%
Nbは、炭化物や炭窒化物を形成し、結晶粒粗大化防止効果をもたらす。特に鋼中に微細に分散したナノオーダーサイズのNb系炭化物またはNb系炭窒化物が結晶粒の成長を抑制する。Nbが0.02%未満では、その効果は得られず、0.08%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.08%とする。
Nb: 0.02 to 0.08%
Nb forms carbides and carbonitrides, and has the effect of preventing grain coarsening. In particular, nano-order sized Nb carbides or Nb carbonitrides finely dispersed in steel suppress the growth of crystal grains. If Nb is less than 0.02%, the effect cannot be obtained, and if it exceeds 0.08%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, Nb is made 0.02 to 0.08%.

第1の手段では、N:0.010〜0.020%以下、第2の手段では、N:0.0080%以下
Nは、鋼中のAlやNbと反応してAl窒化物やNb系炭窒化物を形成し、浸炭時におけるオーステナイト結晶粒の粗大化を防止する作用を有する。しかし、Nが0.010%未満であると結晶粒粗大化を防止する効果が小さく、0.020%より多すぎると窒化物が増加して疲労強度および加工性が低下する。そこで第1の手段では、Nは0.010〜0.020%とする。
第2の手段では、第1の手段の鋼成分に、さらにBとTiを添加した鋼である。このようにBとTiを添加した場合は、Nを以下のように規定する必要がある。すなわち、Nが0.0080%より多すぎると、TiNが過剰に生成して疲労強度を低下し、さらに加工性が低下する。そこで、第2の手段でTiを添加する場合は、Nを0.080%以下とする。
In the first means, N: 0.010 to 0.020% or less, and in the second means, N: 0.0080% or less. N reacts with Al or Nb in the steel to react with Al nitride or Nb system It forms carbonitrides and has an effect of preventing coarsening of austenite crystal grains during carburization. However, if N is less than 0.010%, the effect of preventing crystal grain coarsening is small, and if it is more than 0.020%, nitrides increase and fatigue strength and workability deteriorate. Therefore, in the first means, N is set to 0.010 to 0.020%.
The second means is steel obtained by further adding B and Ti to the steel component of the first means. Thus, when B and Ti are added, it is necessary to define N as follows. That is, when N is more than 0.0080%, TiN is excessively generated and the fatigue strength is lowered, and the workability is further lowered. Therefore, when adding Ti by the second means, N is set to 0.080% or less.

Ti:0.02〜0.08%
Tiは、炭化物を形成し、結晶粒粗大化を防止する効果をもたらす。さらに、TiはNと結合することにより、BがBNとなることを防ぐ。その効果を得る場合には、Tiを0.02%以上添加する必要がある。一方、Tiが0.08%を超える添加は、機械加工性を損なうので、0.08%以下とする。そこで、Tiは0.02〜0.08%とする。
Ti: 0.02 to 0.08%
Ti forms carbides and has the effect of preventing crystal grain coarsening. Furthermore, Ti combines with N to prevent B from becoming BN. In order to obtain the effect, 0.02% or more of Ti needs to be added. On the other hand, the addition of Ti exceeding 0.08% impairs machinability, so it is made 0.08% or less. Therefore, Ti is made 0.02 to 0.08%.

B:0.0005〜0.0035%
Bは、極少量の含有によって鋼の焼入性を著しく向上させる元素であり、添加することによって他の合金元素の添加量を減らすことができるため、鋼材コストを下げるのに有効である。Bは、0.0005%未満では焼入性の向上効果が小さく、一方、0.0035%を超えると強度を低下させる。そこで、Bは0.0005〜0.0035%とする。
B: 0.0005 to 0.0035%
B is an element that remarkably improves the hardenability of the steel when contained in a very small amount. By adding B, the amount of other alloy elements added can be reduced, which is effective in reducing the steel material cost. If B is less than 0.0005%, the effect of improving hardenability is small, whereas if it exceeds 0.0035%, the strength is lowered. Therefore, B is set to 0.0005 to 0.0035%.

