JP6752624B2 - Manufacturing method of carburized steel - Google Patents

Manufacturing method of carburized steel Download PDF

Info

Publication number
JP6752624B2
JP6752624B2 JP2016105072A JP2016105072A JP6752624B2 JP 6752624 B2 JP6752624 B2 JP 6752624B2 JP 2016105072 A JP2016105072 A JP 2016105072A JP 2016105072 A JP2016105072 A JP 2016105072A JP 6752624 B2 JP6752624 B2 JP 6752624B2
Authority
JP
Japan
Prior art keywords
treatment
steel material
carburizing
mass
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016105072A
Other languages
Japanese (ja)
Other versions
JP2017210656A (en
Inventor
真宏 塚原
真宏 塚原
剣吾 深沢
剣吾 深沢
佳孝 三阪
佳孝 三阪
川嵜 一博
一博 川嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP2016105072A priority Critical patent/JP6752624B2/en
Publication of JP2017210656A publication Critical patent/JP2017210656A/en
Application granted granted Critical
Publication of JP6752624B2 publication Critical patent/JP6752624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本件出願に係る発明は、浸炭処理時における異常粒生成を極力抑制することを可能とする浸炭用鋼の製造方法に関するものである。 The invention according to the present application relates to a method for producing carburized steel, which makes it possible to suppress the generation of abnormal grains during carburizing treatment as much as possible.

浸炭用鋼は、従来より高疲労特性が求められる自動車部品や産業機械部品等に適用されている。浸炭用鋼の加工方法は、熱間鍛造や冷間鍛造があるが、昨今ではコストの面から冷間鍛造のニーズが高い。この冷間鍛造を行う場合、まず、加工性の向上を図るため、浸炭用鋼材の軟質化焼なましが行われる。この軟質化焼なましは、主に、球状化焼なましが採用される。軟質化焼なました鋼材は、冷間鍛造により成形した後、浸炭焼入れによって表面硬化処理が施される。 Carburized steel has been applied to automobile parts, industrial machine parts, etc., which are conventionally required to have high fatigue characteristics. There are hot forging and cold forging as processing methods for carburized steel, but nowadays, there is a high need for cold forging from the viewpoint of cost. When this cold forging is performed, first, in order to improve the workability, the carburized steel material is softened and annealed. As this softened annealing, spheroidized annealing is mainly adopted. The softened and annealed steel material is formed by cold forging and then surface-hardened by carburizing and quenching.

この場合、冷間鍛造による歪エネルギーは、Ac1点以下の温度での浸炭加熱中において、再結晶の駆動力として働き、鋼材中のフェライトなどの組織は微細となる。そして、オーステナイト変態直後の結晶粒も微細となり、オーステナイト粒の成長の駆動力が増大して、浸炭焼入後に異常粒が生成する。特に、近年では、処理時間を短くすることができることから、浸炭焼入として浸炭温度が高い真空浸炭が採用されることが多い。しかし、浸炭時における加熱温度が高いと、オーステナイト粒が異常に成長して粗大化する問題が顕著となる。当該異常粒の成長は、歪みの発生原因、靱性の低下や疲労強度の低下といった弊害を招く。 In this case, strain energy due to cold forging, during carburization heating at a temperature below A c1 point, acts as the driving force for recrystallization, tissues such as ferrite in the steel material becomes finer. Then, the crystal grains immediately after the austenite transformation also become fine, the driving force for the growth of the austenite grains increases, and abnormal grains are generated after charcoal burning. In particular, in recent years, since the treatment time can be shortened, vacuum carburizing with a high carburizing temperature is often adopted as carburizing and quenching. However, when the heating temperature at the time of carburizing is high, the problem that the austenite grains grow abnormally and become coarse becomes remarkable. The growth of the abnormal grains causes adverse effects such as a cause of strain, a decrease in toughness, and a decrease in fatigue strength.

そこで、従来では、冷間鍛造を行った部材をそのまま浸炭処理すると異常粒が成長することがあるため、冷間鍛造後に焼ならし処理を行い、浸炭処理後における結晶粒の粗大化を抑止していた。 Therefore, conventionally, if the cold-forged member is carburized as it is, abnormal grains may grow. Therefore, the normalizing treatment is performed after the cold forging to suppress the coarsening of the crystal grains after the carburizing treatment. Was there.

また、異常粒の成長を組成の面から改善する技術として、例えば、特許文献1に開示の浸炭部品用の機械構造用鋼がある。当該特許文献1には、質量%でC:0.10〜0.30%、Si:0.05〜2.0%、Mn:0.10〜0.50%、P:0.30%以下、S:0.30%以下、Cr:1.80〜3.00%、Al:0.005〜0.050%、Nb:0.02〜0.10%、N:0.0300%以下を含有し、残部Feおよび不可避不純物からなり、冷間加工前の組織がフェライト・パーライト組織であり、そのフェライト粒径の平均値が15μm以上である浸炭部品用の機械構造用鋼が開示されている。特許文献1では、AlN、NbCあるいはNb(CN)からなる化合物のピン止め効果により、異常粒の成長を抑止している。 Further, as a technique for improving the growth of abnormal grains from the aspect of composition, for example, there is a machine structural steel for carburized parts disclosed in Patent Document 1. In Patent Document 1, C: 0.10 to 0.30%, Si: 0.05 to 2.0%, Mn: 0.10 to 0.50%, P: 0.30% or less in mass%. , S: 0.30% or less, Cr: 1.80 to 3.00%, Al: 0.005 to 0.050%, Nb: 0.02 to 0.10%, N: 0.0300% or less. Disclosed is a machine structural steel for carburized parts, which contains the balance Fe and unavoidable impurities, has a ferrite pearlite structure before cold working, and has an average ferrite particle size of 15 μm or more. .. In Patent Document 1, the growth of abnormal grains is suppressed by the pinning effect of a compound composed of AlN, NbC or Nb (CN).

特開2013−40376号公報Japanese Unexamined Patent Publication No. 2013-40376

しかしながら、脱酸の目的で鋼中に添加されるAlは、鋼中のNと結合して、ピン止め効果を有する極めて微細なAlNを析出するために異常粒の成長を抑制することが知られているが、冷間鍛造前に行われる球状化焼鈍によって、AlNは凝集して粗大化するため十分なピン止め効果を生じることができず、浸炭時に異常粒の発生を許してしまう。上述した冷間鍛造後の焼ならし処理は、通常、850℃〜950℃程度の温度域で行われるため、鋼中において粗大化したAlNは固溶しない。よって、冷間鍛造後の焼ならしによって、AlNは粗大化、凝集したままであり、十分なピン止め効果が得られているとはいえない。 However, it is known that Al added to steel for the purpose of deoxidation binds to N in steel and precipitates extremely fine AlN having a pinning effect, thereby suppressing the growth of abnormal grains. However, due to the spheroidizing annealing performed before cold forging, AlN aggregates and coarsens, so that a sufficient pinning effect cannot be produced, and abnormal grains are allowed to be generated during carburizing. Since the normalizing treatment after the cold forging described above is usually performed in a temperature range of about 850 ° C. to 950 ° C., the coarsened AlN in the steel does not dissolve in solid solution. Therefore, it cannot be said that a sufficient pinning effect is obtained because AlN remains coarsened and agglomerated by normalizing after cold forging.

