JP2006291237A - Steel superior in cold-forgeability and machinability for machine structural use - Google Patents

Steel superior in cold-forgeability and machinability for machine structural use Download PDF

Info

Publication number
JP2006291237A
JP2006291237A JP2005108971A JP2005108971A JP2006291237A JP 2006291237 A JP2006291237 A JP 2006291237A JP 2005108971 A JP2005108971 A JP 2005108971A JP 2005108971 A JP2005108971 A JP 2005108971A JP 2006291237 A JP2006291237 A JP 2006291237A
Authority
JP
Japan
Prior art keywords
pearlite
less
steel
machinability
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005108971A
Other languages
Japanese (ja)
Inventor
Hiroshi Momozaki
寛 百▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005108971A priority Critical patent/JP2006291237A/en
Publication of JP2006291237A publication Critical patent/JP2006291237A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material which contains a comparatively large amount of carbon, is used in a machine structural field, and can show excellent cold-forgeability and machinability even when having skipped a spheroidizing step. <P>SOLUTION: The steel for a machine structural use superior in cold-forgeability and machinability satisfies a prescribed component composition; and has a metallurgical structure which is a two-phase structure consisting of ferrite and pearlite, and in which an average space between lamellars of pearlite is 220 to 500 nm, an average particle diameter of pearlite grains is 30 μm or smaller, and a difference between the ferritic grain size numbers in a region from a D/2 point (D: diameter in cross section of steel material) to a D/8 point in the cross section of the steel material and in the outmost surface is 1 or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷間鍛造性と切削性に優れた機械構造用鋼に関するものであり、殊に、冷間鍛造性と切削時における仕上げ面粗さの著しく改善された機械構造用鋼に関するものである。   TECHNICAL FIELD The present invention relates to a machine structural steel excellent in cold forgeability and machinability, and in particular, to a steel for machine structure having a markedly improved cold forgeability and finished surface roughness during cutting. is there.

機械構造用鋼部品の製造に用いられる鋼材(圧延材)は、従来、下記に製造工程(酸洗、潤滑皮膜形成除く)を示す通り球状化焼鈍工程を設けることで、後工程である冷間鍛造時の加工性(冷間鍛造性)と切削性を確保していた。しかし近年は、生産性を高めるべく長時間を要する球状化焼鈍工程の省略が試みられている。
〈従来の製造工程〉
圧延 − 伸線 − 球状化焼鈍 − 伸線 − 冷間鍛造 − 切削
〈上記球状化焼鈍を省略した工程〉
圧延 − 伸線 − 冷間鍛造 − 切削
Conventionally, the steel material (rolled material) used for the manufacture of steel parts for machine structures is cold, which is a subsequent process, by providing a spheroidizing annealing process as shown in the manufacturing process (excluding pickling and lubrication film formation) below. The processability during cold forging (cold forgeability) and machinability were ensured. However, in recent years, attempts have been made to omit the spheroidizing annealing process which requires a long time in order to increase productivity.
<Conventional manufacturing process>
Rolling-Wire drawing-Spheroidizing annealing-Wire drawing-Cold forging-Cutting <Process without the above spheroidizing annealing>
Rolling − Wire drawing − Cold forging − Cutting

しかしながら、球状化焼鈍を省略すると、圧延で得られた線材をそのまま伸線、冷間鍛造、切削に供することになる。C量の少ない従来の鋼材であれば熱間圧延ままでも冷間鍛造性と切削性に優れるが、機械構造用部品の高強度化を図るべくC量を高めると切削性が著しく低下する。具体的には、構成刃先が生じて鋼部品に「むしれ」が発生し、仕上げ面が粗くなるという問題が生じる。   However, if the spheroidizing annealing is omitted, the wire obtained by rolling is directly used for wire drawing, cold forging, and cutting. A conventional steel material with a small amount of C is excellent in cold forgeability and machinability even in hot rolling, but if the amount of C is increased in order to increase the strength of machine structural parts, the machinability is significantly reduced. Specifically, there is a problem that the cutting edge is generated and “peeling” occurs in the steel part, and the finished surface becomes rough.

上記問題の防止策として、一般に切削速度を上げることが提案されているが、設備の制約を受けるため、鋼材の切削性を改善することが求められている。   As a preventive measure for the above problem, it has been generally proposed to increase the cutting speed, but it is required to improve the machinability of the steel because it is restricted by the equipment.

切削性改善を図った技術としては、例えば特許文献1に、S量を0.03%以上確保すると共に、ミクロ組織における粒径1μmを超えるパーライト粒の占める面積率を5%以下とすることが示されている。しかしS量を高めると、機械構造用鋼に必要な冷間鍛造性を確保することが難しくなる。またパーライト粒のサイズを制御するだけでは、仕上げ面粗さを十分改善することは難しい。   As a technique for improving the machinability, for example, in Patent Document 1, an amount of S of 0.03% or more is secured, and an area ratio of pearlite grains having a particle size exceeding 1 μm in the microstructure is set to 5% or less. It is shown. However, when the amount of S is increased, it becomes difficult to ensure the cold forgeability required for the machine structural steel. Moreover, it is difficult to sufficiently improve the finished surface roughness only by controlling the size of the pearlite grains.

また特許文献2には、Pb、Bi、Teを含有させ、切削性として切り屑処理性を向上させる技術が示されている。しかし、この様に一般的な切削性改善元素を添加しても、仕上げ面粗さを改善することは難しい。
特開2004−169051号公報 特許第1586383号公報
Patent Document 2 discloses a technique for containing Pb, Bi, and Te and improving chip disposal as a cutting property. However, it is difficult to improve the finished surface roughness even when such a general machinability improving element is added.
JP 2004-169051 A Japanese Patent No. 1586383

本発明は上記事情に鑑みてなされたものであって、その目的は、比較的C量の多い機械構造用鋼であって、球状化焼鈍工程を設けなくとも優れた冷間鍛造性と切削性を発揮し得る鋼材を提供することにある。   The present invention has been made in view of the above circumstances, and its object is a steel for machine structure having a relatively large amount of C, and has excellent cold forgeability and machinability without providing a spheroidizing annealing step. It is in providing the steel material which can exhibit.

