JP2010242209A - Steel for machine structural use excellent in crystal grain coarsening resistance and method for producing the same - Google Patents

Steel for machine structural use excellent in crystal grain coarsening resistance and method for producing the same Download PDF

Info

Publication number
JP2010242209A
JP2010242209A JP2009172761A JP2009172761A JP2010242209A JP 2010242209 A JP2010242209 A JP 2010242209A JP 2009172761 A JP2009172761 A JP 2009172761A JP 2009172761 A JP2009172761 A JP 2009172761A JP 2010242209 A JP2010242209 A JP 2010242209A
Authority
JP
Japan
Prior art keywords
less
steel
mass
machine structural
spheroidizing annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009172761A
Other languages
Japanese (ja)
Other versions
JP5495648B2 (en
Inventor
Takeshi Fujimatsu
威史 藤松
Kazuhiko Hiraoka
和彦 平岡
Kazuya Hashimoto
和弥 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2009172761A priority Critical patent/JP5495648B2/en
Publication of JP2010242209A publication Critical patent/JP2010242209A/en
Application granted granted Critical
Publication of JP5495648B2 publication Critical patent/JP5495648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for machine structural use in which crystal grains are not easily coarsened, when it is processed by cold forging or cold working and optional cutting work followed by carburizing treatment, by limiting chemical components, a lamellar pearlite area rate after spheroidizing annealing, and spheroidizing annealing conditions. <P>SOLUTION: The steel for machine structural use excellent in crystal grain coarsening resistance includes, by mass%, 0.10 to 0.25% C, 0.05 to 2.0% Si, 0.1 to 1.5% Mn, 0.030% or less P, 0.030 or less S, 1.8 to 3.0% Cr, 0.005 to 0.050% Al, and 0.030% or less N; further includes one or more of 0.25 to 3.0% Ni and 0.05 to 1.0% Mo; and further includes one or more of less than 0.050% Ti, 0.02 to 0.10% Nb, and 0.0010 to 0.0050% B, with the balance being Fe and unavoidable impurities, wherein the lamellar pearlite area rate after the spheroidizing annealing shown in the figure is 3% or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

例えば自動車などの動力伝達に用いられる耐結晶粒粗大化特性に優れた浸炭部品用の機械構造用鋼及びその製造方法。   For example, a machine structural steel for carburized parts having excellent crystal grain coarsening characteristics used for power transmission in automobiles and the like, and a method for producing the same.

冷間鍛造や冷間加工といった冷間工法は自動車駆動系部品などの部品製造コストダウンに対して有利な工法である。しかし、冷間加工後に直接的に浸炭処理を施して部品を製造する場合、冷間加工の影響により浸炭初期に微細なオーステナイト粒が形成される影響により、浸炭時にかえって結晶粒が粗大化しやすいという課題を有する。結晶粒が粗大化すると部品強度が低下する場合があるので、結晶粒粗大化抑制が不可欠である。この課題があるために、冷間工法のコストメリットを十分に活かすことができていないのが現状である。部品を冷間加工後に浸炭温度まで加熱する過程で、冷間加工時のひずみの影響によりいったんフェライトが微細に再結晶する段階を経てからオーステナイトに変態することが浸炭初期の微細なオーステナイト粒形成を促している。そこで、従来技術として冷間加工後に浸炭温度に加熱する過程で焼なましを行い、前述のフェライト再結晶の駆動力となるひずみエネルギーを解放させることを通じて、浸炭時の結晶粒粗大化を抑制する方法がある(例えば、非特許文献1参照)。   Cold methods such as cold forging and cold working are advantageous methods for reducing the cost of manufacturing parts such as automobile drive system parts. However, when parts are manufactured by carburizing directly after cold working, the effect of cold working is that fine austenite grains are formed in the initial stage of carburizing, which makes it easier to coarsen the grains instead of carburizing. Has a problem. Since the strength of a part may decrease when the crystal grains become coarse, it is essential to suppress the coarsening of the crystal grains. Due to this problem, the cost merit of the cold work method cannot be fully utilized. In the process of heating the parts to the carburizing temperature after cold working, the ferrite undergoes a fine recrystallization stage due to the effects of strain during cold working and then transforms to austenite, which forms fine austenite grains at the beginning of carburizing. Urging. Therefore, as a conventional technique, annealing is performed in the process of heating to the carburizing temperature after cold working, and the strain energy that becomes the driving force of the above-mentioned ferrite recrystallization is released, thereby suppressing grain coarsening during carburizing. There is a method (for example, refer nonpatent literature 1).

しかし、これにより新たな工程が追加されるため、部品コストダウンの観点からは利用しにくい。一方、発明者らは部品素材となる浸炭処理用途の機械構造用鋼に対して、冷間加工に先立ち加工性向上を目的として実施する球状化焼なましに関して、そのミクロ組織が不均一であることが浸炭時の結晶粒粗大化を促進していることを見出した。通常、浸炭処理用途の機械構造用鋼に球状化焼なましを施すと部分的なラメラーパーライトの生成が避けられず、結果として得られる球状化焼なまし組織は不均一なものとなる。鋼中でラメラー状に炭化物が存在するパーライトの部分は硬く、母相の鋼に比べて変形しにくいことにより、部品を冷間鍛造する過程でラメラーパーライト周辺に局所的に不均一なひずみが集中しやすい。その結果、冷間鍛造もしくは冷間加工、及び必要に応じた切削加工を行って所定の形状に加工してから浸炭温度まで加熱する際に、ラメラーパーライト周囲で特に微細にフェライトが再結晶する過程を経るので、浸炭初期のオーステナイト粒が特に微細に形成される。この影響により、浸炭中に結晶粒が成長して粗大化しやすくなってしまう。   However, since a new process is added by this, it is hard to use from a viewpoint of cost reduction of components. On the other hand, the inventors have a non-uniform microstructure with respect to spheroidizing annealing performed for the purpose of improving workability prior to cold working with respect to steel for machine structural use for carburizing treatment used as a component material. It has been found that this promotes grain coarsening during carburizing. In general, when spheroidizing annealing is applied to machine structural steel for carburizing treatment, partial lamellar pearlite is inevitably generated, and the resulting spheroidizing annealing structure is non-uniform. The part of pearlite that contains carbide in lamellar form in the steel is hard and hard to deform compared to the steel of the parent phase, so locally uneven strain concentrates around the lamellar pearlite during the cold forging process of the part. It's easy to do. As a result, a process in which ferrite is recrystallized particularly finely around lamellar pearlite when cold forging or cold working, and cutting to the required shape by heating to carburizing temperature. Therefore, austenite grains at the initial stage of carburizing are formed particularly finely. Due to this influence, crystal grains grow and become coarser during carburizing.

