JP2020139185A - Production method of case hardening steel - Google Patents

Production method of case hardening steel Download PDF

Info

Publication number
JP2020139185A
JP2020139185A JP2019034792A JP2019034792A JP2020139185A JP 2020139185 A JP2020139185 A JP 2020139185A JP 2019034792 A JP2019034792 A JP 2019034792A JP 2019034792 A JP2019034792 A JP 2019034792A JP 2020139185 A JP2020139185 A JP 2020139185A
Authority
JP
Japan
Prior art keywords
mass
less
hot working
steel
heating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019034792A
Other languages
Japanese (ja)
Inventor
祐太 今浪
Yuta Imanami
祐太 今浪
岩本 隆
Takashi Iwamoto
岩本  隆
西村 公宏
Kimihiro Nishimura
公宏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019034792A priority Critical patent/JP2020139185A/en
Publication of JP2020139185A publication Critical patent/JP2020139185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To propose a production method of case hardening steel in which coarsening of crystal grains during carburization can be reliably and effectively suppressed.SOLUTION: A steel raw material contains C: 0.10-0.35 mass%, Si: 0.01-1.20 mass%, Mn: 0.30-1.50 mass%, P: 0.1 mass% or less, S: 0.5 mass% or less, Cr: 0.40-2.00 mass%, Nb: 0.010-0.090 mass%, Al: 0.010-0.080 mass%, and N: 0.0070 mass% or less, and the balance being Fe and inevitable impurities. The steel raw material is subjected to a first stage hot working, which is performed by heating the steel raw material at a heating temperature for a holding time described below, and is further subjected to a second stage hot working, which is performed by heating the steel raw material at a heating temperature for a holding time described below. <The first stage hot working> Heating temperature: X°C or higher, holding time: 1 hour or longer. X=1950+144.5 Ln(Y) where Y represents an added amount of N (mass%). <The second stage hot working> Heating temperature: 1000°C or lower, holding time: 5 hours or shorter.SELECTED DRAWING: None

Description

本発明は、建産機や自動車分野で用いられる機械構造用材料に供する、浸炭処理を行った場合でも結晶粒が粗大化せず、微細な結晶粒を有する肌焼鋼の製造方法に関するものである。本発明で得られる肌焼鋼が用いられる部品として、建産機分野では、例えば、走行減速機のギア(プラネタリーギアおよびサンギア等の歯車)、大型減速機のギア、油圧ポンプのバルブプレート、ボールねじのナット、サイクロン減速機の曲線板およびピン、並びに、直動軸受けのブロック等が挙げられ、同様に、自動車分野では、各種軸受、エンジンのピストンピン、カムシャフトおよびタイミングギア、変速機の歯車類(ミッシングギア、リングギア、サンギアおよびプラネリタギア等)、並びに、駆動系のデフベベルギア、トリポート、インナおよびボール等が挙げられる。また、建産機や自動車分野以外では、電気機器分野の風力発電機用の軸受や減速ギア等である。 The present invention relates to a method for producing a skin-baked steel which is used as a material for machine structure used in the construction machine and the automobile field and has fine crystal grains without coarsening the crystal grains even when carburized. is there. In the field of construction machinery, for example, gears of traveling speed reducers (gears such as planetary gears and sun gears), gears of large speed reducers, valve plates of hydraulic pumps, as parts using the skin-baked steel obtained in the present invention. Ball screw nuts, cyclone speed reducer curves and pins, and linear bearing blocks, etc. Similarly, in the automotive field, various bearings, engine piston pins, cam shafts and timing gears, transmissions, etc. Examples include gears (missing gears, ring gears, sun gears, planetar gears, etc.), and drive system differential bevel gears, tripports, inners, balls, and the like. In addition to the construction machinery and automobile fields, bearings and reduction gears for wind power generators in the electrical equipment field.

鋼の疲労特性を向上させる熱処理として、浸炭焼入れ焼戻しがよく知られている。ここで、浸炭処理は高温長時間の熱処理であるため、結晶粒が成長粗大化する場合がある。結晶粒の粗大化は疲労特性を低下させるため、これを回避するための技術が提案されている。 Carburizing, quenching and tempering are well known as heat treatments for improving the fatigue properties of steel. Here, since the carburizing treatment is a heat treatment at a high temperature for a long time, the crystal grains may grow and coarsen. Since coarsening of crystal grains lowers fatigue characteristics, techniques for avoiding this have been proposed.

例えば、特許文献1では、Nb添加鋼を熱間圧延で製造するに際し、分塊圧延の加熱時間を極力短くし、Nb系介在物の量を低減する手法が提案されている。また、特許文献2では、Nb添加鋼を熱間圧延で製造するに際し、第1段目の圧延での加熱を1160℃以上の温度とし、第2段目の圧延での加熱を1000℃以下とし、微細なNb析出物の個数を増大させる手法が提案されている。 For example, Patent Document 1 proposes a method of reducing the amount of Nb-based inclusions by shortening the heating time of block-matrix rolling as much as possible when producing Nb-added steel by hot rolling. Further, in Patent Document 2, when Nb-added steel is produced by hot rolling, the heating in the first-stage rolling is set to a temperature of 1160 ° C. or higher, and the heating in the second-stage rolling is set to 1000 ° C. or lower. , A method for increasing the number of fine Nb precipitates has been proposed.

特許第5503170号Patent No. 5503170 特許第5796406号Patent No. 5796406

近年、部品の製造コストを低減するため、切削加工を冷間鍛造加工に置き換える試みが進められている。その結果、浸炭前の鋼材には冷間加工歪の導入が著しくなり、これに起因する浸炭時の結晶粒粗大化が以前にも増して発生しやすい傾向にある。また、浸炭熱処理コストの低減を目的として、処理時間を短くするために、処理温度の高温化が選択される場合も多く、これも浸炭時の結晶粒粗大化が発生しやすくなっている要因の一つになっている。このような事情を考慮すると、従来の技術では、浸炭時の結晶粒粗大化を確実に抑制することが難しい場合が多くあり、この結晶粒の粗大化抑制が課題であった。 In recent years, in order to reduce the manufacturing cost of parts, attempts have been made to replace cutting with cold forging. As a result, the introduction of cold working strain into the steel material before carburizing becomes remarkable, and the coarsening of crystal grains at the time of carburizing due to this tends to occur more easily than before. In addition, in order to shorten the treatment time for the purpose of reducing the cost of carburizing heat treatment, it is often selected to raise the treatment temperature, which is also a factor that tends to cause grain coarsening during carburizing. It is one. Considering such circumstances, it is often difficult to reliably suppress the coarsening of crystal grains at the time of carburizing by the conventional technique, and suppressing the coarsening of the crystal grains has been an issue.