本発明に係る冷間鍛造性と切削性に優れた機械構造用鋼は、
C :0.10〜0.42%(質量%の意味、以下同じ)、
Si:0.01〜0.5%、
Mn:0.1〜1.6%、
P :0.030%以下(0%を含まない)、
S :0.030%未満(0%を含まない)、
Cr:0.01〜1.0%、
Sol.Al:0.01〜0.06%、
N :0.0005〜0.0070%、
(Cu+Ni+Mo) ≦0.2%、
(Nb+V) ≦0.1%
を満たし、残部鉄及び不可避不純物からなるものであって、
金属組織がフェライトとパーライトの二相組織であり、
パーライトの平均ラメラー間隔が220〜500nm、かつ
パーライト粒の平均粒径が30μm以下
であると共に、
鋼材断面における、
D/2(D:鋼材断面直径)からD/8までの領域のフェライト結晶粒度番号と
最表面のフェライト結晶粒度番号との差が1以下である
ところに特徴がある。
The steel for machine structure excellent in cold forgeability and machinability according to the present invention is
C: 0.10 to 0.42% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 0.5%,
Mn: 0.1 to 1.6%,
P: 0.030% or less (excluding 0%),
S: Less than 0.030% (excluding 0%),
Cr: 0.01 to 1.0%,
Sol.Al: 0.01 to 0.06%,
N: 0.0005 to 0.0070%,
(Cu + Ni + Mo) ≦ 0.2%,
(Nb + V) ≦ 0.1%
And consisting of the balance iron and inevitable impurities,
The metal structure is a two-phase structure of ferrite and pearlite,
The average lamellar interval of pearlite is 220 to 500 nm, and the average particle size of pearlite grains is 30 μm or less,
In steel cross section,
It is characterized in that the difference between the ferrite grain size number in the region from D / 2 (D: steel section diameter) to D / 8 and the outermost ferrite grain size number is 1 or less.

上記本発明の機械構造用鋼は、
更に他の元素として、
(a)B :0.0010〜0.0055%、及び/又は
Ti:0.004〜0.05%、
(b)Pb、Bi、Mg及びCaよりなる群から選択される1種以上を、
合計で0.1%以下(0%を含まない)
含んでいてもよい。
The machine structural steel of the present invention is
As other elements,
(A) B: 0.0010 to 0.0055%, and / or Ti: 0.004 to 0.05%,
(B) one or more selected from the group consisting of Pb, Bi, Mg and Ca,
0.1% or less in total (excluding 0%)
May be included.

本発明の機械構造用鋼を、冷間鍛造後に切削を施して得られる例えば自動車部品の製造に用いれば、球状化焼鈍工程を設けなくとも、冷間鍛造を良好に行うことができ、また切削後の仕上げ面が美麗な高強度鋼部品を効率的に製造することができる。   If the steel for machine structure of the present invention is used for the production of, for example, automobile parts obtained by performing cutting after cold forging, cold forging can be performed satisfactorily without providing a spheroidizing annealing process. A high-strength steel part with a beautiful finished surface can be produced efficiently.

前述した通り、強度確保のためCを比較的多く含む鋼材を対象に、球状化焼鈍を行わなくとも優れた冷間鍛造性と切削性を発揮する機械構造用鋼を得るべく、一般的に切り屑処理性等の切削性に改善効果を示すSや、Pb、Bi等の添加を試みたが、機械構造用鋼に不可欠な優れた冷間鍛造性の確保が困難であった。またPb、Bi等の快削性元素を添加した場合も仕上げ面粗さを十分に改善できないことを確認した。   As described above, in order to obtain a steel for machine structural use that exhibits excellent cold forgeability and machinability without performing spheroidizing annealing on steel materials containing a relatively large amount of C to ensure strength, it is generally cut. Although attempts were made to add S, Pb, Bi, etc., which show an improvement effect on the machinability such as scrap disposal, it was difficult to ensure the excellent cold forgeability essential for steel for machine structures. It was also confirmed that the finished surface roughness could not be improved sufficiently even when free-cutting elements such as Pb and Bi were added.

そこで本発明者は、別の手段について次の通り鋭意研究を行なった。即ち、本発明の鋼材は、後述の通りCを0.10%以上含有していることから、金属組織がパーライトとフェライトの二相組織であり、該パーライトがほぼ5〜40%存在することを前提に、該組織の形態について研究を行なった。その結果、パーライトの析出形態を、
・パーライトの平均ラメラー間隔:220〜500nm、かつ
・パーライト粒の平均粒径:30μm以下
を満たすようにすればよいことを見出した。以下、この様に規定した理由について詳述する。
Therefore, the present inventor conducted intensive research on the following means. That is, since the steel material of the present invention contains 0.10% or more of C as described later, the metal structure is a two-phase structure of pearlite and ferrite, and the pearlite is present in about 5 to 40%. Based on the premise, we studied the morphology of the tissue. As a result, the precipitation form of pearlite
It has been found that the average lamellar interval of pearlite is 220 to 500 nm, and the average particle size of pearlite particles is 30 μm or less. Hereinafter, the reason for this definition will be described in detail.

まず本発明では、パーライトの平均ラメラー間隔を220nm以上と従来の鋼材よりも広くする。パーライトのラメラー間隔を広げることによって、相対的にラメラーが短くなり、パーライトが脆くなるので、切削時にパーライトが良好に破壊して構成刃先の形成を十分に低減でき、結果として、仕上げ面粗さが非常に小さく表面の美麗な鋼部品を得ることができる。上記パーライトのラメラー間隔は240nm以上であることが好ましい。しかし、上記ラメラー間隔が広すぎても延性に悪影響を及ぼすため500nm以下とする。好ましくは450nm以下、より好ましくは400nm以下である。   First, in the present invention, the average lamellar spacing of pearlite is set to 220 nm or more, which is wider than that of conventional steel materials. By widening the pearlite lamellar spacing, the lamellar becomes relatively short and the pearlite becomes brittle, so that the pearlite can be well destroyed during cutting and the formation of the component edge can be sufficiently reduced, resulting in a finished surface roughness of Very small and beautiful steel parts can be obtained. The pearlite lamellar spacing is preferably 240 nm or more. However, if the lamellar spacing is too wide, the ductility is adversely affected. Preferably it is 450 nm or less, More preferably, it is 400 nm or less.

パーライト面積率が一定である場合、上記の通りラメラー間隔の比較的広いパーライト粒を微細に分散させる方が、切削時にパーライトが破壊され易く、構成刃先の形成を効果的に抑制できる。従って本発明では、パーライト粒のサイズを平均粒径で30μm以下とする。パーライト粒がより小さいほど切削時に切削工具に当たり難くなることから、平均粒径が20μm以下のものが好ましい。切削性向上の観点からはパーライト粒の平均粒径の下限は特に設けない。尚、パーライトの少ない鋼種では上記問題は生じないので、本発明では、平均粒径が3μm以上のパーライト粒が存在するものを対象とする。   When the pearlite area ratio is constant, finely dispersing pearlite grains having a relatively wide lamellar spacing as described above facilitates destruction of pearlite during cutting, and can effectively suppress formation of the constituent cutting edge. Accordingly, in the present invention, the size of the pearlite grains is set to 30 μm or less in terms of average particle diameter. The smaller the pearlite grains are, the more difficult it is to hit the cutting tool during cutting. From the viewpoint of improving machinability, there is no particular lower limit for the average particle size of the pearlite particles. In addition, since the said problem does not arise in the steel type with few pearlites, in this invention, what has the pearlite grain whose average particle diameter is 3 micrometers or more is objected.

