JP5385661B2 - Steel with improved impact deformation resistance - Google Patents

Steel with improved impact deformation resistance Download PDF

Info

Publication number
JP5385661B2
JP5385661B2 JP2009082875A JP2009082875A JP5385661B2 JP 5385661 B2 JP5385661 B2 JP 5385661B2 JP 2009082875 A JP2009082875 A JP 2009082875A JP 2009082875 A JP2009082875 A JP 2009082875A JP 5385661 B2 JP5385661 B2 JP 5385661B2
Authority
JP
Japan
Prior art keywords
steel
less
deformation resistance
static
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009082875A
Other languages
Japanese (ja)
Other versions
JP2010235980A (en
Inventor
智一 増田
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009082875A priority Critical patent/JP5385661B2/en
Publication of JP2010235980A publication Critical patent/JP2010235980A/en
Application granted granted Critical
Publication of JP5385661B2 publication Critical patent/JP5385661B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は歪み速度102/秒以上で鋼を変形する時の抵抗(以下、衝撃変形時の抵抗(衝撃変形抵抗)という)を改善する技術に関するものであり、より詳細には歪み速度100/秒以下で鋼を変形するときの抵抗(以下、静的変形時の抵抗(静的変形抵抗)という)と比べた時の衝撃変形抵抗を改善する技術に関するものである。 The present invention relates to a technique for improving resistance when a steel is deformed at a strain rate of 10 2 / sec or more (hereinafter referred to as resistance during impact deformation (impact deformation resistance)), and more specifically, a strain rate of 10 0. The present invention relates to a technique for improving impact deformation resistance when compared to resistance when steel is deformed at a speed of less than / sec (hereinafter referred to as resistance during static deformation (static deformation resistance)).

鋼材は機械部品、電装部品などの幅広い分野で使用されており、用途に応じて様々な強度の鋼材が使用されている。鋼材が要求強度を満足するか否かは、通常、静的変形時の変形抵抗(引張および圧縮強度)に基づいて判断される。ところで静的変形抵抗が一定でも、鋼の衝撃変形抵抗はまちまちである。衝突など想定外の応力が鋼材に作用したとき、鋼材の破壊の有無を静的変形抵抗に基づいて予測するのは難しい。そのため所定の安全率を考慮して、必要強度よりも充分に高強度化した鋼材が使用されている。   Steel materials are used in a wide range of fields such as machine parts and electrical parts, and steel materials with various strengths are used depending on the application. Whether or not the steel material satisfies the required strength is usually determined based on deformation resistance (tensile and compressive strength) during static deformation. By the way, even if the static deformation resistance is constant, the impact deformation resistance of steel varies. When an unexpected stress such as a collision is applied to a steel material, it is difficult to predict whether the steel material is broken or not based on the static deformation resistance. Therefore, in consideration of a predetermined safety factor, a steel material having a strength sufficiently higher than the required strength is used.

しかし、鋼材を高強度化するためには、例えば、高価な元素を添加したり、特殊な製法を採用する。また鋼材自体の使用量を増大して、破壊を防止することもある。そのため鋼材価格の上昇、部品の大型化、重量増加等の不具合を招いている。   However, in order to increase the strength of the steel material, for example, an expensive element is added or a special manufacturing method is adopted. Moreover, the usage-amount of steel materials itself may be increased and destruction may be prevented. For this reason, problems such as an increase in the price of steel materials, an increase in the size of parts, and an increase in weight are incurred.

ところで衝撃変形抵抗と静的変形抵抗とは無関係であるが、鋼材の冷間加工性を高める技術が知られている(特許文献1〜4など)。特許文献1では、冷間加工時に固溶C及び固溶Nによる歪み時効が生じて変形抵抗が上昇していることに対して、BやAlなどを添加して固溶C及び固溶Nを固定化すれば変形抵抗を小さくすることができ、鋼材の冷間加工性を高めることが開示されている。これら各特許文献では、Nを固定化する元素としてBを必須元素とするものではなく、またBを必須元素としつつ圧延前の鋼材の加熱温度を高くすることについても開示していない。B添加鋼の加熱温度の最高値は、例えば、910℃(特許文献1)、882℃(特許文献2)、960℃(特許文献3)、930℃(特許文献4。但し、圧延開始温度として)程度である。   By the way, although it is unrelated to impact deformation resistance and static deformation resistance, the technique which improves the cold workability of steel materials is known (patent documents 1-4 etc.). In Patent Document 1, strain aging occurs due to solid solution C and solid solution N at the time of cold working, and deformation resistance is increased. On the other hand, by adding B or Al, solid solution C and solid solution N are added. It is disclosed that if it is fixed, the deformation resistance can be reduced and the cold workability of the steel material is improved. Each of these patent documents does not include B as an essential element as an element for fixing N, and does not disclose increasing the heating temperature of the steel material before rolling while using B as an essential element. The maximum heating temperature of the B-added steel is, for example, 910 ° C. (Patent Document 1), 882 ° C. (Patent Document 2), 960 ° C. (Patent Document 3), and 930 ° C. (Patent Document 4). )

特開2000−8139号公報JP 2000-8139 A 特開2000−204433号公報JP 2000-204433 A 特開2001−303189号公報JP 2001-303189 A 特開2001−342544号公報JP 2001-342544 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、鋼材の静的変形抵抗を高くし過ぎないでも(安全率を高くし過ぎないでも)、衝撃変形時の鋼材の破壊を抑制することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is not to increase the static deformation resistance of the steel material too much (even if the safety factor is not increased too much), but at the time of impact deformation. It is to suppress the destruction of the steel material.

本発明者らは前記課題を解決する為に鋭意検討した結果、鋼中の組織を所定のフェライト−パーライト組織としつつ、鋼中の固溶NをBで固定化し、かつBNを充分に粗大化すれば、静的変形抵抗に対する衝撃変形抵抗の比率(すなわち衝撃変形抵抗/静的変形抵抗。以下、静動比と称する場合がある)を高くできること、すなわち静的変形抵抗に対する衝撃変形時の強度低下を防止することができること、そのため鋼材の静的変形抵抗を高くし過ぎないでも(安全率を高くし過ぎないでも)、衝撃変形時の鋼材の破壊を抑制できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors fixed the solid solution N in the steel with B while making the structure in the steel a predetermined ferrite-pearlite structure, and sufficiently coarsened the BN. Thus, the ratio of the impact deformation resistance to the static deformation resistance (that is, the impact deformation resistance / static deformation resistance, hereinafter sometimes referred to as the static / dynamic ratio) can be increased, that is, the strength at the time of impact deformation with respect to the static deformation resistance. The present invention has been completed by finding that it is possible to prevent the deterioration, and therefore, even if the static deformation resistance of the steel material is not increased too much (even if the safety factor is not increased too much), the destruction of the steel material during impact deformation can be suppressed. .

すなわち、本発明に係る衝撃変形抵抗が改善された鋼は、
成分組成については、
C:0.05〜0.5%(質量%の意味、化学成分について以下同じ)、Si:0.005〜0.50%、Mn:0.2〜0.80%、P:0.050%以下(0%を含まない)、S:0.005〜0.05%、Cr:0.05〜0.30%、Al:0.005〜0.06%、B:0.0005〜0.0055%、N:0.0005〜0.008%、固溶N:0.0010%以下、残部:鉄および不可避不純物であり、
組織については、フェライト分率が55〜97面積%のフェライト−パーライト組織であり、
介在物については、Bを含有する最大の窒化物系介在物の直径が100nm以上であり、直径が100nm以上であるBを含有する窒化物系介在物の個数が1μm2あたり0.010〜0.05個である点に要旨を有する。
That is, the steel with improved impact deformation resistance according to the present invention is
About component composition
C: 0.05 to 0.5% (meaning by mass, the same applies to chemical components), Si: 0.005 to 0.50%, Mn: 0.2 to 0.80%, P: 0.050 % Or less (excluding 0%), S: 0.005 to 0.05%, Cr: 0.05 to 0.30%, Al: 0.005 to 0.06%, B: 0.0005 to 0 .0055%, N: 0.0005 to 0.008%, solid solution N: 0.0010% or less, balance: iron and inevitable impurities,
The structure is a ferrite-pearlite structure having a ferrite fraction of 55 to 97 area%,
As for the inclusions, the diameter of the largest nitride-based inclusion containing B is 100 nm or more, and the number of nitride-containing inclusions containing B whose diameter is 100 nm or more is 0.010 to 0 μm 2 per 1 μm 2 . It has a gist in that it is .05.

