JP2016199784A - Raw material for high temperature carburization component excellent in crystal grain coarsening prevention characteristic and manufacturing method therefor - Google Patents

Raw material for high temperature carburization component excellent in crystal grain coarsening prevention characteristic and manufacturing method therefor Download PDF

Info

Publication number
JP2016199784A
JP2016199784A JP2015079842A JP2015079842A JP2016199784A JP 2016199784 A JP2016199784 A JP 2016199784A JP 2015079842 A JP2015079842 A JP 2015079842A JP 2015079842 A JP2015079842 A JP 2015079842A JP 2016199784 A JP2016199784 A JP 2016199784A
Authority
JP
Japan
Prior art keywords
temperature
less
mass
content
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015079842A
Other languages
Japanese (ja)
Other versions
JP6551657B2 (en
Inventor
晃輔 木村
Kosuke Kimura
晃輔 木村
直樹 梅森
Naoki Umemori
直樹 梅森
亮平 石倉
Ryohei Ishikura
亮平 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2015079842A priority Critical patent/JP6551657B2/en
Publication of JP2016199784A publication Critical patent/JP2016199784A/en
Application granted granted Critical
Publication of JP6551657B2 publication Critical patent/JP6551657B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a raw material for high temperature carburization component excellent in crystal grain coarsening prevention characteristics.SOLUTION: A raw material for high temperature carburization component consists of, by mass%, C:0.10 to 0.30%, Si:0.05 to 1.00%, Mn:0.30 to 2.00%, P:0.030% or less, S:0.030% or less, Cr:0.30 to 1.50%, Mo:0.50% or less, Al:0.016 to 0.060%, N:0.0085 to 0.030% and the balance Fe with inevitable impurities. The raw material has a ferrite and perlite structure before carburization and satisfies following formula (1), when N content is defined as Xand Al content is defined as X, and satisfies following formula (2) when an area per one perlite is defined as Sp and equilibrium precipitation amount of AlN at 1,000°C is defined as Wp. (X-8.5×10)(X-1.6×10)≥5.2×10(mass%)...(1), Sp(μm/unit)×Wp(mass%)≥4...(2).SELECTED DRAWING: Figure 4

Description

本発明は、結晶粒粗大化防止特性に優れた高温浸炭部品用素材及びその製造方法に関する。   The present invention relates to a high-temperature carburized component material excellent in crystal grain coarsening prevention characteristics and a method for producing the same.

高温浸炭処理は、浸炭温度を高く設定(1000℃以上)して反応を促進させる浸炭方法である。この浸炭方法によれば、短時間でより多くの炭素を侵入・拡散させることができるので、処理時間の短縮化を図ることができ、浸炭部品を効率よく製造することができる。一方、この浸炭方法によると、特定の結晶粒が異常粒成長し、混粒となることがある。このような組織が生じると、疲労強度や衝撃強度が低下し、熱処理歪みが増加するため、異常粒成長を防止する必要がある。
従来、異常粒成長を防止する技術としては、例えば下記特許文献1〜3に記載されているように、析出物を分散させて粒界をピン止めする方法や、浸炭前の組織状態を制御して異常粒成長の発生を抑える方法が知られている。析出物の分散による粒界のピン止め方法が主に用いられ、析出物としてはAlNやNbC等の炭窒化物が用いられることが多い。具体的には、下記特許文献1〜3では、ピン止めする析出物としてAlNのみならず、NbやTiの炭窒化物を効率良く分散させることで、高温浸炭処理時の結晶粒粗大化を防止するようにしている。また、下記特許文献1では、浸炭前の鋼の組織状態としてベイナイト分率やパーライト分率、フェライト結晶粒度を規定することで、結晶粒粗大化特性又は切削加工性を向上させるようにしている。
The high-temperature carburizing treatment is a carburizing method in which the carburizing temperature is set high (1000 ° C. or higher) to promote the reaction. According to this carburizing method, more carbon can penetrate and diffuse in a short time, so that the processing time can be shortened and carburized parts can be manufactured efficiently. On the other hand, according to this carburizing method, specific crystal grains may grow abnormally and become mixed grains. When such a structure is generated, fatigue strength and impact strength are reduced and heat treatment strain is increased, so that it is necessary to prevent abnormal grain growth.
Conventionally, as a technique for preventing abnormal grain growth, for example, as described in Patent Documents 1 to 3 below, a method of dispersing precipitates and pinning grain boundaries, and controlling a structure state before carburizing. There are known methods for suppressing the occurrence of abnormal grain growth. A grain boundary pinning method by dispersion of precipitates is mainly used, and carbonitrides such as AlN and NbC are often used as the precipitates. Specifically, in the following patent documents 1 to 3, not only AlN but also Nb and Ti carbonitrides are efficiently dispersed as precipitates to be pinned, thereby preventing grain coarsening during high-temperature carburizing treatment. Like to do. Moreover, in the following Patent Document 1, the grain coarsening characteristic or the machinability is improved by defining the bainite fraction, the pearlite fraction, and the ferrite crystal grain size as the structural state of the steel before carburizing.

特開2001−303174号公報JP 2001-303174 A 特開2003−027135号公報JP 2003-027135 A 特開2008−189989号公報JP 2008-189989 A

しかし、NbやTiのような析出物の構成元素を積極的に添加することは、製造コストや加工性の悪化につながるおそれがある。また、浸炭前の鋼の組織状態を制御する場合、単に組織状態に着目するだけでは、高温浸炭処理時において結晶粒粗大化を防止するのに十分とはいえなかった。   However, positively adding a constituent element of a precipitate such as Nb or Ti may lead to deterioration in manufacturing cost and workability. Further, when controlling the structure of steel before carburizing, simply focusing on the structure is not sufficient to prevent grain coarsening during high-temperature carburizing.