上記パーライトの平均ラメラー間隔及びパーライト粒の平均粒径は、後述する実施例に示す方法で測定し、規定したものである。   The average lamellar spacing of the pearlite and the average particle size of the pearlite grains are measured and defined by the method shown in the examples described later.

本発明では、フェライト結晶粒度も併せて制御することで、上記パーライト組織の制御による効果を確実に発揮させることができる。フェライト結晶粒のサイズを均一にすることで、上記パーライト粒のサイズのバラツキを抑制でき、その結果、切削抵抗のバラツキが低減されて均一に切削できるからである。   In the present invention, the effect of controlling the pearlite structure can be reliably exhibited by controlling the ferrite crystal grain size together. This is because by making the size of the ferrite crystal grains uniform, variation in the size of the pearlite grains can be suppressed, and as a result, variation in cutting resistance can be reduced and cutting can be performed uniformly.

そこで本発明では、鋼材断面の直径をDとしたときに、鋼材断面における
・D/2からD/8までの領域のフェライト結晶粒度番号(Fgc,JIS G 0552で規定)と、
・最表面のフェライト結晶粒度番号(Fgc,JIS G 0552で規定)
との差が1以下であることを要件とした。上記差が0.5以下であることが好ましく、最も好ましくは上記D/2からD/8までの領域と最表面のFgcが同じであることである。後述の推奨される方法で製造を行なった場合、鋼板断面における上記D/2からD/8までの領域(鋼材内部)と最表面のフェライト結晶粒度番号はどちらも6〜11番の範囲となる。
Therefore, in the present invention, when the diameter of the cross section of the steel material is D, the ferrite grain size number (specified by Fgc, JIS G 0552) in the region from D / 2 to D / 8 in the cross section of the steel material,
・ The outermost ferrite grain size number (specified by Fgc, JIS G 0552)
The difference was 1 or less. The difference is preferably 0.5 or less, and most preferably, the region from D / 2 to D / 8 and the outermost surface Fgc are the same. When manufactured by the recommended method described later, both the region from D / 2 to D / 8 (inside the steel material) and the outermost ferrite crystal grain size number in the steel sheet cross section are in the range of 6-11. .

上記フェライト結晶粒度番号は、後述する実施例に示す方法で測定し、規定したものである。   The ferrite grain size number is measured and defined by the method shown in the examples described later.

尚、上記パーライト中には、製造過程において不可避的にディボースト・パーライト(炭化物が塊状になっているもの)が形成される場合があるが、該ディボースト・パーライトは、粒径の測定対象でない。   In the pearlite, there is a case where devoted pearlite (carbonized carbide is agglomerated) is inevitably formed in the manufacturing process, but the devoted pearlite is not an object of particle size measurement.

本発明は、上記の通り特に組織を制御する点に特徴があるが、該組織を容易に形成して優れた冷間鍛造性と切削性を確保するには、下記の通り成分組成を満たす必要がある。   The present invention is particularly characterized in that the structure is controlled as described above. However, in order to easily form the structure and ensure excellent cold forgeability and machinability, it is necessary to satisfy the following component composition: There is.

〈C:0.10〜0.42%〉
Cは、鋼材の強度確保に必須の元素であり、少なくとも0.10%を必要とする。好ましくは0.12%以上、より好ましくは0.13%以上である。一方、C量が過剰であると、パーライトの面積率が高くなり変形能を確保できなくなる。また、切削時に生じる構成刃先を安定化させる作用を有するため、仕上げ面粗さを改善することが難しい。よってC量は0.42%以下とする。好ましくは0.40%以下、より好ましくは0.38%以下である。
<C: 0.10 to 0.42%>
C is an element essential for securing the strength of the steel material and requires at least 0.10%. Preferably it is 0.12% or more, more preferably 0.13% or more. On the other hand, if the amount of C is excessive, the area ratio of pearlite is increased and the deformability cannot be secured. Moreover, since it has the effect | action which stabilizes the component blade edge which arises at the time of cutting, it is difficult to improve finishing surface roughness. Therefore, the C amount is 0.42% or less. Preferably it is 0.40% or less, More preferably, it is 0.38% or less.

〈Si:0.01〜0.5%〉
Siを添加して脱酸を行う場合、鋼中Si量は0.01%以上となる。しかしSi量が過剰になると、固溶強化により変形抵抗が増大し、冷間鍛造における鍛造荷重が増大するだけでなく、変形能の低下の要因にもなるため、可能な限り低い方が望ましい。よって本発明では、Si量を0.5%以下とする。好ましくは0.4%以下、より好ましくは0.3%以下である。
<Si: 0.01 to 0.5%>
When deoxidation is performed by adding Si, the Si content in the steel is 0.01% or more. However, if the amount of Si is excessive, deformation resistance increases due to solid solution strengthening, and not only the forging load in cold forging increases, but it also causes a decrease in deformability, so it is desirable that it be as low as possible. Therefore, in the present invention, the Si amount is 0.5% or less. Preferably it is 0.4% or less, More preferably, it is 0.3% or less.

〈Mn:0.1〜1.6%〉
Mnは、脱酸、脱硫のために必要であるだけでなく、冷間加工後の熱処理時の焼入れ焼戻し軟化抵抗を向上させるのにも有効な元素である。この様な効果を発揮させるには、0.1%以上含有させる。好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Mn量が過剰になると、熱間圧延後のフェライトおよびパーライトの成長速度が低下して、切削性を低下させるラメラー間隔の狭いパーライトが形成され易くなる。よって本発明ではMn量を1.6%以下とする。好ましくは1.4%以下、より好ましくは1.2%以下である。
<Mn: 0.1 to 1.6%>
Mn is not only necessary for deoxidation and desulfurization, but is also an element effective for improving the quenching and tempering softening resistance during heat treatment after cold working. In order to exert such an effect, the content is 0.1% or more. Preferably it is 0.15% or more, more preferably 0.2% or more. On the other hand, when the amount of Mn becomes excessive, the growth rate of ferrite and pearlite after hot rolling decreases, and pearlite with a narrow lamellar interval that reduces machinability is easily formed. Therefore, in the present invention, the amount of Mn is set to 1.6% or less. Preferably it is 1.4% or less, More preferably, it is 1.2% or less.

〈P:0.030%以下(0%を含まない)〉
Pは、凝固時にミクロ偏析し、熱間圧延時に粒界に偏析してバンド組織を生成し易く、パーライトブロックが粗大になる要因となる。よってP量は0.030%以下に抑える。好ましくは0.025%以下、より好ましくは0.02%以下に抑える。尚、Pの下限は、コストや生産性の観点から0.001%程度となる。
<P: 0.030% or less (excluding 0%)>
P segregates microscopically during solidification, segregates at grain boundaries during hot rolling, and easily forms a band structure, which causes the pearlite block to become coarse. Therefore, the P content is suppressed to 0.030% or less. Preferably it is 0.025% or less, more preferably 0.02% or less. The lower limit of P is about 0.001% from the viewpoint of cost and productivity.