本発明の鋼は、さらに、(a)Ti:0.005%以下(0%を含まない)、Nb:0.005%以下(0%を含まない)、及びV:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種、(b)Mo:0.2%以下(0%を含まない)、(c)Cu:0.05%以下(0%を含まない)及び/又はNi:0.05%以下(0%を含まない)を含有していても良く、含有させる成分の種類に応じて鋼の特性がさらに改善される。   The steel of the present invention further includes (a) Ti: 0.005% or less (not including 0%), Nb: 0.005% or less (not including 0%), and V: 0.005% or less ( At least one selected from the group consisting of: (b) Mo: 0.2% or less (not including 0%), (c) Cu: 0.05% or less (not including 0%) ) And / or Ni: 0.05% or less (not including 0%) may be contained, and the properties of the steel are further improved depending on the type of components to be contained.

本発明の衝撃変形抵抗が改善された鋼は、上記成分組成の鋼材を、加熱温度1150〜1250℃、加工終了温度850〜1000℃で熱間加工した後、速度0.1〜5℃/秒で400℃以下まで冷却することによって製造できる。   In the steel with improved impact deformation resistance according to the present invention, a steel material having the above component composition is hot-worked at a heating temperature of 1150 to 1250 ° C. and a finishing temperature of 850 to 1000 ° C., and then at a rate of 0.1 to 5 ° C./second. It can manufacture by cooling to 400 degrees C or less.

本発明によれば、鋼中の組織を所定のフェライト−パーライト組織としつつ、鋼中の固溶NをBで固定化し、かつBNを充分に粗大化しているため、鋼材の変形抵抗の静動比が高まり、鋼材の静的変形抵抗を高くし過ぎないでも(安全率を高くし過ぎないでも)、衝撃変形時の鋼材の破壊を抑制できる。   According to the present invention, the solute N in the steel is fixed with B and the BN is sufficiently coarsened while the structure in the steel is a predetermined ferrite-pearlite structure. Even if the ratio is increased and the static deformation resistance of the steel material is not increased too much (even if the safety factor is not increased too much), the destruction of the steel material during impact deformation can be suppressed.

本発明の鋼では、固溶Nを0.0010%以下(好ましくは0.0008%以下、より好ましくは0.0006%以下)にしている。固溶Nを低減し、且つBを含有する窒化物系介在物を粗大化することで、鋼材の変形抵抗の静動比を高めることができる。   In the steel of the present invention, the solute N is 0.0010% or less (preferably 0.0008% or less, more preferably 0.0006% or less). By reducing the solid solution N and coarsening the nitride inclusions containing B, the static ratio of deformation resistance of the steel material can be increased.

より詳細に説明すると、静的変形抵抗(引張および圧縮強度)と衝撃変形抵抗とでは、鋼中の固溶Nが与える影響が異なる。鋼が静的変形する時には、固溶Nが拡散して移動中の転位を固着することによる動的歪み時効が発生することに起因する、加工硬化現象が生じる。これに対して鋼が衝撃変形する時、すなわち固溶Nの拡散よりも転位の移動速度が速くなる場合、動的歪み時効が発生しなくなる。さらに言えば、鋼が衝撃変形する時の変形抵抗には、歪み速度依存性と温度依存性が見られる。歪み速度依存性とは、転位の熱活性化過程によって変形抵抗が増加する現象をいう。温度依存性とは、加工発熱によって生じた熱が周囲に拡散する時間がなく、疑似断熱的に変形することで生じる現象であり、歪み速度の増加に伴って変形抵抗が低下する現象をいう。以上の様に、固溶Nは、衝撃変形抵抗向上には寄与せず、静的変形抵抗だけを向上させる為、鋼材の変形抵抗の静動比を下げる作用を有している。本発明では、この固溶Nを低減することで、鋼材の変形抵抗の静動比を高めることができる。   If it demonstrates in detail, the influence which the solid solution N in steel will differ in static deformation resistance (tensile and compressive strength) and impact deformation resistance. When steel is statically deformed, a work hardening phenomenon occurs due to the occurrence of dynamic strain aging due to diffusion of solid solution N and fixing dislocations during movement. On the other hand, when the steel undergoes impact deformation, that is, when the moving speed of dislocations becomes faster than the diffusion of solute N, dynamic strain aging does not occur. Furthermore, the deformation resistance when the steel undergoes impact deformation has a strain rate dependency and a temperature dependency. Strain rate dependence refers to a phenomenon in which deformation resistance increases due to the thermal activation process of dislocations. The temperature dependency is a phenomenon that occurs when the heat generated by the processing heat is not diffused to the surroundings and is deformed in a pseudo-adiabatic manner, and is a phenomenon in which the deformation resistance is lowered as the strain rate increases. As described above, the solute N does not contribute to the improvement of the impact deformation resistance, and has the effect of lowering the static ratio of the deformation resistance of the steel material in order to improve only the static deformation resistance. In the present invention, the static ratio of the deformation resistance of the steel material can be increased by reducing the solid solution N.

さらに本発明の鋼では、固溶Nを固定するのにBを使用し、これによって形成されるB含有窒化物系介在物(窒化物、炭窒化物など。例えばBN。以下、単にBNという)を粗大化している。微細なBNが析出した場合には、鋼材の変形抵抗の静動比が小さくなるのに対して、粗大なBNが析出した場合には、鋼材の変形抵抗の静動比を大きくできる。   Furthermore, in the steel of the present invention, B is used to fix solute N, and B-containing nitride inclusions (nitrides, carbonitrides, etc., for example, BN, hereinafter simply referred to as BN) formed thereby. Is coarsening. When fine BN is precipitated, the static resistance ratio of the deformation resistance of the steel material is reduced. On the other hand, when coarse BN is precipitated, the static resistance ratio of the deformation resistance of the steel material can be increased.

粗大なBNが静動比を大きくできる理由は、以下の通りであると推察される。すなわち静的変形時と衝撃変形時とで転位の組織化状態が異なっている。静的変形時には、転位が整理されて組織化する。微細なBNは、転位が組織化する時の抵抗を高める作用を示す。これに対して、衝撃変形時には、あらゆるところから転位が一斉に発生し、ランダム化する。微細なBNがあると、ランダムに発生する転位の移動を止めることで変形初期の抵抗が大きくなるが、その後は、転位が生じなかった部位が変形する為、変形の局在化が生じる。すなわち上下の降伏点が生じる不均一変形のため、高歪みの領域における衝撃変形抵抗が高くならない。これに対して、粗大なBNは、転位を固着する作用がない。従って鋼を一様に変形させることができ、上下の降伏点が現れない。そのため微細なBNを低減し、粗大化しておくことで、鋼材の変形抵抗の静動比を高めることができる。   The reason why coarse BN can increase the static-dynamic ratio is presumed as follows. That is, the dislocation organization state differs between static deformation and impact deformation. During static deformation, dislocations are organized and organized. Fine BN exhibits an effect of increasing resistance when dislocations are organized. On the other hand, at the time of impact deformation, dislocations are generated all at once and randomized. If there is fine BN, the resistance at the initial stage of deformation is increased by stopping the movement of dislocations that are randomly generated. However, after that, the site where the dislocation has not occurred is deformed, so that the deformation is localized. That is, because of the non-uniform deformation in which the upper and lower yield points occur, the impact deformation resistance in the high strain region does not increase. On the other hand, coarse BN has no effect of fixing dislocations. Therefore, the steel can be uniformly deformed and the upper and lower yield points do not appear. Therefore, reducing the fine BN and increasing the coarseness can increase the static ratio of the deformation resistance of the steel material.