一方、特許文献1に示すように、NbやTi、V等を添加し、高温で安定な析出物をピン止め元素として利用することが多く研究開発されているが、これらNbやTi、V等の元素は高価であるため、添加量の低減が要望されている。 On the other hand, as shown in Patent Document 1, Nb, Ti, V and the like are often added and stable precipitates at high temperatures are often used as pinning elements. These Nb, Ti, V and the like have been researched and developed. Since the element of is expensive, it is desired to reduce the amount of the element added.

以上のことから、市場からは、冷間鍛造性を十分に確保しつつ、浸炭時の異常粒成長を極力抑制することができる浸炭用鋼の開発が望まれていた。 From the above, the market has desired the development of carburizing steel that can suppress abnormal grain growth during carburizing as much as possible while ensuring sufficient cold forging property.

そこで、本件発明者等は、鋭意研究の結果、鋼材成分や冷間鍛造前の金属組織を調整するのではなく、焼なました後又は冷間鍛造後の鋼材に対して浸炭処理前に組織調整を行うことで、浸炭処理時における異常粒の生成を抑制することを可能とする浸炭用鋼の製造方法を提供することを可能とした。 Therefore, as a result of diligent research, the inventors of the present invention did not adjust the steel composition and the metallographic structure before cold forging, but instead adjusted the structure of the steel material after annealing or cold forging before carburizing. By making adjustments, it has become possible to provide a method for producing steel for carburizing, which makes it possible to suppress the formation of abnormal grains during carburizing treatment.

すなわち、本件発明に係る浸炭用鋼の製造方法は、少なくとも以下の工程A工程を備えることを特徴とする。
工程A:Alの含有量が0.01質量%〜0.100質量%、Nの含有量が0.005質量%〜0.020質量%である機械構造用鋼材である鋼材の焼なましを行う。
工程C:工程Aで焼なました当該鋼材を、後述する工程Bで高周波熱処理する前に冷間鍛造する。
工程B:工程Aで焼なました後、工程Cで冷間鍛造した当該鋼材を、浸炭処理前に、高周波誘導加熱法により1100℃以上の温度に加熱し、その後冷却する。
That is, the method for producing carburized steel according to the present invention is characterized by including at least the following steps A to C.
Step A: Annealing of a steel material for machine structural use, which has an Al content of 0.01% by mass to 0.100% by mass and an N content of 0.005% by mass to 0.020% by mass. Do.
Step C: The steel material annealed in Step A is cold forged before being subjected to high-frequency heat treatment in Step B, which will be described later.
Step B: after was annealed in step A, an equivalent steel material was cold forged at step C, and pre-carburization treatment, heated to a temperature above 1100 ° C. by high-frequency induction heating method, and then cooled.

本件発明に係る浸炭用鋼の製造方法は、前記工程Bにおける加熱保持時間が、60秒以下であることが好ましい。 In the method for producing carburized steel according to the present invention, the heating and holding time in the step B is preferably 60 seconds or less.

本件発明に係る浸炭用鋼の製造方法は、前記工程Bの後に、工程Dとして前記鋼材を850℃以上1000℃以下の温度に加熱し、その後冷却することが好ましい。 In the method for producing a carburized steel according to the present invention, it is preferable that after the step B, the steel material is heated to a temperature of 850 ° C. or higher and 1000 ° C. or lower as a step D, and then cooled.

本件発明に係る浸炭用鋼の製造方法は、前記工程Dにおいて、800℃から600℃までの間の冷却速度が10℃/秒以下であることが好ましい。 In the method for producing carburized steel according to the present invention, it is preferable that the cooling rate between 800 ° C. and 600 ° C. is 10 ° C./sec or less in the step D.

本件発明に係る浸炭用鋼の製造方法は、冷間鍛造における加工性を考慮して冷間鍛造前に鋼材の焼なましを行う。その後、当該鋼材を高周波誘導加熱法で1100℃以上1300℃以下の温度に加熱することにより、焼なましによって鋼材中に凝集して粗大化したAlNを固溶して鋼材中に均一に分散させることができる。よって、その後の浸炭処理において鋼材中に分散したAlNがピン止め効果を発揮して、高温の浸炭処理であっても異常粒の成長を極力抑制することができる。従って、本件発明によれば、Nb等の高価なピン止め元素を用いることなく、冷間鍛造における加工性を確保しつつ、その後の熱処理によって、浸炭時における異常粒の成長を抑制することができる。 In the method for producing carburized steel according to the present invention, the steel material is annealed before cold forging in consideration of workability in cold forging. After that, the steel material is heated to a temperature of 1100 ° C. or higher and 1300 ° C. or lower by a high-frequency induction heating method, so that AlN aggregated and coarsened in the steel material by annealing is solid-solved and uniformly dispersed in the steel material. be able to. Therefore, AlN dispersed in the steel material exerts a pinning effect in the subsequent carburizing treatment, and the growth of abnormal grains can be suppressed as much as possible even in the high temperature carburizing treatment. Therefore, according to the present invention, it is possible to suppress the growth of abnormal grains at the time of carburizing by the subsequent heat treatment while ensuring the workability in cold forging without using an expensive pinning element such as Nb. ..

本件発明における工程A〜工程Dを含む浸炭用鋼の製造工程を示す図である。It is a figure which shows the manufacturing process of the carburizing steel which includes the process A to process D in this invention. 実施例の熱処理工程を示す図である。It is a figure which shows the heat treatment process of an Example. 比較例1の熱処理工程を示す図である。It is a figure which shows the heat treatment process of the comparative example 1. FIG. 比較例2の熱処理工程を示す図である。It is a figure which shows the heat treatment process of the comparative example 2. 比較例3の熱処理工程を示す図である。It is a figure which shows the heat treatment process of the comparative example 3. 実施例及び各比較例の擬似浸炭焼入前の金属組織写真(500倍)及びビッカース硬さを示す図である。It is a figure which shows the metal structure photograph (500 times) and Vickers hardness before pseudo-charcoal-burning of an Example and each comparative example. 実施例及び各比較例の1020℃で擬似浸炭焼入後の旧オーステナイト結晶粒(100倍)である。Old austenite crystal grains (100 times) after pseudo-charcoal burning at 1020 ° C. in Examples and Comparative Examples. 擬似浸炭焼入時の異常粒が発生する温度と実施例及び各比較例の関係について示す図である。It is a figure which shows the relationship between the temperature at which abnormal particles are generated at the time of pseudo charcoal burning, an Example and each comparative example.