〈S:0.030%未満(0%を含まない)〉
Sは、MnSといった硫化物系介在物を形成し、熱間圧延時に粒界に偏析して粒界を脆化させ、冷間加工時に割れが生じやすくなる。よって本発明ではSを極力低減するのがよく、0.030%未満に抑える。好ましくは0.025%以下、より好ましくは0.020%以下に抑える。尚、Sの下限は、コストや生産性の観点から0.001%程度となる。
<S: Less than 0.030% (excluding 0%)>
S forms sulfide inclusions such as MnS, segregates at the grain boundaries during hot rolling, embrittles the grain boundaries, and easily cracks during cold working. Therefore, in the present invention, S is preferably reduced as much as possible, and is suppressed to less than 0.030%. Preferably it is 0.025% or less, more preferably 0.020% or less. The lower limit of S is about 0.001% from the viewpoint of cost and productivity.

〈Cr:0.01〜1.0%〉
Crは、熱間圧延時のフェライト+パーライト変態を促進させ、強度を必要以上に高めることなく炭化物を析出させるのに有効な元素である。この様な効果を発揮させるにはCr量を0.01%以上とするのがよい。好ましくは0.03%以上である。しかしCr量が過剰になると、必要以上に引張強度が上昇する他、焼入性が高くなり切削性を低下させるラメラー間隔の狭いパーライトが生じ易くなる。そこで本発明ではCr量を1.0%以下とした。好ましくは0.9%以下である。
<Cr: 0.01 to 1.0%>
Cr is an element effective in promoting ferrite + pearlite transformation during hot rolling and precipitating carbides without increasing the strength more than necessary. In order to exhibit such effects, the Cr content is preferably 0.01% or more. Preferably it is 0.03% or more. However, when the amount of Cr is excessive, the tensile strength is increased more than necessary, and pearlite with a narrow lamellar spacing that tends to increase the hardenability and lower the machinability is liable to occur. Therefore, in the present invention, the Cr content is set to 1.0% or less. Preferably it is 0.9% or less.

〈sol.Al:0.01〜0.06%〉
sol.Alは、脱酸の効果があるだけでなく、Nと結合して窒化物(AlN:アルミナイトライド)を生成させ、冷間鍛造後の焼入れ時のオーステナイト結晶粒粗大化を防止するのに有効である。この様な効果を発揮させるべく本発明ではsol.Al量を0.01%以上とする。好ましくは0.02%以上である。しかしsol.Alが過剰でも前記効果は飽和するので0.06%以下に抑える。好ましくは0.05%以下である。
<Sol.Al: 0.01-0.06%>
sol.Al not only has a deoxidizing effect, but also combines with N to form a nitride (AlN: aluminum nitride) and prevent austenite grain coarsening during quenching after cold forging. It is effective for. In order to exhibit such an effect, in the present invention, the amount of sol.Al is set to 0.01% or more. Preferably it is 0.02% or more. However, even if the sol. Preferably it is 0.05% or less.

〈N:0.0005〜0.0070%〉
Nは、上記の通り、AlとAlNを形成して、冷間鍛造後の焼入れ時のオーステナイト結晶粒粗大化を防止するのに有用な元素である。また、後述する通りBを添加した場合にBNを形成し、冷間加工時の動的ひずみ時効を抑制するのに有用な元素でもある。よって本発明ではN量を0.0005%以上、好ましくは0.0020%以上とする。しかしN量が過剰になると、固溶Nが増加して固溶強化が促進され、必要以上に強度が高まり冷間鍛造性の低下を招く。よってN量を0.0070%以下に抑える。好ましくは0.0060%以下、より好ましくは0.0050%以下である。
<N: 0.0005 to 0.0070%>
As described above, N is an element useful for forming Al and AlN and preventing austenite grain coarsening during quenching after cold forging. Further, as described later, when B is added, BN is formed, and it is also an element useful for suppressing dynamic strain aging during cold working. Therefore, in the present invention, the N content is set to 0.0005% or more, preferably 0.0020% or more. However, when the amount of N becomes excessive, the solid solution N increases and the solid solution strengthening is promoted, the strength is increased more than necessary, and the cold forgeability is lowered. Therefore, the N content is suppressed to 0.0070% or less. Preferably it is 0.0060% or less, More preferably, it is 0.0050% or less.

〈(Cu+Ni+Mo)≦0.2%〉
〈(Nb+V)≦0.1%〉
これらの元素(Cu、Ni、Mo、Nb、V)は、本発明の鋼材に不可避不純物として含まれるものである。本発明では、該元素を抑制して鋼材の強度が必要以上に高まるのを抑え、優れた冷間鍛造性を確保する。また、これらの元素により鋼材の焼入性が高くなり、切削性を低下させるラメラー間隔の狭いパーライトが生じやすくなるのを抑制する必要もある。よって、Cu、Ni及びMoを合計で0.2%以下に抑える。好ましくは0.1%以下、より好ましくは0.05%以下である。またNbとVも合計で0.1%以下に抑える。好ましくは0.05%以下、より好ましくは0.02%以下である。
<(Cu + Ni + Mo) ≦ 0.2%>
<(Nb + V) ≦ 0.1%>
These elements (Cu, Ni, Mo, Nb, V) are included as inevitable impurities in the steel material of the present invention. In this invention, this element is suppressed and it suppresses that the intensity | strength of steel materials increases more than necessary, and the outstanding cold forgeability is ensured. In addition, it is necessary to suppress the pearlite having a narrow lamellar interval that easily increases the hardenability of the steel material due to these elements and lowers the machinability. Therefore, Cu, Ni, and Mo are suppressed to 0.2% or less in total. Preferably it is 0.1% or less, More preferably, it is 0.05% or less. Nb and V are also kept to 0.1% or less in total. Preferably it is 0.05% or less, More preferably, it is 0.02% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は実質的にFeであるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物の混入が許容されるのは勿論のこと、前記本発明の作用に悪影響を与えない範囲で、下記の如く、更に他の元素を積極的に含有させることも可能である。   The contained elements specified in the present invention are as described above, and the remaining component is substantially Fe, but it is allowed to mix inevitable impurities brought into the steel depending on the conditions of raw materials, materials, manufacturing equipment, etc. Needless to say, it is also possible to positively contain other elements as described below as long as the effects of the present invention are not adversely affected.