本発明は、上記の実情に鑑み開発されたものであり、浸炭時の結晶粒の粗大化を確実かつ効果的に抑制可能な肌焼鋼の製造方法について提案することを目的とする。 The present invention has been developed in view of the above circumstances, and an object of the present invention is to propose a method for producing a skin-baked steel capable of reliably and effectively suppressing coarsening of crystal grains during carburizing.

発明者らは、上記の目的を達成すべく、鋼の製造方法と、浸炭時の結晶粒粗大化現象との関係を鋭意研究した結果、Nb添加鋼に施す2段の熱間加工において、第1段の熱間加工の加熱温度を従来よりも高温化および長時間化することにより、浸炭時の結晶粒粗大化が著しく抑制されることを見出した。本発明は上記の知見に立脚するものである。
すなわち、本発明の要旨は次のとおりである。
As a result of diligent research on the relationship between the steel manufacturing method and the grain coarsening phenomenon during carburizing in order to achieve the above objectives, the inventors have conducted the first step in hot working on Nb-added steel. It has been found that by making the heating temperature of the one-stage hot working higher and longer than before, the coarsening of crystal grains during carburizing is remarkably suppressed. The present invention is based on the above findings.
That is, the gist of the present invention is as follows.

1.C:0.10〜0.35質量%、
Si:0.01〜1.20質量%、
Mn:0.30〜1.50質量%、
P:0.1質量%以下、
S:0.5質量%以下、
Cr:0.40〜2.00質量%、
Nb:0.010〜0.090質量%、
Al:0.010〜0.080質量%および
N:0.0070質量%以下
を含み、残部はFe及び不可避的不純物の成分組成を有する鋼素材に、以下に示す加熱温度および保持時間にて加熱して行う第1段の熱間加工を施し、さらに以下に示す加熱温度および保持時間にて加熱して行う第2段の熱間加工を施す、肌焼鋼の製造方法。
<第1段熱間加工>
加熱温度:X℃以上、保持時間:1時間以上
但し、X=1950+144.5Ln(Y)
ここで、Y:N添加量(質量%)
<第2段熱間加工>
加熱温度:1000℃以下、保持時間:5時間以下
1. 1. C: 0.10 to 0.35% by mass,
Si: 0.01 to 1.20% by mass,
Mn: 0.30 to 1.50% by mass,
P: 0.1% by mass or less,
S: 0.5% by mass or less,
Cr: 0.40 to 2.00 mass%,
Nb: 0.010 to 0.090% by mass,
First stage performed by heating a steel material containing Al: 0.010 to 0.080% by mass and N: 0.0070% by mass or less, and the balance having a component composition of Fe and unavoidable impurities at the heating temperature and holding time shown below. A method for producing skin-baked steel, which comprises performing the hot working of the above, and further performing the hot working of the second stage performed by heating at the heating temperature and holding time shown below.
<1st stage hot working>
Heating temperature: X ° C or higher, holding time: 1 hour or longer However, X = 1950 + 144.5Ln (Y)
Here, the amount of Y: N added (mass%)
<Second stage hot working>
Heating temperature: 1000 ° C or less, holding time: 5 hours or less

2.前記成分組成はさらに、
Mo:1質量%以下、
Cu:1質量%以下、
Ni:1質量%以下および
B:0.01質量%以下
のうちから選ばれる1種または2種以上を含有する前記1に記載の肌焼鋼の製造方法。
2. 2. The component composition further
Mo: 1% by mass or less,
Cu: 1% by mass or less,
The method for producing a skin-baked steel according to 1 above, which contains one or more selected from Ni: 1% by mass or less and B: 0.01% by mass or less.

3.前記成分組成はさらに、
Ti:0.1質量%以下、
V:0.1質量%以下、
Hf:0.1質量%以下、
Ta:0.1質量%以下および
Se:0.3質量%以下
のうちから選ばれる1種または2種以上を含有する前記1または2に記載の肌焼鋼の製造方法。
3. 3. The component composition further
Ti: 0.1% by mass or less,
V: 0.1% by mass or less,
Hf: 0.1% by mass or less,
Ta: 0.1% by mass or less and
Se: The method for producing a skin-baked steel according to 1 or 2 above, which contains one or more selected from 0.3% by mass or less.

4.前記成分組成はさらに、
Sn:0.1質量%以下および
Sb:0.1質量%以下、
のうちから選ばれる1種または2種を含有する前記1から3のいずれかに記載の肌焼鋼の製造方法。
4. The component composition further
Sn: 0.1% by mass or less and
Sb: 0.1% by mass or less,
The method for producing a skin-baked steel according to any one of 1 to 3 above, which contains one or two selected from the above.

5.前記成分組成はさらに、
Pb:0.3質量%以下および
Bi:0.3質量%以下
のうちから選ばれる1種または2種を含有する前記1から4のいずれかに記載の肌焼鋼の製造方法。
5. The component composition further
Pb: 0.3% by mass or less and
Bi: The method for producing a skin-baked steel according to any one of 1 to 4 above, which contains one or two selected from 0.3% by mass or less.

本発明によれば、浸炭処理のための加熱による結晶粒の粗大化を効果的に抑制可能な肌焼鋼を得ることができ、工業上非常に有用である。 According to the present invention, it is possible to obtain a skin-baked steel capable of effectively suppressing the coarsening of crystal grains due to heating for carburizing treatment, which is very useful industrially.

以下、本発明の肌焼鋼を具体的に説明する。
まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について、成分毎に順に説明する。
C:0.10〜0.35質量%
Cは、浸炭熱処理後の焼入れにより鋼材の芯部の硬度を高めるために、0.10質量%以上の含有を必要とする。一方、含有量が0.35質量%を超えると、焼入れ後の芯部の靭性が低下するため、C量は0.10〜0.35質量%の範囲に限定した。好ましくは、0.13〜0.27質量%の範囲である。より好ましくは、0.15〜0.25質量%の範囲である。
Hereinafter, the skin-baked steel of the present invention will be specifically described.
First, in the present invention, the reason why the component composition of steel is limited to the above range will be described in order for each component.
C: 0.10 to 0.35% by mass
C needs to be contained in an amount of 0.10% by mass or more in order to increase the hardness of the core portion of the steel material by quenching after the carburizing heat treatment. On the other hand, if the content exceeds 0.35% by mass, the toughness of the core after quenching decreases, so the C amount was limited to the range of 0.10 to 0.35% by mass. It is preferably in the range of 0.13 to 0.27% by mass. More preferably, it is in the range of 0.15 to 0.25% by mass.