以下に、本件発明に係る浸炭用鋼の製造方法の形態について詳述する。本件発明に係る浸炭用鋼の製造方法は、Alの含有量が0.01質量%〜0.100質量%、Nの含有量が0.005質量%〜0.020質量%である機械構造用鋼材である鋼材の焼なましを行う工程Aと、工程Aで焼なました当該鋼材を、後述する工程Bで高周波熱処理する前に冷間鍛造する工程Cと、工程Aで焼なました後、工程Cで冷間鍛造した当該鋼材を、浸炭処理前に、高周波誘導加熱法により1100℃以上の温度に加熱し、その後冷却する工程Bを少なくとも備えることを特徴とする。そこで、以下に詳述する実施の形態では、本件発明に係る工程A、工程C、及び工程Bを含む浸炭用鋼の製造方法について述べる。 Hereinafter, the form of the method for producing carburized steel according to the present invention will be described in detail. The method for producing carburized steel according to the present invention is for mechanical structures having an Al content of 0.01% by mass to 0.100% by mass and an N content of 0.005% by mass to 0.020% by mass. Step A in which the steel material is annealed, step C in which the steel material annealed in step A is cold forged before high-frequency heat treatment in step B described later , and step A in which the steel material is annealed. after the person steel material was cold forged at step C, and pre-carburization treatment by high-frequency induction heating method and heated to a temperature above 1100 ° C., and at least comprising a step B of subsequent cooling. Therefore, in the embodiment described in detail below, a method for producing carburized steel including step A , step C, and step B according to the present invention will be described.

本件発明に係る浸炭用鋼の製造方法に用いる鋼材としては、浸炭焼入用途の機械構造用鋼材であればよい。当該鋼材の成分組成は、少なくともアルミニウム(Al)の含有量が0.01質量%〜0.100質量%、窒素(N)の含有量が0.005質量%〜0.020質量%であることが好ましく、その他の成分組成については、浸炭焼入用との機械構造用鋼材として、通常含まれる合金成分組成を備えるものであればよい。アルミニウムは、脱酸元素であるとともに、AlNを析出することによりオーステナイト粒の成長を抑制するピン止め効果がある。しかし、0.01質量%未満では、ピン止め効果が不十分で、0.100質量%を超えると効果が飽和するばかりでなく、Alの硬質介在物が多量に生成し、加工性を悪化させるため、上述したようにアルミニウムの含有量は、0.01質量%〜0.100質量%とすることが好ましい。窒素は、アルミニウムと結合してAlNを析出することにより、上述したピン止め効果がある。しかし、窒素の含有量は、アルミニウムの含有量とのバランスに依存するが、ピン止め効果を十分に発揮するためには、0.005質量%以上であることが好ましい。しかし、0.020質量%を超えると冷間鍛造性が低下するため、上述したように窒素の含有量は、0.005質量%〜0.020質量%とすることが好ましい。 The steel material used in the method for producing the carburized steel according to the present invention may be a machine structural steel material for carburizing and quenching. The composition of the steel material is such that the content of aluminum (Al) is at least 0.01% by mass to 0.100% by mass and the content of nitrogen (N) is 0.005% by mass to 0.020% by mass. Is preferable, and other component compositions may be those having an alloy component composition usually contained as a steel material for mechanical structure for carburizing and quenching. Aluminum is a deoxidizing element and has a pinning effect of suppressing the growth of austenite grains by precipitating AlN. However, if it is less than 0.01% by mass, the pinning effect is insufficient, and if it exceeds 0.100% by mass, not only the effect is saturated, but also a large amount of hard inclusions of Al 2 O 3 is generated, and workability As described above, the content of aluminum is preferably 0.01% by mass to 0.100% by mass. Nitrogen has the above-mentioned pinning effect by combining with aluminum and precipitating AlN. However, although the nitrogen content depends on the balance with the aluminum content, it is preferably 0.005% by mass or more in order to sufficiently exert the pinning effect. However, if it exceeds 0.020% by mass, the cold forging property deteriorates. Therefore, as described above, the nitrogen content is preferably 0.005% by mass to 0.020% by mass.

上述したアルミニウム及び窒素以外の成分組成が、例えば、炭素(C)0.10質量%〜0.30質量%、ケイ素(Si)0.15質量%〜0.35質量%、マンガン(Mn)0.10質量%〜0.90質量%、リン(P)0.030質量%以下、硫黄(S)0.030質量%以下、クロム(Cr)1.2質量%以下、モリブデン(Mo)0.25質量%以下であり、残部が鉄(Fe)及び不可避的不純物とすることができる。当該化学組成を備えた鋼材としては、例えば、機械構造用炭素鋼鋼材や、焼入性を保証した構造用鋼鋼材(H鋼)、機械構造用合金鋼鋼材などを用いることができる。 The composition of components other than aluminum and nitrogen described above is, for example, 0.10% by mass to 0.30% by mass of carbon (C), 0.15% by mass to 0.35% by mass of silicon (Si), and 0 mass of manganese (Mn). .10% by mass to 0.90% by mass, phosphorus (P) 0.030% by mass or less, sulfur (S) 0.030% by mass or less, chromium (Cr) 1.2% by mass or less, molybdenum (Mo) 0. It is 25% by mass or less, and the balance can be iron (Fe) and unavoidable impurities. As the steel material having the chemical composition, for example, carbon steel material for machine structure, structural steel material (H steel) with guaranteed hardenability, alloy steel material for machine structure, and the like can be used.

次に、本実施の形態に係る浸炭用鋼の製造方法について、図1の熱処理工程の概念図を参照して述べる。本実施の形態に係る浸炭用鋼の製造方法は、工程Aとしての焼なまし処理工程と、工程Cとしての冷間鍛造工程と、工程Bとしての高周波熱処理工程と、工程Dとしての焼ならし工程を順次行う。以下に、それぞれの処理工程について詳述する。 Next, the method for producing the carburized steel according to the present embodiment will be described with reference to the conceptual diagram of the heat treatment step of FIG. The method for producing the charcoal-immersed steel according to the present embodiment is a baking step as step A, a cold forging step as step C, a high-frequency heat treatment step as step B, and baking as step D. The process is carried out in sequence. Each processing step will be described in detail below.

(1)工程A
本件発明における工程Aは、鋼材の焼なましを行う工程である。鋼材の焼なまし処理は、後段の冷間鍛造工程における加工性を向上させるために行う。焼なまし処理は、球状化焼なましを採用することが好ましい。本件発明において、焼なまし処理は、700℃〜800℃で1時間〜24時間保持した後、600℃(S曲線のノーズ付近)まで1℃/時間〜20℃/時間の冷却速度で炉冷し、その後、空冷することが好ましい。当該焼なまし処理の処理条件は、用いる鋼材の種類や、冷間鍛造の加工程度に応じて、適宜変更することができる。なお、本件発明において、後段の冷間鍛造工程前における鋼材の熱処理として、焼なまし処理のみを挙げているが、本件発明は、これに限定されるものではなく、当該焼なまし処理に先立ち鋼材の組織を調整する均質化処理や、焼ならし処理を行っても良い。これら均質化処理や焼ならし処理については、従前の方法を採用することができる。
(1) Process A
Step A in the present invention is a step of annealing a steel material. The annealing treatment of the steel material is performed in order to improve the workability in the cold forging process in the subsequent stage. For the annealing treatment, it is preferable to employ spheroidized annealing. In the present invention, the annealing treatment is carried out at 700 ° C. to 800 ° C. for 1 hour to 24 hours, and then cooled to 600 ° C. (near the nose of the S curve) at a cooling rate of 1 ° C./hour to 20 ° C./hour. After that, it is preferable to cool the air. The processing conditions for the annealing treatment can be appropriately changed depending on the type of steel material used and the degree of cold forging. In the present invention, only the annealing treatment is mentioned as the heat treatment of the steel material before the cold forging process in the subsequent stage, but the present invention is not limited to this, and prior to the annealing treatment. A homogenization treatment for adjusting the structure of the steel material or a normalizing treatment may be performed. For these homogenization treatments and normalizing treatments, conventional methods can be adopted.

