JPH1112684A - Case hardening steel for cold forging - Google Patents

Case hardening steel for cold forging

Info

Publication number
JPH1112684A
JPH1112684A JP16301797A JP16301797A JPH1112684A JP H1112684 A JPH1112684 A JP H1112684A JP 16301797 A JP16301797 A JP 16301797A JP 16301797 A JP16301797 A JP 16301797A JP H1112684 A JPH1112684 A JP H1112684A
Authority
JP
Japan
Prior art keywords
less
excluding
present
steel
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16301797A
Other languages
Japanese (ja)
Inventor
Shinichi Yasuki
真一 安木
Yoshitake Matsushima
義武 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16301797A priority Critical patent/JPH1112684A/en
Publication of JPH1112684A publication Critical patent/JPH1112684A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a case hardening steel for cold forging, capable of expediting spheroidizing treatment and reducing manufacturing costs, excellent in cold forgeability, and improved, if necessary, in wear resistance. SOLUTION: In this steel, the area ratio of (ferrite + pearlite) is regulated to >=75%, and the average grain size of ferrite and that of pearlite are regulated to <=40 μm and <=30 μm, respectively. The chemical composition of this steel is regulated, if necessary. Simultaneously, the deformation resistance coefficient σeq, working limit coefficient owing to crack UL, and wear resistance coefficient F (wear), which are represented, respectively, as functions of alloying elements, are regulated so that they satisfy the following (1), (2), (3): (1) σeq=C+0.5Si+0.2 Mn+3.0P+0.3Cr+0.3Mo+0.1V+0.1Ti+0.1Nb<1.0; (2) UL=C+0.2Si+0.2Mn+0.2 Cr+0.2Mo+2.0P+2.0S+0.1V+0.1Ti+0.1Nb<0.7; (3) F (wear) = Si+0.2Cr+0.4 Mo+V>0.4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状化焼鈍処理の
迅速化が達成でき、且つ浸炭や浸炭窒化等の表面硬化処
理前に優れた冷間鍛造性を有し、しかも表面硬化処理後
には高い耐摩耗性を発揮することのできる冷間鍛造用肌
焼鋼に関するものであり、本発明に係る冷間鍛造用肌焼
鋼は、歯車、継手、軸受、シャフト、シリンダー等の様
に、冷間鍛造を経て製造され、表面硬化処理後には高い
耐摩耗性が必要とされる機械構造用部品に利用できるも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a spheroidizing annealing process which can be rapidly performed, has excellent cold forgeability before surface hardening treatment such as carburizing or carbonitriding, and has a high degree of susceptibility after surface hardening. The present invention relates to a case hardening steel for cold forging that can exhibit high wear resistance.The case hardening steel for cold forging according to the present invention is used for forming a case, such as a gear, a joint, a bearing, a shaft, or a cylinder. It is manufactured through cold forging and can be used for machine structural parts that require high wear resistance after surface hardening.

【0002】[0002]

【従来の技術】上記した各種の機械構造用部品は、JI
S規格鋼SCr420、SCM420等が素材として汎
用され、これに球状化焼鈍処理のような軟化熱処理を施
した後、冷間鍛造を行って所定形状に成形した後(必要
によって機械加工が行われ)、浸炭処理や浸炭・窒化処
理等の表面硬化処理が施され、目標とする耐摩耗性を確
保する様にしている。
2. Description of the Related Art Various types of mechanical structural parts described above are manufactured by JI.
S-standard steels SCr420, SCM420, etc. are widely used as raw materials. After subjecting them to softening heat treatment such as spheroidizing annealing, they are cold forged and formed into a predetermined shape (machined if necessary). In addition, a surface hardening treatment such as a carburizing treatment or a carburizing / nitriding treatment is performed to secure a target wear resistance.

【0003】こうした部品製造工程における製造コスト
を低減するという観点から、 冷間鍛造前の球状化焼鈍処理コストの低減(即ち、球
状化焼鈍処理時間の短縮)、 冷間鍛造時の金型寿命の改善を目的とした鋼材の変形
抵抗の低減、 鋼材の変形能の向上、 等の事項が要求されている。
[0003] From the viewpoint of reducing the manufacturing cost in such a part manufacturing process, reduction in the cost of spheroidizing annealing before cold forging (that is, reduction in the time of spheroidizing annealing) and reduction in the life of a mold during cold forging are described. Items such as reduction of steel deformation resistance and improvement of steel deformability for the purpose of improvement are required.

【0004】またエンジンの高出力化や部品の小型・軽
量化の動向に伴い、負荷応力が増大する傾向にあり、こ
れまで使用されてきた部品ではこうした要求を十分に対
応することができず、耐摩耗性を一層高めた部品の実現
が望まれているのが実情である。
[0004] Further, with the trend toward higher output power of engines and smaller and lighter parts, the load stress tends to increase, and the parts used so far cannot sufficiently meet such demands. In fact, the realization of parts with even higher wear resistance is desired.

【0005】こうした状況の下で、これまでにも様々な
改良技術が提案されている。まず球状化焼鈍処理の迅速
化を狙った技術として、例えば特開昭60−9832号
には、圧延条件を適切に規定することによって、球状化
焼鈍処理の迅速化を達成する線材や鋼材の製造方法が提
案されている。しかしながら圧延条件を規定するだけで
は、球状化焼鈍処理の迅速化を十分に図ることはできな
い。
[0005] Under such circumstances, various improved techniques have been proposed. First, as a technique aimed at speeding up the spheroidizing annealing process, for example, Japanese Patent Application Laid-Open No. 60-9832 discloses a method of manufacturing a wire or a steel material which achieves a rapid spheroidizing annealing process by appropriately defining rolling conditions. A method has been proposed. However, the spheroidizing annealing process cannot be sufficiently accelerated only by specifying the rolling conditions.

【0006】一方、冷間鍛造時の変形抵抗の低減に関し
て、例えば特開平2−299241号には、鋼の炭素当
量を規定することによって変形抵抗を抑制した浸炭用鋼
が開示されている。また特開平7−310118号に
は、Si,Mn,Cr等を低減することによって冷間鍛
造性を向上させた肌焼鋼が開示されている。しかしなが
ら、炭素当量を規定したり化学成分を低減することは、
良好な冷間鍛造性を確保するという観点からすれば有効
な技術といえるが、部品の高強度にとって重要な特性の
一つである耐摩耗性を向上させることができない。
On the other hand, regarding reduction of deformation resistance during cold forging, for example, Japanese Patent Application Laid-Open No. 2-299241 discloses a carburizing steel in which deformation resistance is suppressed by regulating the carbon equivalent of steel. Japanese Patent Application Laid-Open No. 7-310118 discloses a case hardening steel in which the cold forgeability is improved by reducing Si, Mn, Cr and the like. However, defining the carbon equivalent or reducing the chemical composition is
From the viewpoint of ensuring good cold forgeability, it can be said to be an effective technique, but it is not possible to improve abrasion resistance, which is one of the important characteristics for high strength of components.

【0007】また耐摩耗性の向上に関しては、浸炭冷却
→球状化焼鈍処理→浸炭焼入れ処理の適用によって、耐
摩耗性を高めた耐摩耗鋼の製造方法が特開平5−594
28号に開示されている。しかしながら、この方法では
工程が複雑になって製造コストが高くなることに加え、
基本的な要求特性である冷間鍛造性を向上させることが
できない。
[0007] Regarding the improvement of wear resistance, a method for producing wear-resistant steel with improved wear resistance by applying carburizing cooling → spheroidizing annealing → carburizing and quenching is disclosed in Japanese Patent Laid-Open No. 5-594.
No. 28. However, this method not only complicates the process and increases the production cost, but also
It is not possible to improve the cold forgeability, which is a basic required property.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、球状
化焼鈍処理の迅速化が達成されて製造コストの低減が可
能であり、且つ冷間鍛造性に優れ、必要によって耐摩耗
性をも向上させた冷間鍛造用肌焼鋼を提供しようとする
ものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to speed up the spheroidizing annealing process and reduce the manufacturing cost. An object of the present invention is to provide a case hardening steel for cold forging which has a good cold forgeability and also has improved wear resistance as required.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る冷間鍛造用肌焼鋼は、(フェライ
ト+パーライト)の面積率が75%以上であり、且つフ
ェライトの平均粒径が40μm以下、およびパーライト
の平均粒径が30μm以下である点に要旨を有するもの
である。
Means for Solving the Problems The case hardening steel for cold forging according to the present invention which can solve the above problems has an area ratio of (ferrite + pearlite) of 75% or more and an average grain size of ferrite. The gist is that the diameter is 40 μm or less and the average particle diameter of pearlite is 30 μm or less.

【0010】本発明の目的は、肌焼鋼のミクロ組織を上
記の様に調整するだけでも達成されるが、本発明の肌焼
鋼における具体的な化学成分組成としては、 C :0.3%以下(0%を含まない) Si:0.3%以下(0%を含まない) Mn:1.5%以下(0%を含まない) P :0.02%以下(0%を含む) S :0.02%以下(0%を含まない) Al:0.06%以下(0%を含まない) N :0.03%以下(0%を含まない) を夫々含有する他、 Cr:3%以下(0%を含まない) Mo:1.5%以下(0%を含まない) V :1.5%以下(0%を含まない) よりなる群から選択される1種以上を含有し、残部がF
eおよび不可避的不純物であるものが好ましい。またこ
の鋼材には、Ti:0.1%以下(0%を含まない)お
よび/またはNb:0.1%以下(0%を含まない)を
含有させることも有効である。
Although the object of the present invention can be achieved only by adjusting the microstructure of case hardened steel as described above, the specific chemical composition of the case hardened steel of the present invention is as follows: C: 0.3 % Or less (not including 0%) Si: 0.3% or less (not including 0%) Mn: 1.5% or less (not including 0%) P: 0.02% or less (including 0%) S: 0.02% or less (excluding 0%) Al: 0.06% or less (excluding 0%) N: 0.03% or less (excluding 0%) Cr: 3% or less (excluding 0%) Mo: 1.5% or less (excluding 0%) V: 1.5% or less (excluding 0%) Containing at least one member selected from the group consisting of: And the rest is F
e and those which are unavoidable impurities are preferred. It is also effective to include Ti: 0.1% or less (excluding 0%) and / or Nb: 0.1% or less (excluding 0%) in this steel material.