本発明の鋳造による鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱する理由
鋳造による鋼を1250℃以上で2時間以上加熱することにより、第1の手段ではAl窒化物およびNb系炭窒化物を固溶させ、あるいは第2の手段ではNb系炭化物を固溶させ、ついで800℃〜1050℃の温度域に加熱することで950℃の浸炭時に微細にかつ多くのナノオーダーから数十ナノオーダーのAl窒化物、Nb系炭窒化物、あるいはNb系炭化物を分散させている。1250℃未満の加熱または1250℃以上でも1250℃以上保持する時間が2時間未満であれば、Al窒化物、Nb系炭窒化物、あるいはNb系炭化物が充分に固溶せず、鋳造時に析出した100nm以上の粗大なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物が残留する。この100nm以上の粗大なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物が残留すると、結晶粒粗大化防止に有効なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物が少なくなると同時に、800℃〜1050℃の加熱時や浸炭時にオストワルド成長して、周辺の微細なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物を減少させることで、分散状態が不均一となり、結晶粒度特性は劣化する。そこで、本発明では、加熱温度を1250℃以上で保持時間を2時間以上とした。さらに、鋼片圧延して冷却後に1050℃を超える温度域へ加熱後に圧延した場合、Al窒化物、Nb系炭窒化物、あるいはNb系炭化物は成長して、結晶粒の粗大化防止効果が小さくなる。鋼片圧延して冷却後に800℃未満の温度域に加熱後に圧延した場合、圧延後の結晶粒が小さくなり、浸炭時の結晶粒度特性を劣化させる。そこで、本発明では、鋳造による鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱する。
The reason why the steel by casting of the present invention is heated at 1250 ° C. or more for 2 hours or more, then rolled into a steel slab and cooled, and then the steel slab is heated to a temperature range of 800 ° C. to 1050 ° C. The steel by casting is 1250 ° C. By heating for 2 hours or longer as described above, Al nitride and Nb-based carbonitride are dissolved in the first means, or Nb-based carbide is dissolved in the second means, and then 800 ° C. to 1050 ° C. By heating to 950 ° C., a large number of nano-order to several tens of nano-order Al nitride, Nb-based carbonitride, or Nb-based carbide is dispersed finely at the time of carburizing at 950 ° C. If the time of heating below 1250 ° C. or holding at 1250 ° C. or higher for less than 2 hours is less than 2 hours, Al nitride, Nb-based carbonitride, or Nb-based carbide does not sufficiently dissolve and precipitates during casting Coarse Al nitride, Nb carbonitride, or Nb carbide of 100 nm or more remains. If coarse Al nitride, Nb carbonitride, or Nb carbide of 100 nm or more remains, the amount of Al nitride, Nb carbonitride, or Nb carbide effective for preventing grain coarsening decreases. Ostwald growth during heating at 800 ° C. to 1050 ° C. or carburizing to reduce fine Al nitride, Nb-based carbonitride, or Nb-based carbide in the periphery, resulting in non-uniform dispersion and crystal grain size The characteristics deteriorate. Therefore, in the present invention, the heating temperature is 1250 ° C. or more and the holding time is 2 hours or more. Furthermore, when rolling after heating to a temperature range exceeding 1050 ° C. after rolling the steel slab, Al nitride, Nb-based carbonitride, or Nb-based carbide grows, and the effect of preventing coarsening of the crystal grains is small. Become. When steel slab rolling and cooling and then rolling to a temperature range of less than 800 ° C., the rolled crystal grains become smaller and the grain size characteristics during carburization are deteriorated. Therefore, in the present invention, cast steel is heated at 1250 ° C. or more for 2 hours or more, then rolled into a steel slab and cooled, and then the steel slab is heated to a temperature range of 800 ° C. to 1050 ° C.