微細なBNが低減され、BNが適度に粗大化しているか否かは、最大BNの直径と、直径が100nm以上のBNの個数によって判断される。本発明では、最大BNの直径を100nm以上(好ましくは120nm以上、より好ましくは150nm以上)とする。また直径100nm以上のBNの個数を、0.05個以下(好ましくは0.045個以下、より好ましくは0.040個以下)とする。最大BNの直径と、直径100nm以上のBNの個数を制御することで、衝撃変形時の可動転位の固着を防止でき、静動比を高めることができる。またBNが粗大化している場合、直径100nm以上のBNの個数は、通常、0.010個以上、好ましくは0.015個以上、より好ましくは0.020個以上である。なお前記BNの個数は、鋼材1μm2当たりの個数である。 Whether fine BN is reduced and BN is appropriately coarse is determined by the diameter of the maximum BN and the number of BN having a diameter of 100 nm or more. In the present invention, the maximum BN diameter is 100 nm or more (preferably 120 nm or more, more preferably 150 nm or more). The number of BN having a diameter of 100 nm or more is 0.05 or less (preferably 0.045 or less, more preferably 0.040 or less). By controlling the maximum BN diameter and the number of BN having a diameter of 100 nm or more, it is possible to prevent sticking of movable dislocations at the time of impact deformation and increase the static / dynamic ratio. When BN is coarsened, the number of BN having a diameter of 100 nm or more is usually 0.010 or more, preferably 0.015 or more, more preferably 0.020 or more. The number of BN is the number per 1 μm 2 of the steel material.

本発明の鋼の組織は、フェライト中にパーライトが島状に存在するフェライト−パーライト組織である。但しパーライトの一部が、セメンタイト、ベイナイト、マルテンサイトなどで置き換わっていてもよい。フェライト単相組織では、上下の降伏点が現れやすく、高歪み領域における衝撃変形抵抗が高くならない。これに対してフェライト母相にパーライトを島状に存在させると、衝撃変形抵抗および静動比を高めることができる。そこでフェライト分率は、通常、97面積%以下(好ましくは95面積%以下、より好ましくは93面積%以下、さらに好ましくは90面積%以下)である。しかしパーライトが増えすぎても、パーライトの島同士が結合し始め、フェライトとパーライトとの界面において変形が一様にならず、衝撃変形抵抗が高くならない。そのためフェライト分率を、55面積%以上(好ましくは58面積%以上、より好ましくは60面積%以上)とすることで、衝撃変形抵抗および静動比を高めることができる。   The steel structure of the present invention is a ferrite-pearlite structure in which pearlite is present in the form of islands in ferrite. However, a part of perlite may be replaced with cementite, bainite, martensite, or the like. In the ferrite single phase structure, the upper and lower yield points tend to appear, and the impact deformation resistance in the high strain region does not increase. On the other hand, when pearlite is present in the ferrite matrix in the form of islands, the impact deformation resistance and the static / dynamic ratio can be increased. Therefore, the ferrite fraction is usually 97 area% or less (preferably 95 area% or less, more preferably 93 area% or less, and further preferably 90 area% or less). However, even if the pearlite increases too much, the pearlite islands start to bond with each other, the deformation does not become uniform at the interface between the ferrite and the pearlite, and the impact deformation resistance does not increase. Therefore, when the ferrite fraction is 55 area% or more (preferably 58 area% or more, more preferably 60 area% or more), the impact deformation resistance and the static / dynamic ratio can be increased.

以上のように本発明の鋼では、固溶N量、BNの大きさ、及び鋼組織が制御されており、静動比を高くできる。なおこの鋼の成分組成は、通常、以下の通りである。   As described above, in the steel of the present invention, the amount of solute N, the size of BN, and the steel structure are controlled, and the static-dynamic ratio can be increased. In addition, the component composition of this steel is as follows normally.

C:0.05〜0.5%
Cは、鋼に強度を付与するために必須の元素である。またCは、ある程度のパーライトを形成して、衝撃変形時に上下の降伏点が発生するのを防ぐ作用を有する。このような作用を確保するために、C量は、0.05%以上(好ましくは0.08%以上、より好ましくは0.10%以上)である。しかしC量が過剰になるとパーライト分率が高くなり、かえって変形抵抗の静動比が低下する。そこでC量は、0.5%以下(好ましくは0.45%以下、より好ましくは0.40%以下)である。
C: 0.05-0.5%
C is an essential element for imparting strength to steel. C forms a certain amount of pearlite and has an effect of preventing upper and lower yield points from occurring during impact deformation. In order to ensure such an effect, the C content is 0.05% or more (preferably 0.08% or more, more preferably 0.10% or more). However, when the amount of C becomes excessive, the pearlite fraction increases, and on the contrary, the static ratio of deformation resistance decreases. Therefore, the C content is 0.5% or less (preferably 0.45% or less, more preferably 0.40% or less).

Si:0.005〜0.50%
Siは、脱酸剤として有用な元素であり、この量が少なすぎると脱酸が不充分となって、ガス欠陥が生じて割れが発生しやすい。そこでSi量は、0.005%以上(好ましくは0.010%以上、より好ましくは0.015%以上)である。しかしSi量が過剰になると、固溶強化により変形抵抗が増大するだけでなく、変形能の低下や割れの発生を招く。そこでSi量は、0.50%以下(好ましくは0.4%以下、より好ましくは0.35%以下である。
Si: 0.005-0.50%
Si is an element useful as a deoxidizing agent. If this amount is too small, deoxidation becomes insufficient, and gas defects are generated and cracks are likely to occur. Therefore, the Si amount is 0.005% or more (preferably 0.010% or more, more preferably 0.015% or more). However, when the amount of Si is excessive, not only the deformation resistance increases due to solid solution strengthening, but also the deformation ability is reduced and cracks are generated. Therefore, the Si amount is 0.50% or less (preferably 0.4% or less, more preferably 0.35% or less).

Mn:0.2〜0.80%
Mnは、脱酸及び脱硫に有用であり、この量が少なすぎると、脱酸および脱硫が不充分となり、ガス欠陥の発生やFeSの粒界偏析によって、割れが発生しやすくなる。またMnは、冷間加工後の熱処理時における焼入れ焼戻し軟化抵抗を向上させるのに有用な元素である。このような作用を有効に発揮させるために、Mn量は、0.2%以上(好ましくは0.23%以上、より好ましくは0.25%以上)である。しかしMn量が過剰になると、熱間加工後のフェライト・パーライト成長速度が低下し、冷間加工性や割れに有害なベイナイトが発生し易くなる。そこでMn量は、0.80%以下(好ましくは0.7%以下、より好ましくは0.65%以下)である。
Mn: 0.2 to 0.80%
Mn is useful for deoxidation and desulfurization. If this amount is too small, deoxidation and desulfurization are insufficient, and cracks are likely to occur due to generation of gas defects and grain boundary segregation of FeS. Mn is an element useful for improving quenching and tempering softening resistance during heat treatment after cold working. In order to effectively exhibit such an action, the amount of Mn is 0.2% or more (preferably 0.23% or more, more preferably 0.25% or more). However, when the amount of Mn becomes excessive, the ferrite-pearlite growth rate after hot working decreases, and bainite harmful to cold workability and cracking is likely to occur. Therefore, the amount of Mn is 0.80% or less (preferably 0.7% or less, more preferably 0.65% or less).

P:0.050%以下(0%を含まない)
Pはフェライト粒界に偏析し、冷間加工性を劣化させる。またPは、フェライトを固溶強化させることによって、変形抵抗の増大や割れ発生を招く。従ってPは、冷間加工性等の観点から極力低減することが望ましいが、極端な低減は製鋼コストの増加を招く。そこでP量を0.050%以下(好ましくは0.04%以下、より好ましくは0.03%以下)とした。なおPは鋼に不可避的に含まれる元素であり、工業生産上その量を0とすることは困難である。
P: 0.050% or less (excluding 0%)
P segregates at the ferrite grain boundaries and degrades the cold workability. Further, P causes an increase in deformation resistance and occurrence of cracks by strengthening the solid solution of ferrite. Therefore, P is desirably reduced as much as possible from the viewpoint of cold workability and the like, but an extreme reduction leads to an increase in steelmaking cost. Therefore, the P content is set to 0.050% or less (preferably 0.04% or less, more preferably 0.03% or less). In addition, P is an element inevitably contained in steel, and it is difficult to reduce the amount to 0 in industrial production.