Si:0.01〜1.20質量%
Siは、脱酸剤として必要であり、少なくとも0.01質量%の添加が必要である。しかしながら、Siは浸炭表層で優先的に酸化し、粒界酸化を促進する元素である。また、過度に含有させると、固溶強化により変形抵抗を高めて鍛造性を劣化させるため、上限を1.20質量%とする。好ましくは、0.02〜0.35質量%である。さらに好ましくは、0.03〜0.15質量%である。なお、冷間鍛造用途の場合に最も好ましい範囲は、0.03〜0.09%である。
Si: 0.01 to 1.20% by mass
Si is required as an antacid and needs to be added at least 0.01% by weight. However, Si is an element that preferentially oxidizes on the carburized surface layer and promotes intergranular oxidation. Further, if it is contained excessively, the deformation resistance is increased by strengthening the solid solution and the forgeability is deteriorated. Preferably, it is 0.02 to 0.35% by mass. More preferably, it is 0.03 to 0.15% by mass. The most preferable range for cold forging is 0.03 to 0.09%.

Mn:0.30〜1.50質量%
Mnは、焼入性の向上に有効な元素で有り、少なくとも0.30質量%の添加を必要とする。しかし、Mnの過剰な添加は、固溶強化による変形抵抗の上昇を招くため、上限を1.50質量%とした。好ましくは、0.40〜1.0質量%であり、より好ましくは0.40〜0.90質量%である。
Mn: 0.30 to 1.50 mass%
Mn is an element effective for improving hardenability and requires addition of at least 0.30% by mass. However, since excessive addition of Mn causes an increase in deformation resistance due to solid solution strengthening, the upper limit is set to 1.50% by mass. It is preferably 0.40 to 1.0% by mass, and more preferably 0.40 to 0.90% by mass.

P:0.1質量%以下
Pは、結晶粒界に偏析し、靭性を低下させるため、その混入は低いほど望ましいが、0.1質量%までは許容される。好ましくは、0.02質量%以下である。また、下限については特に限定せずとも問題はないが、無駄な低P化は精錬時間の増長や精錬コストを上昇させてしまうため、コストの観点からは0.003%以上とするとよい。
P: 0.1% by mass or less P segregates at the grain boundaries and lowers the toughness. Therefore, the lower the mixing, the more desirable, but up to 0.1% by mass is allowed. Preferably, it is 0.02% by mass or less. Further, there is no problem even if the lower limit is not particularly limited, but since unnecessary reduction of P increases the refining time and the refining cost, it is preferable to set it to 0.003% or more from the viewpoint of cost.

S:0.5質量%以下
Sは、硫化物系介在物として存在し、被削性の向上に有効な元素であるが、過剰な添加は冷間鍛造性の低下を招くため、上限を0.5質量%とする。また、下限については特に限定しないが、過度の低S化は精錬コストを上昇させてしまうため、0.003%以上とするとよい。好ましくは0.004〜0.300質量%であり、さらに好ましくは0.005〜0.090質量%である。
S: 0.5% by mass or less S exists as a sulfide-based inclusion and is an element effective for improving machinability, but excessive addition causes a decrease in cold forging property, so the upper limit is 0.5% by mass. And. Further, although the lower limit is not particularly limited, it is preferable to set it to 0.003% or more because excessively low S will increase the refining cost. It is preferably 0.004 to 0.300% by mass, and more preferably 0.005 to 0.090% by mass.

Cr:0.40〜2.00質量%
Crは、焼入性と焼戻し軟化抵抗の向上に寄与し、さらには炭化物の球状化促進にも有用な元素であるが、含有量が0.40質量%に満たないと、その添加効果に乏しい。一方、2.00質量%を超えると、過剰浸炭や残留オーステナイトの生成を促進し、疲労強度に悪影響を与える。よって、Cr量は0.40〜2.00質量%の範囲に限定する。好ましくは、0.7〜1.9質量%の範囲である。より好ましくは、0.8〜1.8質量%である。
Cr: 0.40 to 2.00 mass%
Cr is an element that contributes to improvement of hardenability and temper softening resistance, and is also useful for promoting spheroidization of carbides, but its addition effect is poor if the content is less than 0.40% by mass. On the other hand, if it exceeds 2.00% by mass, excessive carburizing and formation of retained austenite are promoted, which adversely affects fatigue strength. Therefore, the amount of Cr is limited to the range of 0.40 to 2.00 mass%. Preferably, it is in the range of 0.7 to 1.9% by mass. More preferably, it is 0.8 to 1.8% by mass.

Nb:0.010〜0.090質量%
Nbは、鋼中でNbCを形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。Nbによるこの効果を得るためには、少なくとも0.010質量%でNbを添加する。一方、0.090質量%を超えて添加すると、粗大なNbCの析出による粗粒化抑制能の低下や、疲労強度の劣化を招くおそれがあるため、Nb含有量は0.090質量%以下とする。好ましくは、0.005〜0.060質量%である。さらに好ましくは、0.010〜0.050質量%である。
Nb: 0.010 to 0.090% by mass
Nb forms NbC in steel and suppresses coarsening of austenite grain size during carburizing heat treatment by a pinning effect. To obtain this effect with Nb, add Nb in at least 0.010% by weight. On the other hand, if it is added in excess of 0.090% by mass, the ability to suppress coarse graining due to the precipitation of coarse NbC may decrease and the fatigue strength may deteriorate. Therefore, the Nb content should be 0.090% by mass or less. Preferably, it is 0.005 to 0.060% by mass. More preferably, it is 0.010 to 0.050% by mass.

Al:0.010〜0.080質量%
Alは、脱酸に有効な元素であるが、含有量が0.010質量%に満たないと、その添加効果に乏しい。また、過剰な添加は介在物の増加を招き、疲労破壊の起点を増やし、低疲労強度の原因となることから、上限を0.080質量%とした。好ましくは、0.015〜0.080質量%であり、さらに好ましくは0.015〜0.060質量%である。ちなみに、後述する選択添加成分であるBは、固溶Bによる焼入れ性向上が疲労強度向上に有効であるから、この固溶Bを確保することを所期する場合は、0.035〜0.070質量%の範囲が好適である。
Al: 0.010 to 0.080% by mass
Al is an element effective for deoxidation, but its addition effect is poor if the content is less than 0.010% by mass. In addition, excessive addition causes an increase in inclusions, increases the starting point of fatigue fracture, and causes low fatigue strength. Therefore, the upper limit is set to 0.080% by mass. It is preferably 0.015 to 0.080% by mass, and more preferably 0.015 to 0.060% by mass. By the way, as for B, which is a selective additive component described later, improvement of hardenability by solid solution B is effective for improvement of fatigue strength. Therefore, when it is expected to secure this solid solution B, 0.035 to 0.070% by mass The range is suitable.