(2)工程C
本実施の形態における工程Cは、上述した工程Aで焼なました鋼材を、後述する工程Bで高周波熱処理する前に行う冷間鍛造工程である。当該冷間鍛造工程では、上述したように前段における工程Aにおいて鋼材が軟質化焼なまし処理されているため、冷間加工性は良好となる。
(2) Process C
The step C in the present embodiment is a cold forging step performed before the steel material annealed in the above-mentioned step A is subjected to high-frequency heat treatment in the step B described later. In the cold forging step, as described above, since the steel material is softened and annealed in the step A in the previous step, the cold workability is good.

(3)工程B
本件発明における工程Bは、工程Aにおいて焼なました鋼材を、浸炭処理する前に高周波誘導加熱法により加熱し、その後冷却する高周波熱処理工程である。なお、当該工程Bの後に行う工程Dを高周波誘導加熱法により加熱する焼ならしを行う場合には、当該工程Bは第1段目の高周波熱処理工程となり、工程Dは第2段目の高周波熱処理工程に相当する。
(3) Step B
Step B in the present invention is a high-frequency heat treatment step in which the steel material annealed in step A is heated by a high-frequency induction heating method before carburizing, and then cooled. When the step D performed after the step B is subjected to the baking by the high frequency induction heating method, the step B is the first step high frequency heat treatment step, and the step D is the second step high frequency. Corresponds to the heat treatment process.

当該工程Bにおける高周波熱処理工程では、工程Aにおいて焼なまし処理され、工程Cにおいて冷間鍛造処理された鋼材を浸炭処理前に、高周波誘導加熱法により1100℃以上1300℃以下の温度に加熱し、その後冷却する。本件発明における当該工程Bにおける加熱温度は1100℃以上とする。1100℃未満では、焼なまし処理によって鋼材中に凝集して粗大化したAlNを固溶して鋼材中に均一に分散させることが困難となるからである。鋼材中のAlNを殆ど全て固溶させる観点から当該工程Bにおける加熱温度は1200℃以上とすることが好ましい。当該工程Bにおける加熱温度の上限値は、特に限定されるものではないが、変形や著しい脱炭、表面あれの観点から1300℃以下とすることが望ましい。また、当該工程Bにおける昇温速度は、工程時間の短縮化の観点から10℃/秒以上とすることが好ましい。 In the high-frequency heat treatment step in the step B, the steel material annealed in the step A and cold-forged in the step C is heated to a temperature of 1100 ° C. or higher and 1300 ° C. or lower by a high-frequency induction heating method before the carburizing treatment. , Then cool. The heating temperature in the step B in the present invention is 1100 ° C. or higher. This is because if the temperature is lower than 1100 ° C., it becomes difficult to solid-solve AlN aggregated and coarsened in the steel material by the annealing treatment and uniformly disperse it in the steel material. From the viewpoint of solid-solving almost all AlN in the steel material, the heating temperature in the step B is preferably 1200 ° C. or higher. The upper limit of the heating temperature in the step B is not particularly limited, but is preferably 1300 ° C. or lower from the viewpoint of deformation, significant decarburization, and surface roughness. Further, the temperature rising rate in the step B is preferably 10 ° C./sec or more from the viewpoint of shortening the step time.

更に、当該工程Bにおける加熱保持時間は60秒以下であることが好ましい。工程Bにおける熱処理の加熱保持時間を60秒以下とすることにより、著しい脱炭や表面あれを防止することが可能となるからである。 Further, the heating holding time in the step B is preferably 60 seconds or less. This is because by setting the heat treatment holding time of the heat treatment in step B to 60 seconds or less, it is possible to prevent significant decarburization and surface roughness.

本件発明では、冷間鍛造における加工性を考慮して冷間鍛造前に鋼材の焼なましを行い、冷間鍛造を行った後、上述した工程Bを行うことで、焼なましによって鋼材中に凝集して粗大化したAlNを固溶して鋼材中に均一に分散させることができる。また、当該工程Bにおける熱処理によって、冷間鍛造による歪を解消することができる。よって、その後の浸炭処理において鋼材中に分散したAlNがピン止め効果を発揮して、高温の浸炭処理であっても異常粒の成長を極力抑制することができる。ゆえに、本件発明では、従来採用されていたNb等の高価なピン止め元素を用いることなく、冷間鍛造における加工性を確保しつつ、その後の熱処理によって、浸炭時における異常粒の成長を抑制することができる。 In the present invention, in consideration of workability in cold forging, the steel material is annealed before cold forging, and after cold forging, the above-mentioned step B is performed to obtain the steel material by annealing. AlN aggregated and coarsened can be solid-solved and uniformly dispersed in the steel material. Further, the heat treatment in the step B can eliminate the strain caused by cold forging. Therefore, AlN dispersed in the steel material exerts a pinning effect in the subsequent carburizing treatment, and the growth of abnormal grains can be suppressed as much as possible even in the high temperature carburizing treatment. Therefore, in the present invention, the growth of abnormal grains during carburizing is suppressed by the subsequent heat treatment while ensuring workability in cold forging without using an expensive pinning element such as Nb which has been conventionally adopted. be able to.

(4)工程D
当該工程Bにおける高周波熱処理後の冷却によって得られた鋼材の組織に、マルテンサイトや下部ベイナイト組織が一部に存在している場合には、当該工程Bの後に、工程Dとして鋼材の焼ならしを行うことがより好ましい。浸炭処理前における鋼材中に、マルテンサイトや下部ベイナイトが一部存在している場合には、浸炭時におけるオーステナイト変態直後にマルテンサイトや下部ベイナイト部分が微細化し、粒成長の駆動力が増加することで異常粒が生成される場合があるからである。また、当該浸炭処理前における鋼材中にマルテンサイトや下部ベイナイトが大部分を占める場合には、再オーステナイト化した際に旧オーステナイト粒と同じ方位の結晶粒が優先的に生成し、結晶粒が微細化しないオーステナイトメモリー現象が生じるからである。
(4) Step D
If martensite or lower bainite structure is partially present in the structure of the steel material obtained by cooling after the high-frequency heat treatment in the step B, the steel material is normalized as the step D after the step B. Is more preferable. If some martensite or lower bainite is present in the steel material before carburizing, the martensite or lower bainite portion becomes finer immediately after the austenite transformation during carburizing, and the driving force for grain growth increases. This is because abnormal grains may be generated in. In addition, when martensite or lower bainite occupy most of the steel material before the carburizing treatment, crystal grains having the same orientation as the old austenite grains are preferentially generated when re-austenite is formed, and the crystal grains are fine. This is because the austenite memory phenomenon that does not change occurs.