S:0.005〜0.05%
Sは、Feと結合すると、FeSとして粒界上に膜状に析出して、冷間加工性を劣化させるので、全量をMnと結合させ、MnSとして析出させる必要がある。しかしMnSの析出量が増大しすぎると、冷間加工性の劣化や割れの発生を招く。そこでS量を、0.05%以下(好ましくは0.04%以下、より好ましくは0.03%以下)とする。しかしSの極端な低減は被削性を劣化させる。そこでS量は、0.005%以上(好ましくは0.007%以上、より好ましくは0.010%以上)である。
S: 0.005-0.05%
When S is combined with Fe, it precipitates in the form of a film on the grain boundary as FeS and deteriorates the cold workability. Therefore, the entire amount must be combined with Mn and precipitated as MnS. However, when the precipitation amount of MnS increases too much, it causes deterioration of cold workability and generation of cracks. Therefore, the S amount is 0.05% or less (preferably 0.04% or less, more preferably 0.03% or less). However, extreme reduction of S degrades machinability. Therefore, the S amount is 0.005% or more (preferably 0.007% or more, more preferably 0.010% or more).

Cr:0.05〜0.30%
Crは、固溶Cを固定化することによって、静的変形時の動的歪み時効を抑制するのに有用な元素である。このような作用を有効に発揮させるためにCr量は、0.05%以上(好ましくは0.08%以上、より好ましくは0.010%以上)である。しかしCr量が過剰になっても、その作用が飽和すると共に、加工性の劣化や割れの発生を招く。そこでCr量は、0.30%以下(好ましくは0.2%以下、より好ましくは0.15%以下)である。
Cr: 0.05-0.30%
Cr is an element useful for suppressing dynamic strain aging during static deformation by fixing solute C. In order to effectively exhibit such action, the Cr content is 0.05% or more (preferably 0.08% or more, more preferably 0.010% or more). However, even if the amount of Cr is excessive, the action is saturated and workability is deteriorated and cracks are generated. Therefore, the Cr content is 0.30% or less (preferably 0.2% or less, more preferably 0.15% or less).

Al:0.005〜0.06%
Alは、溶製中の脱酸元素として有用な元素であり、この量が少なすぎると脱酸が不充分となって、ガス欠陥が生じて割れが発生しやすい。そこで脱酸作用を有効に発揮させるために、Al量は、0.005%以上(好ましくは0.007%以上、より好ましくは0.010%以上)である。しかしAl量が過剰になると、熱間加工中に固溶Nと結合するため、直径100nm以上の粗大なBNが減少する。すなわちBと結合できるN量が減少し、BNが微細化する結果、上下の降伏点が発生しやすくなり、静動比が低下する。そこでAl量は、0.06%以下(好ましくは0.055%以下、より好ましくは0.050%以下)である。
Al: 0.005-0.06%
Al is an element useful as a deoxidizing element during melting, and if this amount is too small, deoxidation becomes insufficient, and gas defects are generated and cracks are likely to occur. Therefore, in order to effectively exhibit the deoxidizing action, the Al amount is 0.005% or more (preferably 0.007% or more, more preferably 0.010% or more). However, when the amount of Al becomes excessive, it binds with solute N during hot working, so that coarse BN having a diameter of 100 nm or more is reduced. That is, the amount of N that can be combined with B is reduced, and as a result of BN becoming finer, upper and lower yield points are likely to occur, and the static-dynamic ratio is lowered. Therefore, the Al content is 0.06% or less (preferably 0.055% or less, more preferably 0.050% or less).

B:0.0005〜0.0055%
Bは、固溶Nを固定化して静的変形時の動的歪み時効を抑制すると共に、粗大なBNを形成して衝撃変形時の不均一変形を防ぐことによって、変形抵抗の静動比を高めるために重要な元素である。またBは、Pのフェライト粒界偏析による粒界強度の低下を抑制する効果も有する。これら作用を充分に発揮させるために、B量は、0.0005%以上(好ましくは0.0008%以上、より好ましくは0.0010%以上)である。しかしB量が過剰になってもその作用は飽和すると共に、割れが発生しやすくなる。またB量が過剰になると、直径100nm以上のBNの個数が増大し、静動比が低下する。そこでB量は、0.0055%以下(好ましくは0.0052%以下、より好ましくは0.0050%以下)である。
B: 0.0005 to 0.0055%
B suppresses dynamic strain aging during static deformation by fixing solute N, and forms a coarse BN to prevent non-uniform deformation during impact deformation, thereby reducing the static resistance ratio of deformation resistance. It is an important element to enhance. B also has an effect of suppressing a decrease in grain boundary strength due to P ferrite grain boundary segregation. In order to fully exhibit these actions, the B content is 0.0005% or more (preferably 0.0008% or more, more preferably 0.0010% or more). However, even if the amount of B becomes excessive, the action is saturated and cracking is likely to occur. Further, when the amount of B becomes excessive, the number of BN having a diameter of 100 nm or more increases and the static / dynamic ratio decreases. Therefore, the B content is 0.0055% or less (preferably 0.0052% or less, more preferably 0.0050% or less).

N(鋼中の全N量):0.0005〜0.008%
鋼中に固溶したNは、静的変形時には動的歪み時効を発生させるが、衝撃変形時には動的歪み時効を発生させないため、変形抵抗の静動比低下の原因となる。この固溶Nを極力低減するために、N量は、0.008%以下(好ましくは0.0075%以下、より好ましくは0.0070%以下)である。しかしN量の低減にはコストがかかるため、通常、N量は、0.0005%以上(好ましくは0.0010%以上、より好ましくは0.0015%以上)である。
N (total N amount in steel): 0.0005 to 0.008%
N dissolved in steel generates dynamic strain aging during static deformation, but does not generate dynamic strain aging during impact deformation, which causes a reduction in the static ratio of deformation resistance. In order to reduce this solid solution N as much as possible, the N amount is 0.008% or less (preferably 0.0075% or less, more preferably 0.0070% or less). However, since it takes cost to reduce the amount of N, the amount of N is usually 0.0005% or more (preferably 0.0010% or more, more preferably 0.0015% or more).

本発明の鋼の基本成分組成は上記の通りであり、残部は、通常、実質的に鉄である。但し原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼中に含まれることは、当然に許容される。さらに本発明の鋼は、必要に応じて、以下の選択成分を含有していても良い。   The basic component composition of the steel of the present invention is as described above, and the balance is usually substantially iron. However, it is naturally allowed that inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are contained in the steel. Furthermore, the steel of the present invention may contain the following selective components as necessary.

Ti:0.005%以下(0%を含まない)、Nb:0.005%以下(0%を含まない)、及びV:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種
Ti、Nb及びVは、Nと結合することで固溶Nを低減し、静的変形時の動的歪み時効を抑制するために有効な元素であり、必要に応じて鋼に含有させてもよい。この作用を充分に発揮させるためにTi、Nb及びV量は、それぞれ、好ましくは0.0015%以上、より好ましくは0.0020%以上である。しかしこれらの窒化物はBNに優先して形成される一方でBNに比べて粗大になりにくいため、過剰になると、衝撃変形時に不均一変形が生じやすく、静動比が低下する。そのためTi、Nb及びV量を、それぞれ、0.005%以下(好ましくは0.0045%以下、より好ましくは0.0040%以下)と定めた。
Selected from the group consisting of Ti: 0.005% or less (not including 0%), Nb: 0.005% or less (not including 0%), and V: 0.005% or less (not including 0%) At least one of Ti, Nb and V is an element effective for reducing solid solution N by bonding with N and suppressing dynamic strain aging at the time of static deformation. You may make it contain. In order to sufficiently exhibit this action, the Ti, Nb and V amounts are each preferably 0.0015% or more, more preferably 0.0020% or more. However, these nitrides are formed in preference to BN, but are less likely to be coarser than BN. Therefore, when they are excessive, non-uniform deformation is likely to occur during impact deformation, and the static-dynamic ratio is lowered. Therefore, the amounts of Ti, Nb, and V are set to 0.005% or less (preferably 0.0045% or less, more preferably 0.0040% or less), respectively.