〈B:0.0010〜0.0055%〉
Bは、Nと結合してBNを形成することによって、冷間加工時の動的ひずみ時効を抑制すると共に、固溶Nによる固溶強化を抑制するのにも有効な元素である。また、AlNが必要以上に析出してフェライト結晶粒が著しく微細化することにより、強度が上昇するのを抑制する作用も有する。更には後述するTiと複合添加した場合に、NをTiNとして固定し、Bを固溶状態のまま焼入性元素として有効に作用させ、部品の最終工程における焼入れ焼戻しで強度を調整するのに有用な元素でもある。
<B: 0.0010 to 0.0055%>
B binds to N to form BN, thereby suppressing dynamic strain aging during cold working and also effective for suppressing solid solution strengthening due to solid solution N. Moreover, it has the effect | action which suppresses that an intensity | strength raises when AlN precipitates more than needed and a ferrite crystal grain refines | miniaturizes remarkably. Furthermore, when combined with Ti, which will be described later, N is fixed as TiN, B is effectively acted as a hardenable element in a solid solution state, and the strength is adjusted by quenching and tempering in the final process of the part. It is also a useful element.

これらの効果を発揮させるには、B量を0.0010%以上とするのが好ましく、より好ましくは0.0015%以上である。尚、N含有量に応じてB量を増加させるのがよく、本発明で規定するN量上限が0.0070%であることから、B量の上限を0.0055%とする。   In order to exert these effects, the B content is preferably 0.0010% or more, more preferably 0.0015% or more. In addition, it is good to increase B amount according to N content, and since the N amount upper limit prescribed | regulated by this invention is 0.0070%, let the upper limit of B amount be 0.0055%.

〈Ti:0.004〜0.05%〉
Tiは、TiNを形成することによってBNと同様の効果を発揮する元素である。また上記の通り、Bと同時に添加すれば、Bの焼入性向上効果を存分に発揮させることができる。これらの効果を発揮させるには、Ti量を0.004%以上とするのがよい。より好ましくは0.010%以上である。しかしTi量が多過ぎると、過剰のTiがTiCを形成して析出強化作用が増大するので0.05%以下に抑えるのがよい。より好ましくは0.04%以下である。
<Ti: 0.004 to 0.05%>
Ti is an element that exhibits the same effect as BN by forming TiN. Moreover, if it adds simultaneously with B as above-mentioned, the hardenability improvement effect of B can fully be exhibited. In order to exert these effects, the Ti content is preferably 0.004% or more. More preferably, it is 0.010% or more. However, if the amount of Ti is too large, excess Ti forms TiC and the precipitation strengthening action increases, so it is better to keep it to 0.05% or less. More preferably, it is 0.04% or less.

〈Pb、Bi、Mg及びCaよりなる群から選択される1種以上:
合計で0.1%以下〉
Pb、Bi、Mg、Caは、鋼材の被削性を改善するのに有効な元素であり、必要によって単独でまたは2種以上を含有させてもよい。しかしながら、これらの元素の含有量が過剰になると、鋼材の延性や靭性が低下し、冷間鍛造性も阻害されるので、合計で0.1%以下に抑えるのがよい。
<One or more selected from the group consisting of Pb, Bi, Mg and Ca:
<0.1% in total>
Pb, Bi, Mg, and Ca are effective elements for improving the machinability of the steel material, and may be contained alone or in combination of two or more if necessary. However, when the content of these elements is excessive, the ductility and toughness of the steel material are reduced and the cold forgeability is also hindered, so it is preferable to keep the total to 0.1% or less.

本発明は、製造条件まで規定するものではないが、上記成分組成の鋼材を用いて、上記組織を効率良く得るには下記条件で製造することが推奨される。   Although this invention does not prescribe | regulate to manufacturing conditions, in order to obtain the said structure | tissue efficiently using the steel material of the said component composition, manufacturing on the following conditions is recommended.

まず、上記の通りフェライトの結晶粒を均一化させるには、熱間圧延において、圧延開始から調整冷却開始までの温度(鋼材表面温度)を800〜1100℃の範囲内とすると共に、これらの工程において鋼材表面の温度差を250℃以内と極力一定とすることが推奨される。好ましくは上記温度差を100℃以内とする。   First, in order to make the ferrite crystal grains uniform as described above, in hot rolling, the temperature from the start of rolling to the start of adjustment cooling (steel surface temperature) is within the range of 800 to 1100 ° C., and these steps are performed. In this case, it is recommended that the temperature difference on the steel surface is kept as constant as possible within 250 ° C. Preferably, the temperature difference is within 100 ° C.

また、規定の通りパーライトのラメラー間隔が比較的太く、かつ粒径のより小さいパーライトを得るには、調整冷却を行うことが推奨される。具体的に調整冷却は、冷却速度:0.1〜0.5℃/sの徐冷を875〜750℃の温度域(調整冷却開始温度)から開始する。   In addition, regulated cooling is recommended to obtain pearlite having a relatively wide lamellar spacing and a smaller particle size as specified. Specifically, the controlled cooling starts slow cooling at a cooling rate of 0.1 to 0.5 ° C./s from a temperature range of 875 to 750 ° C. (adjusted cooling start temperature).

調整冷却開始温度は、中間圧延の後に水を媒体とする冷却設備を設置してコントロールする。875℃より高い温度域から上記徐冷を行うと、再結晶後の組織が粗大となるためパーライト粒を小さくすることができない。安定操業上、好ましくは850℃以下、より好ましくは825℃以下の温度域から徐冷を行うのがよい。一方、750℃を下回る低温度域から調整冷却を行うと、仕上圧延温度も低くなるため結晶粒が微細となり、伏熱によって鋼材内部と最表面で結晶粒の差が生じてしまい、切削時における仕上げ表面粗さが粗くなりやすい。安定操業上、好ましくは775℃以上、より好ましくは800℃以上の温度域から調整冷却を行うのがよい。該調整冷却は、徐冷設備(例えば特開平10−156417号公報に記載の設備)を用いて行うことができる。尚、上記調整冷却(徐冷)は、600℃くらいまで行なえばよい。   The adjusted cooling start temperature is controlled by installing a cooling facility using water as a medium after intermediate rolling. When the above-described slow cooling is performed from a temperature range higher than 875 ° C., the structure after recrystallization becomes coarse, so that the pearlite grains cannot be reduced. In view of stable operation, it is preferable to perform slow cooling preferably from a temperature range of 850 ° C. or lower, more preferably 825 ° C. or lower. On the other hand, when controlled cooling is performed from a low temperature range below 750 ° C., the finish rolling temperature also decreases, so the crystal grains become fine, and the difference in crystal grains occurs between the steel material inside and the outermost surface due to the latent heat, and at the time of cutting Finished surface roughness tends to be rough. In terms of stable operation, the controlled cooling is preferably performed from a temperature range of preferably 775 ° C. or higher, more preferably 800 ° C. or higher. The controlled cooling can be performed using a slow cooling facility (for example, the facility described in JP-A-10-156417). The adjustment cooling (slow cooling) may be performed up to about 600 ° C.

本発明の鋼材を得るための溶製、熱間圧延工程におけるその他の製造条件については、一般的な条件を採用すればよい。   For other manufacturing conditions in the melting and hot rolling processes for obtaining the steel material of the present invention, general conditions may be adopted.