K.C.Evanson,G.Krauss and D.K.Matlock:Grain Growth in Policrystallin Materials III,ed.by H. Weiland,B.L.Adams and A.D.Rollet,TMS,Warrendale,PA(1993),599.K. C. Evanson, G.M. Krauss and D.C. K. Matlock: Grain Growth in Polycrystalline Materials III, ed. by H.M. Weiland, B.M. L. Adams and A.M. D. Rollet, TMS, Warrendale, PA (1993), 599. J.Jpn.Soc.Technol.Plast,22(1981),P.139.冷間鍛造分科会材料研究班編「冷間鍛造分科会基準」J. et al. Jpn. Soc. Technol. Plast, 22 (1981), p. 139. "Cold Forging Subcommittee Standard" edited by Cold Forging Subcommittee Materials Research Group

そこで、本発明が解決しようとする課題は、化学成分の限定、球状化焼なまし後のラメラーパーライト面積率の制限、球状化焼なまし条件の限定を加えることにより冷間鍛造もしくは冷間加工、及び必要に応じた切削加工を行って所定の形状に加工してから浸炭処理を行った場合に、結晶粒粗大化を起こしにくい機械構造用鋼、及びその製造方法を提供することを目的とする。この技術の提供により、浸炭処理用途の機械構造用鋼に少なからず含有されている結晶粒界をピン止めする微細析出物たとえばAlN、NbC、Nb(C、N)による結晶粒粗大化抑制作用と相まって、優れた耐結晶粒粗大化特性を発揮する機械構造用鋼が得られる。   Therefore, the problem to be solved by the present invention is to limit the chemical components, limit the area ratio of lamellar pearlite after spheroidizing annealing, and limit the conditions of spheroidizing annealing, thereby performing cold forging or cold working. In addition, it is an object of the present invention to provide a machine structural steel that is less likely to cause crystal grain coarsening when a carburizing process is performed after cutting into a predetermined shape by performing cutting as required, and a method for manufacturing the same. To do. By providing this technology, the effect of suppressing grain coarsening due to fine precipitates such as AlN, NbC, and Nb (C, N) that pin the crystal grain boundaries contained in machine structural steels for carburizing treatment applications. Together, a machine structural steel that exhibits excellent grain coarsening resistance is obtained.

上記の課題を解決するための手段は、請求項1の発明では、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼である。   Means for solving the above-mentioned problems are, in the invention of claim 1, mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 0.1%. 1.5%, P: 0.030% or less, S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less Is a steel for machine structural use that is excellent in grain coarsening resistance, characterized by comprising Fe and unavoidable impurities, and the area ratio of lamellar pearlite after spheroidizing annealing is 3% or less .

請求項2の発明では、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼である。   In the invention of claim 2, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% Hereinafter, S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: The area ratio of lamellar pearlite after spheroidizing annealing, containing one or more of 0.25 to 3.0%, Mo: 0.05 to 1.0%, the balance being Fe and inevitable impurities Is a steel for machine structure excellent in crystal grain coarsening characteristics, characterized by being 3% or less.

請求項3の発明では、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼である。   In the invention of claim 3, by mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% Hereinafter, S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: Containing one or more of 0.25 to 3.0%, Mo: 0.05 to 1.0%, and further by mass, Ti: less than 0.050%, Nb: 0.02-0 .10%, B: 0.0010 to 0.0050% of one type or two or more types, balance Fe and inevitable impurities, and the area ratio of lamellar pearlite after spheroidizing annealing is 3% or less It is a steel for machine structural use, which is characterized by having excellent grain coarsening resistance.

請求項4の発明では、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼である。   In the invention of claim 4, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% Hereinafter, S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ti: Contains less than 0.050%, Nb: 0.02 to 0.10%, B: 0.0010 to 0.0050%, or one or more of the remaining Fe and inevitable impurities. It is a steel for machine structural use having excellent grain coarsening resistance, characterized in that the area ratio of later lamellar pearlite is 3% or less.

請求項5の発明では、機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法である。   In the invention of claim 5, the steel for machine structural use is subjected to spheroidizing annealing, cold forging or cold working and cutting as required to form a predetermined shape, and then used for machine parts that are carburized. In steel for machine structure, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less , S: 0.030% or less, Cr: 1.8-3.0%, Al: 0.005-0.050%, N: 0.030% or less, and the balance Fe and inevitable impurities After heating to 740-810 ° C. and holding for a predetermined time, it is cooled to 720-650 ° C. at a cooling rate of 8-40 ° C./Hr, and then subjected to spheroidizing annealing that is air-cooled. This is a method for producing a steel for machine structural use having excellent crystal grain coarsening characteristics.