【0011】本発明の効果をより有効に達成する為に
は、上記各化学成分組成を有するものにおいて、合金元
素の関数として表される変形抵抗係数σeqおよび割れ
発生加工率係数ULが、夫々下記(1)式および(2)
式を満足するものであることが好ましく、こうした要件
を満足させることによって更に冷間鍛造性を向上させる
ことができる。 σeq=C+0.5Si+0.2Mn+3.0P+0.3Cr+0.3Mo+0.1V+0.1Ti+0.1Nb <1.0 …(1) UL=C+0.2Si+0.2Mn+0.2Cr+0.2Mo+2.0P+2.0S+0.1V+0.1Ti+0.1Nb<0.7 …(2)
In order to more effectively achieve the effects of the present invention, the deformation resistance coefficient .sigma.eq and the crack generation rate coefficient UL expressed as a function of the alloy element in each of the above-mentioned chemical component compositions are as follows. Equations (1) and (2)
It is preferable that the above formula be satisfied. By satisfying these requirements, the cold forgeability can be further improved. σeq = C + 0.5Si + 0.2Mn + 3.0P + 0.3Cr + 0.3Mo + 0.1V + 0.1Ti + 0.1Nb <1.0 ... (1) UL = C + 0.2Si + 0.2Mn + 0.2Cr + 0.2Mo + 2.0P + 2.0S + 0.1V + 0.1Ti + 0.1Nb <0.7… (2)

【0012】また上記化学成分組成を有するものにおい
て、合金元素の関数として表される耐摩耗性係数F(wea
r)が下記(3)式を満足するものであることが好まし
く、こうした要件を満足させることによって耐摩耗性を
向上させることができる。 F(wear)=Si+0.2Cr+0.4Mo+V>0.4 …(3) 本発明の肌焼鋼においては、必要に応じて、更に他の元
素として Cu:1.0%以下(0%を含まない)、 Ni:2.5%以下(0%を含まない)、 Ca:0.01%以下(0%を含まない)および/ま
たはZr:0.08%以下(0%を含まない)、 Pb:0.3%以下(0%を含まない)、 B:0.005%以下(0%を含まない) 等を含有させることによって、肌焼鋼としての特性を更
に改善することができる。
[0012] Further, in those having the above chemical composition, the wear resistance coefficient F (wea
It is preferable that r) satisfies the following expression (3), and by satisfying these requirements, the wear resistance can be improved. F (wear) = Si + 0.2Cr + 0.4Mo + V> 0.4 (3) In the case hardened steel of the present invention, if necessary, Cu: 1.0% or less (0 %: Ni: 2.5% or less (excluding 0%), Ca: 0.01% or less (excluding 0%) and / or Zr: 0.08% or less (including 0%) No), Pb: 0.3% or less (excluding 0%), B: 0.005% or less (excluding 0%), etc., to further improve the properties as case hardening steel. Can be.

【0013】[0013]

【発明の実施の形態】本発明者らは、上記目的を達成す
る為に様々な角度から検討した。その結果、冷間鍛造用
肌焼鋼のミクロ組織を上記の様に適切に調整してやれ
ば、上記目的が見事に達成されることを見出し、本発明
を完成した。まず本発明においてミクロ組織を上記の様
に規定した理由について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied from various angles to achieve the above object. As a result, it has been found that if the microstructure of the case hardening steel for cold forging is appropriately adjusted as described above, the above object can be achieved brilliantly, and the present invention has been completed. First, the reason for defining the microstructure as described above in the present invention will be described.

【0014】肌焼鋼に優れた冷間鍛造性を発揮させる為
には、冷間鍛造時の変形抵抗を低減する必要があるが、
本発明ではこうした観点から球状化焼鈍処理前のフェラ
イトの平均粒径を40μm以下、(フェライト+パーラ
イト)の面積率を75%以上と規定した。こうした要件
を満足させることによって、球状化焼鈍処理後にフェラ
イト中にセメンタイトを均一に分散させることができ、
これによって冷間鍛造時の変形抵抗を低減して金型寿命
を向上させることができる。上記(フェライト+パーラ
イト)の面積率は、好ましくは80%以上とするのが良
く、より好ましくは83%以上とするのが良い。尚(フ
ェライト+パーライト)以外の組織は、ベイナイトやマ
ルテンサイトの単相またはこれらの複合組織である。ま
たフェライト粒径の定義は、下記の通りである。 フェライトの平均粒径=(フェライト部の長径+短径)
/2
In order for the case hardened steel to exhibit excellent cold forgeability, it is necessary to reduce the deformation resistance during cold forging.
In the present invention, from such a viewpoint, the average particle size of ferrite before the spheroidizing annealing treatment is specified to be 40 μm or less, and the area ratio of (ferrite + pearlite) is specified to be 75% or more. By satisfying these requirements, cementite can be uniformly dispersed in ferrite after spheroidizing annealing,
Thereby, the deformation resistance at the time of cold forging can be reduced and the life of the mold can be improved. The area ratio of the above (ferrite + pearlite) is preferably 80% or more, and more preferably 83% or more. The structure other than (ferrite + pearlite) is a single phase of bainite or martensite or a composite structure thereof. The definition of the ferrite particle size is as follows. Average particle size of ferrite = (major axis of ferrite part + minor axis)
/ 2

【0015】一方、良好な冷間鍛造性を確保しながら、
球状化焼鈍処理時間の短縮化を図る為には、球状化焼鈍
処理前のパーライトの平均粒径を30μm以下とする必
要がある。パーライトの平均粒径を30μm以下とする
ことによって、(1)フェライト/セメンタイト界面で
セメンタイトの分散を促進する、(2)パーライト中の
炭素濃度を高め、熱処理時にセメンタイトの微小核を残
存させることにより再生パーライトの生成を防止する、
等の効果が発揮され、これによって球状化焼鈍処理が促
進されるものと考えられる。尚パーライトの平均粒径と
は、フェライトに囲まれたパーライト部の平均粒径のこ
とであり、測定部位は圧延材の横断面である。またパー
ライトの平均粒径の定義は、下記の通りである。 パーライトの平均粒径=(パーライト部の長径+短径)
/2
On the other hand, while ensuring good cold forgeability,
In order to shorten the spheroidizing annealing time, the average particle size of the pearlite before the spheroidizing annealing needs to be 30 μm or less. By setting the average particle size of pearlite to 30 μm or less, (1) promote the dispersion of cementite at the ferrite / cementite interface, (2) increase the carbon concentration in pearlite, and leave the fine nuclei of cementite during heat treatment. Prevent the generation of recycled perlite,
It is considered that the effects such as the above are exhibited, and thereby the spheroidizing annealing treatment is promoted. The average particle size of the pearlite is the average particle size of the pearlite portion surrounded by ferrite, and the measurement site is a cross section of the rolled material. The definition of the average particle size of pearlite is as follows. Average particle diameter of pearlite = (Large diameter + short diameter of pearlite part)
/ 2

【0016】ところで(フェライト+パーライト)の面
積率の測定方法は、例えば光学顕微鏡を用いてランダム
に5視野の組織観察を行い(倍率:×400程度)、画
像解析によって(フェライト+パーライト)の面積率を
測定する。またフェライトの平均粒径やパーライトの平
均粒径の測定方法は、例えば光学顕微鏡を用いてランダ
ムに5視野の組織観察を行い(倍率:×400程度)、
1視野当たり10カ所のフェライトの平均粒径、パーラ
イトの平均粒径を測定し、これを更に平均化することに
よってフェライトの平均粒径およびパーライトの平均粒
径の測定値とする。
The area ratio of (ferrite + pearlite) is measured, for example, by randomly observing the structure in five visual fields using an optical microscope (magnification: about 400) and analyzing the area of (ferrite + pearlite) by image analysis. Measure the rate. The method of measuring the average particle diameter of ferrite and the average particle diameter of pearlite is, for example, by randomly observing the structure of five visual fields using an optical microscope (magnification: about × 400),
The average particle size of ferrite and the average particle size of pearlite are measured at 10 locations per visual field, and the average values are further averaged to obtain measured values of the average particle size of ferrite and the average particle size of pearlite.

【0017】尚冷間鍛造用肌焼鋼のミクロ組織を上記の
様に調整するには、圧延前の加熱温度を1100℃以下
とし、圧下率を30%以上、圧延仕上げ温度を950℃
以下として圧延を行い、且つ圧延仕上げ後の冷却速度を
60℃/sec以下に設定して操業する様にすれば良
い。次に、本発明の肌焼鋼における好ましい化学成分組
成について説明する。
In order to adjust the microstructure of the case hardening steel for cold forging as described above, the heating temperature before rolling is 1100 ° C. or less, the rolling reduction is 30% or more, and the rolling finishing temperature is 950 ° C.
Rolling may be performed as follows, and the operation may be performed with the cooling rate after the rolling finish set to 60 ° C./sec or less. Next, a preferable chemical composition in the case hardening steel of the present invention will be described.

【0018】C:0.3%以下(0%を含まない) Cは強化元素として部品の芯部硬さを確保する上で有用
な元素であるが、過剰に含有させると冷間鍛造性の低下
や靭性の劣化等を生じるので、上限を0.3%と定め
た。C含有量の好ましい上限は0.25%であり、より
好ましくは0.20%以下とするのが良い。また上記効
果を有効に発揮させる為には、Cは0.05%以上含有
させることが好ましい。
C: 0.3% or less (excluding 0%) C is a useful element as a strengthening element for securing the core hardness of the component. The lower limit is set to 0.3% because the lowering and the toughness are caused. The preferred upper limit of the C content is 0.25%, and more preferably 0.20% or less. In order to effectively exhibit the above effects, it is preferable that C is contained at 0.05% or more.

【0019】Si:0.3%以下(0%を含まない) Siは溶製時の脱酸剤として有用な元素であり、また鋼
の耐摩耗性を向上させるのにも有効に作用する。しかし
ながら、その含有量が0.3%を超えると冷間鍛造時の
変形抵抗の増大を招くので、上限を0.3%と定めた。
Si含有量は、好ましくは0.15%以下、より好まし
くは0.10%以下に抑えるべきである。また上記効果
を有効に発揮させる為には、Siは0.01%以上含有
させることが好ましい。
Si: 0.3% or less (excluding 0%) Si is an element useful as a deoxidizing agent at the time of melting, and also effectively acts to improve the wear resistance of steel. However, if the content exceeds 0.3%, the deformation resistance during cold forging is increased, so the upper limit is set to 0.3%.
The Si content should preferably be kept below 0.15%, more preferably below 0.10%. In order to effectively exhibit the above effects, it is preferable that Si is contained at 0.01% or more.