N:0.0070質量%以下
Nは、Alと結合し窒化物(AlN)を形成する。かようなAlNはNbCの析出核となる結果、析出物を粗大化させてしまう。また、AlNとNbCとが接合した複合析出物は熱力学的安定性が上昇するため、高温で溶解しにくくなる。その結果、第一段の熱間加工の加熱時に、上記した粗大な複合析出物が残存することになる。この粗大な複合析出物は、その高い熱力学的安定性ゆえに浸炭時でも残存し、微細な析出物の総量を減ずる作用を通じて結晶粒の粗大化を招いてしまう。かように、N量の増大はAlN単体の熱力学的安定性を増大させることになる。このため、添加N量の増大に従い、第一段の熱間加工の加熱温度を上昇させる必要があるが、一方で、過度の圧延加熱温度の上昇は結晶粒成長を促進させてしまう。このようにして成長粗大化した結晶粒は、浸炭時のオーステナイト粒径を粗大化させてしまう。以上の現象を回避できるN量の上限は、0.0070質量%である。
N: 0.0070% by mass or less N combines with Al to form a nitride (AlN). As a result of such AlN becoming a precipitate nucleus of NbC, the precipitate is coarsened. In addition, the composite precipitate in which AlN and NbC are bonded has increased thermodynamic stability, so that it is difficult to dissolve at a high temperature. As a result, the above-mentioned coarse composite precipitate remains when the first stage hot working is heated. Due to its high thermodynamic stability, this coarse composite precipitate remains even during carburizing, and causes coarsening of crystal grains through the action of reducing the total amount of fine precipitates. Thus, an increase in the amount of N will increase the thermodynamic stability of AlN alone. Therefore, it is necessary to raise the heating temperature of the hot working in the first stage as the amount of N added increases, but on the other hand, an excessive rise in the rolling heating temperature promotes grain growth. The crystal grains grown and coarsened in this way coarsen the austenite particle size at the time of carburizing. The upper limit of the amount of N that can avoid the above phenomenon is 0.0070 mass%.

一方、下限については特に限定しないが、過度の低N化は精錬コストを上昇させてしまうため、0.0010%以上とするとよい。好ましくは0.0015〜0.0065質量%であり、さらに好ましくは0.0020〜0.0055質量%である。また、鋼中固溶N量を低減し、冷間鍛造時の動的歪み時効による冷間鍛造荷重の上昇を抑え、鍛造荷重低減も志向する場合は、0.0020〜0.0050質量%の範囲が好適である。 On the other hand, although the lower limit is not particularly limited, it is preferable to set it to 0.0010% or more because excessively low N increases the refining cost. It is preferably 0.0015 to 0.0065% by mass, and more preferably 0.0020 to 0.0055% by mass. Further, when the amount of solid solution N in steel is reduced, the increase in cold forging load due to dynamic strain aging during cold forging is suppressed, and the forging load is to be reduced, the range of 0.0020 to 0.0050 mass% is preferable. is there.

以上の基本成分の残部は、Fe及び不可避的不純物である。ここで、上記した基本成分に加えて、本発明では、必要に応じて、更に、以下に示す各成分を適宜添加することが可能である。
Mo:1質量%以下、
Cu:1質量%以下、
Ni:1質量%以下および
B:0.01質量%以下
のうちから選ばれる1種または2種以上
The rest of the above basic components are Fe and unavoidable impurities. Here, in addition to the above-mentioned basic components, in the present invention, it is possible to add each of the following components as appropriate, if necessary.
Mo: 1% by mass or less,
Cu: 1% by mass or less,
Ni: 1 or more selected from 1% by mass or less and B: 0.01% by mass or less

Mo:1質量%以下
Moは、焼入性と焼戻し軟化抵抗性の向上に寄与し、さらには浸炭異常層を低減する効果も示し、有用な元素であるため添加してもよい。しかし、含有量が1質量%を超えると、焼入れが過剰となり、圧延後の取り扱い時に疵が発生または割れが発生する懸念がある。そのため、Moの添加量は1質量%以下の範囲に制限することが好ましい。なお、Moによる上記の焼入性、焼戻し軟化抵抗性の向上および浸炭異常層の低減の各効果を発現させるためには、Moは0.01質量%以上で添加することが好ましい。さらに、好ましくは0.03〜0.50質量%の範囲である。より好ましくは0.05〜0.30質量%である。
Mo: 1% by mass or less
Mo contributes to the improvement of hardenability and temper softening resistance, and also has the effect of reducing the abnormal carburized layer, and may be added because it is a useful element. However, if the content exceeds 1% by mass, quenching becomes excessive, and there is a concern that defects or cracks may occur during handling after rolling. Therefore, it is preferable to limit the amount of Mo added to the range of 1% by mass or less. In order to exhibit the above-mentioned effects of Mo on improving hardenability, tempering softening resistance, and reducing abnormal carburized layer, it is preferable to add Mo in an amount of 0.01% by mass or more. Further, it is preferably in the range of 0.03 to 0.50% by mass. More preferably, it is 0.05 to 0.30% by mass.

Cu:1質量%以下
Cuは、焼入性の向上に寄与する元素であり、また、Seととともに添加することにより、鋼中でSeと結合し、結晶粒の粗大化防止効果を示す有用な元素である。これらの効果を得るためには、Cuは0.01質量%以上で含有されることが好ましい。一方、Cu含有量が1質量%を超えると、圧延材の表面肌が荒れてしまい、疵として残存する懸念がある。そこで、Cu量は1質量%以下の範囲に限定することが好ましい。より好ましくは0.015〜0.500質量%の範囲である。更に好ましくは0.03〜0.30質量%である。
Cu: 1% by mass or less
Cu is an element that contributes to the improvement of hardenability, and is a useful element that, when added together with Se, binds to Se in steel and exhibits an effect of preventing coarsening of crystal grains. In order to obtain these effects, Cu is preferably contained in an amount of 0.01% by mass or more. On the other hand, if the Cu content exceeds 1% by mass, the surface surface of the rolled material becomes rough, and there is a concern that it may remain as a defect. Therefore, it is preferable to limit the amount of Cu to the range of 1% by mass or less. More preferably, it is in the range of 0.015 to 0.500% by mass. More preferably, it is 0.03 to 0.30% by mass.

Ni:1質量%以下
Niは、焼入性の向上に寄与するとともに、靱性の向上に有用な元素である。これらの効果を得るためには、Niは0.01質量%以上で含有されることが好ましい。一方、1質量%を超えて含有されても、上記の効果が飽和する。よって、Ni含有量は1質量%以下の範囲に限定することが好ましい。より好ましくは0.015〜0.500質量%の範囲である。更に好ましくは0.03〜0.30質量%である。
Ni: 1% by mass or less
Ni is an element that contributes to the improvement of hardenability and is useful for improving toughness. In order to obtain these effects, Ni is preferably contained in an amount of 0.01% by mass or more. On the other hand, even if it is contained in an amount of more than 1% by mass, the above effect is saturated. Therefore, the Ni content is preferably limited to the range of 1% by mass or less. More preferably, it is in the range of 0.015 to 0.500% by mass. More preferably, it is 0.03 to 0.30% by mass.

B:0.01質量%以下
Bは、粒界に偏析し、拡散型変態を抑制することで、焼入性の向上に有効であり、加えて粒界を強化し、疲労亀裂の発生および進展を抑制し疲労強度を向上させる効果もある。Bによるこの効果を得るためには、0.0003質量%以上でBを含有させることが好ましい。一方、0.01%を超えると、靱性が低下するため、B量は0.01質量%以下の範囲に限定することが好ましい。より好ましくは、0.0005〜0.0050質量%の範囲である。更に好ましくは0.0007〜0.0020質量%である。
B: 0.01% by mass or less B is effective in improving hardenability by segregating at grain boundaries and suppressing diffusion-type transformation. In addition, it strengthens grain boundaries and suppresses the occurrence and growth of fatigue cracks. It also has the effect of improving fatigue strength. In order to obtain this effect by B, it is preferable to contain B in an amount of 0.0003% by mass or more. On the other hand, if it exceeds 0.01%, the toughness decreases, so the amount of B is preferably limited to the range of 0.01% by mass or less. More preferably, it is in the range of 0.0005 to 0.0050% by mass. More preferably, it is 0.0007 to 0.0020% by mass.

さらに、必要に応じて、以下に示す各成分を適宜添加することが可能である。
Ti:0.1質量%以下、
V:0.1質量%以下、
Hf:0.1質量%以下、
Ta:0.1質量%以下および
Se:0.3質量%以下
のうちから選ばれる1種または2種以上
Further, if necessary, each component shown below can be added as appropriate.
Ti: 0.1% by mass or less,
V: 0.1% by mass or less,
Hf: 0.1% by mass or less,
Ta: 0.1% by mass or less and
Se: One or more selected from 0.3% by mass or less

Ti:0.1質量%以下
Tiの添加は、鋳造後の表面割れを抑制する効果がある。しかし、0.1質量%を超えて添加しても、その効果は飽和するのみであるためTi含有量は0.1質量%以下とすることが好ましい。また、TiはNとの結合力が極めて強く、少量であっても窒化物を形成する。このTi窒化物は凝固段階から粗大に生成し、圧延後も残存するため、接触疲労強度を著しく低下する場合がある。ピッチングや表面剥離等の接触疲労破壊が優先的に生じる部材または使用環境における負荷応力が非常に高い歯車部品の場合は、むしろ添加せず不純物としてもなるべく混入を避けることが望ましく、このような場合は0.003質量%以下とすることが好ましい。
Ti: 0.1% by mass or less
The addition of Ti has the effect of suppressing surface cracking after casting. However, even if it is added in excess of 0.1% by mass, the effect is only saturated, so the Ti content is preferably 0.1% by mass or less. Further, Ti has an extremely strong bonding force with N and forms a nitride even in a small amount. Since this Ti nitride is roughly formed from the solidification stage and remains even after rolling, the contact fatigue strength may be significantly reduced. In the case of members where contact fatigue failure such as pitching and surface peeling occurs preferentially or gear parts with extremely high load stress in the usage environment, it is desirable to avoid mixing as much as possible as impurities without adding them. Is preferably 0.003% by mass or less.

V:0.1質量%以下
Vは、鋼中でVCを形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。Vによるこの効果を得るためには、少なくとも0.003質量%以上でVを含有させることが好ましい。一方、0.1質量%を超えて添加しても合金コストが高価となるばかりであり、結晶粒の粗大化防止効果は飽和する。よって、V含有量は0.1質量%以下とすることが好ましい。より好ましくは、0.005〜0.080質量%である。さらに好ましくは、0.01〜0.06質量%である。
V: 0.1% by mass or less V forms VC in steel and suppresses coarsening of austenite grain size during carburizing heat treatment by pinning effect. In order to obtain this effect by V, it is preferable to contain V in an amount of at least 0.003% by mass or more. On the other hand, even if it is added in an amount exceeding 0.1% by mass, the alloy cost is only increased, and the effect of preventing coarsening of crystal grains is saturated. Therefore, the V content is preferably 0.1% by mass or less. More preferably, it is 0.005 to 0.080% by mass. More preferably, it is 0.01 to 0.06% by mass.

Hf:0.1質量%以下
Hfは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003質量%でHfを添加することが好ましい。一方、0.1質量%を超えて添加すると、鋳造凝固時に粗大な析出物を生成し、粗粒化抑制能の低下や疲労強度の劣化を招くおそれがあるため、Hfの含有量は0.1質量%以下とすることが好ましい。より好ましくは、0.005〜0.060質量%である。さらに好ましくは、0.01〜0.05質量%である。
Hf: 0.1% by mass or less
Hf forms carbides in steel and suppresses coarsening of austenite grain size during carburizing heat treatment by a pinning effect. In order to obtain this effect, it is preferable to add Hf in an amount of at least 0.003% by mass. On the other hand, if it is added in excess of 0.1% by mass, coarse precipitates may be formed during casting and solidification, which may lead to a decrease in coarse-grained suppression ability and a deterioration in fatigue strength. Is preferable. More preferably, it is 0.005 to 0.060% by mass. More preferably, it is 0.01 to 0.05% by mass.

Ta:0.1質量%以下
Taは、鋼中で炭化物を形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。この効果を得るためには、少なくとも0.003質量%でTaを添加することが好ましい。一方、0.1質量%を超えて添加すると、鋳造凝固時に割れを生じやすくなり、圧延および鍛造後でも疵が残存してしまう懸念があるため、Taの含有量は0.1質量%以下とすることが好ましい。より好ましくは、0.005〜0.060質量%である。さらに好ましくは、0.01〜0.05質量%である。
Ta: 0.1% by mass or less
Ta forms carbides in steel and suppresses coarsening of austenite grain size during carburizing heat treatment by a pinning effect. In order to obtain this effect, it is preferable to add Ta in an amount of at least 0.003% by mass. On the other hand, if it is added in excess of 0.1% by mass, cracks are likely to occur during casting and solidification, and there is a concern that defects may remain even after rolling and forging. Therefore, the Ta content is preferably 0.1% by mass or less. .. More preferably, it is 0.005 to 0.060% by mass. More preferably, it is 0.01 to 0.05% by mass.

Se:0.3質量%以下
Seは、MnやCuと結合し、鋼中に析出物として分散する。Se析出物は浸炭熱処理温度域で析出物成長がほとんど起こらず安定に存在しており、オーステナイト粒径のピン止め効果が高い。このため、Se添加は結晶粒の粗大化防止に有効であるが、この効果を得るためには、少なくとも0.001質量%以上でSeを添加することが好ましい。一方、0.3質量%を超えて添加しても、結晶粒の粗大化防止効果は飽和する。このため、Se含有量は0.3質量%とすることが好ましい。より好ましくは、0.005〜0.100質量%である。さらに好ましくは、0.008〜0.090質量%である。
Se: 0.3% by mass or less
Se binds to Mn and Cu and disperses as a precipitate in steel. Se precipitates are stable in the carburizing heat treatment temperature range with almost no precipitation growth, and have a high pinning effect on the austenite particle size. Therefore, the addition of Se is effective in preventing the coarsening of crystal grains, but in order to obtain this effect, it is preferable to add Se in an amount of at least 0.001% by mass or more. On the other hand, even if it is added in an amount exceeding 0.3% by mass, the effect of preventing the coarsening of crystal grains is saturated. Therefore, the Se content is preferably 0.3% by mass. More preferably, it is 0.005 to 0.100% by mass. More preferably, it is 0.008 to 0.090% by mass.

同様に、必要に応じて、以下に示す各成分を適宜添加することが可能である。
Sn:0.1質量%以下および
Sb:0.1質量%以下
のうちから選ばれる1種または2種を含有
Similarly, if necessary, each of the following components can be added as appropriate.
Sn: 0.1% by mass or less and
Sb: Contains 1 or 2 selected from 0.1% by mass or less

Sb:0.1質量%以下
Sbは、鋼材表面の脱炭を抑制し、表面硬度の低下を防止するために有効な元素である。この効果を発現させるためには、Sbは0.0003質量%以上含有させることが好ましい。一方、過剰な添加は鍛造性を劣化させることから、Sbの含有量は0.1質量%以下とすることが好ましい。より好ましくは、0.001〜0.050質量%であり、更に好ましくは、0.0015〜0.0350質量%である。
Sb: 0.1% by mass or less
Sb is an element effective for suppressing decarburization of the steel surface and preventing a decrease in surface hardness. In order to exhibit this effect, it is preferable that Sb is contained in an amount of 0.0003% by mass or more. On the other hand, since excessive addition deteriorates forgeability, the Sb content is preferably 0.1% by mass or less. More preferably, it is 0.001 to 0.050% by mass, and even more preferably 0.0015 to 0.0350% by mass.

Sn:0.1質量%以下
Snは、鋼材表面の耐食性を向上させるために有効な元素である。耐食性向上の観点からは、Snは0.003質量%以上含有させることが好ましい。一方、過剰な添加は鍛造性を劣化させることから、Snの含有量は0.1質量%以下とすることが好ましい。より好ましくは、0.0010〜0.0500質量%であり、更に好ましくは、0.0015〜0.0350質量%である。
Sn: 0.1% by mass or less
Sn is an effective element for improving the corrosion resistance of the steel surface. From the viewpoint of improving corrosion resistance, Sn is preferably contained in an amount of 0.003% by mass or more. On the other hand, since excessive addition deteriorates forgeability, the Sn content is preferably 0.1% by mass or less. More preferably, it is 0.0010 to 0.0500% by mass, and even more preferably 0.0015 to 0.0350% by mass.

同様に、必要に応じて、以下に示す各成分を適宜添加することが可能である。
Pb:0.3質量%以下および
Bi:0.3質量%以下
のうちから選ばれる1種または2種を含有
Pb、Biは、切削時の切屑を微細化する効果があり、切屑処理性を向上させる場合、これらの元素添加が有効である。この効果を得るために、PbおよびBiはそれぞれ0.01質量%以上の添加が好ましい。しかしながら、これらの元素を過度に添加しても切屑処理性の向上効果は飽和する。従って、合金コスト上昇を抑えるため、PbおよびBi量の上限値をそれぞれ0.3質量%とする。より好ましいPb量およびBi量は0.01〜0.2質量%、更には0.01〜0.1質量%である。
Similarly, if necessary, each of the following components can be added as appropriate.
Pb: 0.3% by mass or less and
Bi: Contains 1 or 2 types selected from 0.3% by mass or less
Pb and Bi have the effect of refining chips during cutting, and the addition of these elements is effective when improving the chip dispersibility. In order to obtain this effect, it is preferable to add 0.01% by mass or more of Pb and Bi, respectively. However, even if these elements are added excessively, the effect of improving the chip treatment property is saturated. Therefore, in order to suppress the increase in alloy cost, the upper limits of the amount of Pb and Bi are set to 0.3% by mass, respectively. More preferable amounts of Pb and Bi are 0.01 to 0.2% by mass, and more preferably 0.01 to 0.1% by mass.

以上説明した選択元素を添加する場合、基本成分並びに添加元素以外の残部は、Feおよび不可避的不純物である。 When the selective elements described above are added, the basic components and the rest other than the added elements are Fe and unavoidable impurities.

次に、本発明における熱間圧延に関する規定について説明する。本発明の製造方法は、上述した成分組成の鋼を用いて熱間加工を2段階で施して肌焼鋼を作製するものであり、各段の熱間加工における加熱温度および保持時間を下記のように限定することが肝要である。ここで、2段階の熱間加工とは、第1段の熱間加工が上述した成分組成の鋼からなる鋳片を角鋼や丸鋼等の鋼片にする工程であり、第1段の熱間加工が該鋼片を棒鋼や線材に加工する工程である。 Next, the provisions regarding hot rolling in the present invention will be described. In the production method of the present invention, the skin-baked steel is produced by performing hot working in two steps using the steel having the above-mentioned composition, and the heating temperature and holding time in the hot working of each step are as follows. It is important to limit it as such. Here, the two-stage hot working is a step in which the first-stage hot working is a step of converting a slab made of steel having the above-mentioned composition composition into a steel piece such as square steel or round steel, and the first-stage heat working. Interlaying is the process of processing the steel pieces into steel bars and wires.

<第1段熱間加工>
加熱温度:X℃以上、保持時間:1時間以上
但し、X=1950+144.5Ln(Y) …(1)
ここで、Y:N添加量(質量%)
上記の式(1)は、第1段の圧延加熱温度である。上述したように、Nは、Alと結合し窒化物(AlN)を形成する。かようなAlNはNbCの析出核となる結果、析出物を粗大化させてしまう。このAlを第1段の熱間加工の加熱において十分に溶解させることが重要である。上述したとおり、AlNの熱力学的安定性はN量の影響を受けることから、AlNを溶解させるために必要な加熱温度は、N添加量に関する上式(1)に従って定められる。すなわち、上式(1)は、含有N量が増大するほどAlN溶解に必要な加熱温度を高くすることを意味する。
<1st stage hot working>
Heating temperature: X ° C or higher, holding time: 1 hour or longer However, X = 1950 + 144.5Ln (Y)… (1)
Here, the amount of Y: N added (mass%)
The above formula (1) is the rolling heating temperature of the first stage. As described above, N combines with Al to form a nitride (AlN). As a result of such AlN becoming a precipitate nucleus of NbC, the precipitate is coarsened. It is important that this Al is sufficiently dissolved in the heating of the first stage hot working. As described above, since the thermodynamic stability of AlN is affected by the amount of N, the heating temperature required to dissolve AlN is determined according to the above equation (1) regarding the amount of N added. That is, the above formula (1) means that the heating temperature required for AlN dissolution increases as the content N content increases.

また、加熱保持時間は、Al、Nの拡散に必要な時間を考慮して、1時間以上とする必要がある。好ましくは3時間以上であり、最適は10時間以上である。 Further, the heating holding time needs to be 1 hour or more in consideration of the time required for the diffusion of Al and N. It is preferably 3 hours or more, and the optimum is 10 hours or more.

なお、第1段熱間加工における加熱温度の上限は、加熱炉耐久性の点から1390℃であることが好ましい。同様に、保持時間の上限は、過度な製造費用増大を抑止する理由から 30時間であることが好ましい。 The upper limit of the heating temperature in the first stage hot working is preferably 1390 ° C. from the viewpoint of heating furnace durability. Similarly, the upper limit of the retention time is preferably 30 hours for the reason of suppressing an excessive increase in manufacturing cost.

また、第1段熱間加工の終了後は、600℃以下まで冷却してから、次の第2段熱間加工を施すことが好ましい。なぜなら、第1段熱間加工後に、一度フェライト、パーライト、ベイナイト、またはマルテンサイト組織にすることで微細なNbCを析出させ、その後、次の第2段熱間加工を施すことが、第2段熱間加工におけるNbCの粗大化抑制に有利に寄与するからである。 Further, after the completion of the first-stage hot working, it is preferable to cool the temperature to 600 ° C. or lower and then perform the next second-stage hot working. This is because, after the first-stage hot working, fine NbC is precipitated by forming a ferrite, pearlite, bainite, or martensite structure once, and then the next second-stage hot working is performed. This is because it contributes advantageously to suppressing the coarsening of NbC in hot working.

<第2段熱間加工>
加熱温度:1000℃以下、保持時間:5時間以下
第2段の熱間加工の加熱工程では、NbCの析出および成長が生じる。従って、NbCの成長を抑制するには、ここでの加熱温度を過度に上昇させない必要がある。そのため、加熱温度を1000℃以下に、保持時間を5時間以下に限定する。
<Second stage hot working>
Heating temperature: 1000 ° C or less, holding time: 5 hours or less In the heating step of the second stage of hot working, NbC precipitation and growth occur. Therefore, in order to suppress the growth of NbC, it is necessary not to raise the heating temperature excessively here. Therefore, the heating temperature is limited to 1000 ° C. or less, and the holding time is limited to 5 hours or less.

なお、第2段熱間加工における加熱温度の下限は、熱間圧延時の変形抵抗低減のため、800℃であることが好ましい。同様に、保持時間の下限は、鋼材中心部まで十分に温度上昇させるために0.5時間であることが好ましい。 The lower limit of the heating temperature in the second stage hot working is preferably 800 ° C. in order to reduce the deformation resistance during hot rolling. Similarly, the lower limit of the holding time is preferably 0.5 hours in order to sufficiently raise the temperature to the center of the steel material.

以下、実施例に従って、本発明の構成および作用効果をより具体的に説明する。しかし、本発明は下記の実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲内にて適宜変更することも可能であり、これらは何れも本発明の技術的範囲に含まれる。 Hereinafter, the constitution and action / effect of the present invention will be described more specifically according to Examples. However, the present invention is not limited by the following examples, and can be appropriately modified within a range that can be adapted to the gist of the present invention, all of which are included in the technical scope of the present invention. Is done.

表1に示す成分組成の鋼を溶製し、第1段の熱間加工として、鋼片圧延を施し600℃まで空冷した。その後、第2段の熱間加工として、直径30mmの丸棒に圧延した(棒鋼圧延)。表2に、鋼片圧延の加熱温度および棒鋼圧延の加熱温度および保持時間を示す。
得られた棒鋼を長さ24mmに切断後、表3に示す歯車形状へと冷間鍛造した。その後、種々温度に加熱し3時間保持する浸炭熱処理を施し、浸炭後の旧オーステナイト粒径を評価した。粒径の評価は、JIS_G0551に準拠し、粒度番号にて行った。本試験において、粒度番号6以上であれば十分な細粒といえる。種々浸炭温度における試験結果を表2に併記した。
The steel having the composition shown in Table 1 was melted, and as the first stage of hot working, the steel pieces were rolled and air-cooled to 600 ° C. Then, as the second stage of hot working, it was rolled into a round bar having a diameter of 30 mm (steel bar rolling). Table 2 shows the heating temperature for rolling steel pieces and the heating temperature and holding time for rolling steel bars.
The obtained steel bar was cut to a length of 24 mm and then cold forged into the gear shape shown in Table 3. Then, carburizing heat treatment was performed by heating to various temperatures and holding for 3 hours, and the particle size of the old austenite after carburizing was evaluated. The particle size was evaluated according to JIS_G0551 by the particle size number. In this test, if the particle size is 6 or more, it can be said that the particles are sufficiently fine. The test results at various carburizing temperatures are also shown in Table 2.

表2に示すとおり、本発明に従う発明例は、浸炭加熱温度が比較的高い場合においても、結晶粒の粗大化を効果的に抑制でき、微細な結晶粒が得られることが分かる。 As shown in Table 2, it can be seen that in the invention example according to the present invention, coarsening of crystal grains can be effectively suppressed even when the carburizing heating temperature is relatively high, and fine crystal grains can be obtained.

Figure 2020139185
Figure 2020139185

Figure 2020139185
Figure 2020139185
Figure 2020139185
Figure 2020139185

Figure 2020139185
Figure 2020139185

Claims (5)

C:0.10〜0.35質量%、
Si:0.01〜1.20質量%、
Mn:0.30〜1.50質量%、
P:0.1質量%以下、
S:0.5質量%以下、
Cr:0.40〜2.00質量%、
Nb:0.010〜0.090質量%、
Al:0.010〜0.080質量%および
N:0.0070質量%以下
を含み、残部はFe及び不可避的不純物の成分組成を有する鋼素材に、以下に示す加熱温度および保持時間にて加熱して行う第1段の熱間加工を施し、さらに以下に示す加熱温度および保持時間にて加熱して行う第2段の熱間加工を施す、肌焼鋼の製造方法。
<第1段熱間加工>
加熱温度:X℃以上、保持時間:1時間以上
但し、X=1950+144.5Ln(Y)
ここで、Y:N添加量(質量%)
<第2段熱間加工>
加熱温度:1000℃以下、保持時間:5時間以下
C: 0.10 to 0.35% by mass,
Si: 0.01 to 1.20% by mass,
Mn: 0.30 to 1.50% by mass,
P: 0.1% by mass or less,
S: 0.5% by mass or less,
Cr: 0.40 to 2.00 mass%,
Nb: 0.010 to 0.090% by mass,
First stage performed by heating a steel material containing Al: 0.010 to 0.080% by mass and N: 0.0070% by mass or less, and the balance having a component composition of Fe and unavoidable impurities at the heating temperature and holding time shown below. A method for producing skin-baked steel, which comprises performing the hot working of the above, and further performing the hot working of the second stage performed by heating at the heating temperature and holding time shown below.
<1st stage hot working>
Heating temperature: X ° C or higher, holding time: 1 hour or longer However, X = 1950 + 144.5Ln (Y)
Here, the amount of Y: N added (mass%)
<Second stage hot working>
Heating temperature: 1000 ° C or less, holding time: 5 hours or less
前記成分組成はさらに、
Mo:1質量%以下、
Cu:1質量%以下、
Ni:1質量%以下および
B:0.01質量%以下
のうちから選ばれる1種または2種以上を含有する請求項1に記載の肌焼鋼の製造方法。
The component composition further
Mo: 1% by mass or less,
Cu: 1% by mass or less,
The method for producing a skin-baked steel according to claim 1, which contains one or more selected from Ni: 1% by mass or less and B: 0.01% by mass or less.
前記成分組成はさらに、
Ti:0.1質量%以下、
V:0.1質量%以下、
Hf:0.1質量%以下、
Ta:0.1質量%以下および
Se:0.3質量%以下
のうちから選ばれる1種または2種以上を含有する請求項1または2に記載の肌焼鋼の製造方法。
The component composition further
Ti: 0.1% by mass or less,
V: 0.1% by mass or less,
Hf: 0.1% by mass or less,
Ta: 0.1% by mass or less and
Se: The method for producing a skin-baked steel according to claim 1 or 2, which contains one or more selected from 0.3% by mass or less.
前記成分組成はさらに、
Sn:0.1質量%以下および
Sb:0.1質量%以下、
のうちから選ばれる1種または2種を含有する請求項1から3のいずれかに記載の肌焼鋼の製造方法。
The component composition further
Sn: 0.1% by mass or less and
Sb: 0.1% by mass or less,
The method for producing a skin-baked steel according to any one of claims 1 to 3, which contains one or two selected from the above.
前記成分組成はさらに、
Pb:0.3質量%以下および
Bi:0.3質量%以下
のうちから選ばれる1種または2種を含有する請求項1から4のいずれかに記載の肌焼鋼の製造方法。
The component composition further
Pb: 0.3% by mass or less and
Bi: The method for producing a skin-baked steel according to any one of claims 1 to 4, which contains one or two kinds selected from 0.3% by mass or less.
JP2019034792A 2019-02-27 2019-02-27 Production method of case hardening steel Pending JP2020139185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019034792A JP2020139185A (en) 2019-02-27 2019-02-27 Production method of case hardening steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019034792A JP2020139185A (en) 2019-02-27 2019-02-27 Production method of case hardening steel

Publications (1)

Publication Number Publication Date
JP2020139185A true JP2020139185A (en) 2020-09-03

Family

ID=72280023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019034792A Pending JP2020139185A (en) 2019-02-27 2019-02-27 Production method of case hardening steel

Country Status (1)

Country Link
JP (1) JP2020139185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322983A (en) * 2020-11-12 2021-02-05 包头钢铁(集团)有限责任公司 Ti + Nb microalloyed component steel hot-rolled steel strip for steam shaft and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136730A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd Hot processed steel for surface hardening
JP2015108182A (en) * 2013-12-05 2015-06-11 山陽特殊製鋼株式会社 Method for manufacturing steel material for mechanical structure capable of stably controlling generation of coarse grain and steel material for mechanical structure manufactured by the method
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment
JP2015160979A (en) * 2014-02-27 2015-09-07 株式会社神戸製鋼所 Case-hardening steel in which generation of abnormal grain in carburizing treatment can be suppressed and machine structure component using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136730A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd Hot processed steel for surface hardening
JP2015108182A (en) * 2013-12-05 2015-06-11 山陽特殊製鋼株式会社 Method for manufacturing steel material for mechanical structure capable of stably controlling generation of coarse grain and steel material for mechanical structure manufactured by the method
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment
JP2015160979A (en) * 2014-02-27 2015-09-07 株式会社神戸製鋼所 Case-hardening steel in which generation of abnormal grain in carburizing treatment can be suppressed and machine structure component using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112322983A (en) * 2020-11-12 2021-02-05 包头钢铁(集团)有限责任公司 Ti + Nb microalloyed component steel hot-rolled steel strip for steam shaft and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4725401B2 (en) Steel parts and manufacturing method thereof
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP5862802B2 (en) Carburizing steel
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
EP1746176A1 (en) Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
JP5385656B2 (en) Case-hardened steel with excellent maximum grain reduction characteristics
JP5858204B2 (en) Steel material for hot forging, method for producing the same, and method for producing hot forged raw material using the steel material
JP2009263684A (en) Method for manufacturing steel-made parts
JP3915710B2 (en) Carburized differential gear with excellent low cycle impact fatigue resistance
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP5649838B2 (en) Case-hardened steel and method for producing the same
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP2020139185A (en) Production method of case hardening steel
JP6186289B2 (en) Case-hardened steel capable of suppressing the occurrence of abnormal grains during carburizing treatment and machine structural parts using the same
JP2007039732A (en) High strength steel component for machine structure having excellent fatigue characteristic, and its manufacturing method
JP4807949B2 (en) Rolled steel bar for case hardening with excellent high-temperature carburizing characteristics
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2008179848A (en) Steel for gear having superior impact fatigue resistance and contact fatigue strength, and gear using the same
JP4835178B2 (en) Manufacturing method of parts with excellent resistance to burning cracks
JP5463955B2 (en) Carburizing steel with excellent cold workability
JPH08260039A (en) Production of carburized and case hardened steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104