請求項6の発明では、機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%でNi:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法である。   In the invention of claim 6, the steel for machine structure is subjected to spheroidizing annealing, and then cold forging or cold working and cutting according to need is performed to obtain a predetermined shape, which is then used for machine parts to be carburized. In steel for machine structure, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less , S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further Ni: 0. Containing one or more of 25 to 3.0%, Mo: 0.05 to 1.0%, using steel consisting of the balance Fe and inevitable impurities, heating to 740 to 810 ° C. and holding for a predetermined time Later, it is cooled to 720-650 ° C. at a cooling rate of 8-40 ° C./Hr, and then subjected to spheroidizing annealing for air cooling. It is a method for manufacturing a steel for machine structural use excellent in resistance to grain coarsening properties characterized by.

請求項7の発明では、機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%でNi:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法である。   In the invention of claim 7, the steel for machine structural use is subjected to spheroidizing annealing, cold forging or cold working and cutting as required to form a predetermined shape, and then used for machine parts to be carburized. In steel for machine structure, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less , S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further Ni: 0. Containing one or more of 25-3.0%, Mo: 0.05-1.0%, and further by mass, Ti: less than 0.050%, Nb: 0.02-0.10 %, B: 0.0010 to 0.0050% of one type or two or more types, with the balance Fe and inevitable impurities used, 74 Heat resistance to 810 ° C., hold for a predetermined time, cool to 720-650 ° C. at a cooling rate of 8-40 ° C./Hr, and then subject to spheroidizing annealing to air cooling, This is a method for producing mechanical structural steel having excellent properties.

請求項8の発明では、機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法である。   In the invention of claim 8, the steel for machine structure is subjected to spheroidizing annealing, and then cold forging or cold working and cutting as required are processed into a predetermined shape and then used for machine parts that are carburized. In steel for machine structure, in mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less , S: 0.030% or less, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further by mass%, Ti: 0 Less than 0.050%, Nb: 0.02 to 0.10%, B: 0.0010 to 0.0050% of one kind or two or more kinds, and the balance of Fe and unavoidable impurities are used. After heating to 810 ° C and holding for a predetermined time, cooling to 720-650 ° C at a cooling rate of 8-40 ° C / Hr A method for producing a subsequent anti-coarsening properties superior mechanical structural steel, characterized in that performing the spheroidizing annealing to cooling.

本発明の機械構造用鋼の成分及びラメラーパーライトの面積率の限定理由並びに機械構造用鋼の製造方法の熱処理条件について説明する。なお、成分の%は質量%である。   The reasons for limiting the components of the mechanical structural steel and the area ratio of lamellar pearlite of the present invention and the heat treatment conditions of the method for manufacturing the mechanical structural steel will be described. In addition,% of a component is the mass%.

C:0.10〜0.25%
Cは機械構造用部品としての鋼材の浸炭処理後の芯部強度を確保するために必要な元素である。しかし、Cが0.10%未満ではその効果が十分に得られず、0.25%を超えると加工性を低下させ、かつ、靱性を低下させる。そこでCは0.10〜0.25%とする。
C: 0.10 to 0.25%
C is an element necessary for ensuring the core strength after carburizing treatment of steel as a machine structural component. However, if C is less than 0.10%, the effect cannot be sufficiently obtained, and if it exceeds 0.25%, workability is lowered and toughness is lowered. Therefore, C is set to 0.10 to 0.25%.

Si:0.05〜2.0%、望ましくは0.05〜1.0%
Siは脱酸に必要な元素である。しかし、Siが0.05%未満では脱酸が十分に得られず、2.0%を超えると加工性を低下させる。そこでSiは0.05〜2.0%とし、望ましくは0.05〜1.0%とする。
Si: 0.05-2.0%, desirably 0.05-1.0%
Si is an element necessary for deoxidation. However, if Si is less than 0.05%, sufficient deoxidation cannot be obtained, and if it exceeds 2.0%, the workability is lowered. Therefore, Si is set to 0.05 to 2.0%, preferably 0.05 to 1.0%.

Mn:0.1〜1.5%、望ましくは0.2〜0.8%
Mnは焼入れ性を確保するために必要な元素である。しかし、Mnが0.1%未満では焼入れ性の効果は十分に得られず、1.5%を超えると加工性を低下させる。そこでMnは0.1〜1.5%とし、より望ましくは0.2〜0.8%とする。
Mn: 0.1 to 1.5%, desirably 0.2 to 0.8%
Mn is an element necessary for ensuring hardenability. However, if Mn is less than 0.1%, the effect of hardenability cannot be obtained sufficiently, and if it exceeds 1.5%, workability is lowered. Therefore, Mn is set to 0.1 to 1.5%, more preferably 0.2 to 0.8%.

P:0.030%以下
Pはスクラップから含有される不可避な元素であり、オーステナイト粒界に偏析して衝撃強度や曲げ強度などの靱性を低下する。そこでPは0.030%以下とする。
P: 0.030% or less P is an unavoidable element contained in scrap, and segregates at the austenite grain boundary to lower toughness such as impact strength and bending strength. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは被削性を向上させる元素である。しかし、非金属介在物であるMnSを生成して横方向の靱性及び疲労強度を低下する。そこでSは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability. However, it produces MnS, which is a non-metallic inclusion, and lowers the toughness and fatigue strength in the lateral direction. Therefore, S is set to 0.030% or less.