【0020】Mn:1.5%以下(0%を含まない) Mnは溶製時の脱酸剤として有用な元素であるが、1.
5%を超えると冷間鍛造時の変形抵抗を高めるので、上
限を1.5%と定めた。Mn含有量は、好ましい上限は
1.2%である。また上記効果を有効に発揮させる為に
は、Mnは0.2%以上含有させることが好ましい。
Mn: 1.5% or less (excluding 0%) Mn is an element useful as a deoxidizing agent during melting.
If it exceeds 5%, the deformation resistance during cold forging increases, so the upper limit is set to 1.5%. The preferred upper limit of the Mn content is 1.2%. In order to effectively exhibit the above effects, it is preferable that Mn is contained in an amount of 0.2% or more.

【0021】P:0.02%以下(0%を含む) Pは冷間鍛造時の変形抵抗を高めて鋼の変形抵抗能を低
下させる元素であるので、良好な冷間鍛造性を確保する
為には、0.02%以下に抑制すべきである。冷間鍛造
性をより向上させるという観点からすれば、Pは0.0
15%以下とするのが好ましく、より好ましくは0.0
10%以下に抑えるべきである。
P: 0.02% or less (including 0%) Since P is an element which increases the deformation resistance during cold forging and lowers the deformation resistance of steel, it ensures good cold forgeability. For this purpose, it should be suppressed to 0.02% or less. From the viewpoint of further improving cold forgeability, P is 0.0
It is preferably at most 15%, more preferably at most 0.0%.
Should be kept below 10%.

【0022】S:0.02%以下(0%を含まない) SはMnSを形成して被削性を向上させるのに有用な元
素であるが、0.02%を超えて含有させると、冷間鍛
造時の変形能が低下する。冷間鍛造性の向上という観点
からすると、Sは0.015%以下とするのが好まし
く、より好ましくは0.010%以下に抑えるべきであ
る。また上記効果を有効に発揮させる為には、Sは0.
001%以上含有させることが好ましい。
S: 0.02% or less (excluding 0%) S is an element useful for forming MnS and improving machinability, but when contained in excess of 0.02%, Deformability during cold forging decreases. From the viewpoint of improving the cold forgeability, S is preferably set to 0.015% or less, more preferably, to 0.010% or less. Further, in order to effectively exert the above-mentioned effect, S is set to be not more than 0.
It is preferable to contain 001% or more.

【0023】Al:0.06%以下(0%を含まない) Alも溶製時に脱酸成分として有効に作用し、また鋼中
のNと結合してAlNを生成して結晶粒の粗大化を抑制
する作用も有しているが、0.06%を超えると上記効
果が飽和してくるので、上限を0.06%と定めた。ま
た上記効果を有効に発揮させる為には、Alは0.00
5%以上含有させることが好ましい。
Al: 0.06% or less (excluding 0%) Al also effectively acts as a deoxidizing component at the time of smelting, and combines with N in steel to form AlN and coarsen crystal grains. However, when the content exceeds 0.06%, the above-mentioned effect is saturated. Therefore, the upper limit is set to 0.06%. Further, in order to effectively exhibit the above effects, Al is 0.00%.
It is preferable to contain 5% or more.

【0024】N:0.03%以下(0%を含まない) Nは、鋼中でAlと結合して(V,Ti,Nbを添加す
るときにはこれらとも結合する)窒化物を生成し、結晶
粒の粗大化を抑制する効果を発揮するが、この効果はや
がて飽和に達するので、上限を0.03%と定めた。N
含有量は、好ましくは0.02%以下、より好ましくは
0.015%以下に抑えるべきである。また上記効果を
有効に発揮させる為には、Nは0.001%以上含有さ
せることが好ましい。
N: 0.03% or less (excluding 0%) N combines with Al in steel (and also binds when V, Ti, Nb is added) in the steel to form nitrides, The effect of suppressing the coarsening of the grains is exhibited, but since this effect eventually reaches saturation, the upper limit is set to 0.03%. N
The content should preferably be kept below 0.02%, more preferably below 0.015%. In order to effectively exhibit the above effects, it is preferable that N is contained at 0.001% or more.

【0025】Cr,MoおよびVは、耐摩耗性を向上さ
せるという観点からして同効元素であるといえるが、夫
々の作用を詳述すると下記の通りである。
Cr, Mo and V can be said to be the same element from the viewpoint of improving wear resistance, and their actions are described in detail below.

【0026】Cr:3%以下(0%を含まない) Crは鋼の耐摩耗性を向上させるのに有効な元素である
が、3%を超えると冷間鍛造性を低下させることに加
え、浸炭性を阻害するので、上限を3%と定めた。Cr
含有量は、冷間鍛造性の向上という観点からして好まし
くは2.5%以下、より好ましくは2.0%以下にすべ
きである。また上記効果を有効に発揮させる為には、C
rは0.2%以上含有させることが好ましい。
Cr: 3% or less (excluding 0%) Cr is an element effective for improving the wear resistance of steel, but when it exceeds 3%, in addition to lowering the cold forgeability, The upper limit is set to 3% because of impairing the carburizing property. Cr
The content should preferably be 2.5% or less, more preferably 2.0% or less, from the viewpoint of improving cold forgeability. In order to effectively exhibit the above effects, C
r is preferably contained at 0.2% or more.

【0027】Mo:1.5%以下(0%を含まない) MoはCrと同様に、鋼の耐摩耗性を向上させるのに有
効な元素であるが、1.5%を超えると冷間鍛造性を低
下させるので、上限を1,5%と定めた。Mo含有量
は、冷間鍛造性の向上という観点からして好ましくは
1.0%以下、より好ましくは0.5%以下にすべきで
ある。また上記効果を有効に発揮させる為には、Moは
0.01%以上含有させることが好ましい。
Mo: 1.5% or less (not including 0%) Like Cr, Mo is an element effective for improving the wear resistance of steel. Since the forgeability is reduced, the upper limit is set to 1.5%. The Mo content should preferably be 1.0% or less, more preferably 0.5% or less, from the viewpoint of improving cold forgeability. In order to effectively exhibit the above effects, Mo is preferably contained at 0.01% or more.

【0028】V:1.5%以下(0%を含まない) Vは鋼の耐摩耗性を向上させるのに非常に有効な元素で
あるが、この効果はやがて飽和に達するので、上限を
1.5%と定めた。V含有量は、冷間鍛造性の向上とい
う観点からして好ましくは1.0%以下、より好ましく
は0.5%以下にすべきである。上記効果を有効に発揮
させる為には、Vは0.01%以上含有させることが好
ましい。
V: 1.5% or less (excluding 0%) V is a very effective element for improving the wear resistance of steel, but since this effect eventually reaches saturation, the upper limit is set at 1%. 0.5%. The V content should preferably be 1.0% or less, more preferably 0.5% or less, from the viewpoint of improving cold forgeability. In order to effectively exhibit the above effects, V is preferably contained at 0.01% or more.

【0029】本発明の肌焼鋼における好ましい化学成分
は上記の通りであり、残部は鉄および不可避不純物であ
るが、必要により更に他の元素として下記の様な元素を
適量含有させることによって、肌焼鋼としての特性を一
段と改善することが可能である。
The preferred chemical components in the case hardening steel of the present invention are as described above, and the balance is iron and unavoidable impurities. If necessary, the following elements may be further contained in appropriate amounts as other elements. It is possible to further improve the properties as hardened steel.

【0030】Ti:0.1%以下(0%を含まない)お
よび/またはNb:0.1%以下(0%を含まない) TiとNbは、結晶粒を微細にしてフェライトやパーラ
イトの平均粒径を小さくするのに有効な元素であるが、
いずれも0.1%を超えると被削性が低下するので、上
限を0.1%と定めた。冷間鍛造性の向上という観点か
らして、これらの含有量は好ましくは0.05%以下に
すべきである。また上記効果を有効に発揮させる為に
は、これらの元素は0.001%以上含有させることが
好ましい。
Ti: 0.1% or less (excluding 0%) and / or Nb: 0.1% or less (excluding 0%) Ti and Nb reduce the crystal grain size to an average of ferrite and pearlite. It is an effective element to reduce the particle size,
In any case, when the content exceeds 0.1%, the machinability decreases, so the upper limit is set to 0.1%. From the viewpoint of improving the cold forgeability, their contents should preferably be 0.05% or less. In order to effectively exhibit the above effects, it is preferable that these elements are contained in an amount of 0.001% or more.

【0031】Cu:1%以下(0%を含まない) Cuは耐食性を改善するのに有効な元素であるが、この
効果はやがて飽和に達するので、上限を1%と定めた。
上記効果を発揮させる為には、Cuは0.2%以上含有
させることが好ましい。但し、Cuを単独で添加する
と、熱間加工性が劣化するので、Cuを添加する場合に
は熱間加工性を改善する作用を有するNiをCu量と同
程度添加することが好ましい。
Cu: 1% or less (excluding 0%) Cu is an element effective for improving corrosion resistance, but since this effect eventually reaches saturation, the upper limit is set to 1%.
In order to exhibit the above effects, it is preferable that Cu is contained in an amount of 0.2% or more. However, when Cu is added alone, hot workability deteriorates. Therefore, when Cu is added, it is preferable to add Ni having an effect of improving hot workability to the same extent as the amount of Cu.

【0032】Ni:2.5%以下(0%を含まない) Niは上記した作用の他、浸炭処理後の組織を微細化し
て靭性の向上に有効に作用し、安定した心部硬さを確保
するために有効な元素であるが、その効果は2.5%で
飽和するので、上限を2.5%と定めた。Ni含有量の
好ましい上限は2.0%である。上記効果を有効に発揮
させる為には、Niは0.2%以上含有させることが好
ましい。
Ni: not more than 2.5% (not including 0%) In addition to the above-mentioned effects, Ni effectively works to improve the toughness by refining the structure after carburizing, and provides stable core hardness. Although it is an effective element for securing, the effect is saturated at 2.5%, so the upper limit is set to 2.5%. The preferable upper limit of the Ni content is 2.0%. In order to effectively exhibit the above effects, it is preferable that Ni is contained in an amount of 0.2% or more.

【0033】Ca:0.01%以下(0%を含まない)
および/またはZr:0.08%以下(0%を含まな
い) これらの元素は、MnSを球状化させ異方性を改善する
ことによって、冷却間鍛造性の向上に寄与するが、Ca
で0.01%、Zrで0.08%を夫々超えると、その
効果は飽和する。これらの好ましい上限は、Caで0.
008%、Zrで0.06%である。また上記効果を有
効に発揮させる為には、Caで0.0005%以上、Z
rで0.001%以上含有させることが好ましい。
Ca: 0.01% or less (excluding 0%)
And / or Zr: 0.08% or less (excluding 0%) These elements contribute to the improvement of the forging property during cooling by spheroidizing MnS and improving the anisotropy.
Exceeds 0.01% and Zr exceeds 0.08%, the effect is saturated. These preferred upper limits are set at 0.
008% and 0.06% in Zr. Further, in order to effectively exhibit the above effects, 0.0005% or more of Ca and Z
It is preferable that the content of r is 0.001% or more.