本発明は以上のような事情を背景としてなされたものであり、その目的は1000℃以上の高温浸炭処理を行った場合でも、結晶粒粗大化を良好に防止し得る高温浸炭部品用素材及びその製造方法を提供することにある。   The present invention has been made in the background as described above, and the purpose thereof is a material for high-temperature carburized parts that can satisfactorily prevent coarsening of crystal grains even when a high-temperature carburization treatment of 1000 ° C. or higher is performed, and its It is to provide a manufacturing method.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記目的を達成するために本発明の高温浸炭部品用素材は、質量%で、C:0.10〜0.30%、Si:0.05〜1.00%、Mn:0.30〜2.00%、P:0.030%以下、S:0.030%以下、Cr:0.30〜1.50%、Mo:0.50%以下、Al:0.016〜0.060%、N:0.0085〜0.030%、を含有し、残部がFe及び不可避不純物からなり、
フェライト及びパーライト組織であり、質量%でN含有量をX、Al含有量をXAlとした場合に下記式(1)を満たし、かつ前記パーライト1個当たりの面積をSpμm/個、1000℃におけるAlNの平衡析出量をWp質量%とした場合に下記式(2)を満たすことを特徴とする。
(X−8.5×10−3)(XAl−1.6×10−2)≧5.2×10−5…(1)
Sp×Wp≧4 …(2)
また、上記目的を達成するために本発明の高温浸炭部品用素材の製造方法は、質量%で、C:0.10〜0.30%、Si:0.05〜1.00%、Mn:0.30〜2.00%、P:0.030%以下、S:0.030%以下、Cr:0.30〜1.50%、Mo:0.50%以下、Al:0.016〜0.060%、N:0.0085〜0.030%、を含有し、残部がFe及び不可避不純物からなり、
質量%でN含有量をX、Al含有量をXAlとした場合に上記式(1)を満たす鋼材を熱間鍛造後、900〜1000℃の範囲内における所定の再加熱温度まで加熱し、その再加熱温度で20分以上加熱保持した後、600〜700℃の範囲内における所定の冷却温度まで0.5℃/sec以下の所定の冷却速度で冷却し、その冷却温度で30分以上加熱保持することを特徴とする。
In order to achieve the above object, the material for high-temperature carburized parts of the present invention is in mass%, C: 0.10 to 0.30%, Si: 0.05 to 1.00%, Mn: 0.30 to 2 0.000%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30 to 1.50%, Mo: 0.50% or less, Al: 0.016 to 0.060%, N: 0.0085 to 0.030%, the balance is made of Fe and inevitable impurities,
It is a ferrite and pearlite structure, and satisfies the following formula (1) when the N content is X N and the Al content is X Al in mass%, and the area per pearlite is Sp μm 2 / piece, 1000 It is characterized in that the following formula (2) is satisfied when the equilibrium precipitation amount of AlN at ° C. is Wp mass%.
(X N −8.5 × 10 −3 ) (X Al −1.6 × 10 −2 ) ≧ 5.2 × 10 −5 (1)
Sp × Wp ≧ 4 (2)
Moreover, in order to achieve the said objective, the manufacturing method of the raw material for high-temperature carburized components of this invention is the mass%, C: 0.10-0.30%, Si: 0.05-1.00%, Mn: 0.30 to 2.00%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30 to 1.50%, Mo: 0.50% or less, Al: 0.016 to 0.060%, N: 0.0085 to 0.030%, the balance is made of Fe and inevitable impurities,
After hot forging a steel material satisfying the above formula (1) when the N content is X N and the Al content is X Al in mass%, the steel material is heated to a predetermined reheating temperature in the range of 900 to 1000 ° C. Then, after heating and holding at the reheating temperature for 20 minutes or more, cooling to a predetermined cooling temperature within a range of 600 to 700 ° C. at a predetermined cooling rate of 0.5 ° C./sec or less, and at the cooling temperature for 30 minutes or more It is characterized by being heated and held.

本発明の発明者らは、ピン止めする析出物としてのAlNと、高温浸炭部品用素材としての浸炭前の鋼の組織状態との関係に着目したところ、AlNの平衡析出量と浸炭前の鋼の組織状態との間には、結晶粒粗大化特性を向上させる上で、それぞれ適切な平衡析出量及び組織状態があることを見出した。すなわち、上記式(1)及び(2)を満たすようにAlNの平衡析出量と浸炭前の鋼の組織状態を規定することで、1000℃以上の高温浸炭処理を行った場合でも、結晶粒粗大化を良好に防止することができる。そして、このような高温浸炭部品用素材に所定の浸炭処理を施すことで、適切な組織状態に調整した浸炭部品を得ることが可能である。   The inventors of the present invention focused on the relationship between AlN as a precipitate to be pinned and the structural state of steel before carburization as a material for high-temperature carburized parts. It has been found that there is an appropriate equilibrium precipitation amount and an appropriate structure state in order to improve the crystal grain coarsening characteristics. That is, by defining the equilibrium precipitation amount of AlN and the structural state of the steel before carburizing so as to satisfy the above formulas (1) and (2), even when high-temperature carburizing treatment at 1000 ° C. or higher is performed, the grain size is large Can be satisfactorily prevented. And it is possible to obtain the carburized component adjusted to the appropriate structure | tissue state by giving a predetermined carburizing process to such a raw material for high temperature carburized components.