Cr:1.8〜3.0%、望ましくは2.0〜2.5%
Crは球状化焼なまし時のラメラーパーライトの生成を抑えて、球状炭化物主体の均質な球状化焼なまし組織を得るために不可欠な元素である。この効果を得るためにはCrは1.8%以上必要である。一方、Crは過剰に添加すると加工性を損ない、また、浸炭性を阻害するので3.0%以下とする。そこでCrは1.8〜3.0%、望ましくは、2.0〜2.5%とする。なお、Crを1.8%以上添加することにより、球状化焼なましの徐冷過程でフェライト−オーステナイト界面における球状炭化物の生成反応が促進されることにより、均質な球状化焼なまし組織がもたらされる。
Cr: 1.8-3.0%, desirably 2.0-2.5%
Cr is an indispensable element for suppressing the generation of lamellar pearlite during spheroidizing annealing and obtaining a homogeneous spheroidizing annealing structure mainly composed of spherical carbides. In order to obtain this effect, Cr needs to be 1.8% or more. On the other hand, if Cr is added excessively, the workability is impaired and the carburizing property is inhibited, so the content is made 3.0% or less. Therefore, Cr is 1.8 to 3.0%, preferably 2.0 to 2.5%. By adding 1.8% or more of Cr, the formation reaction of spherical carbides at the ferrite-austenite interface is promoted during the slow cooling process of spheroidizing annealing, so that a homogeneous spheroidizing annealing structure is obtained. Brought about.

Ni:0.25〜3.0%以下
Niは焼入性及び靱性を向上させる元素であり、その効果を得るには0.25%以上添加する必要がある。しかし、Niは3.0%を超えて含有すると加工性を著しく低下させ、かつ、コストアップとなる。そこでNiは0.25〜3.0%とする。
Ni: 0.25 to 3.0% or less Ni is an element that improves hardenability and toughness, and in order to obtain the effect, it is necessary to add 0.25% or more. However, if Ni exceeds 3.0%, the workability is remarkably lowered and the cost is increased. Therefore, Ni is set to 0.25 to 3.0%.

Mo:0.05〜1.0%
Moは焼入性及び靱性を向上させる元素であり、その効果を得るには0.05%以上添加する必要がある。しかし、Moは1.0%を超えて含有すると加工性を低下させる。そこで、Moは0.05〜1.0%とする。
Mo: 0.05-1.0%
Mo is an element that improves hardenability and toughness, and it is necessary to add 0.05% or more to obtain the effect. However, if the Mo content exceeds 1.0%, the workability is lowered. Therefore, Mo is set to 0.05 to 1.0%.

Al:0.005〜0.050%、望ましくは0.015〜0.050%
Alは脱酸材として使用される元素であり、また後述のようにNと結合してAlNとして析出し、結晶粒粗大化抑制効果をもたらす。この効果を得るためには、Alは0.005%以上を添加する必要がある。一方、Alは0.050%を超えるとアルミナ系酸化物が増加し、疲労特性及び加工性を低下する。そこで、Alは0.005〜0.050%とし、望ましくは0.015〜0.050%とする。
Al: 0.005 to 0.050%, desirably 0.015 to 0.050%
Al is an element used as a deoxidizing material, and also binds to N and precipitates as AlN as will be described later, thereby bringing about an effect of suppressing grain coarsening. In order to obtain this effect, it is necessary to add 0.005% or more of Al. On the other hand, if the Al content exceeds 0.050%, the alumina-based oxide increases, and the fatigue characteristics and workability deteriorate. Therefore, Al is made 0.005 to 0.050%, preferably 0.015 to 0.050%.

N:0.030%以下、望ましくは0.025%以下、Ti及び/又はBを含む鋼材では0.010%未満
Nは鋼中でAlNやNb窒化物として微細析出し、結晶粒粗大化を防止する効果をもたらす。しかし、0.030%を超えると窒化物が増加し、疲労強度や加工性が低下する。そこで、請求鋼1〜請求鋼8の発明では、Nは0.030%以下とし、望ましくは0.025%以下とする。なお、Tiを含有する鋼材では、N量が多いとTiNが過剰に生成して加工性や疲労強度を損なう。また、Bを含有する鋼材ではNが0.010%以上含有されると、化合物のBNが生成して固溶Bが減少し、焼入性の向上効果が阻害される。そこで、請求項3、4または請求項7、8に記載の鋼のうち、特にTi及び/又はBを含有する鋼においてはNは0.010%未満とする。
N: 0.030% or less, desirably 0.025% or less, less than 0.010% for steel materials containing Ti and / or B N is finely precipitated in the steel as AlN or Nb nitrides, resulting in grain coarsening It has the effect of preventing. However, if it exceeds 0.030%, nitrides increase, and fatigue strength and workability decrease. Therefore, in the invention of claim steel 1 to claim steel 8, N is 0.030% or less, preferably 0.025% or less. Note that, in a steel material containing Ti, if the amount of N is large, TiN is excessively generated and workability and fatigue strength are impaired. Further, in a steel material containing B, when N is contained in an amount of 0.010% or more, BN of the compound is generated and solid solution B is reduced, and the effect of improving hardenability is hindered. Therefore, among steels according to claims 3 and 4 or claims 7 and 8, N is particularly less than 0.010% in steels containing Ti and / or B.

Nb:0.02〜0.10%、望ましくは0.02〜0.08%
Nbは炭化物あるいは窒化物を形成し、結晶粒粗大化防止効果をもたらす。特に鋼中に微細に分散したナノオーダーのNbC又はNb(C、N)が結晶粒の成長を抑制する。Nbが0.02%未満ではその効果が得られず、0.10%を超えると析出物の量が過剰となり加工性を低下する。そこで、Nbは0.02〜0.10%、望ましくは0.02〜0.08%とする。
Nb: 0.02 to 0.10%, desirably 0.02 to 0.08%
Nb forms carbides or nitrides, and has the effect of preventing grain coarsening. In particular, nano-order NbC or Nb (C, N) finely dispersed in steel suppresses the growth of crystal grains. If Nb is less than 0.02%, the effect cannot be obtained, and if it exceeds 0.10%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, Nb is 0.02 to 0.10%, preferably 0.02 to 0.08%.