【0034】Pb:0.3%以下(0%を含まない) Pbは被削性の向上に有効な元素であるが、0.3%を
超えるとその効果が飽和するので、上限を0.3%と定
めた。Pb含有量の好ましい上限は0.25%である。
また上記効果を有効に発揮させる為には、Pbは0.0
1%以上含有させることが好ましい。
Pb: 0.3% or less (excluding 0%) Pb is an element effective for improving machinability, but if it exceeds 0.3%, its effect is saturated. It was set at 3%. A preferred upper limit of the Pb content is 0.25%.
Further, in order to effectively exert the above effect, Pb is set to 0.0
It is preferable to contain 1% or more.

【0035】B:0.005%以下(0%を含まない) Bは焼入れ性向上に有効な元素であるが、0.005%
を超えるとその効果が飽和するので、上限を0.005
%と定めた。B含有量の好ましい上限は0.0045%
である。また上記効果を有効に発揮させる為には、Bは
0.0005%以上含有させることが好ましい。
B: 0.005% or less (excluding 0%) B is an element effective for improving hardenability, but 0.005%
Exceeds 0.005, the effect is saturated.
%. A preferable upper limit of the B content is 0.0045%.
It is. In order to effectively exhibit the above effects, it is preferable that B is contained at 0.0005% or more.

【0036】ところで本発明者らは、球状化焼鈍処理材
の冷間鍛造性を更に高める為に別の角度からも検討を行
った。その結果、変形抵抗係数σeqや割れ発生加工率
係数ULが主要合金元素の関数として表されることを見
出し、これらが夫々下記(1)式および(2)式を満足
するものであれば、変形抵抗を700N/mm2 未満に
抑えることができると共に、割れが発生するまでの加工
率(以下、「割れが発生加工率」と呼ぶ)を高めること
ができ、これらによって冷間鍛造性を更に向上できるこ
とを突き止めた。また下記(1),(2)式から明らか
なように、V,Ti,Nbは冷間鍛造性を低下させる影
響が比較的小さいことがわかる。 σeq=C+0.5Si+0.2Mn+3.0P+0.3Cr+0.3Mo+0.1V+0.1Ti+0.1Nb <1.0 …(1) UL=C+0.2Si+0.2Mn+0.2Cr+0.2Mo+2.0P+2.0S+0.1V+0.1Ti+0.1Nb<0.7 …(2)
The present inventors have also studied from another angle to further enhance the cold forgeability of the spheroidized annealing material. As a result, it was found that the deformation resistance coefficient σeq and the crack initiation rate factor UL were expressed as functions of the main alloying elements, and if these satisfied the following equations (1) and (2), respectively, The resistance can be suppressed to less than 700 N / mm 2 , and the working ratio before cracking (hereinafter, referred to as “the cracking working ratio”) can be increased, thereby further improving the cold forgeability. I figured out what I can do. Further, as is apparent from the following equations (1) and (2), it is understood that V, Ti, and Nb have a relatively small effect of lowering the cold forgeability. σeq = C + 0.5Si + 0.2Mn + 3.0P + 0.3Cr + 0.3Mo + 0.1V + 0.1Ti + 0.1Nb <1.0 ... (1) UL = C + 0.2Si + 0.2Mn + 0.2Cr + 0.2Mo + 2.0P + 2.0S + 0.1V + 0.1Ti + 0.1Nb <0.7… (2)

【0037】一方、本発明者らは表面処理後の耐摩耗性
を高めるという観点からも検討を行ったところ、耐摩耗
性を示す指標としての耐摩耗性係数F(wear)は主要合金
元素の関数として表されることを見出し、この耐摩耗性
係数F(wear)が下記(3)式を満足するものであれば耐
摩耗性を向上させることができることも突き止めた。ま
た下記(3)式から明らかなように、Vは耐摩耗性向上
への寄与がSiと同様に非常に大きいことがわかる。 F(wear)=Si+0.2Cr+0.4Mo+V>0.4 …(3)
On the other hand, the present inventors also studied from the viewpoint of enhancing the wear resistance after the surface treatment, and found that the wear resistance coefficient F (wear) as an index indicating the wear resistance was a major alloy element. It has been found that the wear resistance can be improved if the wear resistance coefficient F (wear) satisfies the following equation (3). Further, as is apparent from the following equation (3), it is understood that V greatly contributes to the improvement of abrasion resistance similarly to Si. F (wear) = Si + 0.2Cr + 0.4Mo + V> 0.4… (3)

【0038】[0038]

【実施例】次に実施例を挙げて本発明の構成および作用
効果をより具体的に説明するが、本発明はもとより下記
実施例によって制限を受けるものではなく、前・後記の
趣旨に適合し得る範囲で変更を加えて実施することも勿
論可能であり、それらはいずれも本発明の技術的範囲に
含まれる。
EXAMPLES Next, the structure and operation and effect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and the present invention is applicable to the above and following points. Of course, the present invention can be implemented with modifications as far as possible, and all of them are included in the technical scope of the present invention.

【0039】参考例1 下記表1に示す化学成分組成の鋼種を使用し、φ35m
mに圧延後、球状化焼鈍に費やす処理時間調査用の試験
片とした。このとき比較試験片として、表1に示した化
学成分組成と同じ鋼種を使用し、これをφ35mmに圧
延後、溶体化処理(1200℃×1Hr→空冷)した鋼
材(後記表3のNo.7〜12)を用いた。
Reference Example 1 A steel grade having a chemical composition shown in Table 1 below was used,
After rolling to m, it was used as a test piece for investigating the processing time spent for spheroidizing annealing. At this time, a steel material having the same chemical composition as shown in Table 1 was used as a comparative test piece, which was rolled to φ35 mm, and then subjected to a solution treatment (1200 ° C. × 1 hr → air cooling) (No. 7 in Table 3 described later). To 12).

【0040】[0040]

【表1】 [Table 1]

【0041】これらの試験片に対して、図1に示す球状
化処理を施し、JIS G 3539に規定されている
球状化組織の程度がNo.1〜No.3となる熱処理時
間を球状化処理時間とした(下記表2参照)。
These test pieces were subjected to a spheroidizing treatment shown in FIG. 1 and the degree of spheroidizing structure specified in JIS G 3539 was No. 1 to No. The heat treatment time of 3 was defined as a spheroidization treatment time (see Table 2 below).

【0042】[0042]

【表2】 [Table 2]

【0043】球状化に要する処理時間を、球状化処理前
における鋼材のミクロ組織と共に、下記表3に示すが、
パーライトの平均粒径が30μm以下のもの(No.1
〜6)は、パーライトの平均粒径が30μmを超えるも
の(No.7〜12)に比べて、球状化処理時間が短く
なっていることが分かる。
The processing time required for the spheroidization is shown in Table 3 below together with the microstructure of the steel material before the spheroidization.
Pearlite having an average particle size of 30 μm or less (No. 1)
6), the spheroidization time was shorter than that of pearlite having an average particle size of more than 30 μm (Nos. 7 to 12).

【0044】[0044]

【表3】 [Table 3]

【0045】実施例1 下記表4に示す化学成分組成の鋼種(G〜I)を使用
し、φ35mmに圧延後、前記図1に示した球状化焼鈍
処理を施した後、機械加工によりφ20mm×30mm
の変形抵抗調査用の試験片と、図2に示す割れ発生加工
率調査用の試験片を作製した。このとき表4に示した化
学成分組成と同じ鋼種(G〜I)を使用し、夫々につい
て下記(1)〜(3)の方法によって各種比較試験片も
作製した(後記表5のNo.4〜12)。
Example 1 Using steel types (G to I) having the chemical composition shown in Table 4 below, after rolling to φ35 mm, performing the spheroidizing annealing treatment shown in FIG. 30mm
A test piece for examining the deformation resistance and a test piece for examining the cracking processing rate shown in FIG. 2 were produced. At this time, various comparative test pieces were prepared by using the same steel types (GI) as the chemical composition shown in Table 4 and by the following methods (1) to (3) (No. 4 in Table 5 described later). To 12).

【0046】(1)φ35mmに圧延→焼ならし処理
(1200℃×1Hr→空冷)後、図1に示した球状化
焼鈍処理を施し、機械加工によりφ20mm×30mm
の変形抵抗調査用の試験片と、図2に示す割れ発生加工
率調査用の試験片を作製した(後記表5のNo.4〜
6)。 (2)φ35mmに圧延→焼ならし処理(900℃×1
Hr→衝風冷却)後、図1に示した球状化焼鈍処理を施
し、機械加工によりφ20mm×30mmの変形抵抗調
査用の試験片と、図2に示す割れ発生加工率調査用の試
験片を作製した(後記表5のNo.7〜9)。 (3)φ35mmに圧延→焼ならし処理(1200℃×
1Hr→衝風冷却)後、図1に示した球状化焼鈍処理を
施し、機械加工によりφ20mm×30mmの変形抵抗
調査用の試験片と、図2に示す割れ発生加工率調査用の
試験片を作製した(後記表5のNo.10〜12)。
(1) Rolling to φ35 mm → normalizing treatment (1200 ° C. × 1 Hr → air cooling), then performing spheroidizing annealing treatment as shown in FIG. 1, and φ20 mm × 30 mm by machining
A test piece for examining the deformation resistance and a test piece for examining the crack occurrence reduction rate shown in FIG.
6). (2) Rolling to φ35mm → normalizing treatment (900 ° C x 1
(Hr → impact cooling), the spheroidizing annealing treatment shown in FIG. 1 is performed, and a test piece for measuring the deformation resistance of φ20 mm × 30 mm and a test piece for investigating the crack generation processing rate shown in FIG. (Nos. 7 to 9 in Table 5 described later). (3) Rolling to φ35mm → normalizing treatment (1200 ° C x
1Hr → impact cooling), the spheroidizing annealing treatment shown in FIG. 1 is performed, and a test piece of φ20 mm × 30 mm for deformation resistance investigation and a test piece for crack generation processing rate investigation shown in FIG. 2 are machined. (Nos. 10 to 12 in Table 5 described later).

【0047】[0047]

【表4】 [Table 4]

【0048】これらの試験片を用い、変形抵抗、冷圧性
試験による割れ発生加工率を調査した。また球状化焼鈍
後に、図3に示す大越摩耗試験片を作製し、図4に示す
浸炭焼入れ・焼戻し処理後に大越式摩耗試験を実施し
た。尚この摩耗試験を実施するに当たり、相手材として
軸受鋼SUJ2の焼入れ・焼戻し材を用いた。また試験
条件は、乾式、最終荷重:6.3kgf、摩擦距離:2
00mm、摩擦速度:3m/secとした。試験片の球
状化焼鈍処理前のミクロ組織を、球状化焼鈍条件(球状
化処理温度,球状化処理時間)と共に、下記表5に示
す。また上記各試験結果を、好ましい要件である変形抵
抗係数σeq、割れ発生加工率係数ULおよび耐摩耗性
係数F(wear)と共に、下記表6に示す。
Using these test pieces, the deformation resistance and the cracking processing rate by a cold pressure test were examined. After the spheroidizing annealing, an Ogoshi abrasion test specimen shown in FIG. 3 was prepared, and an Ogoshi abrasion test was performed after carburizing, quenching and tempering shown in FIG. In carrying out this wear test, a quenched and tempered material of bearing steel SUJ2 was used as a mating material. The test conditions were dry, final load: 6.3 kgf, friction distance: 2
00 mm, friction speed: 3 m / sec. The microstructure of the test piece before the spheroidizing annealing treatment is shown in Table 5 below together with the spheroidizing annealing conditions (spheroidizing treatment temperature and spheroidizing treatment time). The results of the above tests are shown in Table 6 below together with the preferred requirements of the deformation resistance coefficient σeq, the crack generation rate coefficient UL, and the wear resistance coefficient F (wear).

【0049】[0049]

【表5】 [Table 5]

【0050】[0050]

【表6】 [Table 6]

【0051】これらの結果から明らかな様に、No.1
〜3のものは本発明で規定するミクロ組織(フェライト
+パーライトの面積率、フェライトの平均粒径およびパ
ーライト平均粒径)を満足する実施例であり、いずれも
割れ発生加工率は60%以上であり、しかも比摩耗量も
比較鋼と同等であり大きく低下していないことが分か
る。
As is clear from these results, 1
3 to 3 are examples satisfying the microstructure (area ratio of ferrite + pearlite, average particle size of ferrite, and average particle size of pearlite) defined in the present invention, and all of them have a crack generation processing rate of 60% or more. In addition, it can be seen that the specific wear amount is equivalent to that of the comparative steel and does not significantly decrease.

【0052】これに対しNo.4〜6のものは、化学成
分は本発明の好ましい組成を満足するものであるが、フ
ェライトの平均粒径およびパーライトの平均粒径が本発
明で規定する範囲よりも大きい比較例であり、割れ発生
加工率が低下している。またNo.7〜9のものは、化
学成分は本発明の好ましい組成を満足するものである
が、(フェライト+パーライト)の面積率が本発明で規
定する範囲よりも小さい比較例であり、割れ発生加工率
が低下している。更に、No.10〜12のものは、化
学成分は本発明の好ましい組成を満足するものである
が、フェライトの平均粒径およびパーライトの平均粒径
が本発明で規定する範囲よりも大きく、且つ(フェライ
ト+パーライト)の面積率が本発明で規定する範囲より
も小さい比較例であり、割れ発生加工率が低下してい
る。
On the other hand, no. Samples Nos. 4 to 6 are comparative examples in which the chemical components satisfy the preferred composition of the present invention, but the average particle size of ferrite and the average particle size of pearlite are larger than the ranges specified in the present invention. The generated processing rate has decreased. No. 7 to 9 are comparative examples in which the chemical composition satisfies the preferred composition of the present invention, but the area ratio of (ferrite + pearlite) is smaller than the range specified in the present invention. Is declining. In addition, No. Those having a chemical composition satisfying the preferred composition of the present invention, the average particle diameter of ferrite and the average particle diameter of pearlite are larger than the ranges specified in the present invention, and (ferrite + pearlite) 2) is a comparative example in which the area ratio is smaller than the range specified in the present invention, and the cracking processing rate is reduced.

【0053】実施例2 表7のNo.1〜20および表8のNo.21〜32の
化学成分組成の鋼種を使用し、φ35mmに圧延後、前
記図1に示した球状化焼鈍処理を施し、機械加工により
φ20mm×30mmの変形抵抗調査用の試験片と、図
2に示す割れ発生加工率調査用の試験片を作製した。こ
のとき表8のNo.21,25および31に示した化学
成分組成と同じ鋼種を使用し、夫々下記(1)〜(3)
の方法によって各種の試験片も作製した(後記表10の
No.33〜41)。
Example 2 No. 3 in Table 7 Nos. 1 to 20 and Nos. A steel specimen having a chemical composition of 21 to 32 was used, and after being rolled to φ35 mm, the spheroidizing annealing treatment shown in FIG. 1 was performed, and a test piece for deformation resistance investigation of φ20 mm × 30 mm was machined. Test specimens for investigating the crack generation processing rate shown in the table were prepared. At this time, in Table 8, No. The same steel composition as the chemical composition shown in 21, 25 and 31 was used, and the following (1) to (3)
Various test pieces were also prepared by the method of No. 33 (Nos. 33 to 41 in Table 10 described later).

【0054】(1)φ35mmに圧延→焼ならし処理
(1200℃×1Hr→空冷)後、図1に示した球状化
焼鈍処理を施し、機械加工によりφ20mm×30mm
の変形抵抗調査用の試験片と、図2に示す割れ発生加工
率調査用の試験片を作製した(後記表10のNo.33
〜35)。 (2)φ35mmに圧延→焼ならし処理(900℃×1
Hr→衝風冷却)後、図1に示した球状化焼鈍処理を施
し、機械加工によりφ20mm×30mmの変形抵抗調
査用の試験片と、図2に示す割れ発生加工率調査用の試
験片を作製した(後記表10のNo.36〜38)。 (3)φ35mmに圧延→焼ならし処理(1200℃×
1Hr→衝風冷却)後、図1に示した球状化焼鈍処理を
施し、機械加工によりφ20mm×30mmの変形抵抗
調査用の試験片と、図2に示す割れ発生加工率調査用の
試験片を作製した(後記表10のNo.39〜41)。
(1) Rolling to φ35 mm → normalizing treatment (1200 ° C. × 1 Hr → air cooling), then performing spheroidizing annealing treatment shown in FIG. 1, and φ20 mm × 30 mm by machining
A test piece for examining the deformation resistance and a test piece for examining the cracking processing rate shown in FIG. 2 were prepared (No. 33 in Table 10 below).
~ 35). (2) Rolling to φ35mm → normalizing treatment (900 ° C x 1
(Hr → impact cooling), the spheroidizing annealing treatment shown in FIG. 1 is performed, and a test piece for measuring the deformation resistance of φ20 mm × 30 mm and a test piece for investigating the crack generation processing rate shown in FIG. It was prepared (Nos. 36 to 38 in Table 10 below). (3) Rolling to φ35mm → normalizing treatment (1200 ° C x
1Hr → impact cooling), the spheroidizing annealing treatment shown in FIG. 1 is performed, and a test piece of φ20 mm × 30 mm for deformation resistance investigation and a test piece for crack generation processing rate investigation shown in FIG. 2 are machined. It was prepared (Nos. 39 to 41 in Table 10 described later).

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【表8】 [Table 8]

【0057】これらの試験片を用い、変形抵抗、冷圧性
試験による割れ発生加工率を調査した。また球状化焼鈍
後に、図3に示す大越摩耗試験片を作成し、図4
(A),(B)に示す浸炭焼入れ・焼戻し処理後に大越
式摩耗試験を実施例1と同様に実施した。試験片の球状
化焼鈍処理前のミクロ組織を、球状化焼鈍条件(球状化
処理温度,球状化処理時間)と共に下記表9,10に示
す。また上記各試験結果を、好ましい要件である変形抵
抗係数σeq、割れ発生加工率係数ULおよび耐摩耗性
係数F(wear)と共に、下記表11,12に示す。
Using these test pieces, the deformation resistance and the cracking working rate by a cold pressure test were examined. After the spheroidizing annealing, the Ogoshi wear test specimen shown in FIG.
After the carburizing quenching and tempering treatments shown in (A) and (B), an Ogoshi type abrasion test was performed in the same manner as in Example 1. The microstructures of the test pieces before the spheroidizing annealing treatment are shown in Tables 9 and 10 below together with the spheroidizing annealing conditions (spheroidizing treatment temperature and spheroidizing treatment time). The results of the above tests are shown in Tables 11 and 12 below together with the preferred requirements of the deformation resistance coefficient σeq, the crack generation rate coefficient UL, and the wear resistance coefficient F (wear).

【0058】[0058]

【表9】 [Table 9]

【0059】[0059]

【表10】 [Table 10]

【0060】[0060]

【表11】 [Table 11]

【0061】[0061]

【表12】 [Table 12]

【0062】これらの結果から明らかな様に、表7のN
o.1〜20のものは本発明で規定するミクロ組織(フ
ェライト+パーライトの面積率、フェライトの平均粒径
およびパーライトの平均粒径)、並びに好ましい要件で
ある変形抵抗係数σeq、割れ発生加工率ULおよび耐
摩耗性係数F(wear)を満足するものであり、加工率80
%における変形抵抗は700N/mm2 よりも低く、且
つ割れ発生加工率ULは60%以上であり、優れた冷間
鍛造性を有していることが分かる。また比摩耗量も1.
0×10-7mm2 /kg未満と非常に少なく、優れた耐
摩耗性を有していることが分かる。これに対しNo.2
1〜41のものは、本発明で規定する要件(または好ま
しいの要件)のいずれかを欠くものであり、下記の様に
少なくともいずれかの特性が劣っている。
As is apparent from these results, N in Table 7
o. Those having 1 to 20 microstructures (area ratio of ferrite + pearlite, average particle size of ferrite and average particle size of pearlite) defined in the present invention, and deformation resistance coefficient σeq, cracking working rate UL and It satisfies the wear resistance coefficient F (wear) and has a processing rate of 80
%, The deformation resistance UL is less than 700 N / mm 2 , and the cracking working rate UL is 60% or more, indicating that the steel has excellent cold forgeability. The specific wear amount is also 1.
It is very small, that is, less than 0 × 10 −7 mm 2 / kg, and it can be seen that it has excellent wear resistance. On the other hand, No. 2
Samples Nos. 1 to 41 lack any of the requirements (or preferred requirements) specified in the present invention, and are inferior in at least one of the properties as described below.

【0063】(a) No.21のものは、本発明で規定す
るミクロ組織およびの好ましい化学成分組成を満足する
が、変形抵抗係数σeqが本発明で規定する範囲よりも
大きくなっており、金型寿命低下に対する影響は小さい
が、変形抵抗が700N/mm2 より僅かに高くなって
いる。
(A) No. 21 satisfies the microstructure and the preferred chemical composition defined in the present invention, but the deformation resistance coefficient σeq is larger than the range specified in the present invention, and the influence on the mold life reduction is small. , The deformation resistance is slightly higher than 700 N / mm 2 .

【0064】(b) No.22のものは、本発明で規定す
るミクロ組織を満足するが、C含有量が本発明の好まし
い化学成分組成よりも多く、且つ変形抵抗係数σeqも
本発明で規定する範囲よりも大きくなっており、金型寿
命低下に対する影響は小さいが、変形抵抗が700N/
mm2 より僅かに高くなっている。
(B) No. Sample No. 22 satisfies the microstructure defined in the present invention, but has a C content larger than the preferred chemical composition of the present invention, and the deformation resistance coefficient σeq is larger than the range specified in the present invention. , The effect on the reduction of the mold life is small, but the deformation resistance is 700 N /
than mm 2 is slightly higher.

【0065】(c) No.23のものは、本発明で規定す
るミクロ組織およびの好ましい化学成分組成を満足する
が、変形抵抗係数σeqおよび割れ発生加工率係数UL
が本発明の好ましい範囲よりも大きくなっているので、
金型寿命低下に対する影響は小さいが、変形抵抗が70
0N/mm2 より僅かに高く、割れ発生加工率も僅かに
低下している。
(C) No. No. 23 satisfies the microstructure and the preferred chemical composition defined in the present invention, but has a deformation resistance coefficient σeq and a crack generation rate coefficient UL.
Is larger than the preferred range of the present invention,
The effect on the reduction of the mold life is small, but the deformation resistance is 70%.
It is slightly higher than 0 N / mm 2 , and the crack generation rate is slightly lowered.

【0066】(d) No.24のものは、本発明で規定す
るミクロ組織を満足するが、Mn含有量が本発明の好ま
しい化学成分組成よりも多く、且つ変形抵抗係数σeq
および割れ発生加工率係数ULが本発明の好ましい範囲
よりも大きくなっているので、金型寿命低下に対する影
響は小さいが、変形抵抗が700N/mm2より僅かに
高く、割れ発生加工率も僅かに低下している。
(D) No. 24 satisfy the microstructure defined in the present invention, but have a Mn content greater than the preferred chemical composition of the present invention, and have a deformation resistance coefficient σeq
And since the crack generation rate coefficient UL is larger than the preferred range of the present invention, the influence on the reduction of the mold life is small, but the deformation resistance is slightly higher than 700 N / mm 2 and the crack generation rate is slightly higher. Is declining.

【0067】(e) No.25のものは、本発明で規定す
るミクロ組織およびの好ましい化学成分組成を満足する
が、割れ発生加工率係数ULが本発明の好ましい範囲よ
りも大きくなっているので、割れ発生加工率が僅かに低
下している。
(E) No. 25, which satisfies the microstructure defined by the present invention and the preferred chemical composition, but has a slightly smaller cracking processing rate because the cracking processing rate coefficient UL is larger than the preferred range of the present invention. Is declining.

【0068】(f) No.26のものは、本発明で規定す
るミクロ組織を満足するが、S含有量が本発明の好まし
い化学成分組成よりも多く、且つ割れ発生加工率係数U
Lも本発明の好ましい範囲よりも大きくなっているの
で、割れ発生加工率が僅かに低下している。
(F) No. No. 26 satisfies the microstructure specified in the present invention, but has an S content larger than the preferred chemical composition of the present invention, and has a crack generation processing rate coefficient U
Since L is also larger than the preferred range of the present invention, the crack generation processing rate is slightly reduced.

【0069】(g) No.27,28のものは、本発明で
規定するミクロ組織およびの好ましい化学成分組成を満
足するが、耐摩耗性係数F(wear)が本発明の好ましい範
囲よりも小さくなっているので、比摩耗量が夫々5.2
×10-7mm2 /kg,3.1×10-7mm2 /kgと
多くなっており、耐摩耗性が低下している。
(G) No. 27 and 28 satisfy the microstructure and the preferred chemical composition defined in the present invention, however, since the wear resistance coefficient F (wear) is smaller than the preferred range of the present invention, the specific wear amount But 5.2 each
× 10 -7 mm 2 /kg,3.1×10 -7 mm 2 / kg and has become large, the wear resistance deteriorated.

【0070】(h) No.29のものは、本発明の好まし
い化学成分組成を満足するが、変形抵抗係数σeqが本
発明で規定する範囲よりも大きくなっており、金型寿命
低下に対する影響は小さいが、変形抵抗が700N/m
2 より僅かに高くなっており、しかも耐摩耗性係数F
(wear)が本発明の好ましい範囲よりも小さくなっている
ので、比摩耗量が2.0×10-7mm2 /kgと多くな
っており、耐摩耗性が低下している。
(H) No. No. 29 satisfies the preferred chemical composition of the present invention, but the deformation resistance coefficient σeq is larger than the range specified in the present invention, and the influence on the mold life reduction is small, but the deformation resistance is 700 N / m
m 2 , and the wear resistance coefficient F
Since (wear) is smaller than the preferred range of the present invention, the specific wear amount is as large as 2.0 × 10 −7 mm 2 / kg, and the wear resistance is reduced.

【0071】(i) No.30のものは、本発明で規定す
るミクロ組織を満足するが、S含有量が本発明の好まし
い化学成分組成よりも多く、且つ割れ発生加工率係数U
Lも本発明の好ましい範囲よりも大きくなっているの
で、割れ発生加工率が僅かに低下しており、しかも耐摩
耗性係数F(wear)が本発明の好ましい範囲よりも小さく
なっているので、比摩耗量が2.0×10-7mm2 /k
gと多くなっており、耐摩耗性が低下している。
(I) No. 30 satisfies the microstructure defined in the present invention, but has an S content larger than the preferred chemical component composition of the present invention, and has a crack generation processing rate coefficient U
Since L is also larger than the preferred range of the present invention, the crack generation processing rate is slightly reduced, and the wear resistance coefficient F (wear) is smaller than the preferred range of the present invention. Specific wear amount is 2.0 × 10 -7 mm 2 / k
g, and the wear resistance is reduced.

【0072】(j) No.31のものは、本発明で規定す
るミクロ組織およびの好ましい化学成分組成を満足する
が、変形抵抗係数σeqおよび割れ発生加工率係数UL
が本発明の好ましい範囲よりも大きくなっているので、
金型寿命低下に対する影響は小さいが、変形抵抗が70
0N/mm2 より僅かに高く、割れ発生加工率も僅かに
低下している。
(J) No. No. 31 satisfies the microstructure and the preferred chemical composition defined in the present invention, but has a deformation resistance coefficient σeq and a crack generation rate coefficient UL.
Is larger than the preferred range of the present invention,
The effect on the reduction of the mold life is small, but the deformation resistance is 70%.
It is slightly higher than 0 N / mm 2 , and the crack generation rate is slightly lowered.

【0073】(k) No.32のものは、本発明で規定す
るミクロ組織を満足するが、MnとPの含有量が本発明
の好ましい化学成分組成よりも多く、且つ変形抵抗係数
σeqおよび割れ発生加工率係数ULが本発明の好まし
い範囲よりも大きくなっているので、変形抵抗が高く且
つ割れ発生加工率が低く、しかも耐摩耗性係数F(wear)
が本発明の好ましい範囲よりも小さくなっているので、
比摩耗量が3.2×10-7mm2 /kgと多くなってお
り、耐摩耗性が低下している。
(K) No. No. 32 satisfies the microstructure specified in the present invention, but the content of Mn and P is larger than the preferred chemical composition of the present invention, and the deformation resistance coefficient σeq and the cracking processing rate coefficient UL are the same as those of the present invention. , The deformation resistance is high, the cracking rate is low, and the wear resistance coefficient F (wear)
Is smaller than the preferred range of the present invention,
The specific wear amount was as large as 3.2 × 10 −7 mm 2 / kg, and the wear resistance was reduced.

【0074】(l) No.33のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径お
よびパーライトの平均粒径が本発明で規定する範囲より
も大きく、且つ変形抵抗係数σeqが本発明の好ましい
範囲よりも大きくなっているので、変形抵抗が820N
/mm2 と高くなっており、且つ割れ発生加工率も低下
している。
(L) No. No. 33 satisfies the preferred chemical composition of the present invention, but the average particle size of ferrite and the average particle size of pearlite are larger than the ranges specified in the present invention, and the deformation resistance coefficient σeq is in the preferable range of the present invention. 820N, the deformation resistance is 820N
/ Mm 2 , and the crack generation rate is also low.

【0075】(m) No.34のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径お
よびパーライトの平均粒径が本発明で規定する範囲より
も大きく、且つ割れ発生加工率係数ULが本発明の好ま
しい範囲よりも大きくなっているので、割れ発生加工率
が低下している。
(M) No. No. 34 satisfies the preferred chemical composition of the present invention, but the average particle size of ferrite and the average particle size of pearlite are larger than the ranges specified in the present invention, and the cracking reduction coefficient UL is smaller than that of the present invention. Since it is larger than the preferable range, the crack generation processing rate is reduced.

【0076】(n) No.35のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径お
よびパーライトの平均粒径が本発明で規定する範囲より
も大きく、且つ変形抵抗係数σeqおよび割れ発生加工
率係数ULが本発明の好ましい範囲よりも大きくなって
いるので、変形抵抗が822N/mm2と高くなってお
り、且つ割れ発生加工率も低下している。
(N) No. 35 satisfies the preferred chemical composition of the present invention, but the average particle diameter of ferrite and the average particle diameter of pearlite are larger than the ranges specified in the present invention, and the deformation resistance coefficient σeq and the cracking processing rate coefficient Since UL is larger than the preferred range of the present invention, the deformation resistance is as high as 822 N / mm 2 , and the crack generation processing rate is also reduced.