(A)は浸炭前の熱間鍛造における温度−時間の工程図。(B)は(A)の後に施される等温焼きなましにおける温度−時間の工程図。(C)は(B)の後に施される浸炭における温度−時間の工程図。(A) Process drawing of temperature-time in hot forging before carburizing. (B) Process drawing of the temperature-time in the isothermal annealing performed after (A). (C) Process drawing of temperature-time in the carburizing performed after (B). AlN平衡析出量Wpを算出するための基となるAlとNの溶解度積を示すグラフ。The graph which shows the solubility product of Al and N used as the basis for calculating AlN equilibrium precipitation amount Wp. AlN平衡析出量Wp−異常粒成長発生温度の関係を示すグラフ。The graph which shows the relationship of AlN equilibrium precipitation amount Wp- abnormal grain growth generation temperature. 式(1)の条件を満たす領域を示すグラフ。The graph which shows the area | region which satisfy | fills the conditions of Formula (1). Sp×Wp−異常粒成長発生温度の関係を示すグラフ。The graph which shows the relationship of Sp * Wp- abnormal grain growth generation temperature. 浸炭前の熱処理における冷却速度−パーライト1個当たりの面積の関係を示すグラフ。The graph which shows the relationship of the cooling rate in the heat processing before carburizing-the area per pearlite. (A)〜(C)はパーライト1個当たりの面積Spを算出する方法を示す説明図。(A)-(C) is explanatory drawing which shows the method of calculating the area Sp per pearlite.

以下、本発明の高温浸炭部品用素材における各元素の組成限定理由及び限定条件について説明する。   Hereinafter, the reasons for limiting the composition of each element and the limiting conditions in the raw material for high-temperature carburized parts of the present invention will be described.

(1)C:0.10〜0.30%
Cは浸炭処理後に急冷を行った鋼部品の心部強度を確保するための必須元素である。ただし、過度の添加は加工性の悪化を招く。好ましくは0.15〜0.25%である。
(1) C: 0.10 to 0.30%
C is an essential element for ensuring the core strength of steel parts that have been quenched after carburization. However, excessive addition causes deterioration of workability. Preferably it is 0.15-0.25%.

(2)Si:0.05〜1.00%
Siは鋼の焼入れ性を高め、鋼の脱酸元素として有効な元素である。ただし、過度の添加は素材の加工性の低下を招く。好ましくは0.10〜0.50%である。
(2) Si: 0.05 to 1.00%
Si enhances the hardenability of steel and is an effective element as a deoxidizing element for steel. However, excessive addition causes a decrease in workability of the material. Preferably it is 0.10 to 0.50%.

(3)Mn:0.30〜2.00%
Mnは鋼の焼入れ性を高めるのに有効な元素であるが、過度の添加は加工性の悪化を招く。好ましくは0.50〜1.50%である。
(3) Mn: 0.30 to 2.00%
Mn is an element effective for enhancing the hardenability of steel, but excessive addition causes deterioration of workability. Preferably it is 0.50 to 1.50%.

(4)P:0.030%以下
Pは結晶粒界を脆化させるため、その含有量の最小化が求められる。0.030%以下の含有量であれば粒界強度低下の効果は軽微である一方、含有量を極度に抑制することは精錬プロセスの延長を招き、コスト増を伴うため工業上好ましくない。
(4) P: 0.030% or less P is required to minimize the content of P because it embrittles the grain boundaries. If the content is 0.030% or less, the effect of lowering the grain boundary strength is slight. On the other hand, extremely reducing the content causes an extension of the refining process and increases costs, which is not industrially preferable.

(5)S:0.030%以下
Sは不可避に鋼中に存在し、Mnと結合して応力集中の起点となるMnS介在物を生成する。過度の含有はMnS介在物の量を増加させ、ひいては疲労強度の低下を招く。ただし、0.030%以下の含有量であれば疲労強度の低下は極めて軽微である。
(5) S: 0.030% or less S is unavoidably present in the steel, and combines with Mn to generate MnS inclusions that serve as starting points for stress concentration. Excessive content increases the amount of MnS inclusions, which in turn leads to a decrease in fatigue strength. However, if the content is 0.030% or less, the decrease in fatigue strength is very slight.

(6)Cr:0.30〜1.50%
Crは鋼の焼入れ性を高める元素であり、鋼の焼入れ性を確保するために0.30%以上の添加が必要である。他方、過度の添加は被削性を低下させることになるため、1.50%を上限とする。好ましくは0.80〜1.20%である。
(6) Cr: 0.30 to 1.50%
Cr is an element that enhances the hardenability of steel, and 0.30% or more of addition is necessary to ensure the hardenability of steel. On the other hand, since excessive addition reduces machinability, the upper limit is 1.50%. Preferably it is 0.80 to 1.20%.

(7)Mo:0.50%以下
Moは鋼の焼入性を高め、また耐摩耗性の向上に有効な元素であるが、高価であるため、工業上その含有量の最小化が求められている。好ましくは0.50%以下である。
(7) Mo: 0.50% or less Mo is an element that enhances the hardenability of steel and is effective in improving wear resistance, but is expensive and therefore requires industrial minimization of its content. ing. Preferably it is 0.50% or less.