Ti:0.050%未満
Tiは鋼中のfree−Nを固定し、Bが化合物BNとなるのを抑えることにより、Bを焼入性向上に寄与させることができる。その効果を得る場合には、Tiを0.050%未満で添加する必要がある。
Ti: Less than 0.050% Ti can contribute to improving hardenability by fixing free-N in steel and suppressing B from becoming compound BN. In order to obtain the effect, it is necessary to add Ti at less than 0.050%.

B:0.0010〜0.0050%
Bは極少量の含有によって鋼の焼入性を著しく向上させる元素で選択的に含有される。その効果を得る場合には、0.0010%未満では焼入性の向上効果が小さく、一方、0.0050%を超えると強度を低下する。そこで、Bは0.0010〜0.0050%とする。
B: 0.0010 to 0.0050%
B is selectively contained as an element that remarkably improves the hardenability of the steel when contained in a very small amount. When obtaining the effect, the effect of improving the hardenability is small if it is less than 0.0010%, while the strength is lowered if it exceeds 0.0050%. Therefore, B is 0.0010 to 0.0050%.

球状化焼なまし後のラメラーパーライト面積率が3%以下、望ましくは2%以下
鋼中でラメラー状に炭化物が存在するパーライトの部分は硬く、母相の鋼に比べて変形しにくいことにより、部品を冷間鍛造する過程でラメラーパーライト周辺に局所的に不均一なひずみが集中しやすい。その結果、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭温度まで加熱する際に、ラメラーパーライト周囲で特に微細にフェライトが再結晶する過程を経るので、浸炭初期のオーステナイト粒が特に微細に形成される。これにより、浸炭中の結晶粒の粗大化が起こりやすくなる。これを回避するためには、球状化焼なまし後のラメラーパーライトの面積率は3%以下とする必要があり、望ましくは2%以下とする。
The area ratio of lamellar pearlite after spheroidizing annealing is 3% or less, preferably 2% or less. In the steel, the part of pearlite where lamellar carbides are present is hard and less deformable than the parent phase steel. In the process of cold forging parts, uneven strain tends to concentrate locally around the lamellar pearlite. As a result, it undergoes a process in which ferrite is recrystallized particularly finely around lamellar pearlite when it is heated to carburizing temperature after cold forging or cold working and cutting as necessary to a predetermined shape. Therefore, austenite grains in the initial stage of carburization are formed particularly finely. Thereby, the coarsening of the crystal grains during carburization is likely to occur. In order to avoid this, the area ratio of lamellar pearlite after spheroidizing annealing needs to be 3% or less, preferably 2% or less.

球状化焼なまし条件:740〜810℃、望ましくは760〜800℃に加熱して所定時間保持した後に、720〜650℃まで8〜40℃/hr、望ましくは10〜20℃/hrの冷却速度で冷却し、その後空冷
請求項に記載の鋼成分に加えて、上記条件の球状化焼なましを行うことにより、球状化焼なまし時のラメラーパーライトの生成が抑えられ、球状炭化物主体の均質な球状化焼なまし組織が得られるようになる。その結果、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工してから浸炭処理を行った場合に、結晶粒が粗大化しにくい。その効果を得るために、740〜810℃、望ましくは760〜800℃に加熱して所定時間保持(保持時間は処理量や炉の特性によって変化するものであり、特に限定されない)した後に、720〜650℃まで8〜40℃/hr、望ましくは10〜20℃/hrの冷却速度で冷却し、その後空冷する球状化焼なましを行う必要がある。
Spheroidizing annealing conditions: after heating to 740-810 ° C, preferably 760-800 ° C and holding for a predetermined time, cooling to 720-650 ° C, 8-40 ° C / hr, preferably 10-20 ° C / hr Cooling at a speed and then air cooling In addition to the steel components described in the claims, the formation of lamellar pearlite during spheroidizing annealing is suppressed by performing spheroidizing annealing under the above conditions. A homogeneous spheroidized annealing structure can be obtained. As a result, when the carburizing process is performed after cold forging or cold working and cutting as necessary to form a predetermined shape, the crystal grains are difficult to coarsen. In order to obtain the effect, after heating to 740 to 810 ° C., preferably 760 to 800 ° C. and holding for a predetermined time (the holding time varies depending on the processing amount and the characteristics of the furnace, it is not particularly limited), then 720 It is necessary to perform spheroidizing annealing by cooling to 650 ° C. at a cooling rate of 8-40 ° C./hr, desirably 10-20 ° C./hr, and then air cooling.

上記の本発明の手段において、鋼成分の限定、球状化焼なまし後のラメラーパーライト面積率の制限、球状化焼なまし条件の限定により、球状化焼なましに続いて冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工してから浸炭処理を行った場合に、球状化焼なまし後のラメラーパーライトの面積率が3%以下、望ましくは2%以下となって、結晶粒が粗大化しにくいので、冷間工法を利用した自動車、建設機械、工作機械などのギヤ、シャフトなどの駆動系部品の製造コストを低減させることが可能になり、本発明は従来にない優れた効果を奏する。   In the above-mentioned means of the present invention, cold forging or cold cooling is performed following spheroidizing annealing by limiting the steel components, limiting the area ratio of lamellar pearlite after spheroidizing annealing, and limiting spheroidizing annealing conditions. When the carburizing process is performed after performing the intermediate processing and cutting as required, the area ratio of lamellar pearlite after spheroidizing annealing is 3% or less, preferably 2% or less Since the crystal grains are difficult to coarsen, it becomes possible to reduce the manufacturing cost of driving system parts such as gears and shafts of automobiles, construction machines, machine tools, etc. using the cold work method. There is an excellent effect that has never existed before.