直径が100nm以上のAl窒化物とNb系炭窒化物、あるいはNb系炭化物は個数で0.05個/μm2未満とする理由
100nm以上の析出物が0.05個/μm2以上の場合は、結晶粒粗大化防止に有効なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物が不足し、かつ、800℃〜1050℃の加熱時や浸炭時にオストワルド成長して、周辺の微細なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物を減少させることで、分散状態が不均一となり、結晶粒度特性は劣化する。一方、100nm以上の析出物が0.05個/μm2未満の場合は、結晶粒粗大化防止に有効なAl窒化物、Nb系炭窒化物、あるいはNb系炭化物を確保できるのと同時に、これらのAl窒化物、Nb系炭窒化物、あるいはNb系炭化物を均一に分散させることが出来るために優れた結晶粒度特性が得られる。そこで、直径が100nm以上のAl窒化物とNb系炭窒化物、あるいはNb系炭化物は個数で0.05個/μm2未満とする。
Reason why the number of Al nitrides and Nb-based carbonitrides or Nb-based carbides having a diameter of 100 nm or more is less than 0.05 pieces / μm 2 When the number of precipitates of 100 nm or more is 0.05 pieces / μm 2 or more In addition, Al nitride, Nb-based carbonitride, or Nb-based carbide effective for preventing grain coarsening are insufficient, and Ostwald growth occurs during heating at 800 ° C. to 1050 ° C. or carburizing, and the surrounding fine Al By reducing nitride, Nb-based carbonitride, or Nb-based carbide, the dispersion state becomes non-uniform, and the crystal grain size characteristics deteriorate. On the other hand, when the number of precipitates of 100 nm or more is less than 0.05 / μm 2, Al nitride, Nb-based carbonitride, or Nb-based carbide effective for preventing grain coarsening can be secured, and at the same time, Since Al nitride, Nb carbonitride, or Nb carbide can be uniformly dispersed, excellent grain size characteristics can be obtained. Therefore, the number of Al nitrides and Nb carbonitrides or Nb carbides having a diameter of 100 nm or more is less than 0.05 / μm 2 .

冷間鍛造後の浸炭焼入れ条件を950℃〜1000℃とする理由
浸炭焼入れ処理の条件が950℃未満の場合、炭素の拡散速度が遅くなり、十分に浸炭されない可能性が生じる。また、条件が1000℃以上の場合、オーステナイト粒のオストワルド成長が促進されることと、Nb系炭化物のオストワルド成長が促進されてピン止め力が減少することから、混粒組織となる可能性がある。そこで、冷間鍛造後の浸炭焼入れ条件は、950℃〜1000℃とする。
Reason why the carburizing and quenching conditions after cold forging are 950 ° C. to 1000 ° C. When the conditions of the carburizing and quenching treatment are less than 950 ° C., the diffusion rate of carbon becomes slow, and there is a possibility that the carburizing and quenching is not sufficiently performed. Further, when the condition is 1000 ° C. or higher, the Ostwald growth of austenite grains is promoted, and the Ostwald growth of Nb-based carbides is promoted to reduce the pinning force, which may result in a mixed grain structure. . Therefore, the carburizing and quenching conditions after cold forging are set to 950 ° C to 1000 ° C.

表1に示す比較鋼と発明鋼の化学成分からなり、残部がFeおよび不可避不純物からなる鋳造による鋼素材である鋼塊または該鋼塊からなるブルームを、表2に示す各鋼片圧延加熱温度に加熱して鋼片圧延を行い、そのまま室温まで冷却した後、さらに表2に示す棒鋼圧延温度に加熱して棒鋼圧延を行って棒鋼を製造した。さらに、これらの棒鋼は切断後、球状化焼鈍を施した後、70%冷間据え込みを行い、焼ならしや焼なましを行うことなく、950℃以上の浸炭温度で擬似浸炭焼入を施して結晶粒の観察を行った。さらに、電子顕微鏡にて100nm以上のAl窒化物とNb系炭窒化物、あるいはNb系炭化物の粒子数を測定した。   Each steel slab rolling heating temperature shown in Table 2 is a steel ingot which is a steel material by casting consisting of chemical components of comparative steel and invention steel shown in Table 1 and the balance consisting of Fe and inevitable impurities. The steel strip was rolled by heating to room temperature and cooled to room temperature as it was, and further heated to the bar rolling temperature shown in Table 2 to perform bar rolling to produce a bar steel. Furthermore, after cutting, these steel bars are subjected to spheroidizing annealing and then 70% cold upsetting, and simulated carburizing and quenching is performed at a carburizing temperature of 950 ° C. or higher without normalizing or annealing. And crystal grains were observed. Furthermore, the number of particles of Al nitride and Nb carbonitride or Nb carbide of 100 nm or more was measured with an electron microscope.

Figure 0006192519
Figure 0006192519

Figure 0006192519
Figure 0006192519

本発明では、表1の発明鋼に、1250℃以上に加熱して鋼片圧延し、室温まで冷却した後、さらに800℃〜1050℃に加熱して棒鋼圧延を行い、950℃〜1000℃の温度で擬似浸炭焼入れを実施した、表2に示す実施例のNo.12、No.13、No.16、No.17、No.20、No.23、No.25およびNo.26の各鋼は、浸炭後の結晶粒の最大粒度がNo.7以上と優れることが確認された。   In the present invention, the steels of Table 1 are heated to 1250 ° C. or higher and rolled into steel slabs, cooled to room temperature, further heated to 800 ° C. to 1050 ° C. to perform bar steel rolling, and 950 ° C. to 1000 ° C. No. of Examples shown in Table 2 in which pseudo carburizing and quenching was performed at the temperature. 12, no. 13, no. 16, no. 17, no. 20, no. 23, no. 25 and No. Each steel of No. 26 has a maximum grain size of No. It was confirmed that it was excellent as 7 or more.