本発明は、鋼材の形状等について限定するものでなく、線材、棒鋼等として得ることができる。また、鋼材の用途について限定するものでもなく、例えば機械構造用鋼部品として、ボルト、ねじ、ナット、ソケット、ボールジョイント、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コアー、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクター、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ブラケットナット、ブラケットボルト、ユニバーサルジョイント等の自動車部品の他、機械部品、電装部品等の製造に適用することができる。   The present invention is not limited to the shape or the like of the steel material, and can be obtained as a wire, a steel bar, or the like. Moreover, it does not limit about the use of steel materials, for example, as steel parts for machine structures, bolts, screws, nuts, sockets, ball joints, torsion bars, clutch cases, cages, housings, hubs, covers, cases, washers, Tappet, saddle, balg, inner case, clutch, sleeve, outer race, sprocket, core, stator, anvil, spider, rocker arm, body, flange, drum, fitting, connector, pulley, bracket, yoke, base, valve lifter, In addition to automobile parts such as spark plugs, bracket nuts, bracket bolts, and universal joints, the present invention can be applied to the manufacture of machine parts, electrical parts, and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に記載の成分組成からなる供試鋼No.A〜Lを用いて、表2の条件で熱間圧延を行い、その後調整冷却を行って直径15.5mmの線材(圧延材)を得た。尚、熱間圧延後の調整冷却は、特開平10−156417号公報に記載の徐冷設備を用いて、約10分間の徐冷を行い、その後空冷した。尚、後述する従来例以外は、球状化焼鈍を行なっていない。   Test steel No. 1 composed of the components shown in Table 1 Using A to L, hot rolling was performed under the conditions shown in Table 2, and then adjustment cooling was performed to obtain a wire (rolled material) having a diameter of 15.5 mm. In addition, the adjustment cooling after hot rolling performed the slow cooling for about 10 minutes using the slow cooling apparatus described in Unexamined-Japanese-Patent No. 10-156417, and it cooled by air after that. In addition, spheroidizing annealing is not performed except the conventional example mentioned later.

得られた圧延材の金属組織を以下の要領で観察した。まずパーライト粒の平均粒径は、圧延材断面におけるD/4(D:鋼材断面直径)部位の顕微鏡写真を400倍の倍率で撮り、これを標準粒度図と比較するASTM規格の比較法をパーライトに適用し、パーライトの結晶粒度番号(G)を求め、下記式(1)[「ふぇらむ」vol.2(1997) No.10 p.29〜34]からパーライト粒の結晶粒径(dn)を求めた。合計3試料について同様の測定を行い、その平均をパーライト粒の平均粒径とした。
n=0.254/2(G-1)/2 …(1)
[式(1)中、dnは結晶粒径を示し、Gは結晶粒度番号を示す]
The metal structure of the obtained rolled material was observed as follows. First, the average particle size of pearlite grains is a comparison method according to ASTM standard, which is a microphotograph of D / 4 (D: steel section diameter) part of the rolled material cross section at a magnification of 400 times and compared with the standard particle size diagram. was applied to obtain the grain size number (G) of pearlite, the following formula (1) [ "Ferrum" vol.2 (1997) No.10 p.29~34] from perlite particle grain size (d n ) The same measurement was performed on a total of three samples, and the average was taken as the average particle size of the pearlite particles.
d n = 0.254 / 2 (G-1) / 2 (1)
Wherein (1), d n represents the grain size, G denotes a grain size number]

また、パーライトの平均ラメラー間隔は次の様にして求めた。即ち、圧延材断面におけるD/4(D:鋼材断面直径)の部位を観察できるよう試料を採取し、ピクラル腐食した後、電子顕微鏡にて倍率6000倍で観察・撮影し、図1に示す様に、パーライト粒におけるある一定長さ内に存在するラメラーの本数を測定してラメラー間隔を求めた。そして、この測定を3視野における合計6点で行い、ラメラー間隔の小さい値から並べた累積度数(横軸)と上記ラメラー間隔(縦軸)との関係を整理したグラフから、切片(最小のラメラー間隔)を求め、下記式(2)から平均ラメラー間隔を求めた。
平均ラメラー間隔=切片×1.65 …(2)
Moreover, the average lamellar interval of pearlite was calculated | required as follows. That is, a sample was taken so that a portion of D / 4 (D: steel cross section diameter) in the cross section of the rolled material could be observed, and after corroding with Picral, it was observed and photographed with an electron microscope at a magnification of 6000 times, as shown in FIG. In addition, the number of lamellar particles existing within a certain length in the pearlite grains was measured to obtain the lamellar spacing. Then, this measurement is performed with a total of 6 points in 3 fields of view, and an intercept (minimum lamellar) is obtained from a graph in which the relationship between the cumulative frequency (horizontal axis) and the lamellar interval (vertical axis) arranged from a small value of the lamellar interval is arranged. The interval was determined, and the average lamellar interval was determined from the following formula (2).
Average lamellar interval = intercept × 1.65 (2)

また圧延材断面において、
・D/2(D:鋼材断面直径)からD/8までの領域のフェライト結晶粒度番号と、
・最表面のフェライト結晶粒度番号を、
それぞれJISG0552に規定の方法で求めた。そして合計3試料について同様の測定を行いその平均値を求めた。
In the rolled material cross section,
The ferrite grain size number in the region from D / 2 (D: steel material cross-sectional diameter) to D / 8,
・ The outermost ferrite grain size number
Each was determined by the method prescribed in JIS G0552. And the same measurement was performed about a total of 3 samples, and the average value was calculated | required.

また、上記圧延に引き続き酸洗を施してスケールを除去した後、潤滑皮膜を形成し、冷間鍛造試験用として直径14.8mmまで伸線したもの(伸線歪:0.1)、及び切削試験用として直径9.3mmまで伸線したもの(伸線歪:1.0)を得て、下記の冷間鍛造試験及び切削試験を行った。   In addition, after the above rolling, pickling was performed to remove the scale, a lubricating film was formed, and the wire was drawn to a diameter of 14.8 mm for cold forging tests (drawing strain: 0.1), and cutting For testing, a wire drawn to a diameter of 9.3 mm (drawing strain: 1.0) was obtained, and the following cold forging test and cutting test were performed.

尚、従来例として、球状化焼鈍を含む工程で試料(従来材)を作製した。この場合、熱間圧延後に図2に示すヒートパタンで球状化焼鈍を行ってから、酸洗・潤滑皮膜の形成を行い、それから伸線を行った。そして上記と同様の冷間鍛造試験用試料と切削試験用試料をそれぞれ作製し、下記の冷間鍛造試験と切削試験を行った。その結果、冷間鍛造試験での割れの発生は「なし」であり、また切削試験において、むしれは発生せず、Rmaxは9.0μmであった。   As a conventional example, a sample (conventional material) was produced in a process including spheroidizing annealing. In this case, after hot rolling, spheroidizing annealing was performed with the heat pattern shown in FIG. 2, and then pickling / lubricating film was formed, and then wire drawing was performed. And the sample for cold forging test and the sample for cutting test similar to the above were produced, respectively, and the following cold forging test and cutting test were performed. As a result, the occurrence of cracks in the cold forging test was “none”, and in the cutting test, no peeling occurred, and Rmax was 9.0 μm.