球状化焼なましの熱処理条件の一例を示す図である。It is a figure which shows an example of the heat processing conditions of spheroidization annealing. 顕微鏡組織を示す図で、(a)は比較鋼1、(b)は発明鋼1を示す。It is a figure which shows a microstructure, (a) shows the comparative steel 1, (b) shows the invention steel 1. FIG.

本発明を実施するための形態について、表及び図面を参照して説明する。   Embodiments for carrying out the present invention will be described with reference to tables and drawings.

表1の比較鋼1〜7及び発明鋼1〜16並びにNbを添加した表2の比較鋼8〜10及び発明鋼17〜29を真空誘導溶解炉にて溶製し、100kgの鋼塊を得た。まず、溶製した鋼塊を1250℃で18ks加熱後に直径65mmの棒鋼に鍛伸した。次に、900℃で10.8ks保持した後、空冷による焼ならしに続いて、球状化焼なましを施した。本実施例において球状化焼なましは本発明の条件範囲内である図1に示す条件で実施した。球状化焼なまし後に供試材を鏡面研磨して、5%ナイタールで腐食した後、光学顕微鏡でミクロ組織を観察して、視野内のラメラーパーライト面積率を測定した。   Comparative steels 1 to 7 and invention steels 1 to 16 in Table 1 and comparison steels 8 to 10 and invention steels 17 to 29 in Table 2 to which Nb was added were melted in a vacuum induction melting furnace to obtain a 100 kg steel ingot. It was. First, the molten steel ingot was forged into a steel bar having a diameter of 65 mm after heating at 1250 ° C. for 18 ks. Next, after holding at 10.8 ks at 900 ° C., spheroidizing annealing was performed following normalization by air cooling. In this example, spheroidizing annealing was carried out under the conditions shown in FIG. 1, which are within the condition range of the present invention. After spheroidizing annealing, the specimen was mirror polished and corroded with 5% nital, and then the microstructure was observed with an optical microscope to measure the lamellar pearlite area ratio in the field of view.

上記の処理で得られた比較鋼1と発明鋼1の球状化焼なまし組織を図2の顕微鏡写真で例示している。上記の顕微鏡観察における比較鋼1中には視野内にラメラーパーライトが多数観察されるのに対し、発明鋼1にはラメラーパーライトはほとんど認められない。   The micrograph of FIG. 2 illustrates the spheroidized annealed structures of the comparative steel 1 and the inventive steel 1 obtained by the above treatment. While many lamellar pearlites are observed within the field of view in the comparative steel 1 in the above-described microscope observation, almost no lamellar pearlite is observed in the inventive steel 1.

次に、上記の球状化焼なましをした直径65mmの棒鋼の中周部付近から、切削加工により直径14mmで長さ21mmの円柱型試験片を作製した。試験片の長さ方向は母材の鍛伸方向と一致させた。万能試験機を用いて試験片に高さ比で70%の冷間据え込み加工を施した。なお、本発明において冷間加工率は特に70%に限定されるものではない。ところで試験片の形状や冷間据え込み方法は、上記の非特許文献2の日本塑性加工学会の冷間鍛造分科会基準に準じて行なった。   Next, a cylindrical test piece having a diameter of 14 mm and a length of 21 mm was produced by cutting from the vicinity of the middle circumference of the 65 mm diameter steel bar subjected to the spheroidizing annealing. The length direction of the specimen was matched with the forging direction of the base material. Using a universal testing machine, the test piece was cold upset 70% in height ratio. In the present invention, the cold working rate is not particularly limited to 70%. By the way, the shape of the test piece and the cold upsetting method were performed in accordance with the standards of the cold forging subcommittee of the Japan Society for Technology of Plasticity in Non-Patent Document 2.

次に、浸炭時の結晶粒粗大化温度を確認するために擬似浸炭試験を行った。この試験は浸炭処理のヒートカーブのみを模擬し、実際には浸炭せずに結晶粒度観察を行なう慣用的な方法である。まず、上記の70%冷間据え込み加工した試験片を4分割し、その1片を300℃/Hrで各温度に昇温して10.8ks保持した後に水冷する熱処理を実施した。この熱処理後に、試験片断面を鏡面研磨して飽和ピクリン酸溶液で腐食して旧オーステナイト粒界を現出させ、この試験片を光学顕微鏡で観察した。そして、光学顕微鏡観察にて結晶粒度番号で3番相当の粗粒が認められた温度を結晶粒粗大化温度とした。   Next, a pseudo carburizing test was performed in order to confirm the grain coarsening temperature during carburizing. This test is a conventional method that simulates only the heat curve of carburizing treatment and actually observes the grain size without carburizing. First, the above-mentioned 70% cold upsetting test piece was divided into four parts, and each piece was heated to 300 ° C./Hr at each temperature and held at 10.8 ks, followed by water cooling. After this heat treatment, the cross section of the test piece was mirror-polished and corroded with a saturated picric acid solution to reveal prior austenite grain boundaries, and this test piece was observed with an optical microscope. The temperature at which coarse grains corresponding to the grain size number 3 were observed by observation with an optical microscope was defined as the crystal grain coarsening temperature.

球状化焼なまし後のラメラーパーライト面積率を測定した結果及び擬似浸炭試験における結晶粒粗大化温度の測定結果を表3及び表4に示す。Nbを非添加とした比較鋼1〜7と発明鋼1〜16の比較において、発明鋼1〜16は比較鋼1〜7に比べて結晶粒粗大化温度が向上している。また、結晶粒粗大化防止効果のあるNbを添加した場合も、比較鋼8〜10と発明鋼17〜29の比較において、発明鋼17〜29は比較鋼8〜10に比べて、結晶粒粗大化温度が向上している。   Tables 3 and 4 show the measurement results of the lamellar pearlite area ratio after spheroidizing annealing and the measurement results of the crystal grain coarsening temperature in the pseudo carburization test. In comparison between Comparative Steels 1 to 7 and Inventive Steels 1 to 16 in which Nb is not added, Inventive Steels 1 to 16 have improved grain coarsening temperatures compared to Comparative Steels 1 to 7. In addition, even when Nb having an effect of preventing grain coarsening is added, in comparison between the comparative steels 8 to 10 and the inventive steels 17 to 29, the inventive steels 17 to 29 are coarser than the comparative steels 8 to 10. The conversion temperature is improved.