Mo:0.2%以下(0%を含まない)
Moは、結晶粒を整粒化させ、衝撃変形時の不均一変形を抑制する作用を有する元素であり、必要に応じて鋼に含有させてもよい。この作用を充分に発揮させるためにMo量は、好ましくは0.02%以上、より好ましくは0.03%以上である。しかしMo量を過剰に添加してもその作用は飽和するので、Mo量を、0.2%以下(好ましくは0.18%以下、より好ましくは0.15%以下)と定めた。
Mo: 0.2% or less (excluding 0%)
Mo is an element that has the effect of regulating the size of crystal grains and suppressing non-uniform deformation during impact deformation, and may be contained in steel as necessary. In order to sufficiently exhibit this action, the Mo amount is preferably 0.02% or more, more preferably 0.03% or more. However, even if an excessive amount of Mo is added, the effect is saturated, so the Mo amount is set to 0.2% or less (preferably 0.18% or less, more preferably 0.15% or less).

Cu:0.05%以下(0%を含まない)及び/又はNi:0.05%以下(0%を含まない)
Cu及びNiはいずれも、鋼に固溶して加工硬化の向上に寄与する元素であり、必要に応じて鋼に含有させてもよい。この作用を充分に発揮させるためCu及びNi量は、それぞれ、好ましくは0.008%以上、より好ましくは0.01%以上である。しかしCu及びNiの量が過剰になると、衝撃変形時の不均一変形を助長することがある。そのためCu及びNi量を、それぞれ0.05%以下(好ましくは0.04%以下、より好ましくは0.03%以下)と定めた。
Cu: 0.05% or less (not including 0%) and / or Ni: 0.05% or less (not including 0%)
Both Cu and Ni are elements that contribute to improvement of work hardening by solid solution in steel, and may be contained in steel as necessary. In order to sufficiently exhibit this action, the amounts of Cu and Ni are each preferably 0.008% or more, more preferably 0.01% or more. However, excessive amounts of Cu and Ni may promote non-uniform deformation during impact deformation. Therefore, the amount of Cu and Ni is determined to be 0.05% or less (preferably 0.04% or less, more preferably 0.03% or less).

本発明の鋼は、以上のように所定の成分を含有するだけでなく、介在物制御及び組織制御されている。この鋼は、鋳造後の鋼片を充分に加熱してBNを全固溶させた後、比較的低温で熱間加工し、所定の冷却速度で冷却することによって製造できる。加熱時にBNを全固溶させることにより、微細なBNを消失させることができる。また熱間加工温度を低くすることで、固溶したBNを確実に析出させることができ、固溶Nの発生を防止できる。また冷却速度を調節することで、BNの成長や組織状態を制御でき、目的の大きさの介在物と目的の組織を達成できる。   As described above, the steel of the present invention not only contains predetermined components, but also includes and controls the inclusions. This steel can be manufactured by sufficiently heating the cast steel slab to completely dissolve BN, then hot working at a relatively low temperature, and cooling at a predetermined cooling rate. By completely dissolving BN during heating, fine BN can be eliminated. Further, by lowering the hot working temperature, it is possible to reliably precipitate BN that has been dissolved, and to prevent generation of solute N. In addition, by adjusting the cooling rate, the growth and organization state of BN can be controlled, and inclusions of the desired size and the desired organization can be achieved.

より詳細には鋳造後の鋼片を、必要に応じて分塊圧延した後、熱間加工(熱間圧延など)する前に加熱しており、本発明ではこの鋼片(ビレットなど)の加熱温度を1150℃以上(好ましくは1180℃以上)にする。加熱温度が低いとBNの固溶及び粗大化の進行が不適切となり、最大BNの直径又は直径100nm以上のBNの個数が所定の範囲から外れる。しかし加熱温度が高すぎても、BN固溶に対する効果は飽和すると共に、鋼片(ビレットなど)の端部が変形して、熱間加工が困難になる。そこで加熱温度は、通常、1250℃以下(好ましくは1230℃以下、より好ましくは1210℃以下)である。   More specifically, the steel slab after casting is heated after being subjected to partial rolling as necessary and before hot working (hot rolling, etc.). In the present invention, this steel slab (billet, etc.) is heated. The temperature is set to 1150 ° C. or higher (preferably 1180 ° C. or higher). If the heating temperature is low, the progress of solid solution and coarsening of BN becomes inappropriate, and the maximum BN diameter or the number of BN having a diameter of 100 nm or more is out of the predetermined range. However, even if the heating temperature is too high, the effect on BN solid solution is saturated and the end of the steel slab (such as billet) is deformed, making hot working difficult. Therefore, the heating temperature is usually 1250 ° C. or lower (preferably 1230 ° C. or lower, more preferably 1210 ° C. or lower).

熱間加工(熱間圧延、熱間鍛造など)では終了温度を管理する。熱間加工終了温度は、1000℃以下(好ましくは980℃以下)である。熱間加工の終了温度が高すぎると、固溶Nが残存してしまう。一方、加工終了温度が低すぎると、効率的に熱間加工を行うことができない。そのため加工終了温度は、通常、850℃以上(好ましくは900℃以上)である。   In hot working (hot rolling, hot forging, etc.), the end temperature is controlled. The hot working finish temperature is 1000 ° C. or lower (preferably 980 ° C. or lower). If the end temperature of hot working is too high, solid solution N remains. On the other hand, if the processing end temperature is too low, hot processing cannot be performed efficiently. Therefore, the processing end temperature is usually 850 ° C. or higher (preferably 900 ° C. or higher).

熱間加工終了後の冷却速度は、BNの成長や組織状態を制御する目的で制御される。前記冷却速度は、0.1℃/秒以上(好ましくは0.15℃/秒以上、より好ましくは0.20℃/秒以上)である。冷却速度が遅すぎると、冷却中にBNがAl窒化物に変化するため、最大BNの直径又は直径100nm以上のBNの個数が所定の範囲から外れる。一方、冷却速度が速すぎると、フェライト相以外の変態(ベイナイト変態、マルテンサイト変態)が発生して、所望のフェライト分率が得られない。また窒化物の析出が不十分となり、固溶Nが残る。そのため冷却速度は、5℃/秒以下(好ましくは4.5℃/秒以下、より好ましくは4.0℃/秒以下)である。なお前記冷却速度は、冷却開始から温度400℃まで冷却する間の速度を意味する。400℃まで適切に冷却すれば、その温度以下では、BNは、そのサイズや組成を変化させることはない。そのため400℃以下では、冷却速度に特に限定は無く、放冷、風冷、油冷、水冷など、製造工程に適した冷却方法を適宜選択すればよい。   The cooling rate after the hot working is finished is controlled for the purpose of controlling the growth of BN and the tissue state. The cooling rate is 0.1 ° C./second or more (preferably 0.15 ° C./second or more, more preferably 0.20 ° C./second or more). If the cooling rate is too slow, BN changes to Al nitride during cooling, and therefore the maximum BN diameter or the number of BN having a diameter of 100 nm or more is out of the predetermined range. On the other hand, if the cooling rate is too high, transformations other than the ferrite phase (bainite transformation, martensitic transformation) occur, and the desired ferrite fraction cannot be obtained. Further, precipitation of nitride becomes insufficient, and solid solution N remains. Therefore, the cooling rate is 5 ° C./second or less (preferably 4.5 ° C./second or less, more preferably 4.0 ° C./second or less). The cooling rate means a rate during cooling from the start of cooling to a temperature of 400 ° C. If properly cooled to 400 ° C., BN does not change its size or composition below that temperature. Therefore, at 400 ° C. or lower, the cooling rate is not particularly limited, and a cooling method suitable for the manufacturing process, such as cooling, air cooling, oil cooling, or water cooling, may be selected as appropriate.

上述の様にして鋼の介在物及び組織を適切に制御することによって、衝撃変形抵抗が改善された、即ち変形抵抗の静動比が高い本発明の鋼を製造できる。本発明の鋼において、ひずみ速度が102/秒のときの衝撃変形抵抗(MPa)とひずみ速度が100/秒のときの静的変形抵抗(MPa)との比率(衝撃変形抵抗/静的変形抵抗、すなわち静動比)は、好ましくは0.75以上、より好ましくは0.80以上、さらに好ましくは0.85以上である。 By appropriately controlling the inclusions and structure of the steel as described above, the steel of the present invention having improved impact deformation resistance, that is, a high static resistance ratio of deformation resistance can be produced. In the steel of the present invention, the ratio of the impact deformation resistance (MPa) when the strain rate is 10 2 / sec and the static deformation resistance (MPa) when the strain rate is 10 0 / sec (impact deformation resistance / static The deformation resistance (ie, static ratio) is preferably 0.75 or more, more preferably 0.80 or more, and still more preferably 0.85 or more.