本件発明における当該工程Dでは、工程Bによって得られた鋼材の組織中に、マルテンサイト及び/又は下部ベイナイト組織が5%以上存在する場合には、850℃以上1000℃以下の温度に加熱した後、冷却する焼ならしを行うことが好ましい。当該温度において、当該鋼材の焼ならしを行うことにより、鋼材中に残存していたマルテンサイト又は下部ベイナイト組織をフェライト−パーライト化して、組織の標準化することができる。よって、工程Dを更に行うことによって、鋼材の組織がより均一化されているため、均一に分散したAlNのピン止め効果に加えて、浸炭処理時において異常粒の成長をより一層、効果的に抑止することが可能となる。当該工程Bの後に行われる焼ならし処理は、高周波誘導加熱法により行っても良い。この場合、上述したように、工程Bは、第1段目の高周波熱処理工程に相当し、当該工程Dは第2段目の高周波熱処理工程に相当する。 In the step D in the present invention, when martensite and / or lower bainite structure is present in 5% or more in the structure of the steel material obtained in the step B, after heating to a temperature of 850 ° C. or higher and 1000 ° C. or lower. , It is preferable to perform normalizing to cool. By normalizing the steel material at the temperature, the martensite or lower bainite structure remaining in the steel material can be converted into ferrite-pearlite to standardize the structure. Therefore, by further performing step D, the structure of the steel material is made more uniform, so that in addition to the pinning effect of uniformly dispersed AlN, the growth of abnormal grains during the carburizing treatment is more effective. It becomes possible to deter. The normalizing treatment performed after the step B may be performed by a high frequency induction heating method. In this case, as described above, the step B corresponds to the high frequency heat treatment step of the first stage, and the step D corresponds to the high frequency heat treatment step of the second stage.

また、本件発明において、当該工程Dにおける昇温速度は、工程時間の短縮化の観点から10℃/秒以上とすることが好ましい。そして、当該工程Dにおける加熱保持時間は、同様に、工程時間の短縮化の観点から60秒以内とすることがより好ましい。 Further, in the present invention, the heating rate in the step D is preferably 10 ° C./sec or more from the viewpoint of shortening the step time. Similarly, the heating holding time in the step D is more preferably 60 seconds or less from the viewpoint of shortening the step time.

さらに、当該工程Dにおける加熱後の冷却速度は、少なくとも、800℃から600℃までの間の冷却速度が10℃/秒以下であることが好ましい。当該温度域における冷却速度を10℃/秒以下とすることで、組織中にベイナイトが生成される不都合を抑制し、フェライト−パーライトとすることができ、組織の標準化を行うことができるからである。また、当該工程Dにおける冷却速度は、鋼材の材質によって変更することが好ましく、例えば、SCM420等の合金鋼を用いる場合には、少なくとも、800℃から600℃までの間の冷却速度が0.5℃/秒以下とすることが好ましい。 Further, the cooling rate after heating in the step D is preferably at least 10 ° C./sec or less as the cooling rate between 800 ° C. and 600 ° C. By setting the cooling rate in the temperature range to 10 ° C./sec or less, the inconvenience of bainite formation in the structure can be suppressed, ferrite-pearlite can be obtained, and the structure can be standardized. .. Further, the cooling rate in the step D is preferably changed depending on the material of the steel material. For example, when an alloy steel such as SCM420 is used, the cooling rate at least between 800 ° C. and 600 ° C. is 0.5. It is preferably ° C./sec or less.

以上、述べてきたように、本件発明に係る浸炭用鋼の製造方法によれば、冷間鍛造における加工性を考慮して行う焼なまし処理によって鋼材中に凝集して粗大化したAlNを鋼材中に均一に分散させることができる。よって、当該鋼材を、真空浸炭のような高温の浸炭処理を行った場合であっても、当該鋼材中に均一に分散したAlNのピン止め効果によって、異常粒の成長を極力抑制することができる。特に、本件発明は、Nb等の高価なピン止め元素を用いることなく、熱処理のみによって、冷間鍛造における加工性を確保しつつ、浸炭時における異常粒の成長を抑制することができる。 As described above, according to the method for producing carburized steel according to the present invention, AlN aggregated and coarsened in the steel material by the annealing treatment performed in consideration of workability in cold forging is produced in the steel material. It can be evenly dispersed therein. Therefore, even when the steel material is subjected to high-temperature carburizing treatment such as vacuum carburizing, the growth of abnormal grains can be suppressed as much as possible by the pinning effect of AlN uniformly dispersed in the steel material. .. In particular, the present invention can suppress the growth of abnormal grains during carburizing while ensuring workability in cold forging only by heat treatment without using an expensive pinning element such as Nb.

次に、本発明に係る浸炭用鋼の製造方法の実施例及び比較例について述べる。 Next, examples and comparative examples of the method for producing carburized steel according to the present invention will be described.

実施例の浸炭用鋼の製造方法では、鋼材(供試材)としてSCM420からなる直径16mmの丸棒を用いた。当該鋼材の化学成分を以下の表1に示す。なお、表1に示す鋼材の化学成分の残部は、Fe及び不可避的不純物である。 In the method for producing carburized steel in the examples, a round bar having a diameter of 16 mm made of SCM420 was used as the steel material (test material). The chemical composition of the steel material is shown in Table 1 below. The balance of the chemical components of the steel material shown in Table 1 is Fe and unavoidable impurities.

本実施例では、均質化処理工程、焼ならし処理工程、球状化焼なまし処理工程、高周波熱処理工程、焼ならし処理工程を順次行って浸炭用鋼を製造した。なお、高周波熱処理工程の有無による浸炭処理時における異常粒成長挙動を示すため、本実施例及び後述する各比較例において本件発明における工程Cに相当する冷間鍛造は省略している。以下に、図2を参照しながら、本実施例の製造工程について述べる。 In this example, a carburizing steel was produced by sequentially performing a homogenization treatment step, a normalizing treatment step, a spheroidizing annealing treatment step, a high frequency heat treatment step, and a normalizing treatment step. In addition, in order to show the abnormal grain growth behavior during the carburizing treatment depending on the presence or absence of the high-frequency heat treatment step, the cold forging corresponding to the step C in the present invention is omitted in this example and each comparative example described later. The manufacturing process of this embodiment will be described below with reference to FIG.

まず初めに、均質化処理工程において、上述した供試材としての鋼材を炉内において1250℃で5時間加熱した後、当該炉内において室温まで冷却した。 First, in the homogenization treatment step, the steel material as the test material described above was heated in a furnace at 1250 ° C. for 5 hours and then cooled to room temperature in the furnace.

次に、焼ならし処理工程において、均質化処理した後の鋼材の焼ならし処理を行った。本実施例では、炉内において900℃で1時間加熱した後、当該炉内において室温まで冷却した。 Next, in the normalizing treatment step, a normalizing treatment of the steel material after the homogenization treatment was performed. In this embodiment, the mixture was heated in a furnace at 900 ° C. for 1 hour and then cooled to room temperature in the furnace.

そして、球状化焼なまし処理工程において、焼ならし処理した後の鋼材の球状化焼なまし処理を行った。当該球状化焼なまし処理工程は、本件発明における工程Aに相当する。本実施例では、炉内において750℃で10時間保持した後、600℃まで冷却速度10℃/時間で冷却した後、炉内において室温まで冷却した。 Then, in the spheroidizing annealing treatment step, the spheroidizing annealing treatment of the steel material after the normalizing treatment was performed. The spheroidizing annealing treatment step corresponds to step A in the present invention. In this example, the mixture was kept at 750 ° C. for 10 hours in the furnace, cooled to 600 ° C. at a cooling rate of 10 ° C./hour, and then cooled to room temperature in the furnace.

次に、高周波熱処理工程において、球状化焼なまし処理工程を経た鋼材の高周波熱処理を行った。当該高周波熱処理工程は、本件発明における工程Bに相当する。この高周波熱処理工程では、周波数10kHzの高周波誘導加熱により、当該鋼材を10秒で1250℃まで加熱し、当該温度を10秒間保持した後、室温まで空冷した。その後の第2回目の高周波熱処理による焼ならし工程では、周波数10kHzの高周波誘導加熱により、当該鋼材を10秒で950℃まで加熱し、当該温度を10秒間保持した後、950℃から600℃までの間0.1℃/秒の冷却速度で冷却し、その後室温まで空冷する焼ならしを行った。以上の均質化処理工程、焼ならし処理工程、球状化焼なまし処理工程、高周波熱処理工程、焼ならし処理工程を順次実施することにより、本実施例の浸炭用鋼を得た。 Next, in the high-frequency heat treatment step, high-frequency heat treatment of the steel material that had undergone the spheroidizing annealing treatment step was performed. The high frequency heat treatment step corresponds to step B in the present invention. In this high-frequency heat treatment step, the steel material was heated to 1250 ° C. in 10 seconds by high-frequency induction heating at a frequency of 10 kHz, the temperature was maintained for 10 seconds, and then air-cooled to room temperature. In the subsequent normalizing step by the second high-frequency heat treatment, the steel material is heated to 950 ° C. in 10 seconds by high-frequency induction heating at a frequency of 10 kHz, the temperature is maintained for 10 seconds, and then from 950 ° C. to 600 ° C. During the period, cooling was performed at a cooling rate of 0.1 ° C./sec, and then air cooling was performed to room temperature. The carburized steel of this example was obtained by sequentially carrying out the above homogenization treatment step, normalizing treatment step, spheroidizing annealing treatment step, high frequency heat treatment step, and normalizing treatment step.

比較例Comparative example

比較例1〜比較例3は、上述した実施例と同様の鋼材を用いて浸炭用鋼を作製した。比較例1は、図3に示すように、上述した実施例と同様に、均質化処理工程を行った後、焼ならし処理工程を行った。当該比較例1における均質化処理の条件及び焼ならし処理の条件は、実施例と同様とした。これにより、比較例1の浸炭用鋼を得た。 In Comparative Examples 1 to 3, carburizing steel was produced using the same steel material as in the above-mentioned Examples. As shown in FIG. 3, Comparative Example 1 was subjected to a normalizing treatment step and then a normalizing treatment step in the same manner as in the above-mentioned Examples. The conditions of the homogenization treatment and the conditions of the normalizing treatment in Comparative Example 1 were the same as those in the Examples. As a result, the carburizing steel of Comparative Example 1 was obtained.

比較例2は、図4に示すように、上述した実施例と同様に、均質化処理工程、焼ならし処理工程及び球状化焼なまし処理工程を行った。当該比較例2における均質化処理の条件、焼ならし処理の条件、球状化焼なまし処理の条件は、実施例と同様とした。これにより、比較例2の浸炭用鋼を得た。 In Comparative Example 2, as shown in FIG. 4, a homogenization treatment step, a normalizing treatment step, and a spheroidizing annealing treatment step were performed in the same manner as in the above-mentioned Examples. The conditions for the homogenization treatment, the normalizing treatment, and the spheroidizing annealing treatment in Comparative Example 2 were the same as those in the Examples. As a result, the carburizing steel of Comparative Example 2 was obtained.

比較例3は、図5に示すように、上述した実施例と同様に、均質化処理工程、焼ならし処理工程及び球状化焼なまし処理工程を行った後、更に、再度、焼ならし処理工程を行った。当該比較例3における均質化処理の条件、焼ならし処理の条件、球状化焼なまし処理の条件は、実施例と同様とした。球状化焼なまし処理の後に行われる焼ならし処理工程では、炉内において900℃で1時間加熱した後、当該炉内において室温まで冷却した。これにより、比較例3の浸炭用鋼を得た。 In Comparative Example 3, as shown in FIG. 5, after performing the homogenization treatment step, the normalizing treatment step, and the spheroidizing annealing treatment step in the same manner as in the above-described embodiment, the normalizing is performed again. A processing step was performed. The conditions for the homogenization treatment, the normalizing treatment, and the spheroidizing annealing treatment in Comparative Example 3 were the same as those in the Examples. In the normalizing treatment step performed after the spheroidizing annealing treatment, the mixture was heated at 900 ° C. for 1 hour in the furnace and then cooled to room temperature in the furnace. As a result, the carburizing steel of Comparative Example 3 was obtained.

[評価]
上述した実施例及び各比較例の浸炭用鋼について、光学顕微鏡を用いた組織観察及びビッカース硬さ測定を行った。当該組織観察及びビッカース硬さ測定は、いずれも各鋼材の円形断面の表面から約4mm(半径の1/2)の位置で行った。また、実施例及び各比較例の浸炭用鋼について、図5に示すように、浸炭処理の熱サイクルを模擬した擬似浸炭焼入れを行い、異常粒成長の挙動を確認した。擬似浸炭焼入れは、真空雰囲気中にて300℃/時間の加熱速度で900℃〜1060℃に昇温した後、3時間保持し、その後、水冷した。擬似浸炭焼入後の実施例及び各比較例について、光学顕微鏡を用いた旧オーステナイト結晶粒観察を行った。旧オーステナイト結晶粒観察の測定位置は、擬似浸炭焼入前の鋼材の組織観察と同様とした。以下、それぞれの評価結果について述べる。
[Evaluation]
The carburized steels of the above-mentioned Examples and Comparative Examples were observed in structure and Vickers hardness was measured using an optical microscope. The structure observation and the Vickers hardness measurement were both performed at a position of about 4 mm (1/2 of the radius) from the surface of the circular cross section of each steel material. Further, as shown in FIG. 5, the carburized steels of Examples and Comparative Examples were subjected to pseudo carburizing quenching simulating the thermal cycle of carburizing treatment, and the behavior of abnormal grain growth was confirmed. In the pseudo carburizing and quenching, the temperature was raised to 900 ° C. to 1060 ° C. at a heating rate of 300 ° C./hour in a vacuum atmosphere, held for 3 hours, and then water-cooled. Foremost austenite crystal grains were observed using an optical microscope in the examples after the simulated charcoal burning and each comparative example. The measurement position of the old austenite crystal grain observation was the same as that of the structure observation of the steel material before the simulated charcoal burning. The results of each evaluation will be described below.

擬似浸炭焼入前の組織観察及びビッカース硬さ: 本実施例及び各比較例の擬似浸炭焼入前の金属組織写真及びビッカース硬さを図6に示す。実施例(均質化処理・焼ならし処理・球状化焼なまし処理・高周波熱処理・焼ならし処理)と、比較例1(均質化処理・焼ならし処理)、比較例3(均質化処理・焼ならし処理・球状化焼なまし処理・再度の焼ならし処理)は、いずれもフェライトとパーライトからなる金属組織であった。これに対し、比較例2(均質化処理・焼ならし処理・球状化焼なまし処理)は、球状炭化物が分散した金属組織であり、ビッカース硬さも4つの中で最も低い値(128HV5)を示した。 Structure observation and Vickers hardness before pseudo-charcoal-burning: Fig. 6 shows a photograph of the metallographic structure and Vickers hardness of this example and each comparative example before pseudo-charcoal-burning. Examples (homogenization treatment / normalizing treatment / spheroidizing annealing treatment / high frequency heat treatment / normalizing treatment), Comparative Example 1 (homogenization treatment / normalizing treatment), and Comparative Example 3 (homogenization treatment). -The normalizing treatment, the spheroidizing normalizing treatment, and the re-normalizing treatment) all had a metallographic structure composed of ferrite and pearlite. On the other hand, Comparative Example 2 (homogenization treatment, normalizing treatment, spheroidizing annealing treatment) has a metallographic structure in which spherical carbides are dispersed, and the Vickers hardness is also the lowest value (128HV5) among the four. Indicated.

擬似浸炭焼入後の旧オーステナイト結晶粒観察: 本実施例及び各比較例について1020℃で擬似浸炭焼入れ後の旧オーステナイト粒界を現出させた金属組織写真を図7に示す。980℃及び1020℃で擬似浸炭焼入れを行った実施例(均質化処理・焼ならし処理・球状化焼なまし処理・高周波熱処理・焼ならし処理)と、比較例1(均質化処理・焼ならし処理)では、旧オーステナイト粒の結晶粒の分布が均一である状態が確認でき、他の視野においても異常粒の形成は認められなかった。一方、980℃及び1020℃で擬似浸炭焼入れを行った比較例2(均質化処理・焼ならし処理・球状化焼なまし処理)及び比較例3(均質化処理・焼ならし処理・球状化焼なまし処理・再度の焼ならし処理)では、広い範囲において、最大結晶粒度が1.5(公称粒径約240μm)程度の非常に粗大な結晶粒が観察され、異常粒が生成していることが確認された。 Observation of old austenite grain boundaries after pseudo-carburizing and quenching: Fig. 7 shows a metallographic photograph showing the former austenite grain boundaries after pseudo-carburizing and quenching at 1020 ° C. for this example and each comparative example. Examples of simulated carburizing and quenching at 980 ° C and 1020 ° C (homogenization treatment / normalizing treatment / spheroidizing annealing treatment / high frequency heat treatment / normalizing treatment) and Comparative Example 1 (homogenization treatment / normalizing treatment). In the normalizing treatment), it was confirmed that the distribution of the crystal grains of the old austenite grains was uniform, and no abnormal grains were formed in other fields of view. On the other hand, Comparative Example 2 (homogenization treatment / normalizing treatment / spheroidizing annealing treatment) and Comparative Example 3 (homogenizing treatment / normalizing treatment / spheroidizing treatment) in which pseudo carburizing and quenching was performed at 980 ° C. and 1020 ° C. In the annealing treatment / re-normalizing treatment), very coarse crystal grains with a maximum grain size of about 1.5 (nominal grain size of about 240 μm) were observed in a wide range, and abnormal grains were generated. It was confirmed that there was.

図8には、擬似浸炭焼入時の異常粒が発生する温度と実施例及び各比較例の関係について示す。図8中において丸は異常粒が認められたなかったもの、白三角は異常粒が存在しているが、異常粒の占有面積率が20%未満であるもの、バツは異常粒の占有面積率が20%以上であるを示している。ここでは、異常粒は、組織中において最大頻度を占める粒度番号の結晶粒から3以上異なる粗大結晶粒、又は、結晶粒度番号で5未満の粗大結晶粒をいうものとする。 FIG. 8 shows the relationship between the temperature at which abnormal grains are generated during simulated charcoal burning and the examples and each comparative example. In FIG. 8, circles show no abnormal grains, white triangles show abnormal grains, but the occupied area ratio of abnormal grains is less than 20%, and crosses indicate the occupied area ratio of abnormal grains. Is 20% or more. Here, the abnormal grains are coarse crystal grains having a particle size number different from the crystal grains having the highest frequency in the structure by 3 or more, or coarse crystal grains having a grain size number of less than 5.

球状化焼なまし処理後、焼ならし処理を行った比較例3では、球状化焼なまし処理まで行った比較例2と同様に、浸炭時の温度を940℃以上とすると異常粒が発生していた。よって、球状化焼なまし処理により凝集して粗大化したAlNは、その後の焼ならし処理では、均一に分散させることができず、AlNによるピン止め効果は不十分であったと推察することができる。 In Comparative Example 3 in which the spheroidizing annealing treatment was followed by the normalizing treatment, abnormal grains were generated when the carburizing temperature was 940 ° C. or higher, as in Comparative Example 2 in which the spheroidizing annealing treatment was performed. Was. Therefore, it can be inferred that the AlN aggregated and coarsened by the spheroidizing annealing treatment could not be uniformly dispersed in the subsequent normalizing treatment, and the pinning effect of the AlN was insufficient. it can.

これに対して、球状化焼なまし処理後、高周波熱処理及び焼ならし処理を行った実施例では、上述したように浸炭時の温度を980℃や1020℃に高温化させても異常粒の発生は認められなかった。これは、球状化焼なまし処理後に高周波熱処理によって鋼材を1250℃まで加熱することで、組織中におけるAlNが固溶し、その後の焼ならし処理と、擬似浸炭中の加熱によって、均一、かつ、微細に鋼材中に分散し、AlNのピン止め効果が十分に発揮されたものと考えられる。実施例では、浸炭時の温度を1060℃に高温化させた際に異常粒の発生が認められている。しかし、通常、真空浸炭のような高温浸炭は、980℃〜1050℃の範囲で行われており、980℃及び1020℃の浸炭温度で異常粒の発生が認められていない本実施例は、高温浸炭を行う場合において特に有効であるといえる。 On the other hand, in the example in which the spheroidizing annealing treatment was followed by the high frequency heat treatment and the normalizing treatment, even if the temperature at the time of carburizing was raised to 980 ° C. or 1020 ° C. as described above, the abnormal grains were found. No outbreak was observed. This is because AlN in the structure is solid-solved by heating the steel material to 1250 ° C. by high-frequency heat treatment after the spheroidizing annealing treatment, and by the subsequent normalizing treatment and heating during pseudo carburizing, it is uniform and It is considered that the AlN was finely dispersed in the steel material and the pinning effect of AlN was sufficiently exhibited. In the examples, the generation of abnormal grains is observed when the temperature at the time of carburizing is raised to 1060 ° C. However, usually, high-temperature carburizing such as vacuum carburizing is carried out in the range of 980 ° C to 1050 ° C, and in this example in which no abnormal grains are observed at the carburizing temperatures of 980 ° C and 1020 ° C, the high temperature is observed. It can be said that it is particularly effective when carburizing.

均質化処理及び焼ならし処理を行った比較例1では、実施例と同様に浸炭時の温度を980℃や1020℃に高温化させても異常粒の発生は認められなかったが、冷間鍛造性を考慮すると、球状化焼なまし処理による軟質化が必要である。以上のことから、球状化焼なまし処理を行った後に、高周波熱処理を行う本件発明は、冷間鍛造と、浸炭焼入を行う鋼材の製造方法として有益であることがいえる。特に、冷間鍛造を行った後、高温で高周波熱処理を行うことにより、冷間鍛造で生じる歪が解消され、この点においても異常粒の成長抑制することが可能となる。 In Comparative Example 1 in which the homogenization treatment and the normalizing treatment were performed, no abnormal grains were observed even when the carburizing temperature was raised to 980 ° C. or 1020 ° C. as in the example, but cold. Considering forgeability, it is necessary to soften by spheroidizing annealing treatment. From the above, it can be said that the present invention in which high-frequency heat treatment is performed after spheroidizing annealing treatment is useful as a method for producing a steel material to be cold forged and charcoal-burned. In particular, by performing high-frequency heat treatment at a high temperature after cold forging, the strain generated by cold forging is eliminated, and in this respect as well, the growth of abnormal grains can be suppressed.

本件発明に係る浸炭用鋼の製造方法は、冷間鍛造により加工が施される浸炭用鋼において特に有用である。 The method for producing carburized steel according to the present invention is particularly useful for carburized steel that is processed by cold forging.

Claims (4)

浸炭用鋼の製造方法であって、少なくとも以下の工程A工程を備えることを特徴とする浸炭用鋼の製造方法。
工程A:Alの含有量が0.01質量%〜0.100質量%、Nの含有量が0.005質量%〜0.020質量%である機械構造用鋼材である鋼材の焼なましを行う。
工程C:工程Aで焼なました当該鋼材を、後述する工程Bで高周波熱処理する前に冷間鍛造する。
工程B:工程Aで焼なました後、工程Cで冷間鍛造した当該鋼材を、浸炭処理前に、高周波誘導加熱法により1100℃以上の温度に加熱し、その後冷却する。
A method for producing carburized steel, which comprises at least the following steps A to C.
Step A: Annealing of a steel material for machine structural use, which has an Al content of 0.01% by mass to 0.100% by mass and an N content of 0.005% by mass to 0.020% by mass. Do.
Step C: The steel material annealed in Step A is cold forged before being subjected to high-frequency heat treatment in Step B, which will be described later.
Step B: after was annealed in step A, an equivalent steel material was cold forged at step C, and pre-carburization treatment, heated to a temperature above 1100 ° C. by high-frequency induction heating method, and then cooled.
前記工程Bにおける加熱保持時間が、60秒以下である請求項1に記載の浸炭用鋼の製造方法。 The method for producing carburized steel according to claim 1, wherein the heating and holding time in the step B is 60 seconds or less. 前記工程Bの後に、工程Dとして前記鋼材を850℃以上1000℃以下の温度に加熱し、その後冷却する請求項1又は請求項2に記載の浸炭用鋼の製造方法。 The method for producing a carburized steel according to claim 1 or 2, wherein after the step B, the steel material is heated to a temperature of 850 ° C. or higher and 1000 ° C. or lower as a step D, and then cooled. 前記工程Dにおいて、800℃から600℃までの間の冷却速度が10℃/秒以下である請求項に記載の浸炭用鋼の製造方法。 The method for producing carburized steel according to claim 3 , wherein in the step D, the cooling rate between 800 ° C. and 600 ° C. is 10 ° C./sec or less.
JP2016105072A 2016-05-26 2016-05-26 Manufacturing method of carburized steel Active JP6752624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105072A JP6752624B2 (en) 2016-05-26 2016-05-26 Manufacturing method of carburized steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105072A JP6752624B2 (en) 2016-05-26 2016-05-26 Manufacturing method of carburized steel

Publications (2)

Publication Number Publication Date
JP2017210656A JP2017210656A (en) 2017-11-30
JP6752624B2 true JP6752624B2 (en) 2020-09-09

Family

ID=60476020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105072A Active JP6752624B2 (en) 2016-05-26 2016-05-26 Manufacturing method of carburized steel

Country Status (1)

Country Link
JP (1) JP6752624B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751952A (en) * 2023-08-01 2023-09-15 重庆大学 Heat treatment method of medium-manganese steel plate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5675551A (en) * 1979-11-22 1981-06-22 Sanyo Tokushu Seikou Kk Grain stabilized carburizing steel
JPS59123714A (en) * 1982-12-30 1984-07-17 Kobe Steel Ltd Production of steel material where temperature at which coarse grain of austenite crystal is formed is high
JPH0660345B2 (en) * 1985-05-13 1994-08-10 株式会社神戸製鋼所 Steel manufacturing method with excellent cold workability and preventing grain coarsening during carburizing and heating
JPS63157816A (en) * 1986-12-22 1988-06-30 Kawasaki Steel Corp Manufacture of carburizing steel material
JP5286966B2 (en) * 2008-06-20 2013-09-11 大同特殊鋼株式会社 Gear parts
JP5350181B2 (en) * 2009-10-27 2013-11-27 株式会社神戸製鋼所 Case-hardened steel with excellent grain coarsening prevention properties
JP2011225897A (en) * 2010-04-15 2011-11-10 Sumitomo Metal Ind Ltd Hot-rolled steel bar or wire rod for cold forging
JP5855338B2 (en) * 2010-11-01 2016-02-09 富士電子工業株式会社 Induction hardening method and manufacturing method of products made of steel

Also Published As

Publication number Publication date
JP2017210656A (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6461360B2 (en) Spring steel wire and spring
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP6401143B2 (en) Method for producing carburized forging
JP2010242209A (en) Steel for machine structural use excellent in crystal grain coarsening resistance and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP4073860B2 (en) Manufacturing method of carburized steel with excellent coarsening resistance after high-temperature carburizing
JP4488228B2 (en) Induction hardening steel
JPH06172867A (en) Production of gear excellent in impact fatigue life
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP2005187888A (en) Method for quenching hyper-eutectoid steel excellent in static strength used for rolling bearing
JP2716301B2 (en) Manufacturing method of grain size stabilized case hardening steel
JP6752624B2 (en) Manufacturing method of carburized steel
JP2003201513A (en) High strength case hardening steel
JP4617783B2 (en) Manufacturing method of hot forged parts for high temperature carburizing
JP4681160B2 (en) Manufacturing method of high temperature carburizing steel and high temperature carburizing steel manufactured by the method
JPWO2013018893A1 (en) Non-tempered steel for hot forging, non-tempered hot forged product, and method for producing the same
JP4975343B2 (en) Steel pipe excellent in cold forging processability and manufacturing method thereof
JP3907986B2 (en) Method for producing case-hardened steel with excellent cold workability and grain size characteristics
JP4056709B2 (en) Carburizing steel
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JP7010320B2 (en) Rough material for vacuum carburizing and its manufacturing method
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JP7257351B2 (en) Crude material for vacuum carburizing and its manufacturing method
JP7471068B2 (en) Spheroidizing annealing method for case hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200819

R150 Certificate of patent or registration of utility model

Ref document number: 6752624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250