Claims (4)

質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、N:0.010〜0.020%を含有し、残部がFeおよび不可避不純物からなる鋼を鋳造し、鋳造した鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱後に圧延して、直径が100nm以上のAl窒化物とNb系炭窒化物の個数を0.05個/μm2未満としたことを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材の製造方法。 In mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less, S: 0.030 %: Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0.08%, N: 0.010-0.020%, Cast the steel consisting of Fe and unavoidable impurities as the balance, heat the cast steel at 1250 ° C. or more for 2 hours or more, then roll and cool the steel slab, and then heat the steel slab in the temperature range of 800 ° C. to 1050 ° C. And after the cold forging, the number of Al nitrides and Nb carbonitrides having a diameter of 100 nm or more is less than 0.05 / μm 2. A steel for machine structural use that can stably control the generation of coarse grains with a grain size number of 6 or less in the charcoal quenching process. Production method. 質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、Ti:0.02〜0.08%、B:0.0005〜0.0035%、N:0.008%以下を含有し、残部がFeおよび不可避不純物からなる鋼を鋳造し、鋳造した鋼を1250℃以上で2時間以上加熱した後、鋼片に圧延して冷却し、ついで該鋼片を800℃〜1050℃の温度域に加熱後に圧延して、直径が100nm以上のNb系炭化物の個数を0.05個/μm2未満としたことを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材の製造方法。 In mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less, S: 0.030 % Or less, Cr: 0.80 to 2.00%, Al: 0.010 to 0.050%, Nb: 0.02 to 0.08%, Ti: 0.02 to 0.08%, B: 0 .0005 to 0.0035%, N: 0.008% or less, and the balance is made of Fe and inevitable impurities, and the cast steel is heated at 1250 ° C. or more for 2 hours or more. Rolled and cooled, and then rolled after heating the steel slab to a temperature range of 800 ° C. to 1050 ° C., so that the number of Nb-based carbides having a diameter of 100 nm or more was less than 0.05 / μm 2. In the carburizing and quenching process at 950 ° C. to 1000 ° C. after the cold forging, A manufacturing method of steel for machine structure that can stably control generation. 質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、N:0.010〜0.020%を含有し、残部がFeおよび不可避不純物からなる鋼からなり、個数が0.05個/μm2未満である直径が100nm以上のAl窒化物とNb系炭窒化物を含有する鋼材であることを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材。 In mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less, S: 0.030 %: Cr: 0.80-2.00%, Al: 0.010-0.050%, Nb: 0.02-0.08%, N: 0.010-0.020%, A cold steel characterized in that the balance is made of a steel composed of Fe and inevitable impurities, and is a steel material containing Al nitride and Nb carbonitride having a diameter of less than 0.05 / μm 2 and a diameter of 100 nm or more. A steel for machine structure capable of stably controlling the generation of coarse grains having a grain size number of 6 or less even in a carburizing and quenching process at 950 ° C. to 1000 ° C. after hot forging. 質量%で、C:0.12〜0.27%、Si:0.30〜0.70%、Mn:0.10〜0.60%、P:0.030%以下、S:0.030%以下、Cr:0.80〜2.00%、Al:0.010〜0.050%、Nb:0.02〜0.08%、Ti:0.02〜0.08%、B:0.0005〜0.0035%、N:0.008%以下を含有し、残部がFeおよび不可避不純物からなる鋼からなり、個数が0.05個/μm2未満である直径が100nm以上のNb系窒化物を含有する鋼材であることを特徴とする冷間鍛造後に950℃〜1000℃の浸炭焼入工程においても粒度番号が6番以下の粗大粒の発生を安定的に制御できる機械構造用鋼材。 In mass%, C: 0.12 to 0.27%, Si: 0.30 to 0.70%, Mn: 0.10 to 0.60%, P: 0.030% or less, S: 0.030 % Or less, Cr: 0.80 to 2.00%, Al: 0.010 to 0.050%, Nb: 0.02 to 0.08%, Ti: 0.02 to 0.08%, B: 0 Nb system having a diameter of 100 nm or more and comprising 0.05 to 0.0035%, N: 0.008% or less, the balance being made of steel consisting of Fe and inevitable impurities, the number of which is less than 0.05 pieces / μm 2 A steel material for machine structure capable of stably controlling the generation of coarse grains having a particle size number of 6 or less even in a carburizing and quenching process at 950 ° C. to 1000 ° C. after cold forging, characterized by being a steel material containing nitride .
JP2013252381A 2013-12-05 2013-12-05 Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method Active JP6192519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252381A JP6192519B2 (en) 2013-12-05 2013-12-05 Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252381A JP6192519B2 (en) 2013-12-05 2013-12-05 Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method