さらに本発明の鋼では、スキンパスを施してもよい。本発明の鋼に少ないひずみを付与することで、鋼に可動転位を導入して、衝撃変形時における上下の降伏点の発生をさらに抑制できる。しかしひずみ量が大きすぎると、転位がセル壁を形成し、逆に上下の降伏点が発生しやすくなる。そこでスキンパスによって、好ましくは0.2以下(より好ましくは0.1以下)の真ひずみを鋼に付与することが推奨される。スキンパスとして、例えばドロー(引抜き)加工を行うことができる。   Further, the steel of the present invention may be subjected to a skin pass. By imparting a small strain to the steel of the present invention, movable dislocations can be introduced into the steel to further suppress the occurrence of upper and lower yield points during impact deformation. However, when the amount of strain is too large, dislocations form cell walls, and conversely, upper and lower yield points are likely to occur. Therefore, it is recommended to apply a true strain of 0.2 or less (more preferably 0.1 or less) to the steel by a skin pass. As the skin pass, for example, drawing (drawing) processing can be performed.

上記の様にして熱間加工して得られる鋼は、通常、線材または棒鋼であり、これを冷間加工(例えば冷間鍛造、冷間圧造、冷間転造など)することによって、良好な静動比を維持したまま、鋼部品を製造することができる。冷間加工で得られる鋼部品としては、例えばボルト、ねじ、ナット、ソケット、ボールジョイント、インナーチューブ、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コアー、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクター、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ピニオンギヤ、ステアリングシャフト、コモンレール等のほか、機械部品、電装部品などが挙げられる。   The steel obtained by hot working as described above is usually a wire rod or steel bar, and is good by cold working (for example, cold forging, cold forging, cold rolling, etc.). Steel parts can be produced while maintaining the static ratio. Steel parts obtained by cold working include, for example, bolts, screws, nuts, sockets, ball joints, inner tubes, torsion bars, clutch cases, cages, housings, hubs, covers, cases, washers, tappets, saddles, bulgs , Inner case, Clutch, Sleeve, Outer race, Sprocket, Core, Stator, Anvil, Spider, Rocker arm, Body, Flange, Drum, Fitting, Connector, Pulley, Metal fitting, York, Base, Valve lifter, Spark plug, Pinion gear, In addition to steering shafts, common rails, etc., there are mechanical parts and electrical parts.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(1)鋼の製造
供試鋼を、熱間加工として熱間圧延(製造方法1)または熱間鍛造(製造方法2)を行う2通りの方法で製造した。
(1) Manufacture of steel The test steel was manufactured by two methods of performing hot rolling (manufacturing method 1) or hot forging (manufacturing method 2) as hot working.

(a)製造方法1
下記表1及び2に示す成分組成の鋼150kgを真空誘導炉で溶解し、上面:φ245mm×下面:φ210mm×長さ480mmのインゴットに鋳造した。このインゴットを1200℃に加熱し、155mm角のビレットに熱間鍛造した。このビレットの端部を切断し、155mm角×長さ9〜10mのダミービレットに溶接した。このダミービレットを下記表3〜5に示す加熱温度および加工終了温度で、φ80mmの丸棒に熱間圧延した。この丸棒を、下記表3〜5に示す冷却速度で400℃まで冷却し、その後、室温まで冷却した。冷却後、一部の鋼については、ドロー加工で0.1の真ひずみ(減面ひずみ)を付与した。
(A) Manufacturing method 1
150 kg of steel having the composition shown in Tables 1 and 2 below was melted in a vacuum induction furnace and cast into an ingot having an upper surface: φ245 mm × lower surface: φ210 mm × length 480 mm. The ingot was heated to 1200 ° C. and hot forged into a 155 mm square billet. The billet end portion was cut and welded to a dummy billet of 155 mm square × 9 to 10 m long. This dummy billet was hot-rolled into a round bar of φ80 mm at the heating temperature and processing end temperature shown in Tables 3 to 5 below. The round bar was cooled to 400 ° C. at the cooling rates shown in Tables 3 to 5 below, and then cooled to room temperature. After cooling, some steels were given a true strain (area reduction strain) of 0.1 by drawing.

(b)製造方法2
下記表1に示す成分組成の鋼150kgを真空誘導炉で溶解し、上面:φ245mm×下面:φ210mm×長さ480mmのインゴットに鋳造した。このインゴットを1200℃に加熱し、155mm角のビレットに熱間鍛造した。このビレットを下記表6に示す加熱温度(1150〜1200℃)および加工終了温度(950℃)で、φ80mmの丸棒に熱間鍛造した。この丸棒を、表6に示す冷却速度(1.0℃/秒)で400℃まで冷却し、その後、室温まで冷却した。冷却後、一部の鋼については、ドロー加工で0.1の真ひずみ(減面ひずみ量)を付与した。
(B) Manufacturing method 2
150 kg of steel having the composition shown in Table 1 below was melted in a vacuum induction furnace and cast into an ingot having an upper surface: φ245 mm × lower surface: φ210 mm × length 480 mm. The ingot was heated to 1200 ° C. and hot forged into a 155 mm square billet. This billet was hot forged into a round bar of φ80 mm at a heating temperature (1150 to 1200 ° C.) and a processing end temperature (950 ° C.) shown in Table 6 below. The round bar was cooled to 400 ° C. at a cooling rate shown in Table 6 (1.0 ° C./second), and then cooled to room temperature. After cooling, some steels were given a true strain (amount of area reduction) of 0.1 by drawing.

(2)固溶N量の測定・算出
上記のようにして製造した供試鋼の固溶N量を、JIS G 1228に準拠し、以下のようにして求めた。
(2) Measurement and calculation of solute N amount The solute N amount of the test steel produced as described above was determined in the following manner based on JIS G 1228.

(a)全N量の測定
鋼中の全N量は、不活性ガス融解法−熱伝導度法を用いて測定した。詳しくは、供試鋼から切り出したサンプルをるつぼに入れ、不活性ガス気流中で融解してNを抽出し、熱伝導度セルに搬送して熱伝導度の変化を測定して、全N量を求めた。
(A) Measurement of total N amount The total N amount in steel was measured using an inert gas melting method-thermal conductivity method. Specifically, a sample cut from the test steel is placed in a crucible, melted in an inert gas stream, extracted N, transported to a thermal conductivity cell, and the change in thermal conductivity is measured. Asked.

(b)窒素化合物中のN量の測定(アンモニア蒸留分離インドフェノール青吸光光度法)
供試鋼から切り出したサンプル約0.5gを、10%AA系電解液に溶解し、定電流電解を行った。生成する不溶解残渣(N化合物)を穴サイズが0.1μmのポリカーボネート製のフィルタでろ過した。得られた不溶解残渣を、硫酸、硫酸カリウムおよび純銅製チップ中で加熱して分解し、分解物を濾液に合わせた。この溶液を、水酸化ナトリウムでアルカリ性にした後、水蒸気蒸留を行い、留出したアンモニアを希硫酸に吸収させた。更に、フェノール、次亜塩素酸ナトリウムおよびペンタシアノニトロシル鉄(III)酸ナトリウムを加えて青色錯体を生成させ、光度計を用いて、その吸光度を測定し、化合物中のN量を求めた。なお10%AA系電解液は、10%アセトン、10%塩化テトラメチルアンモニウム、残部メタノールからなる非水溶媒系の電解液であり、鋼表面に不働態皮膜を生成させない溶液である。
(B) Measurement of N content in nitrogen compounds (ammonia distillation separation indophenol blue spectrophotometry)
About 0.5 g of a sample cut out from the test steel was dissolved in a 10% AA-based electrolytic solution and subjected to constant current electrolysis. The resulting insoluble residue (N compound) was filtered through a polycarbonate filter having a hole size of 0.1 μm. The obtained insoluble residue was decomposed by heating in a chip made of sulfuric acid, potassium sulfate and pure copper, and the decomposition product was combined with the filtrate. After making this solution alkaline with sodium hydroxide, steam distillation was performed, and the distilled ammonia was absorbed into dilute sulfuric acid. Furthermore, phenol, sodium hypochlorite and sodium pentacyanonitrosyl iron (III) were added to form a blue complex, and the absorbance was measured using a photometer to determine the amount of N in the compound. The 10% AA electrolyte solution is a non-aqueous solvent electrolyte solution consisting of 10% acetone, 10% tetramethylammonium chloride, and the remainder methanol, and does not generate a passive film on the steel surface.