(8)Al:0.016〜0.060%
Alは脱酸作用を有する。またNと結合してAlNを形成しやすい元素である。AlNは結晶粒の粗大化を防止する効果があり、この効果を得るためには0.016%以上の含有が必要である。他方、0.060%を超えて添加すると介在物が増加し、却って曲げ疲労強度の低下を招くため、0.060%を上限とする。
(8) Al: 0.016 to 0.060%
Al has a deoxidizing action. Further, it is an element that is easily bonded to N to form AlN. AlN has an effect of preventing coarsening of crystal grains, and in order to obtain this effect, it is necessary to contain 0.016% or more. On the other hand, if the content exceeds 0.060%, inclusions increase and, on the other hand, the bending fatigue strength decreases, so 0.060% is made the upper limit.

(9)N:0.0085〜0.030%
NはAlと結合して窒化物を形成し、結晶粒の粗大化を防止する効果があり、この効果を得るためには0.0085%以上の含有が必要である。他方、0.030%を超えて添加すると、素材の硬さを増加させるため、0.030%を上限とする。
(9) N: 0.0085 to 0.030%
N combines with Al to form nitrides and has the effect of preventing the coarsening of crystal grains. To obtain this effect, N must be contained in an amount of 0.0085% or more. On the other hand, if added over 0.030%, the hardness of the material is increased, so 0.030% is made the upper limit.

(10)残部:Fe及び不可避不純物
なお、表1ではFe及び不可避不純物の記載を省略してある。
(10) Remainder: Fe and inevitable impurities In Table 1, descriptions of Fe and inevitable impurities are omitted.

次に、1000℃以上の浸炭温度で結晶粒粗大化を良好に防止できること、換言すれば異常粒成長発生温度が1000℃以上となるためには、質量%でN含有量をX、Al含有量をXAlとした場合に下記式(1)を満たし、かつパーライト1個当たりの面積をSpμm/個、1000℃におけるAlNの平衡析出量をWp質量%とした場合に下記式(2)を満たすことが必要である点について説明する。
(X−8.5×10−3)(XAl−1.6×10−2)≧5.2×10−5…(1)
Sp×Wp≧4 …(2)
Next, it is possible to satisfactorily prevent grain coarsening at a carburizing temperature of 1000 ° C. or higher. In other words, in order for the abnormal grain growth occurrence temperature to be 1000 ° C. or higher, the N content is X N and Al content by mass% When the amount is X Al , the following formula (1) is satisfied, the area per pearlite is Sp μm 2 / piece, and the equilibrium precipitation amount of AlN at 1000 ° C. is Wp mass%, the following formula (2) The point which needs to satisfy | fill is demonstrated.
(X N −8.5 × 10 −3 ) (X Al −1.6 × 10 −2 ) ≧ 5.2 × 10 −5 (1)
Sp × Wp ≧ 4 (2)

式(1)、(2)を導き出すために以下の試験を行った。試験の供試材として、表1に示す化学成分を有する鋼種A〜F(残部はFe及び不可避不純物)からなる鋼を用いた。各供試材を電気炉で溶解し、圧延してφ80の棒鋼を作成し、φ8×12mmの試験片を採取した。この試験片に対して加工フォーマスタ試験機により、図1(A)に示される条件で熱間鍛造を行い、次いで図1(B)及び表2に示される等温焼きなましを実施した。このような熱処理を施した試験片より、パーライト1個当たりの面積の測定、及び図1(C)に示される条件で浸炭処理を行い、異常粒成長発生温度の評価を行った。   The following tests were conducted to derive the equations (1) and (2). As a test specimen, steel made of steel types A to F having the chemical components shown in Table 1 (the balance being Fe and inevitable impurities) was used. Each specimen was melted in an electric furnace and rolled to prepare a φ80 bar, and a test piece of φ8 × 12 mm was collected. This test piece was subjected to hot forging under the conditions shown in FIG. 1 (A) by a machining formaster test machine, and then subjected to isothermal annealing shown in FIG. 1 (B) and Table 2. From the test pieces subjected to such heat treatment, measurement of the area per pearlite and carburizing treatment were performed under the conditions shown in FIG. 1 (C), and the abnormal grain growth occurrence temperature was evaluated.

次に、AlN平衡析出量(質量%)と1000℃以上の高温度での結晶粒粗大化には何らかの対応関係があるものと予想し、各試験片において1000℃におけるAlN平衡析出量(1000℃に長く保持したならば得られるであろうAlN析出量)を図2に基づいて計算した。図2において、X軸はAl含有量(質量%)を示し、Y軸はN含有量(質量%)を示し、線1はAl(原子量27)とN(原子量14)の化学量論比が1:1となる線を示している。また、線2はAlとNの溶解度積(W.C.Leslie;Trans.ASM,Vol46(1954),p.1470)を示しており、
log[Al][N]=1.03−6770/T(K) …線2として表される。
Next, it is expected that there is some correspondence between the AlN equilibrium precipitation amount (mass%) and the grain coarsening at a high temperature of 1000 ° C. or higher, and the AlN equilibrium precipitation amount at 1000 ° C. (1000 ° C.) in each test piece. The amount of precipitation of AlN that would be obtained if held for a long time was calculated based on FIG. In FIG. 2, the X-axis shows the Al content (mass%), the Y-axis shows the N content (mass%), and the line 1 shows the stoichiometric ratio of Al (atomic weight 27) and N (atomic weight 14). A line of 1: 1 is shown. Line 2 shows the solubility product of Al and N (WCLeslie; Trans. ASM, Vol 46 (1954), p. 1470).
log [Al] [N] = 1.03-6770 / T (K)...