〈冷間鍛造試験〉
上記直径14.8mmで高さ(H0)が直径×1.5倍の円柱状試料を作製して、図3に示す通り、圧縮率[(1−H/H0)×100(%)]が80%の圧縮(即ち、H=0.2×H0となるまで圧縮)を行い、割れの有無を確認した。
<Cold forging test>
A cylindrical sample having a diameter of 14.8 mm and a height (H 0 ) of diameter × 1.5 times was prepared, and as shown in FIG. 3, the compression ratio [(1-H / H 0 ) × 100 (%) ] Was compressed 80% (ie, compressed until H = 0.2 × H 0 ), and the presence or absence of cracks was confirmed.

〈切削試験〉
下記条件で切削を行い、外観写真から表面状態(むしれの有無)を確認すると共に、表面粗さ(Rmax)を測定した。
[切削条件]
・切削様式:フォーミング(油性湿式切削)
・使用工具:超硬P10
・切削速度:80m/min
・切り込み量:1.0mm
・送り速度:0.03mm/rev
<Cutting test>
Cutting was performed under the following conditions, the surface state (presence / absence of peeling) was confirmed from the appearance photograph, and the surface roughness (Rmax) was measured.
[Cutting conditions]
・ Cutting style: Forming (oil-based wet cutting)
・ Tool used: Carbide P10
・ Cutting speed: 80 m / min
・ Incision amount: 1.0mm
・ Feeding speed: 0.03mm / rev

これらの結果を表2に併記する。   These results are also shown in Table 2.

Figure 2006291237
Figure 2006291237

Figure 2006291237
Figure 2006291237

表1、2より次の様に考察できる(尚、下記No.は、表2中の実験No.を示す)。即ち、No.1〜6、9〜12、14〜16は、本発明で規定する要件を満たしているため、冷間鍛造性に優れると共に、切削性として仕上げ面粗さも従来材より十分に改善されたものが得られた。   From Tables 1 and 2, it can be considered as follows (note that the following No. indicates the experiment No. in Table 2). That is, no. Since 1-6, 9-12, 14-16 satisfy the requirements specified in the present invention, they are excellent in cold forgeability, and the finished surface roughness is sufficiently improved as compared with conventional materials as machinability. Obtained.

これに対しNo.7は、成分組成が規定を満たす鋼材を使用しているが、製造工程において、熱間圧延時の圧延温度開始から調整冷却開始までの温度差が大きく、かつ冷却速度も速いため、最表層と内部でフェライト結晶粒径の差が生じ、かつパーライト粒が微細でかつラメラー間隔の狭いものが得られ、その結果、切削試験において仕上げ面粗さが粗くなった。またNo.8,13では、冷却速度が速いため、パーライト粒が微細でかつラメラー間隔の狭いものが得られ、その結果、切削試験において仕上げ面粗さが粗くなった。   In contrast, no. No. 7 uses a steel material whose component composition satisfies the regulation, but in the manufacturing process, since the temperature difference from the start of the rolling temperature during hot rolling to the start of controlled cooling is large, and the cooling rate is also fast, A difference in the ferrite crystal grain size occurred inside, and the pearlite grains were fine and the lamellar spacing was narrow. As a result, the finished surface roughness became rough in the cutting test. No. In Nos. 8 and 13, since the cooling rate was high, fine pearlite grains and narrow lamellar spacing were obtained. As a result, the finished surface roughness was rough in the cutting test.

参考までに、本実施例で得られた試験片の電子顕微鏡観察写真を示す。図4は、本発明例であるNo.6の電子顕微鏡観察写真(倍率:6000倍)であり、図5は、比較例であるNo.8の電子顕微鏡観察写真(倍率:6000倍)であるが、この図4と図5を比較すると、本発明例の金属組織におけるパーライトは、比較例よりもラメラー間隔が広くかつラメラーが短いことがわかる。   For reference, an electron microscope observation photograph of the test piece obtained in this example is shown. FIG. 6 is an electron microscopic observation photograph (magnification: 6000 times), and FIG. 8 is an electron microscopic observation photograph (magnification: 6000 times). When FIG. 4 and FIG. 5 are compared, the pearlite in the metal structure of the example of the present invention has a wider lamellar spacing and shorter lamellar than the comparative example. Recognize.

パーライトの平均ラメラー間隔の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of the average lamellar space | interval of a pearlite. 従来行われていた球状化焼鈍の熱処理工程を示す概略図である。It is the schematic which shows the heat treatment process of spheroidization annealing performed conventionally. 実施例における冷間鍛造試験の様子を示した模式図である。It is the schematic diagram which showed the mode of the cold forging test in an Example. 本発明例であるNo.6の電子顕微鏡観察写真である。No. which is an example of the present invention. 6 is an electron microscopic observation photograph of No. 6; 比較例であるNo.8の電子顕微鏡観察写真である。No. which is a comparative example. 8 is an electron microscope observation photograph of No. 8;

Claims (3)

C :0.10〜0.42%(質量%の意味、以下同じ)、
Si:0.01〜0.5%、
Mn:0.1〜1.6%、
P :0.030%以下(0%を含まない)、
S :0.030%未満(0%を含まない)、
Cr:0.01〜1.0%、
Sol.Al:0.01〜0.06%、
N :0.0005〜0.0070%、
(Cu+Ni+Mo) ≦0.2%、
(Nb+V) ≦0.1%
を満たし、残部鉄及び不可避不純物からなるものであって、
金属組織がフェライトとパーライトの二相組織であり、
パーライトの平均ラメラー間隔が220〜500nm、かつ
パーライト粒の平均粒径が30μm以下
であると共に、
鋼材断面におけるD/2(D:鋼材断面直径)からD/8までの領域のフェライト結晶粒度番号と最表面のフェライト結晶粒度番号との差が1以下であることを特徴とする冷間鍛造性と切削性に優れた機械構造用鋼。
C: 0.10 to 0.42% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 0.5%,
Mn: 0.1 to 1.6%,
P: 0.030% or less (excluding 0%),
S: Less than 0.030% (excluding 0%),
Cr: 0.01 to 1.0%,
Sol.Al: 0.01 to 0.06%,
N: 0.0005 to 0.0070%,
(Cu + Ni + Mo) ≦ 0.2%,
(Nb + V) ≦ 0.1%
And consisting of the balance iron and inevitable impurities,
The metal structure is a two-phase structure of ferrite and pearlite,
The average lamellar interval of pearlite is 220 to 500 nm, and the average particle size of pearlite grains is 30 μm or less,
Cold forgeability characterized in that the difference between the ferrite grain size number in the region from D / 2 (D: steel section diameter) to D / 8 in the steel section and the ferrite grain size number on the outermost surface is 1 or less And machine structural steel with excellent machinability.
更に他の元素として、
B :0.0010〜0.0055%、及び/又は
Ti:0.004〜0.05%
を含む請求項1に記載の機械構造用鋼。
As other elements,
B: 0.0010 to 0.0055% and / or Ti: 0.004 to 0.05%
The steel for machine structure of Claim 1 containing.
更に他の元素として、
Pb、Bi、Mg及びCaよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)含む請求項1または2に記載の機械構造用鋼。
As other elements,
The steel for machine structural use according to claim 1 or 2 containing one or more selected from the group consisting of Pb, Bi, Mg and Ca in total of 0.1% or less (excluding 0%).
JP2005108971A 2005-04-05 2005-04-05 Steel superior in cold-forgeability and machinability for machine structural use Pending JP2006291237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108971A JP2006291237A (en) 2005-04-05 2005-04-05 Steel superior in cold-forgeability and machinability for machine structural use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108971A JP2006291237A (en) 2005-04-05 2005-04-05 Steel superior in cold-forgeability and machinability for machine structural use