Publications (2)

Publication Number Publication Date
JP2015108182A JP2015108182A (en) 2015-06-11
JP6192519B2 true JP6192519B2 (en) 2017-09-06

Family

ID=53438743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252381A Active JP6192519B2 (en) 2013-12-05 2013-12-05 Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method

Country Status (1)

Country Link
JP (1) JP6192519B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702099B (en) * 2017-01-18 2021-02-23 抚顺特殊钢股份有限公司 Manufacturing process of large-specification 42CrMo4 quenched and tempered steel for outer main shaft of wind power speed increasing box
JP2020139185A (en) * 2019-02-27 2020-09-03 Jfeスチール株式会社 Production method of case hardening steel
CN115976425A (en) * 2023-01-04 2023-04-18 上海纳铁福传动系统有限公司 Low alloy steel and carburizing and quenching process thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113318A (en) * 1981-12-28 1983-07-06 Kobe Steel Ltd Manufacture of case hardening steel
JP3677972B2 (en) * 1997-10-21 2005-08-03 住友金属工業株式会社 Method for producing steel material for cold forging containing boron
US7081174B2 (en) * 2002-04-30 2006-07-25 Sanyo Special Steel Co., Ltd. Process for producing steel products having improved grain size properties and machinability
JP3878051B2 (en) * 2002-04-30 2007-02-07 山陽特殊製鋼株式会社 Manufacturing method of carburizing steel products with excellent grain size characteristics and machinability
JP4853366B2 (en) * 2007-04-13 2012-01-11 住友金属工業株式会社 Steel carburized or carbonitrided parts with shot peening
JP5432105B2 (en) * 2010-09-28 2014-03-05 株式会社神戸製鋼所 Case-hardened steel and method for producing the same
JP5643622B2 (en) * 2010-11-30 2014-12-17 株式会社神戸製鋼所 Case-hardened steel and machine structural parts using the same
JP5736936B2 (en) * 2011-04-27 2015-06-17 新日鐵住金株式会社 Hot rolled steel bar or wire, and method for producing cold forging steel wire
JP5617798B2 (en) * 2011-08-12 2014-11-05 新日鐵住金株式会社 Rolled steel bar or wire rod for hot forging
JP5965117B2 (en) * 2011-08-15 2016-08-03 山陽特殊製鋼株式会社 Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP6211784B2 (en) * 2013-03-29 2017-10-11 山陽特殊製鋼株式会社 Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method

Also Published As

Publication number Publication date
JP2015108182A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP6211784B2 (en) Manufacturing method of automotive machine parts having excellent fatigue strength and automotive machine parts by the method
CN107614726B (en) Steel sheet and method for producing same
JP5292698B2 (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
JP6401143B2 (en) Method for producing carburized forging
JP5858204B2 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP4600196B2 (en) High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
TW201538744A (en) High-carbon hot rolled steel sheet and manufacturing method thereof
JP6192519B2 (en) Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP5965117B2 (en) Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP2005146303A (en) Method for manufacturing curburized steel superior in grain-coarsening resistance after high temperature carburizing
JP2001279383A (en) High temperature carburizing steel excellent in high temperature carburizability, and hot forged member for high temperature carburizing
JP2015140449A (en) Case hardening steel excellent in crystal grain size property at high temperature
JP2015134945A (en) Carburizing steel
JP2005163168A (en) Production method for high-temperature carburizing steel capable of omitting normalizing after hot forging
WO2013102987A1 (en) High carbon hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170808

R150 Certificate of patent or registration of utility model

Ref document number: 6192519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250