いま、Al含有量とN含有量が図2中のA(x1,y1)で示される組成であるときのAlN平衡析出量を求める場合を考える。この場合、線1をA(x1,y1)を通るように平行移動した線1’([N]−y1=14/27×([Al]−x1))と線2の交点B([Al],[N])が固溶分となり、残り(差)が析出分となる。すると、析出するAl(質量%)、N(質量%)はそれぞれ次のようになる。
析出Al=含有Al−固溶Al=x1−[Al] …式(3)
析出N=含有N−固溶N=y1−[N] …式(4)
また、AlN分子量=41、Al原子量=27、N原子量=14であるから、
AlN平衡析出量=(41/27)×析出Al
=(41/27)×(x1−[Al]) …式(5)
Consider a case in which the AlN equilibrium precipitation amount is obtained when the Al content and the N content have the composition indicated by A (x1, y1) in FIG. In this case, the intersection B of the line 1 ([N] −y1 = 14/27 × ([Al] −x1)) obtained by translating the line 1 through A (x1, y1) and the line 2 ([Al ], [N]) becomes a solid solution, and the remainder (difference) becomes a precipitate. Then, precipitated Al (mass%) and N (mass%) are as follows.
Precipitated Al = Contained Al-Solubility Al = x1- [Al] Formula (3)
Precipitation N = Contained N-Solubility N = y1- [N] Formula (4)
Moreover, since AlN molecular weight = 41, Al atomic weight = 27, and N atomic weight = 14,
AlN equilibrium precipitation amount = (41/27) × precipitated Al
= (41/27) × (x1- [Al]) (5)

したがって、与えられたA(x1,y1)と線1’を線2に代入して[Al]を求め、この[Al]を式(5)に代入すれば、AlN平衡析出量を求めることができる。具体的には、表1の鋼種Aは(x1,y1)=(0.030,0.014)であるから、これとT=1273(K:1000℃)を線2に代入すれば、[Al]=0.0116が得られる。よって、式(5)から1000℃におけるAlN平衡析出量として0.0280の値が得られる(表2参照)。同様に、各鋼種B〜Fにおいては1000℃におけるAlN平衡析出量(質量%)として、それぞれ0.0332、0.0326、0.0428、0.0197、0.0107の値が得られる。   Therefore, by substituting the given A (x1, y1) and the line 1 ′ into the line 2 to obtain [Al] and substituting this [Al] into the equation (5), the AlN equilibrium precipitation amount can be obtained. it can. Specifically, since the steel type A in Table 1 is (x1, y1) = (0.030, 0.014), if this and T = 1273 (K: 1000 ° C.) are substituted into the line 2, [ Al] = 0.116 is obtained. Therefore, a value of 0.0280 is obtained as the AlN equilibrium precipitation amount at 1000 ° C. from the equation (5) (see Table 2). Similarly, in each steel type B to F, values of 0.0332, 0.0326, 0.0428, 0.0197, and 0.0107 are obtained as the AlN equilibrium precipitation amount (mass%) at 1000 ° C., respectively.

次に、各試験片について異常粒成長が発生する温度、すなわち結晶粒が粗大化する温度を測定し、異常粒成長発生温度と上記AlN平衡析出量との関係を調べた。この場合、光学顕微鏡(100倍)でランダムに10視野観察を行い、視野内において粒度6番以下の粗粒が1つでも存在することを条件として、異常粒成長が発生したものと判定した。結果を図3に示す。   Next, the temperature at which abnormal grain growth occurs, that is, the temperature at which crystal grains coarsen was measured for each test piece, and the relationship between the abnormal grain growth occurrence temperature and the AlN equilibrium precipitation amount was examined. In this case, 10 visual field observations were randomly performed with an optical microscope (100 times), and it was determined that abnormal grain growth occurred on the condition that at least one coarse grain having a particle size of 6 or less was present in the visual field. The results are shown in FIG.

図3から明らかなように、AlN平衡析出量が同じであっても、冷却速度が異なると異常粒成長発生温度が20〜40℃の範囲内でばらついて分布するようになり、冷却速度が遅くなるほど異常粒成長発生温度が高温度側に移行することが分かる。例えば、AlN平衡析出量を0.0280質量%に設定した場合には、大方の冷却速度で異常粒成長発生温度が1000℃を超えることとなるが、冷却速度が早過ぎる(2.5℃/sec)と、異常粒成長発生温度が1000℃を僅かに下回ることとなった。各々の試験片の試験結果を踏まえ、異常粒成長発生温度が1000℃以上となるためには、AlN平衡析出量が少なくとも0.025質量%程度は必要であると判断した。   As can be seen from FIG. 3, even when the AlN equilibrium precipitation amount is the same, if the cooling rate is different, the abnormal grain growth occurrence temperature varies and is distributed within the range of 20 to 40 ° C., and the cooling rate is slow. It turns out that the abnormal grain growth occurrence temperature shifts to the higher temperature side. For example, when the AlN equilibrium precipitation amount is set to 0.0280% by mass, the abnormal grain growth occurrence temperature exceeds 1000 ° C. at most cooling rates, but the cooling rate is too fast (2.5 ° C. / sec), the abnormal grain growth temperature was slightly below 1000 ° C. Based on the test results of each test piece, it was determined that an AlN equilibrium precipitation amount of at least about 0.025% by mass was necessary for the abnormal grain growth occurrence temperature to be 1000 ° C. or higher.