(c)固溶N量の算出
上記の方法によって求めた鋼中の全N量から化合物中のN量を差し引くことで、鋼中の固溶N量を算出した。結果を下記表3〜6に示す。
(C) Calculation of the amount of solute N The amount of solute N in the steel was calculated by subtracting the amount of N in the compound from the total amount of N in the steel determined by the above method. The results are shown in Tables 3-6 below.

(3)フェライト分率の測定
上記のようにして製造した供試鋼のフェライト分率を、以下のようにして測定した。まず熱間圧延又は熱間鍛造によって得られたサンプルを熱間圧延材または熱間鍛造材の長手方向中心で切断して、その切断面からサンプルを採取した。このサンプルを樹脂に埋込み、エメリー紙およびダイヤモンドバフを用いてサンプル表面を鏡面研磨し、次いでナイタール腐食した。光学顕微鏡(観察倍率:100倍、観察面積:5850μm2)を用いて、供試鋼の深さD/4位置(D:供試鋼の直径)の5箇所で写真撮影した。Image Pro Plusを用いて写真画像を2値化し、フェライト相を白色、その他の相を黒色とし、それぞれの分率を求め、5箇所の平均値をフェライト分率(面積%)として算出した。結果を下記表3〜6に示す。
(3) Measurement of ferrite fraction The ferrite fraction of the test steel produced as described above was measured as follows. First, a sample obtained by hot rolling or hot forging was cut at the center in the longitudinal direction of the hot rolled material or hot forged material, and a sample was taken from the cut surface. The sample was embedded in resin, the sample surface was mirror-polished using emery paper and a diamond buff, and then subjected to nital corrosion. Using an optical microscope (observation magnification: 100 times, observation area: 5850 μm 2 ), photographs were taken at five locations at the D / 4 depth (D: diameter of the test steel) of the test steel. The photographic image was binarized using Image Pro Plus, the ferrite phase was white and the other phases were black, and the respective fractions were determined, and the average value of the five locations was calculated as the ferrite fraction (area%). The results are shown in Tables 3-6 below.

(4)最大BNの直径および直径100nm以上のBNの個数の測定
上記のようにして製造した供試鋼の最大BNの直径および直径100nm以上のBNの個数を、以下のようにして測定した。まず供試鋼の深さD/4位置(D:供試鋼の直径)から抽出レプリカ試料を作製し、透過電子顕微鏡(TEM)(観察倍率:7,500〜60,000倍、観察面積:21μm2)を用いて、任意に5視野のTEM写真を撮影した。Image Pro Plusを用い、写真画像を2値化し、母相を白色、BNを黒色として、最大BNの直径および直径100nm以上のBNの個数を算出した。ここでBNの直径とは、Image Pro Plusから求められるBNの円相当直径(即ちBNの外接円の直径と内接円の直径との平均値)を意味する。これらの値の5視野での平均値を、下記表3〜6に示す。
なおN化合物中のBの存在の有無は、TEMに付属のエネルギー分散型X線分光法(EDS)による組成分析によって判定した。
(4) Measurement of the maximum BN diameter and the number of BN having a diameter of 100 nm or more The maximum BN diameter and the number of BN having a diameter of 100 nm or more of the test steel produced as described above were measured as follows. First, an extraction replica sample was prepared from the depth D / 4 position of the test steel (D: diameter of the test steel), and a transmission electron microscope (TEM) (observation magnification: 7,500 to 60,000 times, observation area: 21 μm 2 ), 5 TEM photographs were arbitrarily taken. Using Image Pro Plus, the photographic image was binarized, the parent phase was white and BN was black, and the maximum BN diameter and the number of BN having a diameter of 100 nm or more were calculated. Here, the diameter of the BN means the equivalent circle diameter of the BN (that is, the average value of the diameter of the circumscribed circle and the diameter of the inscribed circle) obtained from Image Pro Plus. The average values of these values in five fields are shown in Tables 3 to 6 below.
The presence or absence of B in the N compound was determined by composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to TEM.

(5)静動比および割れの評価
上記のようにして製造した供試鋼の静動比および割れの有無を以下のようにして評価した。
(5) Evaluation of Static Ratio and Cracks The static ratio and the presence or absence of cracks of the test steel produced as described above were evaluated as follows.

まず供試鋼の深さD/4位置(D:供試鋼の直径)からφ10mm×長さ15mmのサンプルを切り出した。加工フォーマスタを使用して、下記表3〜6に示す冷間加工温度、圧縮率80%、及びひずみ速度100/秒またはひずみ速度102/秒の条件でサンプルを冷間鍛造することで、ひずみ速度100/秒での静的変形抵抗(MPa)、及びひずみ速度102/秒での衝撃変形抵抗(MPa)を測定した。これらの値から静動比を算出した。結果を下記表3〜6に示す。 First, a sample of φ10 mm × length 15 mm was cut out from the depth D / 4 position of the test steel (D: diameter of the test steel). By using a processing for master, the samples are cold forged under the conditions shown in Tables 3 to 6 below at the cold working temperature, the compression rate of 80%, and the strain rate of 10 0 / sec or strain rate of 10 2 / sec. The static deformation resistance (MPa) at a strain rate of 10 0 / sec and the impact deformation resistance (MPa) at a strain rate of 10 2 / sec were measured. The static ratio was calculated from these values. The results are shown in Tables 3-6 below.

さらにひずみ速度102/秒で冷間鍛造した前記サンプルの表面を実体顕微鏡(観察倍率20倍)で観察して、割れの有無を確認した。結果を下記表3〜6に示す。 Furthermore, the surface of the sample cold forged at a strain rate of 10 2 / sec was observed with a stereomicroscope (observation magnification 20 times) to confirm the presence or absence of cracks. The results are shown in Tables 3-6 below.

Figure 0005385661
Figure 0005385661

Figure 0005385661
Figure 0005385661

Figure 0005385661
Figure 0005385661

Figure 0005385661
Figure 0005385661

Figure 0005385661
Figure 0005385661

Figure 0005385661
Figure 0005385661

表1〜6から以下のようなことが分かる。本発明の成分組成、固溶N量、鋼組織およびBNの要件を満たす実験No.1〜4、6〜14、16〜32、35〜40、42及び60〜69は、優れた静動比を示し、且つ割れも無く、衝撃特性が改善されている。一方、本発明の要件を満たさないものは、後述するように、静動比が小さいか、又は割れが確認された。   The following can be seen from Tables 1-6. Experiment No. 1 satisfying the requirements of the component composition, solute N amount, steel structure and BN of the present invention. 1-4, 6-14, 16-32, 35-40, 42 and 60-69 show an excellent static ratio, no cracks, and improved impact characteristics. On the other hand, those not satisfying the requirements of the present invention were confirmed to have a small static ratio or cracks, as described later.

直径100nm以上のBNの個数(以下、単に「個数」と略称する)が少ない実験No.5、固溶N量が多く、且つ最大BNの直径(以下、単に「最大直径」と略称する)が小さいNo.15、最大直径が小さい実験No.33、個数が多い実験No.34、及び固溶N量が多い実験No.41は、静動比が低く、衝撃特性が改善されていない。   Experiment No. 2 with a small number of BN having a diameter of 100 nm or more (hereinafter simply referred to as “number”). No. 5 with a large amount of solute N and a small maximum BN diameter (hereinafter simply referred to as “maximum diameter”). 15. Experiment No. with small maximum diameter 33, Experiment No. with many pieces 34 and Experiment No. with a large amount of solute N. No. 41 has a low static motion ratio, and the impact characteristics are not improved.