【0077】(o) No.36のものは、本発明の好まし
い化学成分組成を満足するが、(フェライト+パーライ
ト)の面積率が本発明で規定する範囲よりも小さく、且
つ変形抵抗係数σeqが本発明の好ましい範囲よりも大
きくなっているので、変形抵抗が815N/mm2 と高
くなっており、且つ割れ発生加工率も低下している。
(O) No. No. 36 satisfies the preferred chemical composition of the present invention, but the area ratio of (ferrite + pearlite) is smaller than the range specified in the present invention, and the deformation resistance coefficient σeq is larger than the preferable range in the present invention. Therefore, the deformation resistance is as high as 815 N / mm 2 , and the cracking processing rate is also reduced.

【0078】(p) No.37のものは、本発明の好まし
い化学成分組成を満足するが、(フェライト+パーライ
ト)の面積率が本発明で規定する範囲よりも小さく、且
つ割れ発生加工率係数ULが本発明の好ましい範囲より
も大きくなっているので、割れ発生加工率が低下してい
る。
(P) No. 37 satisfies the preferred chemical composition of the present invention, but the (ferrite + pearlite) area ratio is smaller than the range specified in the present invention, and the crack generation rate factor UL is smaller than the preferable range in the present invention. , The cracking rate is reduced.

【0079】(q) No.38のものは、本発明の好まし
い化学成分組成を満足するが、(フェライト+パーライ
ト)の面積率が本発明で規定する範囲よりも小さく、且
つ変形抵抗係数σeqおよび割れ発生加工率係数ULが
本発明の好ましい範囲よりも大きくなっているので、変
形抵抗が819N/mm2 と高くなっており、且つ割れ
発生加工率も低下している。
(Q) No. No. 38 satisfies the preferred chemical composition of the present invention, but the area ratio of (ferrite + pearlite) is smaller than the range specified in the present invention, and the deformation resistance coefficient σeq and the crack generation rate coefficient UL are less than the range specified in the present invention. Since it is larger than the preferred range of the invention, the deformation resistance is as high as 819 N / mm 2 , and the crack generation processing rate is also reduced.

【0080】(r) No.39のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径、
パーライトの平均粒径および(フェライト+パーライ
ト)の面積率が本発明で規定する範囲を外れ、且つ変形
抵抗係数σeqが本発明の好ましい範囲よりも大きくな
っているので、変形抵抗が813N/mm2と高くなっ
ており、且つ割れ発生加工率も低下している。
(R) No. 39 satisfy the preferred chemical composition of the present invention, but have an average ferrite particle size,
Since the average particle size of pearlite and the area ratio of (ferrite + pearlite) are out of the ranges specified in the present invention, and the deformation resistance coefficient σeq is larger than the preferable range in the present invention, the deformation resistance is 813 N / mm 2. And the crack generation rate is also reduced.

【0081】(s) No.40のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径お
よびパーライトの平均粒径が本発明で規定する範囲より
も大きく、且つ割れ発生加工率係数ULが本発明の好ま
しい範囲よりも大きくなっているので、割れ発生加工率
が低下している。
(S) No. 40, which satisfies the preferred chemical composition of the present invention, has an average particle size of ferrite and an average particle size of pearlite larger than the ranges specified in the present invention, and has a cracking reduction rate UL of the present invention. Since it is larger than the preferable range, the crack generation processing rate is reduced.

【0082】(t) No.41のものは、本発明の好まし
い化学成分組成を満足するが、フェライトの平均粒径、
パーライトの平均粒径および(フェライト+パーライ
ト)の面積率が本発明で規定する範囲を外れ、且つ変形
抵抗係数σeqおよび割れ発生加工率係数ULが本発明
の好ましい範囲よりも大きくなっているので、変形抵抗
が816N/mm2 と高くなっており、且つ割れ発生加
工率も低下している。
(T) No. 41 satisfies the preferred chemical composition of the present invention, but has an average ferrite particle size,
Since the average particle size of pearlite and the area ratio of (ferrite + pearlite) are out of the ranges specified in the present invention, and the deformation resistance coefficient σeq and the crack generation rate coefficient UL are larger than the preferable ranges of the present invention, The deformation resistance is as high as 816 N / mm 2 , and the crack generation processing rate is also low.

【0083】[0083]

【発明の効果】本発明は以上の様に構成されており、球
状化焼鈍処理の迅速化が達成されて製造コストの低減が
可能であり、且つ冷間鍛造性に優れ、必要によって耐摩
耗性をも向上させた肌焼鋼を提供し得ることになった。
According to the present invention, the spheroidizing annealing process can be speeded up to reduce the manufacturing cost, and is excellent in cold forgeability and, if necessary, wear resistance. Thus, it is possible to provide a case hardened steel having improved hardness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】球状化焼鈍処理のヒートパターンを示す図であ
る。
FIG. 1 is a diagram showing a heat pattern of a spheroidizing annealing treatment.

【図2】割れ発生加工率調査用試験片を示す説明図であ
る。
FIG. 2 is an explanatory view showing a test piece for investigating a crack generation rate.

【図3】大越式摩耗試験片を示す説明図である。FIG. 3 is an explanatory view showing an Ogoshi-type wear test piece.

【図4】浸炭焼入れ・焼戻し処理のヒートパターンを示
す図である。
FIG. 4 is a view showing a heat pattern of a carburizing quenching / tempering process.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 (フェライト+パーライト)の面積率が
75%以上であり、且つフェライトの平均粒径が40μ
m以下、およびパーライトの平均粒径が30μm以下で
あることを特徴とする冷間鍛造用肌焼鋼。
An area ratio of (ferrite + pearlite) is 75% or more, and an average particle size of ferrite is 40 μm.
m, and the average particle size of pearlite is 30 μm or less.
【請求項2】 化学成分組成が、 C :0.3%以下(0%を含まない:以下、特記しな
い限り質量%を意味する) Si:0.3%以下(0%を含まない) Mn:1.5%以下(0%を含まない) P :0.02%以下(0%を含む) S :0.02%以下(0%を含まない) Al:0.06%以下(0%を含まない) N :0.03%以下(0%を含まない) を夫々含有する他、 Cr:3%以下(0%を含まない) Mo:1.5%以下(0%を含まない) V :1.5%以下(0%を含まない) よりなる群から選択される1種以上を含有し、残部がF
eおよび不可避的不純物である請求項1に記載の肌焼
鋼。
2. Chemical composition: C: 0.3% or less (excluding 0%: hereinafter, means mass% unless otherwise specified) Si: 0.3% or less (excluding 0%) Mn : 1.5% or less (not including 0%) P: 0.02% or less (including 0%) S: 0.02% or less (not including 0%) Al: 0.06% or less (0%) N: 0.03% or less (excluding 0%), and Cr: 3% or less (excluding 0%) Mo: 1.5% or less (excluding 0%) V: 1.5% or less (excluding 0%) containing at least one member selected from the group consisting of:
The case hardened steel according to claim 1, which is e and unavoidable impurities.
【請求項3】 鋼材が、更に他の元素として、Ti:
0.1%以下(0%を含まない)および/またはNb:
0.1%以下(0%を含まない)を含有するものである
請求項2に記載の肌焼鋼。
3. The steel material according to claim 1, further comprising Ti:
0.1% or less (excluding 0%) and / or Nb:
The case hardening steel according to claim 2, which contains 0.1% or less (excluding 0%).
【請求項4】 合金元素の関数として表される変形抵抗
係数σeqおよび割れ発生加工率係数ULが、夫々下記
(1)式および(2)式を満足するものである請求項2
または3に記載の肌焼鋼。 σeq=C+0.5Si+0.2Mn+3.0P+0.3Cr+0.3Mo+0.1V+0.1Ti+0.1Nb <1.0 …(1) UL=C+0.2Si+0.2Mn+0.2Cr+0.2Mo+2.0P+2.0S+0.1V+0.1Ti+0.1Nb<0.7 …(2)
4. A deformation resistance coefficient σeq and a crack initiation rate coefficient UL expressed as a function of an alloy element satisfy the following equations (1) and (2), respectively.
Or the case hardened steel according to 3. σeq = C + 0.5Si + 0.2Mn + 3.0P + 0.3Cr + 0.3Mo + 0.1V + 0.1Ti + 0.1Nb <1.0 ... (1) UL = C + 0.2Si + 0.2Mn + 0.2Cr + 0.2Mo + 2.0P + 2.0S + 0.1V + 0.1Ti + 0.1Nb <0.7… (2)
【請求項5】 合金元素の関数として表される耐摩耗性
係数F(wear)が下記(3)式を満足するものである請求
項2〜4のいずれかに記載の肌焼鋼。 F(wear)=Si+0.2Cr+0.4Mo+V>0.4 …(3)
5. The case hardening steel according to claim 2, wherein a wear resistance coefficient F (wear) expressed as a function of an alloying element satisfies the following expression (3). F (wear) = Si + 0.2Cr + 0.4Mo + V> 0.4… (3)
【請求項6】 鋼材が、更に他の元素として、Cu:1
%以下(0%を含まない)を含有するものである請求項
2〜5に記載の肌焼鋼。
6. The steel material further comprises Cu: 1 as another element.
The case hardening steel according to any one of claims 2 to 5, which contains not more than 0% (not including 0%).
【請求項7】 鋼材が、更に他の元素として、Ni:
2.5%以下(0%を含まない)を含有するものである
請求項2〜6に記載の肌焼鋼。
7. The steel material further comprises Ni:
The case hardened steel according to any one of claims 2 to 6, which contains 2.5% or less (excluding 0%).
【請求項8】 鋼材が、更に他の元素として、Ca:
0.01%以下(0%を含まない)および/またはZ
r:0.08%以下(0%を含まない)を含有するもの
である請求項2〜7に記載の肌焼鋼。
8. The steel material further comprises Ca:
0.01% or less (not including 0%) and / or Z
The case hardening steel according to any one of claims 2 to 7, which contains r: 0.08% or less (excluding 0%).
【請求項9】 鋼材が、更に他の元素として、Pb:
0.3%以下(0%を含まない)を含有するものである
請求項2〜8のいずれかに記載の肌焼鋼。
9. The steel material further comprises Pb:
The case hardening steel according to any one of claims 2 to 8, which contains 0.3% or less (excluding 0%).
【請求項10】 鋼材が、更に他の元素としてB:0.
005%以下(0%を含まない)を含有するものである
請求項2〜9のいずれかに記載の肌焼鋼。
10. The steel according to claim 1, wherein said steel further contains B: 0.
The case hardening steel according to any one of claims 2 to 9, which contains 005% or less (excluding 0%).
JP16301797A 1997-06-19 1997-06-19 Case hardening steel for cold forging Withdrawn JPH1112684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16301797A JPH1112684A (en) 1997-06-19 1997-06-19 Case hardening steel for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16301797A JPH1112684A (en) 1997-06-19 1997-06-19 Case hardening steel for cold forging