AlN平衡析出量が0.025質量%以上を満たす条件は、図4に示すとおりとなる。ここで、AlNが0.025質量%となるときのN、Alの含有量は、それぞれ8.5×10−3質量%、1.6×10−2質量%となり、前記線2の1273K(1000℃)における曲線をその分だけ平行移動させることで式(1)が得られる。 Conditions under which the AlN equilibrium precipitation amount satisfies 0.025 mass% or more are as shown in FIG. Here, when AlN is 0.025 mass%, the contents of N and Al are 8.5 × 10 −3 mass% and 1.6 × 10 −2 mass%, respectively. Equation (1) is obtained by translating the curve at 1000 ° C.) by that amount.

式(1)を満たすN含有量とAl含有量は、図4にて斜線で示す領域11で表され、N含有量とAl含有量がいずれも領域11内にあることが、浸炭温度が1000℃以上の高温でも異常粒成長を発生させないための必要条件となる。   The N content and the Al content satisfying the expression (1) are represented by a region 11 indicated by hatching in FIG. 4, and the carburizing temperature is 1000 when both the N content and the Al content are in the region 11. This is a necessary condition for preventing abnormal grain growth even at a high temperature of ℃ or higher.

次に、1000℃以上の高温度での結晶粒粗大化防止には、AlN平衡析出量の観点の他、浸炭前の組織とも何らかの対応関係があるものと予想し、各試験片において異常粒成長発生温度と、パーライト1個当たりの面積Sp及びAlN平衡析出量Wpの積との関係を調べた。結果を図5に示す。   Next, in order to prevent grain coarsening at a high temperature of 1000 ° C. or higher, in addition to the viewpoint of the amount of AlN equilibrium precipitation, it is expected that there is some correspondence with the structure before carburizing, and abnormal grain growth is observed in each specimen. The relationship between the generation temperature and the product of the area Sp per pearlite and the AlN equilibrium precipitation amount Wp was examined. The results are shown in FIG.

図5から明らかなように、Sp×Wp≧4の範囲で、異常粒成長発生温度が1000℃以上となることが分かる。ここで、Spについては、各試験片において、測定面積0.4mm中のパーライト面積を、同じく測定面積0.4mm中のパーライト個数で除算して、パーライト1個当たりの面積とした。具体的には、図7(A)〜(C)の手順でパーライト1個当たりの面積を計算した。まず、図7(A)に示すように、光学顕微鏡にて各試験片の組織(フェライト+パーライト組織)を撮影した(腐食液としてピクラルを使用)。 As is apparent from FIG. 5, the abnormal grain growth temperature becomes 1000 ° C. or higher in the range of Sp × Wp ≧ 4. Here, the Sp, in each specimen, the pearlite area in the measurement area 0.4mm 2, likewise by dividing the perlite number of measurement area 0.4mm 2, and the area per perlite. Specifically, the area per pearlite was calculated by the procedure shown in FIGS. First, as shown in FIG. 7A, the structure of each test piece (ferrite + pearlite structure) was photographed with an optical microscope (picral was used as a corrosive solution).

撮影した組織写真から測定面積0.4mm中のパーライト個数を測定した。この場合、例えば図7(B)にて破線で囲んだパーライトP1を代表して示すように、連結状態にあるパーライトは1個とみなした。また、一辺が5μm以下のパーライトは含まないこととした。次に、図7(C)に示すように、撮影した組織写真を2値化し(所定の画像編集ソフトを使用)、パーライト面積を測定した。そして、測定面積0.4mm中のパーライト面積を、同じく測定面積0.4mm中のパーライト個数で除算して、パーライト1個当たりの面積を求めた。また、AlN平衡析出量は、鋼種毎の1000℃における計算値を使用した。 The number of pearlites in a measurement area of 0.4 mm 2 was measured from the photographed tissue photograph. In this case, for example, as a representative pearlite P1 surrounded by a broken line in FIG. 7B, the number of pearlites in the connected state is regarded as one. Further, pearlite having a side of 5 μm or less was not included. Next, as shown in FIG. 7C, the taken tissue photograph was binarized (using predetermined image editing software), and the pearlite area was measured. Then, the pearlite area in the measurement area 0.4mm 2, likewise by dividing the perlite number of measurement area 0.4mm 2, was determined area per perlite. Moreover, the AlN equilibrium precipitation amount used the calculation value in 1000 degreeC for every steel type.

なお、図5中、データ12は鋼種をBとする試験片に対応しており、異常粒成長発生温度が約1060℃、その温度に対応したAlN平衡析出量の計算値が0.0284、パーライト1個当たりの面積Spが326であるのに対し、鋼種Bの試験片の1000℃におけるAlN平衡析出量Wpの計算値は、表2で示すように0.0332である。このため、浸炭温度を1000℃〜1060℃に設定する場合には、実際の異常粒成長発生温度に基づいて計算したAlN平衡析出量に代えて、1000℃におけるAlN平衡析出量Wpの計算値を用いたとしても、式(2)に基づいた評価を行うに際しては、何らの問題はないと考えられる。この場合、1000℃におけるAlN平衡析出量Wpの計算値を用いることとも関連して、式(2)を充足するためには、パーライト1個当たりの面積Spを少なくとも150以上に設定することが望ましく、より好ましくは250以上に設定することが望まれる。   In FIG. 5, data 12 corresponds to a test piece having a steel type as B, the abnormal grain growth temperature is about 1060 ° C., the calculated value of the AlN equilibrium precipitation amount corresponding to that temperature is 0.0284, pearlite. While the area Sp per piece is 326, the calculated value of the AlN equilibrium precipitation amount Wp at 1000 ° C. of the test piece of the steel type B is 0.0332 as shown in Table 2. For this reason, when the carburizing temperature is set to 1000 ° C. to 1060 ° C., the calculated value of the AlN equilibrium precipitation amount Wp at 1000 ° C. is used instead of the AlN equilibrium precipitation amount calculated based on the actual abnormal grain growth occurrence temperature. Even if it is used, it is considered that there is no problem in performing the evaluation based on the formula (2). In this case, in relation to using the calculated value of the AlN equilibrium precipitation amount Wp at 1000 ° C., it is desirable to set the area Sp per pearlite to at least 150 or more in order to satisfy the formula (2). More preferably, it is desired to set it to 250 or more.