C量が多く、フェライト分率が少ない実験No.43(鋼No.34)は、割れが確認された。逆にC量が少なく、フェライト分率が多い実験No.44(鋼No.35)は、静動比が低く、割れも発生している。   Experiment No. with a large amount of C and a low ferrite fraction. 43 (steel No. 34) was confirmed to be cracked. On the other hand, Experiment No. 2 with a small amount of C and a high ferrite fraction No. 44 (steel No. 35) has a low static motion ratio and cracks.

本発明の鋼組織およびBNの要件を満たすが、成分組成の要件を満たさない実験No.45〜52(鋼No.36〜43)は、静動比は良好であるが、割れが確認された。   Experiment No. which satisfies the requirements of the steel structure and BN of the present invention but does not satisfy the requirements of the component composition. Although 45-52 (steel No. 36-43) has a favorable static motion ratio, the crack was confirmed.

Al量が少なく、固溶N量が多い実験No.53(鋼No.44)は、静動比が低下した。逆にAl量が多い実験No.54(鋼No.45)は、個数が少なく、静動比が低い。   Experiment No. with a small amount of Al and a large amount of dissolved N In 53 (steel No. 44), the static-dynamic ratio decreased. On the other hand, Experiment No. with a large amount of Al. 54 (steel No. 45) has a small number and a low static motion ratio.

Bを含有しない実験No.55(鋼No.46)は、粗大なBNが形成されず固溶N量が多いため、B量が少ない鋼No.56(鋼No.47)は、最大直径が小さく、且つ固溶N量が多いため、いずれも静動比が低い。逆にB量が多い実験No.57(鋼No.48)は、個数が多いため、静動比が低い。   Experiment No. containing no B 55 (steel No. 46) has a large amount of solute N because coarse BN is not formed. Since 56 (steel No. 47) has a small maximum diameter and a large amount of solute N, all of them have a low static ratio. On the contrary, the experiment No. Since 57 (steel No. 48) has many numbers, its static / dynamic ratio is low.

全N量が多くて、固溶N量が多い実験No.58(鋼No.49)は、静動比が低い。またTi量が多くて、BNが形成されていない実験No.59(鋼No.50)は、静動比が低い。   Experiment No. with a large amount of total N and a large amount of dissolved N 58 (steel No. 49) has a low static ratio. In addition, in Experiment No. 2 where Ti amount is large and BN is not formed. 59 (steel No. 50) has a low static ratio.

Claims (5)

成分組成については、
C:0.05〜0.5%(質量%の意味、化学成分について以下同じ)、
Si:0.005〜0.50%、
Mn:0.2〜0.80%、
P:0.050%以下(0%を含まない)、
S:0.005〜0.05%、
Cr:0.05〜0.30%、
Al:0.005〜0.06%、
B:0.0005〜0.0055%、
N:0.0005〜0.008%、
固溶N:0.0010%以下、
残部:鉄および不可避不純物であり、
組織については、フェライト分率が55〜97面積%のフェライト−パーライト組織であり、
介在物については、Bを含有する最大の窒化物系介在物の直径が100nm以上であり、直径が100nm以上であるBを含有する窒化物系介在物の個数が1μm2あたり0.010〜0.05個であることを特徴とする衝撃変形抵抗が改善された鋼。
About component composition
C: 0.05 to 0.5% (meaning mass%, the same applies to chemical components below),
Si: 0.005 to 0.50%,
Mn: 0.2 to 0.80%,
P: 0.050% or less (excluding 0%),
S: 0.005 to 0.05%,
Cr: 0.05-0.30%,
Al: 0.005 to 0.06%,
B: 0.0005 to 0.0055%,
N: 0.0005 to 0.008%,
Solid solution N: 0.0010% or less,
The rest: iron and inevitable impurities
The structure is a ferrite-pearlite structure having a ferrite fraction of 55 to 97 area%,
As for the inclusions, the diameter of the largest nitride-based inclusion containing B is 100 nm or more, and the number of nitride-containing inclusions containing B whose diameter is 100 nm or more is 0.010 to 0 μm 2 per 1 μm 2 . .05 Steel with improved impact deformation resistance, characterized by the number of steels.
さらにTi:0.005%以下(0%を含まない)、Nb:0.005%以下(0%を含まない)、及びV:0.005%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の鋼。   Further, Ti: 0.005% or less (excluding 0%), Nb: 0.005% or less (not including 0%), and V: 0.005% or less (not including 0%) The steel according to claim 1 containing at least one selected. さらにMo:0.2%以下(0%を含まない)を含有する請求項1又は2に記載の鋼。   The steel according to claim 1 or 2, further containing Mo: 0.2% or less (not including 0%). さらにCu:0.05%以下(0%を含まない)及び/又はNi:0.05%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の鋼。   The steel according to any one of claims 1 to 3, further containing Cu: 0.05% or less (not including 0%) and / or Ni: 0.05% or less (not including 0%). 請求項1〜4のいずれかに記載の鋼を製造する方法であって、
請求項1〜4のいずれかに記載の成分組成の鋼材を、加熱温度1150〜1250℃、加工終了温度850〜1000℃で熱間加工した後、速度0.1〜5℃/秒で400℃以下まで冷却することを特徴とする、衝撃変形抵抗が改善された鋼の製造方法。
A method for producing the steel according to any one of claims 1 to 4,
The steel material having the composition according to any one of claims 1 to 4 is hot-worked at a heating temperature of 1150 to 1250 ° C and a processing end temperature of 850 to 1000 ° C, and then 400 ° C at a rate of 0.1 to 5 ° C / second. A method for producing steel with improved impact deformation resistance, characterized by cooling to:
JP2009082875A 2009-03-30 2009-03-30 Steel with improved impact deformation resistance Expired - Fee Related JP5385661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082875A JP5385661B2 (en) 2009-03-30 2009-03-30 Steel with improved impact deformation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082875A JP5385661B2 (en) 2009-03-30 2009-03-30 Steel with improved impact deformation resistance

Publications (2)

Publication Number Publication Date
JP2010235980A JP2010235980A (en) 2010-10-21
JP5385661B2 true JP5385661B2 (en) 2014-01-08

Family

ID=43090586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082875A Expired - Fee Related JP5385661B2 (en) 2009-03-30 2009-03-30 Steel with improved impact deformation resistance

Country Status (1)

Country Link
JP (1) JP5385661B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5924044B2 (en) * 2011-03-17 2016-05-25 Jfeスチール株式会社 Steel plate for aerosol can bottom having high pressure strength and excellent workability, and method for producing the same
KR101685824B1 (en) * 2015-06-18 2016-12-12 현대제철 주식회사 Wire rod for cold forging and method for manufacturing thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4142275B2 (en) * 2001-07-26 2008-09-03 株式会社神戸製鋼所 Steel for cold forging with excellent chip disposal
JP2006291237A (en) * 2005-04-05 2006-10-26 Kobe Steel Ltd Steel superior in cold-forgeability and machinability for machine structural use

Also Published As

Publication number Publication date
JP2010235980A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5114689B2 (en) Case-hardened steel and method for producing the same
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP6226085B2 (en) Rolled steel bar or wire rod for cold forging parts
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
KR20170066632A (en) Rolled steel bar or rolled wire material for cold-forged component
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
JP2016020537A (en) Steel for machine structural use for cold working and manufacturing method therefor
JP5357439B2 (en) Linear steel or bar steel that can omit spheroidizing annealing
JP4959471B2 (en) High strength seamless steel pipe with excellent toughness for machine structure and manufacturing method thereof
JP5368830B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2007291464A (en) High-strength steel material and its production method
JP2010242209A (en) Steel for machine structural use excellent in crystal grain coarsening resistance and method for producing the same
JP6461672B2 (en) Bolt steel wire and bolt with excellent cold forgeability and delayed fracture resistance after quenching and tempering
US11447849B2 (en) Non-heat treated steel for induction hardening
WO2018061101A1 (en) Steel
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP2007231337A (en) Hot rolled steel sheet and steel component
JP5385661B2 (en) Steel with improved impact deformation resistance
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
KR102073053B1 (en) Machine Structural Steel and High Frequency Quenched Steel Components
JP5363882B2 (en) Cold-working steel, cold-working steel manufacturing method, machine structural component manufacturing method, and machine structural component
JP2007002292A (en) Non-heat-treated steel to be nitrocarburized
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131004

R150 Certificate of patent or registration of utility model

Ref document number: 5385661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees