JP2007039732A - High strength steel component for machine structure having excellent fatigue characteristic, and its manufacturing method - Google Patents

High strength steel component for machine structure having excellent fatigue characteristic, and its manufacturing method Download PDF

Info

Publication number
JP2007039732A
JP2007039732A JP2005224408A JP2005224408A JP2007039732A JP 2007039732 A JP2007039732 A JP 2007039732A JP 2005224408 A JP2005224408 A JP 2005224408A JP 2005224408 A JP2005224408 A JP 2005224408A JP 2007039732 A JP2007039732 A JP 2007039732A
Authority
JP
Japan
Prior art keywords
less
steel
machine structure
elements
fatigue characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224408A
Other languages
Japanese (ja)
Other versions
JP4557833B2 (en
Inventor
Hitoshi Hatano
等 畑野
Toshio Murakami
俊夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005224408A priority Critical patent/JP4557833B2/en
Publication of JP2007039732A publication Critical patent/JP2007039732A/en
Application granted granted Critical
Publication of JP4557833B2 publication Critical patent/JP4557833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength steel components for machine structure which are quench heat-treated by carburizing, nitriding, etc., and in which the additive quantities of expensive hardenability-improving elements, such as Cr, Mo and Ni, can be minimized and hereby excellent workability can be provided in a state before heat treatment and excellent fatigue characteristics can be exhibited after quenching/tempering. <P>SOLUTION: The high strength steel component for machine structure with excellent fatigue characteristics has a composition in which respective contents of C, Si, Mn, B, N, etc., are specified and at least one element selected from the group consisting of Nb, Ti, Zr, Ta and Hf is contained within the range satisfying the relation in inequality SM≥1.0×10<SP>-5</SP>(where SM satisfies equation SM=[Nb]/92.9+[Ti]/47.9+[Zr]/91.2+[Ta]/181+[Hf]/178). In the above equation, [Nb], [Ti], [Zr], [Ta] and [Hf] represent their respective amounts (mass%) in the form of solid solution which are measured from the respective extraction residues of the elements contained in the steel parts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車などの輸送機械や、建設機械その他の産業機械などにおいて、浸炭処理などの熱処理を施して使用される機械構造用鋼部品とその製法に関し、特に、軸受やCVT用プーリー、シャフト類、歯車、軸付き歯車などの素材として使用する際に、浸炭処理前の状態では優れた加工性を示し、且つ浸炭熱処理後は高強度と優れた疲労特性を示す機械構造用鋼部品とその製造方法に関するものである。   The present invention relates to a steel part for machine structure used by carrying out a heat treatment such as carburizing treatment in a transport machine such as an automobile, a construction machine or other industrial machine, and a manufacturing method thereof, in particular, a bearing, a pulley for CVT, a shaft, etc. When used as a material for gears, gears with shafts, etc., steel parts for mechanical structures exhibiting excellent workability in the state before carburizing treatment and high strength and excellent fatigue characteristics after carburizing heat treatment and their manufacture It is about the method.

自動車、建設機械、その他の各種産業機械用として用いられる機械構造用部品において、特に高強度が要求される鋼部品には、従来から浸炭、窒化および浸炭窒化などの表面硬化熱処理(肌焼き処理)が行なわれている。これらの用途には、通常、SCr、SCM、SNCMなどのJIS規格で定められた肌焼用鋼を使用し、鍛造・切削などの機械加工により所望の部品形状に成形した後、浸炭、浸炭窒化などの表面硬化熱処理を施し、その後、研磨などの仕上工程を経て製造される。   Surface hardening heat treatment (case hardening) such as carburizing, nitriding, and carbonitriding has been conventionally applied to steel parts that require particularly high strength in parts for machine structures used for automobiles, construction machinery, and other various industrial machines. Has been done. For these applications, the case hardening steels defined by JIS standards such as SCr, SCM, SNCM, etc. are usually used. After forming into the desired part shape by machining such as forging and cutting, carburizing and carbonitriding It is manufactured through a finishing process such as polishing.

ところで、特に高強度が求められる機械構造用の鋼部品では、製品としての要求強度を満たすためCr,Moなどの焼入れ性向上元素を多量添加し、焼入れ処理後の強度を高めることによって高強度化の要請に応えている(特許文献1など)。   By the way, especially in steel parts for machine structures that require high strength, in order to satisfy the required strength as a product, a large amount of hardenability improving elements such as Cr and Mo are added to increase the strength after quenching. (Patent Document 1, etc.).

また該特許文献1では、粒界酸化物を生成させることなく鋼の焼入れ性を高め、更には浸炭層と非浸炭層の生地を強靭化する作用も有しているNiを多量配合することによって高強度化を増進している。ところが、焼入れ性の向上などを狙って添加される上記元素は概して高価であり、素材コストを高める大きな原因になるという経済的な難点に加えて、それら強化元素量の増大によって熱処理前の鋼材が硬質化し、加工性や切削性が劣化するという現実的な問題が生じてくる。   Further, in Patent Document 1, by adding a large amount of Ni that has an effect of enhancing the hardenability of steel without generating grain boundary oxides and further strengthening the dough of the carburized layer and the non-carburized layer. Increased strength. However, the above-mentioned elements added for the purpose of improving hardenability are generally expensive, and in addition to the economic difficulty of causing a large increase in material cost, the steel material before heat treatment is increased by increasing the amount of these strengthening elements. Hardening causes a practical problem that workability and machinability deteriorate.

従って、Cr,Mo,Niなどの焼入れ性向上元素の添加量を抑えることによって、低コスト化を図りつつ、しかも熱処理前の状態では優れた加工性(鍛造性や圧延性など)を有し、且つ、焼入れ処理によって高レベルの強度と疲労特性を発揮し得る様な機械構造用鋼部品の開発が望まれる。   Therefore, by suppressing the addition amount of a hardenability improving element such as Cr, Mo, Ni, etc., while achieving cost reduction, it has excellent workability (forgeability, rollability, etc.) in the state before heat treatment, In addition, it is desired to develop a steel part for machine structure that can exhibit a high level of strength and fatigue characteristics by quenching treatment.