Publications (1)

Publication Number Publication Date
JP2006291237A true JP2006291237A (en) 2006-10-26

Family

ID=37412127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108971A Pending JP2006291237A (en) 2005-04-05 2005-04-05 Steel superior in cold-forgeability and machinability for machine structural use

Country Status (1)

Country Link
JP (1) JP2006291237A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242886A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Soft magnetic steel and method of manufacturing the same
JP2009242916A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Wire steel or bar steel in which spheroidizing is omissible
JP2010235980A (en) * 2009-03-30 2010-10-21 Kobe Steel Ltd Steel in which shocking deformation resistance is improved
US9845519B2 (en) 2012-03-26 2017-12-19 Kobe Steel, Ltd. Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
US20180251876A1 (en) * 2015-08-25 2018-09-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Mechanical structure steel for cold-working and manufacturing method therefor
JP2019500489A (en) * 2015-11-12 2019-01-10 ポスコPosco Wire material excellent in cold forgeability and manufacturing method thereof
KR20190059139A (en) * 2017-11-22 2019-05-30 현대제철 주식회사 Steel and method of manufacturing the same
JP6673535B1 (en) * 2019-03-28 2020-03-25 日本製鉄株式会社 Steel subjected to induction hardening
CN111876674A (en) * 2020-07-07 2020-11-03 东北大学 Preparation method of high-strength medium-carbon low-alloy steel plate
CN114322864A (en) * 2021-12-09 2022-04-12 武汉钢铁有限公司 Three-dimensional measurement method for interlayer spacing of pearlite sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310118A (en) * 1994-05-16 1995-11-28 Daido Steel Co Ltd Production of case hardening steel suitable for cold-working
JP2000336456A (en) * 1999-05-26 2000-12-05 Nippon Steel Corp Hot rolled wire rod-bar steel for machine structure and production thereof
JP2001303189A (en) * 2000-02-18 2001-10-31 Kobe Steel Ltd Wire-shaped or bar-shaped steel whose rise in deformation resistance in heat generating region by working as well as at room temperature is suppressed, and machine parts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310118A (en) * 1994-05-16 1995-11-28 Daido Steel Co Ltd Production of case hardening steel suitable for cold-working
JP2000336456A (en) * 1999-05-26 2000-12-05 Nippon Steel Corp Hot rolled wire rod-bar steel for machine structure and production thereof
JP2001303189A (en) * 2000-02-18 2001-10-31 Kobe Steel Ltd Wire-shaped or bar-shaped steel whose rise in deformation resistance in heat generating region by working as well as at room temperature is suppressed, and machine parts

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242916A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Wire steel or bar steel in which spheroidizing is omissible
JP2009242886A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Soft magnetic steel and method of manufacturing the same
JP2010235980A (en) * 2009-03-30 2010-10-21 Kobe Steel Ltd Steel in which shocking deformation resistance is improved
US9845519B2 (en) 2012-03-26 2017-12-19 Kobe Steel, Ltd. Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
US20180251876A1 (en) * 2015-08-25 2018-09-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Mechanical structure steel for cold-working and manufacturing method therefor
US10988821B2 (en) 2015-11-12 2021-04-27 Posco Wire rod having excellent cold forgeability and manufacturing method therefor
JP2019500489A (en) * 2015-11-12 2019-01-10 ポスコPosco Wire material excellent in cold forgeability and manufacturing method thereof
KR20190059139A (en) * 2017-11-22 2019-05-30 현대제철 주식회사 Steel and method of manufacturing the same
KR102012100B1 (en) * 2017-11-22 2019-08-19 현대제철 주식회사 Steel and method of manufacturing the same
JP6673535B1 (en) * 2019-03-28 2020-03-25 日本製鉄株式会社 Steel subjected to induction hardening
WO2020194653A1 (en) * 2019-03-28 2020-10-01 日本製鉄株式会社 Steel to be subjected to induction hardening
CN111876674A (en) * 2020-07-07 2020-11-03 东北大学 Preparation method of high-strength medium-carbon low-alloy steel plate
CN114322864A (en) * 2021-12-09 2022-04-12 武汉钢铁有限公司 Three-dimensional measurement method for interlayer spacing of pearlite sheet
CN114322864B (en) * 2021-12-09 2024-03-15 武汉钢铁有限公司 Three-dimensional measuring method for lamellar spacing of pearlite

Similar Documents

Publication Publication Date Title
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
JP4842407B2 (en) Steel wire for low-temperature annealing and manufacturing method thereof
JP2006291237A (en) Steel superior in cold-forgeability and machinability for machine structural use
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2010159476A (en) Steel wire rod having excellent cold forgeability after low temperature annealing and method for producing the same, and method for producing steel wire rod having excellent cold forgeability
JP5576785B2 (en) Steel material excellent in cold forgeability and manufacturing method thereof
WO2015146174A1 (en) High-carbon hot-rolled steel sheet and method for producing same
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP4299744B2 (en) Hot rolled wire rod for cold forging and method for producing the same
JP2009155687A (en) Steel for cold working, method for producing the same, and cold-worked steel component
JP2004183064A (en) Steel for case hardening having excellent cold workability and coarse grain prevention property when carburized, and production method therefor
JP2001342544A (en) Wire or rod steel suppressed arising of deformation resistance at room temperature and in area of working heat generation
JP4752800B2 (en) Non-tempered steel
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP2001032044A (en) Steel for high strength bolt and production of high strength bolt
JPH11256268A (en) Steel sheet excellent in local ductility and heat threatability
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
WO2020158368A1 (en) Steel for cold working machine structures, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Effective date: 20100112

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802