Claims (8)

質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼。   In mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 Hereinafter, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, comprising the remainder Fe and inevitable impurities, after spheroidizing annealing Machine structural steel with excellent crystal grain coarsening characteristics, characterized in that the area ratio of lamellar pearlite is 3% or less. 質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼。   In mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 %: Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: 0.25 to 3.0 %, Mo: 0.05 to 1.0%, or one or more of the remaining Fe and inevitable impurities, and the area ratio of lamellar pearlite after spheroidizing annealing is 3% or less A machine structural steel with excellent crystal grain coarsening characteristics. 質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼。   In mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 %: Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: 0.25 to 3.0 %, Mo: 0.05-1.0%, or one or two or more kinds, and further by mass, Ti: less than 0.050%, Nb: 0.02-0.10%, B: 0 100% to 0.0050% of one kind or two or more, comprising the balance Fe and inevitable impurities, and the area ratio of lamellar pearlite after spheroidizing annealing is 3% or less Machine structural steel with excellent grain coarsening properties. 質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2以上を含有し、残部Fe及び不可避不純物からなり、球状化焼なまし後のラメラーパーライトの面積率が3%以下であることを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼。   In mass%, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 Hereinafter, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ti: less than 0.050%, Nb: It contains one or more of 0.02 to 0.10%, B: 0.0010 to 0.0050%, consists of the balance Fe and inevitable impurities, and the area ratio of lamellar pearlite after spheroidizing annealing is A machine structural steel excellent in crystal grain coarsening characteristics, characterized by being 3% or less. 機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法。   Machine structural steel used for machine parts that are subjected to carburizing treatment after cold forging or cold working and machining as required after machined steel is spheroidized and annealed. %, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 or less , Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and using steel consisting of the remainder Fe and inevitable impurities, 740 to 810 ° C Heated and held for a predetermined time, cooled to 720 to 650 ° C. at a cooling rate of 8 to 40 ° C./Hr, and then subjected to spheroidizing annealing that is air-cooled, and was excellent in grain coarsening resistance characteristics Manufacturing method of steel for machine structural use. 機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法。   Machine structural steel used for machine parts that are subjected to carburizing treatment after cold forging or cold working and machining as required after machined steel is spheroidized and annealed. %: C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030% Hereinafter, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: 0.25 to 3.0% , Mo: containing 0.05 to 1.0% of one or more kinds, steel using balance Fe and inevitable impurities, heating to 740 to 810 ° C. and holding for a predetermined time, 720 to 650 ° C. Spheroidizing annealing, which is cooled at a cooling rate of 8 to 40 ° C./Hr, and then air-cooled. Excellent production method for steel for machine structural use in grain coarsening properties. 機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030%以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ni:0.25〜3.0%、Mo:0.05〜1.0%の1種又は2種以上を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法。   Machine structural steel used for machine parts that are subjected to carburizing treatment after cold forging or cold working and machining as required after machined steel is spheroidized and annealed. %: C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030% Hereinafter, Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further in mass%, Ni: 0.25 to 3.0% , Mo: 0.05 to 1.0%, or one or more of them, and in terms of mass%, Ti: less than 0.050%, Nb: 0.02 to 0.10%, B: 0.0. It contains one or more of 0010 to 0.0050%, and uses steel consisting of the remaining Fe and inevitable impurities, and is heated to 740 to 810 ° C. Then, after holding for a predetermined time, it is cooled to 720 to 650 ° C. at a cooling rate of 8 to 40 ° C./Hr, and then subjected to spheroidizing annealing that is air-cooled, and has a mechanical structure excellent in grain coarsening resistance Steel manufacturing method. 機械構造用鋼を球状化焼なまし後に、冷間鍛造もしくは冷間加工及び必要に応じた切削加工を行って所定の形状に加工した後に浸炭処理する機械部品に供する機械構造用鋼において、質量%で、C:0.10〜0.25%、Si:0.05〜2.0%、Mn:0.1〜1.5%、P:0.030%以下、S:0.030以下、Cr:1.8〜3.0%、Al:0.005〜0.050%、N:0.030%以下を含有し、さらに質量%で、Ti:0.050%未満、Nb:0.02〜0.10%、B:0.0010〜0.0050%の1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼を用い、740〜810℃に加熱して所定時間保持後に、720〜650℃まで8〜40℃/Hrの冷却速度で冷却し、その後空冷する球状化焼なましを施すことを特徴とする耐結晶粒粗大化特性に優れた機械構造用鋼の製造方法。   Machine structural steel used for machine parts that are subjected to carburizing treatment after cold forging or cold working and machining as required after machined steel is spheroidized and annealed. %, C: 0.10 to 0.25%, Si: 0.05 to 2.0%, Mn: 0.1 to 1.5%, P: 0.030% or less, S: 0.030 or less , Cr: 1.8 to 3.0%, Al: 0.005 to 0.050%, N: 0.030% or less, and further by mass, Ti: less than 0.050%, Nb: 0 0.02 to 0.10%, B: 0.0010 to 0.0050% of one type or two or more types, and using steel consisting of the remainder Fe and inevitable impurities, heated to 740 to 810 ° C. for a predetermined time After holding, it is cooled to 720 to 650 ° C. at a cooling rate of 8 to 40 ° C./Hr, and then air cooled. Method for producing a machine structural steel excellent in resistance to grain coarsening properties, characterized by performing annealing.
JP2009172761A 2009-03-17 2009-07-24 Machine structural steel with excellent grain coarsening resistance and method for producing the same Active JP5495648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172761A JP5495648B2 (en) 2009-03-17 2009-07-24 Machine structural steel with excellent grain coarsening resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009064930 2009-03-17
JP2009064930 2009-03-17
JP2009172761A JP5495648B2 (en) 2009-03-17 2009-07-24 Machine structural steel with excellent grain coarsening resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010242209A true JP2010242209A (en) 2010-10-28
JP5495648B2 JP5495648B2 (en) 2014-05-21

Family

ID=43095537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172761A Active JP5495648B2 (en) 2009-03-17 2009-07-24 Machine structural steel with excellent grain coarsening resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5495648B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073485A1 (en) * 2010-11-30 2012-06-07 Jfeスチール株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
JP2013028860A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP2013040376A (en) * 2011-08-15 2013-02-28 Sanyo Special Steel Co Ltd Steel for machine structure for carburized component excellent in crystal grain coarsening-proof property, workability, and toughness
JP2013227607A (en) * 2012-04-25 2013-11-07 Honda Motor Co Ltd Steel for belt-type cvt pulley and the belt-type cvt pulley
JP2014194060A (en) * 2013-03-29 2014-10-09 Sanyo Special Steel Co Ltd Method for manufacturing machine component for automobiles excellent in fatigue strength and machine component for automobiles using the same
JP2016204699A (en) * 2015-04-21 2016-12-08 ジヤトコ株式会社 Case hardened steel for cold forging pulley excellent in fatigue peeling property and manufacturing method of pulley using the same
JP2017057429A (en) * 2015-09-14 2017-03-23 山陽特殊製鋼株式会社 Case hardening steel for cold forging excellent in grain coarsening resistance
JP2020023728A (en) * 2018-08-06 2020-02-13 山陽特殊製鋼株式会社 Steel for machine structural use excellent in cold workability and crystal grain coarsening characteristic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249570A (en) * 2005-03-14 2006-09-21 Sanyo Special Steel Co Ltd Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
JP2010168628A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Production method for steel for carburizing excellent in cold forgeability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249570A (en) * 2005-03-14 2006-09-21 Sanyo Special Steel Co Ltd Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
JP2010168628A (en) * 2009-01-23 2010-08-05 Jfe Steel Corp Production method for steel for carburizing excellent in cold forgeability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073485A1 (en) * 2010-11-30 2012-06-07 Jfeスチール株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
JP2013082988A (en) * 2010-11-30 2013-05-09 Jfe Steel Corp Carburizing steel having excellent cold forgeability, and production method thereof
CN103154293A (en) * 2010-11-30 2013-06-12 杰富意钢铁株式会社 Carburizing steel having excellent cold forgeability, and production method thereof
CN103154293B (en) * 2010-11-30 2015-09-16 杰富意钢铁株式会社 The case hardening steel of forging excellence and manufacture method thereof
JP2013028860A (en) * 2011-07-29 2013-02-07 Sanyo Special Steel Co Ltd Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP2013040376A (en) * 2011-08-15 2013-02-28 Sanyo Special Steel Co Ltd Steel for machine structure for carburized component excellent in crystal grain coarsening-proof property, workability, and toughness
JP2013227607A (en) * 2012-04-25 2013-11-07 Honda Motor Co Ltd Steel for belt-type cvt pulley and the belt-type cvt pulley
JP2014194060A (en) * 2013-03-29 2014-10-09 Sanyo Special Steel Co Ltd Method for manufacturing machine component for automobiles excellent in fatigue strength and machine component for automobiles using the same
JP2016204699A (en) * 2015-04-21 2016-12-08 ジヤトコ株式会社 Case hardened steel for cold forging pulley excellent in fatigue peeling property and manufacturing method of pulley using the same
JP2017057429A (en) * 2015-09-14 2017-03-23 山陽特殊製鋼株式会社 Case hardening steel for cold forging excellent in grain coarsening resistance
JP2020023728A (en) * 2018-08-06 2020-02-13 山陽特殊製鋼株式会社 Steel for machine structural use excellent in cold workability and crystal grain coarsening characteristic
JP7149131B2 (en) 2018-08-06 2022-10-06 山陽特殊製鋼株式会社 Machine structural steel with excellent cold workability and resistance to grain coarsening

Also Published As

Publication number Publication date
JP5495648B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5495648B2 (en) Machine structural steel with excellent grain coarsening resistance and method for producing the same
JP6461360B2 (en) Spring steel wire and spring
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP2012193416A (en) Age-hardenable steel and method for manufacturing machine part
JP5965117B2 (en) Machine structural steel for carburized parts with excellent grain coarsening resistance, workability and toughness
JP5867285B2 (en) Bolt steel
JP5472063B2 (en) Free-cutting steel for cold forging
JP6192519B2 (en) Method for producing steel for machine structure capable of stably controlling generation of coarse grains, and steel for machine structure comprising the method
JP2007107046A (en) Steel material to be induction-hardened
JP4752800B2 (en) Non-tempered steel
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
JP2015134945A (en) Carburizing steel
JP5385661B2 (en) Steel with improved impact deformation resistance
JP7149131B2 (en) Machine structural steel with excellent cold workability and resistance to grain coarsening
JP6752624B2 (en) Manufacturing method of carburized steel
JP2007002292A (en) Non-heat-treated steel to be nitrocarburized
JPH11106863A (en) Steel for mechanical structure excellent in cold workability and its production
JP6645638B1 (en) Steel for bolts
JP2005120455A (en) High hardness steel excellent in cold workability
JP2017057429A (en) Case hardening steel for cold forging excellent in grain coarsening resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5495648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250