他方、肌焼用鋼を対象としてNb,Tiなどの微量元素を添加し、それらの元素の炭化物や窒化物を微細に析出させることによって熱処理時のオーステナイト(γ)結晶粒の粗大化を防止し、溶接熱影響部などの靭性劣化を防止する技術は知られている(特許文献2,3など)。こうした技術思想は、前掲の特許文献1にも記載されている。しかしこれらの特許文献を含めて、本発明者らの知る限りにおいては、上記の様な微量元素を機械構造用鋼の焼入れ性向上に利用した例は存在しない。
特開平2−170944号公報 特許第3510506号 特開昭9−78184号公報
On the other hand, by adding trace elements such as Nb and Ti for case hardening steel, the carbides and nitrides of these elements are finely precipitated to prevent austenite (γ) crystal grains from coarsening during heat treatment. Techniques for preventing deterioration of toughness such as a weld heat affected zone are known (Patent Documents 2, 3, etc.). Such a technical idea is also described in the above-mentioned Patent Document 1. However, to the best of the present inventors' knowledge, including these patent documents, there is no example in which the trace elements as described above are used for improving the hardenability of steel for machine structural use.
JP-A-2-170944 Japanese Patent No. 3510506 JP-A-9-78184

本発明は上記の様な事情に着目してなされたものであって、その目的は、浸炭、窒化などの焼入れ熱処理された機械構造用鋼部品において、Cr,Mo,Niなどの高価な焼入れ性向上元素の添加量を極力低減することにより、熱処理前の状態では、熱間もしくは冷間鍛造などの加工性に優れ、しかも焼入れ性に優れると共に、焼入れ・焼戻し後の状態では優れた疲労特性を発揮する高強度機械構造用鋼部品を提供すると共に、その様な鋼部品の有用な製法を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is to provide an expensive hardenability such as Cr, Mo, Ni, etc. in steel parts for mechanical structures subjected to quenching heat treatment such as carburizing and nitriding. By reducing the addition amount of the improving element as much as possible, it has excellent workability such as hot or cold forging before heat treatment, excellent hardenability, and excellent fatigue properties after quenching and tempering. An object of the present invention is to provide a steel part for mechanical structure that exhibits high strength and to provide a useful method for producing such a steel part.

上記課題を解決することのできた本発明の高強度機械構造用鋼とは、質量%で、C:0.10〜0.4%、Si:0.05〜1.5%、Mn:0.3〜3.0%、Mo:0.5%以下(0%を含まない)、B:0.0003〜0.015%、N:0.02%以下(0%を含まない)を満たし、且つ、Nb,Ti,Zr,Ta,Hfよりなる群から選択される少なくとも1種の元素を、各々0.50%以下で、且つ下記(1)式の関係を満たす範囲で含有するところに要旨がある。
SM≧1.0×10−5……(1)
但し、SM=[Nb]/92.9+[Ti]/47.9+[Zr]/91.2+[Ta]/181+[Hf]/178
{式中、[Nb],[Ti],[Zr],[Ta],[Hf]は、鋼部品に含まれる各元素の抽出残渣から測定した固溶量(質量%)を表わす}。
The high-strength mechanical structural steel of the present invention that has solved the above-mentioned problems is mass%, C: 0.10 to 0.4%, Si: 0.05 to 1.5%, Mn: 0.00. 3 to 3.0%, Mo: 0.5% or less (not including 0%), B: 0.0003 to 0.015%, N: 0.02% or less (not including 0%), In addition, the present invention contains at least one element selected from the group consisting of Nb, Ti, Zr, Ta, and Hf within a range of 0.50% or less and satisfying the relationship of the following formula (1). There is.
SM ≧ 1.0 × 10 −5 (1)
However, SM = [Nb] /92.9+ [Ti] /47.9+ [Zr] /91.2+ [Ta] / 181 + [Hf] / 178
{Wherein [Nb], [Ti], [Zr], [Ta], [Hf] represent the amount of solid solution (mass%) measured from the extraction residue of each element contained in the steel part}.

本発明の上記高強度機械構造用鋼部品においては、前掲の必須元素に加えて、求められる部品特性に応じて下記a)〜c)に示す群から選ばれる1種以上の元素を含有させることも有効である。   In the steel part for high-strength mechanical structure of the present invention, in addition to the above-mentioned essential elements, one or more elements selected from the groups shown in the following a) to c) are contained according to the required part characteristics. Is also effective.

a)Ni:2.0%以下(0%を含まない)、Cu:2.0%以下(0%を含まない)、Cr:3.0%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素、
b)V:0.1%以下(0%を含まない)、
c)Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、REM:0.020%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素。
a) From the group consisting of Ni: 2.0% or less (not including 0%), Cu: 2.0% or less (not including 0%), Cr: 3.0% or less (not including 0%) At least one element selected,
b) V: 0.1% or less (excluding 0%),
c) From the group consisting of Ca: 0.005% or less (not including 0%), Mg: 0.005% or less (not including 0%), REM: 0.020% or less (not including 0%) At least one element selected.

また本発明の製法は、上記特性を備えた機械構造用鋼部品を製造するための方法として位置付けられる発明であり、上記化学成分の要件を満たす鋼材を、1250℃以上の温度で均熱処理し、浸炭加熱処理を1000℃以上の温度で行うところに特徴を有している。   Further, the production method of the present invention is an invention positioned as a method for producing a steel part for mechanical structure having the above characteristics, and a steel material satisfying the requirements of the above chemical components is soaked at a temperature of 1250 ° C. or higher, It is characterized in that the carburizing heat treatment is performed at a temperature of 1000 ° C. or higher.

本発明によれば、鋼の化学成分を特定し、特に焼入れ性向上元素として公知のMoを必須元素として使用するが、その添加量を最小限に抑え、該Moの減量分を少量のBと、Nb,Ti,Zr,Ta,Hfよりなる群から選択される少なくとも1種の元素を極微量添加することによって補い、熱処理前は優れた加工性を有し、しかも焼入れ性が極めて良好で焼入れ熱処理によって卓越した強度と疲労特性を示す機械構造用鋼部品を、価格的にも十分に需要者の要望を満たすコストで提供できる。   According to the present invention, the chemical component of steel is specified, and in particular, Mo known as a hardenability improving element is used as an essential element. However, the amount of addition of Mo is minimized and a small amount of B is reduced. , Nb, Ti, Zr, Ta, Hf is supplemented by adding a trace amount of at least one element selected from the group consisting of Nb, Ti, Zr, Ta, and Hf, and has excellent workability before heat treatment and extremely hardenability. Mechanical structural steel parts that exhibit excellent strength and fatigue properties by heat treatment can be provided at a cost that satisfies the demands of customers sufficiently in terms of price.

本発明者らは前述した様な従来技術の下で、特にCr,Mo,Niなどの焼入れ性向上元素を極力低減した場合でも、焼入れ性が良好で優れた疲労特性と高強度を有する機械構造部品を得ることができ、しかも焼入れ熱処理前の状態では比較的軟質で優れた加工性を発揮し得る様な焼入れ性機械構造用鋼部品の開発を期して、様々の添加元素について検討を重ねてきた。   Under the prior art as described above, the present inventors have good hardenability, mechanical properties having excellent fatigue characteristics and high strength, even when the hardenability improving elements such as Cr, Mo, Ni are reduced as much as possible. We have been studying various additive elements in preparation for the development of hardenable mechanical structural steel parts that can obtain parts and are relatively soft and can exhibit excellent workability before quenching heat treatment. It was.

その結果、焼入れ性元素としてMoを必須的に使用するが、その量は極力少なく抑え、該Moと共に少量のBと、更には、所謂マイクロアロイと称されるNb,Ti,Zr,Ta,Hfよりなる群から選択される少なくとも1種の元素を微量添加すれば、焼入れ熱処理前の状態では比較的軟質で優れた加工性を有し、しかも、焼入れ性が良好で焼入れ後の強度は飛躍的に高まり、従来の機械構造用鋼を凌駕する強度を示すと共に疲労特性にも優れた機械構造部品が得られることを知り、本発明を完成した。   As a result, Mo is essentially used as a hardenable element, but the amount thereof is suppressed as much as possible, and a small amount of B together with the Mo, and also Nb, Ti, Zr, Ta, and Hf called so-called microalloys. If a small amount of at least one element selected from the group consisting of the above is added, it is relatively soft and excellent workability before quenching heat treatment, and it has good quenchability and the strength after quenching is dramatic. As a result, it was found that a mechanical structural part exhibiting strength superior to conventional mechanical structural steel and excellent fatigue characteristics can be obtained, and the present invention has been completed.

以下、本発明で機械構造用鋼部品の化学成分を定めた理由を明らかにする。   Hereinafter, the reason why the chemical components of steel parts for machine structural use are defined in the present invention will be clarified.

C:0.10〜0.4%;
Cは、機械構造用部品として必要な芯部硬さを確保する上で重要な元素であり、0.10%未満では硬さ不足により機械構造用部品としての静的強度が不足気味となる。しかしC量が多過ぎると、硬くなり過ぎて芯部の靭性が悪くなるばかりか、焼入れ熱処理前の加工性も悪くなるので、0.4%以下に抑える必要がある。より好ましいC含量は、0.15%以上、0.3%以下、更に好ましくは0.17%以上、0.25%以下である。
C: 0.10 to 0.4%;
C is an important element for securing the core hardness required as a machine structural part. If it is less than 0.10%, the static strength as a machine structural part becomes insufficient due to insufficient hardness. However, if the amount of C is too large, it becomes too hard and the toughness of the core part is deteriorated, and the workability before quenching heat treatment is also deteriorated. The C content is more preferably 0.15% or more and 0.3% or less, further preferably 0.17% or more and 0.25% or less.

Si:0.05〜1.5%;
Siは脱酸剤として作用し、酸化物系介在物量を低減して内部品質を高める作用を有すると共に、焼戻し処理による硬さ低下を抑えて焼入れ処理後の表層硬さを確保するのに有効な元素であり、これらの効果を有効に発揮させるには0.05%以上の添加を必要とする。しかしSiが多過ぎると、鋼素材が硬くなり過ぎて加工性が劣化する他、焼入れ処理時に粒界酸化層の形成を助長して疲労特性を劣化させるので、1.5%を上限と定めた。より好ましいSi含量は、0.10%以上、1.0%以下、更に好ましくは0.2%以上、0.8%以下である。
Si: 0.05 to 1.5%;
Si acts as a deoxidizer and has the effect of reducing the amount of oxide inclusions and improving the internal quality, and is effective in securing the surface layer hardness after quenching by suppressing the decrease in hardness due to tempering. It is an element, and 0.05% or more of addition is required to effectively exhibit these effects. However, if the amount of Si is too much, the steel material becomes too hard and the workability is deteriorated, and the fatigue properties are deteriorated by promoting the formation of a grain boundary oxide layer during the quenching process, so the upper limit is set to 1.5%. . A more preferable Si content is 0.10% or more and 1.0% or less, and further preferably 0.2% or more and 0.8% or less.

Mn:0.3〜3.0%;
Mnは脱酸剤として作用し、酸化物系介在物量を低減して鋼材の内部品質を高める作用を有すると共に、焼入れ性を高める上でも欠くことのできない元素であり、これらの作用を有効に発揮させるには0.3%以上含有させねばならない。しかし、Mnが多過ぎると熱間鍛造などの加工性が悪くなるので、多くとも3.0%を超えない様に制御すべきである。Mnのより好ましい含有量は0.5%以上、2.0%以下、更に好ましくは0.75%以上、1.5%以下である。
Mn: 0.3-3.0%;
Mn acts as a deoxidizer, has the effect of reducing the amount of oxide inclusions and improving the internal quality of steel, and is an element indispensable for improving the hardenability. In order to make it contain, it must contain 0.3% or more. However, if Mn is too much, workability such as hot forging deteriorates, so it should be controlled not to exceed 3.0% at most. The more preferable content of Mn is 0.5% or more and 2.0% or less, more preferably 0.75% or more and 1.5% or less.

Mo:0.5%以下(0%を含まない);
Moは鋼中に固溶し、後述する固溶Bや固溶Nb,Ti,Zr,Hf,Taと複合して焼入れ性を著しく高める作用を有する他、浸炭・窒化部や芯部の強度、靭性を高める作用を有する重要な元素であるが、多過ぎると、熱間加工後の硬度が高くなり過ぎて冷間加工性が著しく低下するので0.5%を上限とする。Moの好ましい上限は0.3%、更に好ましくは0.2%以下である。下限は特に存在しないが、好ましくは0.03%以上、更に好ましくは0.08%以上である。
Mo: 0.5% or less (excluding 0%);
Mo is dissolved in steel and has the effect of remarkably improving hardenability by combining with solid solution B and solid solution Nb, Ti, Zr, Hf, Ta, which will be described later, the strength of carburizing / nitriding part and core part, Although it is an important element having an effect of increasing toughness, if it is too much, the hardness after hot working becomes too high and the cold workability is remarkably lowered, so 0.5% is made the upper limit. The upper limit with preferable Mo is 0.3%, More preferably, it is 0.2% or less. Although there is no particular lower limit, it is preferably 0.03% or more, more preferably 0.08% or more.

B:0.0003〜0.015%;
Bは、熱間もしくは冷間加工性を劣化させることなく焼入れ性や靭性を高める上で欠くことのできない元素であり、本発明の如く固溶Moと、同じく固溶したNb,Ti,Zr,Ta,Hfから選ばれる元素との複合によって焼入れ性を飛躍的に高め、高強度化に寄与する。こうした効果を有効に発揮させるには、Bを0.0003%以上含有させなければならず、好ましくは0.0006%以上、更に好ましくは0.0012%以上含有させるのがよい。しかしその効果は0.015%で飽和するので、それ以上の添加は経済的に無駄である。より好ましいB含量の上限は0.005%、更に好ましくは0.0035%以下である。
B: 0.0003 to 0.015%;
B is an element indispensable for enhancing the hardenability and toughness without deteriorating hot or cold workability. As in the present invention, B is solid solution Mo and Nb, Ti, Zr, By combining with an element selected from Ta and Hf, the hardenability is remarkably improved, contributing to high strength. In order to exert such an effect effectively, B must be contained in an amount of 0.0003% or more, preferably 0.0006% or more, and more preferably 0.0012% or more. However, the effect is saturated at 0.015%, so addition beyond that is economically wasteful. A more preferable upper limit of the B content is 0.005%, and further preferably 0.0035% or less.

N:0.02%以下(0%を含まない);
Nは鋼の溶製工程で不可避的に混入してくる不純物元素であり、後述するNb,Ti,Zr,Ta,Hfと結合し窒化物系の粗大介在物となって疲労特性を劣化させるので、極力少なく抑えるのがよく、多くとも0.02%以下、好ましくは0.01%以下、更に好ましくは0.007%以下に抑えるのがよい。
N: 0.02% or less (excluding 0%);
N is an impurity element which is inevitably mixed in the steel melting process, and is combined with Nb, Ti, Zr, Ta, and Hf, which will be described later, and becomes a nitride-based coarse inclusion and deteriorates fatigue characteristics. It is better to keep it as small as possible, and at most 0.02% or less, preferably 0.01% or less, more preferably 0.007% or less.

Nb,Ti,Zr,Ta,Hfよりなる群から選択される少なくとも1種の元素:各々0.50%以下で、且つ前記(1)式、即ち「SM≧1.0×10−5」の関係を満たす範囲;
本発明では、上記5種類の元素の含有量を、各々0.50%以下に抑えると共に、「SM≧1.0×10−5」の範囲に制御することを必須の要件とする。
At least one element selected from the group consisting of Nb, Ti, Zr, Ta, and Hf: each 0.50% or less, and the formula (1), that is, “SM ≧ 1.0 × 10 −5 ” The range that satisfies the relationship;
In the present invention, it is an essential requirement to control the contents of the above five elements to 0.50% or less and to control them in the range of “SM ≧ 1.0 × 10 −5 ”.

ここで「SM」とは「[Nb]/92.7+[Ti]/47.9+[Zr]/91.2+[Ta]/181+[Hf]/178」、即ち、焼入れ・焼戻し処理された鋼部品の抽出残渣分析によって得られる各元素の固溶量と炭化物や窒化物の如き析出物の総和である。固溶量は、電解抽出によって得られる残渣を化学分析し、添加量と析出物との差によって算出されるが、析出物は0.1μmのフィルターを用いて採取するため、固溶しているものと数nmレベルの析出物はフィルターを通り抜ける。そのため、ここでの固溶量は、実際に固溶している量とnmレベルの微細析出物との総和となる。   Here, “SM” means “[Nb] /92.7+ [Ti] /47.9+ [Zr] /91.2+ [Ta] / 181 + [Hf] / 178”, that is, extraction of quenched and tempered steel parts. This is the total amount of solid solution of each element obtained by residue analysis and precipitates such as carbides and nitrides. The amount of solid solution is calculated by the chemical analysis of the residue obtained by electrolytic extraction and the difference between the added amount and the precipitate. The precipitate is collected because it is collected using a 0.1 μm filter. The thing and several nanometer level precipitate pass through a filter. Therefore, the amount of solid solution here is the sum of the amount actually dissolved and the fine precipitates on the nm level.

従って、SM値が大きいということは固溶量と微細析出物の量が多いことを意味しており、本発明者らが確認したところによると、SM値が大きいほど疲労特性は高まり、この値が1×10−5以上であるものは高い疲労特性を示すのに対し、1×10−5未満であるものの疲労特性は劣悪であることが分かった。その理由は、固溶したNb,Ti,Zr,Ta,Hf自体が疲労特性の向上に寄与するばかりでなく、焼戻し時に析出した微細析出物が疲労特性の一層の向上に寄与しているためと考えられる。より高レベルで安定した疲労特性を発揮させるには、SM値を2×10−5以上とするのがよく、更に好ましいSM値は4×10−5以上である。 Therefore, a large SM value means that the amount of the solid solution and the amount of fine precipitates are large. According to the present inventors, the fatigue characteristics increase as the SM value increases. It was found that those having a value of 1 × 10 −5 or more show high fatigue properties, whereas those having a value of less than 1 × 10 −5 are poor. The reason is that not only the solid solution Nb, Ti, Zr, Ta, Hf itself contributes to the improvement of the fatigue characteristics, but also the fine precipitates precipitated during tempering contribute to the further improvement of the fatigue characteristics. Conceivable. In order to exhibit stable fatigue characteristics at a higher level, the SM value should be 2 × 10 −5 or more, and a more preferable SM value is 4 × 10 −5 or more.

なお上記5種類の元素のうち、TiはNを固定してBの固溶を促進する作用が顕著であるため、0.01%以上、より好ましくは0.03%以上含有させるのがよい。しかし0.5%を超えると、析出する窒化物が粗大化して疲労特性に悪影響を及ぼす様になるので、多くとも0.5%以下、好ましくは0.1%以下、更に好ましくは0.05%以下に抑えるのがよい。   Of the five elements described above, Ti has a remarkable effect of fixing N and promoting the solid solution of B. Therefore, Ti is preferably contained in an amount of 0.01% or more, more preferably 0.03% or more. However, if it exceeds 0.5%, the deposited nitride becomes coarse and adversely affects the fatigue characteristics, so at most 0.5% or less, preferably 0.1% or less, more preferably 0.05. It is good to keep it below%.

これに対しNbは粗大な窒化物を生成することがないため、0.5%以上含有させても構わない。しかし、疲労特性の改善効果がそれ以上高まる訳ではなく経済的に不利であるので、0.5%以下に抑えるのがよく、より好ましくは0.1%以下、更に好ましくは0.05%以下である。また、Zr,Ta,Hfも多過ぎると粗大な窒化物を生成して疲労特性を害するので、多くとも0.5%以下、好ましくは0.1%以下、更に好ましくは0.05%以下に抑えるのがよい。   On the other hand, since Nb does not generate coarse nitrides, 0.5% or more may be contained. However, the effect of improving the fatigue characteristics is not increased any more, and it is economically disadvantageous. Therefore, it should be suppressed to 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. It is. Further, if too much Zr, Ta, Hf is formed, coarse nitrides are formed and the fatigue characteristics are impaired, so at most 0.5% or less, preferably 0.1% or less, more preferably 0.05% or less. It is good to suppress.

なお、焼入れ性向上の観点からすると、上記5種類の元素の効果は概ねトータル0.5%程度で飽和し、それ以上になると粗大な炭化物の生成によって被削性や疲労特性などに悪影響が現れてくるので、総和で0.5%程度以下、より好ましくは0.20%以下に抑えるのがよい。   From the viewpoint of improving hardenability, the effects of the above five types of elements are almost saturated at a total of about 0.5%, and when it exceeds this level, the formation of coarse carbides adversely affects machinability and fatigue characteristics. Therefore, the total sum should be suppressed to about 0.5% or less, more preferably 0.20% or less.

本発明部品を構成する鋼の必須構成元素は以上の通りであり、残部は実質的にFeである。「実質的に」とは不可避的に混入してくる元素、例えばAl、P(リン)、O(酸素)、S(硫黄)などの不可避不純物量の混入を許容するという意味であり、それらが含まれることによる障害を極力抑えるには、Alは0.5%以下、Pは0.05以下、Oは0.003%以下、Sは0.1%以下に抑えるのがよい。   The essential constituent elements of steel constituting the component of the present invention are as described above, and the balance is substantially Fe. “Substantially” means that inevitable mixing of elements inevitably mixed, such as Al, P (phosphorus), O (oxygen), and S (sulfur), is allowed. In order to suppress obstacles due to inclusion as much as possible, Al is preferably 0.5% or less, P is 0.05 or less, O is 0.003% or less, and S is 0.1% or less.

ちなみに、Alは硬質で粗大な非金属介在物(Al)を生成して衝撃特性や冷間加工性を劣化させるので、0.5%以下、より好ましくは0.2%以下に抑えるべきである。Pは結晶粒界に偏析して耐衝撃特性や冷間加工性を低下させるので、極力少なく抑えるべきであり、多くとも0.05%以下、より好ましくは0.03%以下に抑えるのがよい。またO(酸素)は鋼材の強度特性を低下させるので、0.003%以下、より好ましくは0.0015%以下に抑えるのがよい。Sは、靭性に悪影響を及ぼす反面、MnSを形成して被削性の向上に寄与するので、特に被削性が求められる場合は適量の添加が有効である。しかし、靭性劣化を回避するには0.1%以下、より好ましくは0.08%以下、更に好ましくは0.02%以下に抑えるのがよい。 Incidentally, Al generates hard and coarse non-metallic inclusions (Al 2 O 3 ) and deteriorates impact characteristics and cold workability, so it is suppressed to 0.5% or less, more preferably 0.2% or less. Should. P segregates at the grain boundaries and lowers impact resistance and cold workability. Therefore, P should be suppressed as much as possible, and at most 0.05% or less, more preferably 0.03% or less is good. . Further, O (oxygen) lowers the strength characteristics of the steel material, so 0.003% or less, more preferably 0.0015% or less is preferable. While S adversely affects toughness, MnS is formed and contributes to the improvement of machinability. Therefore, when machinability is required, addition of an appropriate amount is effective. However, in order to avoid toughness deterioration, it is good to restrain to 0.1% or less, More preferably, 0.08% or less, More preferably, 0.02% or less.

また本発明で用いる鋼材には、上記必須元素や不可避元素に加えて、所望に応じて更なる付加的特性を与えるため、下記の様な選択元素を含有させることも有効であり、必要に応じてそれらの元素を添加したものも本発明の技術的範囲に含まれる。   In addition to the above essential elements and unavoidable elements, the steel material used in the present invention is effective to contain the following selective elements in order to give additional additional characteristics as desired. Those added with these elements are also included in the technical scope of the present invention.

Ni:2.0%以下、Cu:2.0%以下、Cr:3.0%以下、から選ばれる少なくとも1種;
Ni,Cu,Crの各元素は、浸炭部および芯部の強度と靭性を高める作用があり、要求される強度や靭性に応じて、1種または2種以上を適量(好ましくは、それぞれ0.1%程度以上)含有させることが有効である。しかし、多過ぎると熱間加工後の硬さが高くなり過ぎて冷間加工性を劣化させるので、Niは2.0%以下、Cuは2.0%以下、Cr:3.0%以下、より好ましくは各々1.5%以下、更に好ましくは各々1.2%以下に抑えるのがよい。中でもCrは優れた焼入れ性向上効果を有しているので、好ましくは0.2%以上、更に好ましくは0.5%以上含有させるのがよい。
At least one selected from Ni: 2.0% or less, Cu: 2.0% or less, Cr: 3.0% or less;
Each element of Ni, Cu, and Cr has an effect of increasing the strength and toughness of the carburized portion and the core portion, and one or two or more types are suitably used (preferably, each is 0.1. About 1% or more) is effective. However, if too much, the hardness after hot working becomes too high and cold workability deteriorates, so Ni is 2.0% or less, Cu is 2.0% or less, Cr: 3.0% or less, More preferably, each of them is 1.5% or less, and further preferably, each of 1.2% or less. Among these, Cr has an excellent effect of improving hardenability, so it is preferably 0.2% or more, more preferably 0.5% or more.

V:0.1%以下;
Vは、少量の添加で焼入れ性を高めると共に、焼戻し軟化抵抗を高める作用を有しており、その効果は0.005%程度以上で有効に発揮される。しかし、多過ぎると冷間加工性を劣化させるので、0.1%以下に抑えるべきである。より好ましくは0.05%以下、更に好ましくは0.02%以下である。
V: 0.1% or less;
V has the effect of increasing the hardenability and increasing the resistance to temper softening when added in a small amount, and the effect is effectively exhibited at about 0.005% or more. However, if too much, cold workability deteriorates, so it should be suppressed to 0.1% or less. More preferably it is 0.05% or less, and still more preferably 0.02% or less.