また、各試験片においては、図1(B)に示したように、3種の冷却速度で冷却するようにしたが、冷却速度とパーライト1個当たりの面積Spとの間には、図6に示すような関係があることが分かった。図6から明らかなように、冷却速度が0.5℃/sec以下になると、パーライト1個当たりの面積Spが著しく増加することが分かる。なお、表2に示すように、1000℃におけるAlN平衡析出量Wpの値が0.025質量%に比して大きいほど、冷却速度が0.5℃/secを超えても異常粒成長発生温度が1000℃を超える場合が多くなるが、AlN平衡析出量Wpが0.025質量%を超えていてもその程度が小さい場合、冷却速度が0.5℃/secを超えると異常粒成長発生温度が1000℃を下回る場合が認められる。   Each test piece was cooled at three cooling rates as shown in FIG. 1B, but between the cooling rate and the area Sp per pearlite, FIG. It was found that there is a relationship as shown in. As can be seen from FIG. 6, when the cooling rate is 0.5 ° C./sec or less, the area Sp per pearlite increases remarkably. As shown in Table 2, the abnormal grain growth occurrence temperature is increased even when the cooling rate exceeds 0.5 ° C./sec as the value of the AlN equilibrium precipitation amount Wp at 1000 ° C. is larger than 0.025 mass%. However, when the cooling rate exceeds 0.5 ° C./sec, the abnormal grain growth temperature is increased. Is observed below 1000 ° C.

以上の説明からも明らかなように、本実施例の高温浸炭部品用素材によれば、上記式(1)及び(2)を満たすことで、1000℃以上の高温浸炭処理を行った場合でも、結晶粒粗大化を良好に防止することができる。また、浸炭前における上記冷却温度を0.5℃/sec以下に設定することで、パーライト1個当たりの面積を所定の大きさ以上に確保できることに伴い、結晶粒粗大化をより一層良好に防止できるようになる。   As is clear from the above explanation, according to the material for high-temperature carburized parts of this example, even when a high-temperature carburizing process of 1000 ° C. or higher is performed by satisfying the above formulas (1) and (2), Crystal grain coarsening can be satisfactorily prevented. In addition, by setting the cooling temperature before carburizing to 0.5 ° C./sec or less, the area per pearlite can be secured to a predetermined size or more, thereby preventing grain coarsening even better. become able to.

B点 レスリーの式における固溶([Al],[N])の一例
11 式(1)を満たすN含有量とAl含有量の領域
12 式(2)を満たすデータの一例
Point B Example 11 of solid solution ([Al], [N]) in Leslie's equation N region satisfying equation (1) and Al content region 12 Example of data satisfying equation (2)

Claims (2)

質量%で、
C:0.10〜0.30%、
Si:0.05〜1.00%、
Mn:0.30〜2.00%、
P:0.030%以下、
S:0.030%以下、
Cr:0.30〜1.50%、
Mo:0.50%以下、
Al:0.016〜0.060%、
N:0.0085〜0.030%、
を含有し、残部がFe及び不可避不純物からなり、
フェライト及びパーライト組織であり、質量%でN含有量をX、Al含有量をXAlとした場合に下記式(1)を満たし、かつ前記パーライト1個当たりの面積をSpμm/個、1000℃におけるAlNの平衡析出量をWp質量%とした場合に下記式(2)を満たすことを特徴とする結晶粒粗大化防止特性に優れた高温浸炭部品用素材。
(X−8.5×10−3)(XAl−1.6×10−2)≧5.2×10−5…(1)
Sp×Wp≧4 …(2)
% By mass
C: 0.10 to 0.30%,
Si: 0.05-1.00%,
Mn: 0.30 to 2.00%
P: 0.030% or less,
S: 0.030% or less,
Cr: 0.30 to 1.50%,
Mo: 0.50% or less,
Al: 0.016 to 0.060%,
N: 0.0085 to 0.030%,
And the balance consists of Fe and inevitable impurities,
It is a ferrite and pearlite structure, and satisfies the following formula (1) when the N content is X N and the Al content is X Al in mass%, and the area per pearlite is Sp μm 2 / piece, 1000 A material for high-temperature carburized parts excellent in crystal grain coarsening prevention characteristics characterized by satisfying the following formula (2) when the equilibrium precipitation amount of AlN at ℃ is Wp mass%.
(X N −8.5 × 10 −3 ) (X Al −1.6 × 10 −2 ) ≧ 5.2 × 10 −5 (1)
Sp × Wp ≧ 4 (2)
質量%で、
C:0.10〜0.30%、
Si:0.05〜1.00%、
Mn:0.30〜2.00%、
P:0.030%以下、
S:0.030%以下、
Cr:0.30〜1.50%、
Mo:0.50%以下、
Al:0.016〜0.060%、
N:0.0085〜0.030%、
を含有し、残部がFe及び不可避不純物からなり、
質量%でN含有量をX、Al含有量をXAlとした場合に下記式(1)を満たす鋼材を熱間鍛造後、900〜1000℃の範囲内における所定の加熱温度まで加熱し、その加熱温度で20分以上加熱保持した後、600〜700℃の範囲内における所定の冷却温度まで0.5℃/sec以下の所定の冷却速度で冷却し、その冷却温度で30分以上加熱保持することを特徴とする高温浸炭部品用素材の製造方法。
(X−8.5×10−3)(XAl−1.6×10−2)≧5.2×10−5…(1)
% By mass
C: 0.10 to 0.30%,
Si: 0.05-1.00%,
Mn: 0.30 to 2.00%
P: 0.030% or less,
S: 0.030% or less,
Cr: 0.30 to 1.50%,
Mo: 0.50% or less,
Al: 0.016 to 0.060%,
N: 0.0085 to 0.030%,
And the balance consists of Fe and inevitable impurities,
After hot forging a steel material satisfying the following formula (1) when the N content is X N and the Al content is X Al in mass%, the steel material is heated to a predetermined heating temperature in the range of 900 to 1000 ° C., After heating and holding at that heating temperature for 20 minutes or more, cooling to a predetermined cooling temperature in the range of 600 to 700 ° C. at a predetermined cooling rate of 0.5 ° C./sec or less, and holding at that cooling temperature for 30 minutes or more A method for producing a material for high-temperature carburized parts, comprising:
(X N −8.5 × 10 −3 ) (X Al −1.6 × 10 −2 ) ≧ 5.2 × 10 −5 (1)
JP2015079842A 2015-04-09 2015-04-09 Material for high temperature carburized parts excellent in anti-grain coarsening characteristics and method for producing the same Active JP6551657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079842A JP6551657B2 (en) 2015-04-09 2015-04-09 Material for high temperature carburized parts excellent in anti-grain coarsening characteristics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079842A JP6551657B2 (en) 2015-04-09 2015-04-09 Material for high temperature carburized parts excellent in anti-grain coarsening characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016199784A true JP2016199784A (en) 2016-12-01
JP6551657B2 JP6551657B2 (en) 2019-07-31

Family

ID=57423869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079842A Active JP6551657B2 (en) 2015-04-09 2015-04-09 Material for high temperature carburized parts excellent in anti-grain coarsening characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP6551657B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090883A (en) * 2016-12-07 2018-06-14 大同特殊鋼株式会社 High temperature carburization steel, production method thereof, and carburized component
WO2019102584A1 (en) * 2017-11-24 2019-05-31 株式会社ゴーシュー Forged heat-treated product of case-hardened steel
CN114929916A (en) * 2020-03-17 2022-08-19 爱知制钢株式会社 Blank for vacuum carburization and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112684A (en) * 1997-06-19 1999-01-19 Kobe Steel Ltd Case hardening steel for cold forging
JP2002146438A (en) * 2000-11-13 2002-05-22 Sanyo Special Steel Co Ltd Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112684A (en) * 1997-06-19 1999-01-19 Kobe Steel Ltd Case hardening steel for cold forging
JP2002146438A (en) * 2000-11-13 2002-05-22 Sanyo Special Steel Co Ltd Method for producing case-hardening steel having excellent cold workability and grain size characteristic
JP2015127434A (en) * 2013-12-27 2015-07-09 株式会社神戸製鋼所 Case hardened steel with excellent crystal grain coarsening prevention characteristic at carburization treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090883A (en) * 2016-12-07 2018-06-14 大同特殊鋼株式会社 High temperature carburization steel, production method thereof, and carburized component
WO2019102584A1 (en) * 2017-11-24 2019-05-31 株式会社ゴーシュー Forged heat-treated product of case-hardened steel
JPWO2019102584A1 (en) * 2017-11-24 2020-08-20 株式会社ゴーシュー Forged heat-treated product of case hardening steel
CN114929916A (en) * 2020-03-17 2022-08-19 爱知制钢株式会社 Blank for vacuum carburization and method for producing same

Also Published As

Publication number Publication date
JP6551657B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP2012140690A (en) Method of manufacturing two-phase stainless steel excellent in toughness and corrosion resistance
JP5991564B2 (en) Hot tool material and hot tool manufacturing method
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
TWI547566B (en) Steel for mechanical construction for cold working and its manufacturing method
WO2015189978A1 (en) Steel material for cold forging
JP6551657B2 (en) Material for high temperature carburized parts excellent in anti-grain coarsening characteristics and method for producing the same
CN109790602B (en) Steel
JP6695570B2 (en) Method for manufacturing parts using age hardening type bainite non-heat treated steel
JP5359582B2 (en) Hardened tool steel material
JP6159209B2 (en) High strength steel for bolts with excellent delayed fracture resistance and bolt formability, and method for producing bolts
JP2015212412A (en) Hot rolled wire
JP2021154387A (en) Manufacturing method for forging material for carburization
JP2019044254A (en) Mold
JP6458927B2 (en) High-strength spring steel with excellent wire rod rollability
JP2005187888A (en) Method for quenching hyper-eutectoid steel excellent in static strength used for rolling bearing
JP2016027204A (en) Age-hardening bainite untempered steel
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP2010215961A (en) Steel sheet of boron steel superior in hardenability, and manufacturing method therefor
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2019026874A (en) Raw material for high frequency induction hardening component
JP3725666B2 (en) Manufacturing method of carburized shaft parts
JP6752624B2 (en) Manufacturing method of carburized steel
KR101691970B1 (en) Forged part, method for producing same, and connecting rod
KR20150137182A (en) Method of manufacturing cast steel
US20230076076A1 (en) Raw blank for vacuum carburization and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6551657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150