Publications (1)

Publication Number Publication Date
JPH1112684A true JPH1112684A (en) 1999-01-19

Family

ID=15765617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16301797A Withdrawn JPH1112684A (en) 1997-06-19 1997-06-19 Case hardening steel for cold forging

Country Status (1)

Country Link
JP (1) JPH1112684A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same
JP2006009150A (en) * 2004-05-28 2006-01-12 Jfe Steel Kk Steel for carburizing and its production method
WO2008067805A2 (en) 2006-12-08 2008-06-12 Rational Ag Method for displaying, particularly a heating or cooling curve, and cooking appliance for carrying out such a method
JP2010168628A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Production method for steel for carburizing excellent in cold forgeability
JP2010180455A (en) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd Case-hardening steel
KR101043856B1 (en) 2008-10-14 2011-06-22 현대다이모스(주) Chromium alloy steel having superior cold forging formability for automobile and manufacturing method of differential gear using the same
WO2012073485A1 (en) * 2010-11-30 2012-06-07 Jfeスチール株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
JP2012126953A (en) * 2010-12-15 2012-07-05 Sumitomo Metal Ind Ltd Alloy steel for machine structural use
JP2012237052A (en) * 2011-04-28 2012-12-06 Jfe Steel Corp Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
WO2013094475A1 (en) * 2011-12-19 2013-06-27 株式会社神戸製鋼所 Steel for mechanical structure for cold working, and method for manufacturing same
JP2013159794A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Rolled steel for cold forging/nitriding
JP2013185205A (en) * 2012-03-07 2013-09-19 Kobe Steel Ltd Steel component for case hardening
JP2013185204A (en) * 2012-03-07 2013-09-19 Kobe Steel Ltd Bar steel for case hardening excellent in cold workability
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment
JP2015140481A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburization component using the same
EP2980242A4 (en) * 2013-03-29 2016-04-20 Jfe Steel Corp Case hardening steel
JP2016199784A (en) * 2015-04-09 2016-12-01 大同特殊鋼株式会社 Raw material for high temperature carburization component excellent in crystal grain coarsening prevention characteristic and manufacturing method therefor
KR20170032449A (en) 2014-07-29 2017-03-22 신닛테츠스미킨 카부시키카이샤 Steel for carbonitrided bearing
JP2017057429A (en) * 2015-09-14 2017-03-23 山陽特殊製鋼株式会社 Case hardening steel for cold forging excellent in grain coarsening resistance
JP2017106079A (en) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength
WO2019039610A1 (en) 2017-08-25 2019-02-28 新日鐵住金株式会社 Steel material for carburized bearing component
DE112019006504T5 (en) 2018-12-27 2021-09-16 Jtekt Corporation STEEL MATERIAL AS BASE MATERIAL FOR CARBONITRATED BEARING COMPONENTS
DE112019006482T5 (en) 2018-12-27 2021-11-04 Jtekt Corporation CARBONITRATED BEARING COMPONENT

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003096539A (en) * 2001-07-17 2003-04-03 Daido Steel Co Ltd Case hardening steel, and carburized part using the same
JP4556770B2 (en) * 2004-05-28 2010-10-06 Jfeスチール株式会社 Carburizing steel and method for producing the same
JP2006009150A (en) * 2004-05-28 2006-01-12 Jfe Steel Kk Steel for carburizing and its production method
WO2008067805A2 (en) 2006-12-08 2008-06-12 Rational Ag Method for displaying, particularly a heating or cooling curve, and cooking appliance for carrying out such a method
KR101043856B1 (en) 2008-10-14 2011-06-22 현대다이모스(주) Chromium alloy steel having superior cold forging formability for automobile and manufacturing method of differential gear using the same
JP2010168628A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Production method for steel for carburizing excellent in cold forgeability
JP2010180455A (en) * 2009-02-06 2010-08-19 Sumitomo Metal Ind Ltd Case-hardening steel
WO2012073485A1 (en) * 2010-11-30 2012-06-07 Jfeスチール株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
JP2013082988A (en) * 2010-11-30 2013-05-09 Jfe Steel Corp Carburizing steel having excellent cold forgeability, and production method thereof
KR20130058069A (en) * 2010-11-30 2013-06-03 제이에프이 스틸 가부시키가이샤 Carburizing steel having excellent cold forgeability, and production method thereof
CN103154293A (en) * 2010-11-30 2013-06-12 杰富意钢铁株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
CN103154293B (en) * 2010-11-30 2015-09-16 杰富意钢铁株式会社 The case hardening steel of forging excellence and manufacture method thereof
CN104630634A (en) * 2010-11-30 2015-05-20 杰富意钢铁株式会社 Carburizing steel having excellent cold forgeability and method of manufacturing the same
JP2012126953A (en) * 2010-12-15 2012-07-05 Sumitomo Metal Ind Ltd Alloy steel for machine structural use
JP2012237052A (en) * 2011-04-28 2012-12-06 Jfe Steel Corp Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
TWI486455B (en) * 2011-12-19 2015-06-01 Kobe Steel Ltd Steel for mechanical construction for cold working and its manufacturing method
KR20140095099A (en) * 2011-12-19 2014-07-31 가부시키가이샤 고베 세이코쇼 Steel for mechanical structure for cold working, and method for manufacturing same
JP2013147728A (en) * 2011-12-19 2013-08-01 Kobe Steel Ltd Steel for mechanical structure for cold working, and method for manufacturing the same
WO2013094475A1 (en) * 2011-12-19 2013-06-27 株式会社神戸製鋼所 Steel for mechanical structure for cold working, and method for manufacturing same
US9890445B2 (en) 2011-12-19 2018-02-13 Kobe Steel, Ltd. Steel for mechanical structure for cold working, and method for manufacturing same
JP2013159794A (en) * 2012-02-02 2013-08-19 Nippon Steel & Sumitomo Metal Corp Rolled steel for cold forging/nitriding
JP2013185205A (en) * 2012-03-07 2013-09-19 Kobe Steel Ltd Steel component for case hardening
JP2013185204A (en) * 2012-03-07 2013-09-19 Kobe Steel Ltd Bar steel for case hardening excellent in cold workability
EP2980242A4 (en) * 2013-03-29 2016-04-20 Jfe Steel Corp Case hardening steel
US11512375B2 (en) 2013-03-29 2022-11-29 Jfe Steel Corporation Case hardening steel
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment
JP2015140481A (en) * 2014-01-30 2015-08-03 大同特殊鋼株式会社 Case hardened steel and carburization component using the same
KR20170033414A (en) 2014-07-29 2017-03-24 신닛테츠스미킨 카부시키카이샤 Carbonitrided bearing member
KR20170032449A (en) 2014-07-29 2017-03-22 신닛테츠스미킨 카부시키카이샤 Steel for carbonitrided bearing
KR20190027967A (en) 2014-07-29 2019-03-15 신닛테츠스미킨 카부시키카이샤 Steel for carbonitrided bearing
KR20190028568A (en) 2014-07-29 2019-03-18 신닛테츠스미킨 카부시키카이샤 Carbonitrided bearing member
US10358706B2 (en) 2014-07-29 2019-07-23 Nippon Steel & Sumitomo Metal Corporation Carbonitrided bearing part
US10538832B2 (en) 2014-07-29 2020-01-21 Nippon Steel Corporation Steel for carbonitrided bearing
JP2016199784A (en) * 2015-04-09 2016-12-01 大同特殊鋼株式会社 Raw material for high temperature carburization component excellent in crystal grain coarsening prevention characteristic and manufacturing method therefor
JP2017057429A (en) * 2015-09-14 2017-03-23 山陽特殊製鋼株式会社 Case hardening steel for cold forging excellent in grain coarsening resistance
JP2017106079A (en) * 2015-12-10 2017-06-15 山陽特殊製鋼株式会社 Steel for machine structural use excellent in crystal grain coarsening resistance, bending fatigue-resistant strength and impact-resistant strength
WO2019039610A1 (en) 2017-08-25 2019-02-28 新日鐵住金株式会社 Steel material for carburized bearing component
US11168387B2 (en) 2017-08-25 2021-11-09 Nippon Steel Corporation Steel material for carburized bearing part
KR20200044861A (en) 2017-08-25 2020-04-29 닛폰세이테츠 가부시키가이샤 Steel for carburizing bearing parts
DE112019006504T5 (en) 2018-12-27 2021-09-16 Jtekt Corporation STEEL MATERIAL AS BASE MATERIAL FOR CARBONITRATED BEARING COMPONENTS
DE112019006482T5 (en) 2018-12-27 2021-11-04 Jtekt Corporation CARBONITRATED BEARING COMPONENT
US11965231B2 (en) 2018-12-27 2024-04-23 Nippon Steel Corporation Steel material to be starting material of carbonitrided bearing component

Similar Documents

Publication Publication Date Title
JPH1112684A (en) Case hardening steel for cold forging
JP3524229B2 (en) High toughness case hardened steel machine parts and their manufacturing method
WO2010082481A1 (en) Case hardening steel, carburized component, and method for producing case hardening steel
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
US6083455A (en) Steels, steel products for nitriding, nitrided steel parts
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
JP7168003B2 (en) steel
KR20200103821A (en) Steel for parts subjected to carburization treatment
JP4347999B2 (en) Induction hardening steel and induction hardening parts with excellent torsional fatigue properties
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP2002069572A (en) Soft-nitriding steel having excellent bending fatigue strength
JP2018053337A (en) Carburized component excellent in wear resistance and fatigue characteristic, and process for producing the same
JP3900690B2 (en) Age-hardening high-strength bainitic steel and method for producing the same
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JP2017071859A (en) Non-heat-treated steel and method for producing the same
Kurt et al. Mechanical changes and analysis of heat-treated 4140 steel with Taguchi method and ANOVA
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP3819529B2 (en) Case-hardened steel with excellent cold workability
JP2020002447A (en) Carburization member
Aghogho et al. MICROSTRUCTURAL IMAGE ANALYSES OF MILD CARBON STEEL SUBJECTED TO A RAPID CYCLIC HEAT TREATMENT.
WO2024127969A1 (en) Crankshaft and method for producing crankshaft
JPH10183296A (en) Steel material for induction hardening, and its production
JPH08253842A (en) Steel for induction hardening shaft parts excellent in twisting fatigue strength
WO2023248556A1 (en) Steel for high-frequency hardening

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907