Ca:0.005%以下、Mg:0.005%以下、REM:0.02%以下、から選ばれる少なくとも1種;
これらの元素は、何れも鋼中のSと反応して硫化物を形成し、MnSの伸長を防ぐことで靭性や疲労特性を高める作用を発揮するほか、被削性の向上にも有効に作用する。しかし、多過ぎると逆に靭性を著しく劣化させるので、添加するにしてもそれぞれ上限値以下に抑えるべきである。より好ましい上限値は、Ca:0.003%、Mg:0.003%、REM:0.01%である。
At least one selected from Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.02% or less;
All of these elements react with S in steel to form sulfides and prevent MnS from stretching, thereby improving toughness and fatigue properties, and also effectively improving machinability. To do. However, if too much, on the contrary, the toughness is remarkably deteriorated, so even if it is added, it should be kept below the upper limit value. More preferable upper limit values are Ca: 0.003%, Mg: 0.003%, and REM: 0.01%.

次に、上記の様な特性を備えた機械構造用鋼部品を得るには、前述した化学成分の要件を満たす鋼材を1250℃以上の温度で均熱し、且つ浸炭焼入れ(肌焼き)処理時の加熱温度を1000℃以上に設定することが重要となる。   Next, in order to obtain a mechanical structural steel part having the above-described characteristics, a steel material that satisfies the above-mentioned chemical composition requirements is soaked at a temperature of 1250 ° C. or higher and carburized and quenched (case hardening). It is important to set the heating temperature to 1000 ° C. or higher.

まず、均熱温度を1250℃以上に設定するのは、浸炭焼入れ時におけるNb,Ti,Zr,Ta,Hfの固溶を促進し、浸炭焼入れ後における前記SM値の上昇効果を発揮させると共に、焼入れ時の結晶粒成長を抑えて芯部靭性の低下を抑える上で重要となる。即ち、Nb,Ti,Zr,Ta,Hfなどの炭化物を一旦全て固溶させることで、浸炭加熱時に再固溶させ易くすると共に、微細均一な析出を促して結晶粒の成長を抑制できるからである。こうした効果を発揮させる上でより好ましい均熱温度は1300℃前後である。   First, setting the soaking temperature to 1250 ° C. or more promotes the solid solution of Nb, Ti, Zr, Ta, Hf during carburizing and quenching, and exhibits the effect of increasing the SM value after carburizing and quenching. This is important for suppressing crystal grain growth during quenching and suppressing deterioration of core toughness. That is, once carbides such as Nb, Ti, Zr, Ta, and Hf are once solid-dissolved, they can be easily re-dissolved during carburizing heating, and can promote fine and uniform precipitation and suppress the growth of crystal grains. is there. A more preferable soaking temperature for exhibiting such an effect is around 1300 ° C.

また、浸炭時の加熱温度を1000℃以上とするのは、この様に浸炭温度を高めると、Nb,Ti,Zr,Ta,Hfの固溶が促進されてSM値が高まり疲労特性が向上すると共に、焼入れ効果も高まって部品の静的強度や疲労強度も向上するからである。こうした観点から、より好ましい浸炭加熱温度は1050℃以上、更に好ましくは1100℃以上である。   Further, the heating temperature during carburizing is set to 1000 ° C. or higher. When the carburizing temperature is increased in this manner, solid solution of Nb, Ti, Zr, Ta, and Hf is promoted to increase the SM value and improve the fatigue characteristics. At the same time, the quenching effect is enhanced and the static strength and fatigue strength of the parts are improved. From such a viewpoint, a more preferable carburizing heating temperature is 1050 ° C. or higher, more preferably 1100 ° C. or higher.

かくして本発明によれば、化学成分を特定し、特に、Bと共にNb,Ti,Zr,Ta,Hfから選ばれる少なくとも1種を微量添加することにより、焼入れ処理前は優れた加工性を有し、浸炭焼入れ後は高レベルの強度と疲労特性有する機械構造用鋼部品を提供できる。   Thus, according to the present invention, the chemical component is specified, and in particular, by adding a trace amount of at least one selected from Nb, Ti, Zr, Ta, and Hf together with B, it has excellent workability before quenching treatment. After carburizing and quenching, it is possible to provide steel parts for machine structures having a high level of strength and fatigue characteristics.

以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention.

実施例1
表1,2に示す化学組成の鋼材を小型溶製炉で溶製し、鋳造、均熱ののち熱間鍛造を行なって一辺が155mm角の棒鋼を得た。この棒鋼を使用し、表3に示す如く1100〜1300℃の温度で60分間均熱してから空冷した。その後、950〜1100℃に再加熱し、850〜950℃の最終圧延温度で圧延することによって直径30mmの丸棒鋼を得、この丸棒鋼から直径12mm×高さ18mmの円柱試験片を作成し、下記の方法で硬さ試験を行なうと共に、焼入れ特性と結晶粒成長特性を調べた。
Example 1
Steel materials having chemical compositions shown in Tables 1 and 2 were melted in a small smelting furnace, and after casting and soaking, hot forging was performed to obtain a steel bar having a side of 155 mm square. Using this steel bar, as shown in Table 3, it was soaked at a temperature of 1100 to 1300 ° C. for 60 minutes and then air-cooled. After that, by reheating to 950-1100 ° C. and rolling at a final rolling temperature of 850-950 ° C., a round steel bar having a diameter of 30 mm is obtained, and a cylindrical specimen having a diameter of 12 mm × height of 18 mm is created from this round steel bar, A hardness test was performed by the following method, and quenching characteristics and crystal grain growth characteristics were examined.

[焼入れ特性、結晶粒成長特性、芯部硬さ]
各供試棒鋼を圧下率70%で冷間鍛造した後、1050℃で3時間の浸炭処理+油焼き入れを行ったものについて結晶粒を測定した。また、上記で得た直径30mmの各丸棒鋼に1050℃×3時間の浸炭処理+油焼入れを行い、その後160℃で焼戻しを行なったものについて、JIS 3号シャルピー衝撃試験片を作製して衝撃試験を行ない、芯部靭性を測定した。また、各試験片芯部のビッカース硬さを荷重10kgで測定した。そして、芯部靭性は20J以上、芯部硬さはHv330以上を合格とした。
[Hardening characteristics, crystal grain growth characteristics, core hardness]
After cold forging each test bar steel at a reduction rate of 70%, crystal grains were measured for those subjected to carburizing treatment and oil quenching at 1050 ° C. for 3 hours. In addition, a JIS No. 3 Charpy impact test piece was prepared for each of the 30 mm diameter round steel bars obtained above and subjected to carburizing treatment + oil quenching at 1050 ° C. for 3 hours and then tempering at 160 ° C. Tests were conducted to measure core toughness. Moreover, the Vickers hardness of each test piece core part was measured by 10 kg of loads. The core toughness was 20 J or more and the core hardness was Hv330 or more.

[結晶粒抑制効果]
上記で得た浸炭処理後のサンプル横断面のγ結晶粒度を、JIS G 0551に定めるオーステナイト結晶粒度試験法に則って、結晶粒度番号で5番以下の粗大粒の面積率を測定し、5%を超えるものを不良(×)、5%以下のものを合格(○)とした。
[Crystal grain suppression effect]
According to the austenite grain size test method defined in JIS G 0551, the area ratio of coarse grains having a grain size number of 5 or less was measured for the γ grain size of the sample cross section obtained after the carburizing treatment obtained above. Those exceeding 20% were judged as bad (x) and those below 5% as acceptable (O).

[電解抽出残渣および固溶量]
10%アセチルアセトン−1%テトラメチルアンモニウムクロリド−メタノール溶液を電解液として使用し、常温で200A/m以下の電流で電解抽出を行い、抽出残渣を0.1μmのフィルターで濾取する。そして、トータル添加量と残渣中の量との差を求め、固溶量とした。
[Electrolytic extraction residue and solid solution amount]
A 10% acetylacetone-1% tetramethylammonium chloride-methanol solution is used as an electrolytic solution, and electrolytic extraction is performed at room temperature at a current of 200 A / m 2 or less, and the extraction residue is filtered through a 0.1 μm filter. And the difference of the total addition amount and the amount in a residue was calculated | required, and it was set as the amount of solid solution.

[転動疲労寿命]
図1に示す転動疲労試験片(直径60mm×厚さ5mmの円盤状試験片)を使用し、ラッピング加工することによって表面粗さを平均粗さで0.04μmRa以下とした後、下記の条件で転動疲労試験を行い、破損率が10%となるときの寿命(L10)を求め、3×10以上を合格とした。
[Rolling fatigue life]
Using the rolling fatigue test piece (diameter 60 mm × thickness 5 mm disk-shaped test piece) shown in FIG. 1 and lapping the surface roughness to an average roughness of 0.04 μmRa or less, the following conditions A rolling fatigue test was conducted to determine the life (L10) when the failure rate was 10%, and 3 × 10 6 or more was accepted.

転動疲労試験条件;面圧:527kg/mm、回転数:1000rpm、鋼球数:6個、潤滑油:新日本石油社製の商品名「タービン油#68」、試験回数(n):10回 Rolling fatigue test conditions; surface pressure: 527 kg / mm 2 , rotation speed: 1000 rpm, number of steel balls: 6, lubrication oil: trade name “turbine oil # 68” manufactured by Nippon Oil Corporation, number of tests (n): 10 times

結果を表3に一括して示す。   The results are collectively shown in Table 3.

Figure 2007039732
Figure 2007039732

Figure 2007039732
Figure 2007039732

Figure 2007039732
Figure 2007039732

表1〜3より次の様に考えることができる。   From Tables 1 to 3, it can be considered as follows.

No.2,3,5〜18は本発明の規定要件を全て満たす実施例であり、均熱温度、焼入れ温度が適切でSM値も好適であり、γ結晶粒の異常成長も少なく、芯部靭性、芯部硬さ共に良好で優れた転動疲労特性を有している。   No. 2, 3, 5 to 18 are examples that satisfy all the requirements of the present invention, soaking temperature, quenching temperature is appropriate, SM value is also suitable, abnormal growth of γ crystal grains is small, core toughness, Good core hardness and excellent rolling fatigue characteristics.

これらに対しNo.1は、焼入れ温度が低過ぎるためSM値が低く、転動疲労特性が悪い。またNo.4は、均熱温度が低過ぎるためSM値が低く、またγ結晶粒の異常成長が起こっており、転動疲労特性がやや悪い。No.19,20は鋼材成分が規定要件を外れる比較例であり、No.19はB含量が不足し、No.20はC量が不足するため、何れも転動疲労特性が悪い。   No. No. 1 has a low SM value because the quenching temperature is too low, and has poor rolling fatigue characteristics. No. No. 4 has a low SM value because the soaking temperature is too low, abnormal growth of γ crystal grains occurs, and the rolling fatigue characteristics are somewhat poor. No. Nos. 19 and 20 are comparative examples in which the steel material components deviate from the prescribed requirements. No. 19 lacks B content. No. 20 has a poor amount of C, and therefore has poor rolling fatigue characteristics.

実験で採用した転動疲労試験用の試験片を示す説明図である。It is explanatory drawing which shows the test piece for a rolling fatigue test employ | adopted by experiment.

Claims (5)

C:0.10〜0.4%(化学成分の場合は質量%を意味する、以下同じ)、
Si:0.05〜1.5%、
Mn:0.3〜3.0%、
Mo:0.5%以下(0%を含まない)、
B:0.0003〜0.015%、
N:0.02%以下(0%を含まない)、
を満たし、且つ、Nb,Ti,Zr,Ta,Hfよりなる群から選択される少なくとも1種の元素を、各々0.50%以下で、且つ下記(1)式の関係を満たす範囲で含有することを特徴とする、疲労特性に優れた高強度機械構造用鋼部品。
SM≧1.0×10−5……(1)
但し、SM=[Nb]/92.9+[Ti]/47.9+[Zr]/91.2+[Ta]/181+[Hf]/178
{式中、[Nb],[Ti],[Zr],[Ta],[Hf]は、鋼部品に含まれる各元素の抽出残渣から測定した固溶量(質量%)を表わす}。
C: 0.10 to 0.4% (in the case of chemical components, means mass%, the same shall apply hereinafter),
Si: 0.05 to 1.5%,
Mn: 0.3-3.0%
Mo: 0.5% or less (excluding 0%),
B: 0.0003 to 0.015%,
N: 0.02% or less (excluding 0%),
And at least one element selected from the group consisting of Nb, Ti, Zr, Ta, and Hf is contained in a range that is 0.50% or less and satisfies the relationship of the following formula (1). High-strength mechanical structural steel parts with excellent fatigue characteristics.
SM ≧ 1.0 × 10 −5 (1)
However, SM = [Nb] /92.9+ [Ti] /47.9+ [Zr] /91.2+ [Ta] / 181 + [Hf] / 178
{Wherein [Nb], [Ti], [Zr], [Ta], [Hf] represent the amount of solid solution (mass%) measured from the extraction residue of each element contained in the steel part}.
鋼が、他の元素として、Ni:2.0%以下(0%を含まない)、Cu:2.0%以下(0%を含まない)、Cr:3.0%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素を含むものである請求項1に記載の機械構造用鋼部品。   Steel has other elements as follows: Ni: 2.0% or less (not including 0%), Cu: 2.0% or less (not including 0%), Cr: 3.0% or less (including 0%) The mechanical structural steel part according to claim 1, comprising at least one element selected from the group consisting of: 鋼が、更に他の元素として、V:0.1%以下(0%を含まない)を含むものである請求項1または2に記載の機械構造用鋼部品。   The steel part for machine structure according to claim 1 or 2, wherein the steel further contains V: 0.1% or less (not including 0%) as another element. 鋼が、更に他の元素として、Ca:0.005%以下(0%を含まない)、Mg:0.005%以下(0%を含まない)、REM:0.02%以下(0%を含まない)よりなる群から選択される少なくとも1種の元素を含むものである請求項1〜3のいずれかに記載の機械構造用鋼部品。   Still other elements of steel are: Ca: 0.005% or less (excluding 0%), Mg: 0.005% or less (excluding 0%), REM: 0.02% or less (0% The steel part for machine structure according to any one of claims 1 to 3, which contains at least one element selected from the group consisting of: 請求項1〜4のいずれかに記載された化学成分の要件を満たす鋼材を、1250℃以上の温度で均熱処理し、1000℃以上の温度で浸炭加熱処理することを特徴とする疲労特性に優れた高強度機械構造用鋼部品の製法。   A steel material that satisfies the chemical component requirements described in any one of claims 1 to 4 is soaked at a temperature of 1250 ° C or higher, and is carburized and heated at a temperature of 1000 ° C or higher and has excellent fatigue characteristics. Of high strength steel parts for mechanical structures.
JP2005224408A 2005-08-02 2005-08-02 High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof Expired - Fee Related JP4557833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224408A JP4557833B2 (en) 2005-08-02 2005-08-02 High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224408A JP4557833B2 (en) 2005-08-02 2005-08-02 High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007039732A true JP2007039732A (en) 2007-02-15
JP4557833B2 JP4557833B2 (en) 2010-10-06

Family

ID=37797998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224408A Expired - Fee Related JP4557833B2 (en) 2005-08-02 2005-08-02 High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4557833B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208225A (en) * 2010-03-30 2011-10-20 Sanyo Special Steel Co Ltd METHOD FOR PRODUCING HIGH STRENGTH COMPONENT USING Ti-B-ADDED STEEL AND HAVING EXCELLENT LOW CYCLE FATIGUE STRENGTH
JP2012237052A (en) * 2011-04-28 2012-12-06 Jfe Steel Corp Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
WO2014061784A1 (en) * 2012-10-19 2014-04-24 新日鐵住金株式会社 Case-hardened steel having excellent fatigue characteristics
KR20160047104A (en) * 2014-10-22 2016-05-02 주식회사 메타즈 Heat treatment process of boron alloy steel for track link of construction vehicles
CN108291286A (en) * 2016-01-13 2018-07-17 株式会社神户制钢所 Carbo-nitriding steel and carbo-nitriding part

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105380A (en) * 2003-09-30 2005-04-21 Sanyo Special Steel Co Ltd Steel for high temperature carburizing
JP2005105379A (en) * 2003-09-30 2005-04-21 Sanyo Special Steel Co Ltd Method for manufacturing boron-added case-hardened steel pipe superior in cold workability and grain size property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005105380A (en) * 2003-09-30 2005-04-21 Sanyo Special Steel Co Ltd Steel for high temperature carburizing
JP2005105379A (en) * 2003-09-30 2005-04-21 Sanyo Special Steel Co Ltd Method for manufacturing boron-added case-hardened steel pipe superior in cold workability and grain size property

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208225A (en) * 2010-03-30 2011-10-20 Sanyo Special Steel Co Ltd METHOD FOR PRODUCING HIGH STRENGTH COMPONENT USING Ti-B-ADDED STEEL AND HAVING EXCELLENT LOW CYCLE FATIGUE STRENGTH
JP2012237052A (en) * 2011-04-28 2012-12-06 Jfe Steel Corp Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP2015166495A (en) * 2011-04-28 2015-09-24 Jfeスチール株式会社 Case hardening steel excellent in cold forgeability and crystal grain coarsening suppression performance
WO2014061784A1 (en) * 2012-10-19 2014-04-24 新日鐵住金株式会社 Case-hardened steel having excellent fatigue characteristics
CN104603315A (en) * 2012-10-19 2015-05-06 新日铁住金株式会社 Case-hardened steel having excellent fatigue characteristics
JP5794397B2 (en) * 2012-10-19 2015-10-14 新日鐵住金株式会社 Case-hardened steel with excellent fatigue properties
US9809875B2 (en) 2012-10-19 2017-11-07 Nippon Steel & Sumitomo Metal Corporation Case hardening steel with excellent fatigue properties
KR20160047104A (en) * 2014-10-22 2016-05-02 주식회사 메타즈 Heat treatment process of boron alloy steel for track link of construction vehicles
KR101628175B1 (en) * 2014-10-22 2016-06-08 주식회사 메타즈 Heat treatment process of boron alloy steel for track link of construction vehicles
CN108291286A (en) * 2016-01-13 2018-07-17 株式会社神户制钢所 Carbo-nitriding steel and carbo-nitriding part

Also Published As

Publication number Publication date
JP4557833B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4688727B2 (en) Carburized parts and manufacturing method thereof
JPWO2010082454A1 (en) Induction hardening steel
JP2011174176A (en) Case-hardened steel and carburized material
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4557833B2 (en) High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP4847681B2 (en) Ti-containing case-hardened steel
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP4464861B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP2002212672A (en) Steel member
KR20190008915A (en) Progressive steel and its manufacturing method and manufacturing method of gear parts
JP5292896B2 (en) Machine structural parts having excellent rolling fatigue characteristics and manufacturing method thereof
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JPH07188895A (en) Manufacture of parts for machine structure use
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JPH08260039A (en) Production of carburized and case hardened steel
WO2011155605A1 (en) High-machinability high-strength steel and manufacturing method therefor
JP2011208262A (en) Method for producing case hardening steel having high fatigue strength
JP2006161142A (en) Case-hardening rolled bar steel having excellent high temperature carburizing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R150 Certificate of patent or registration of utility model

Ref document number: 4557833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees