JP2019011510A - Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment - Google Patents

Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment Download PDF

Info

Publication number
JP2019011510A
JP2019011510A JP2018154250A JP2018154250A JP2019011510A JP 2019011510 A JP2019011510 A JP 2019011510A JP 2018154250 A JP2018154250 A JP 2018154250A JP 2018154250 A JP2018154250 A JP 2018154250A JP 2019011510 A JP2019011510 A JP 2019011510A
Authority
JP
Japan
Prior art keywords
less
steel
ferrite
carburizing
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2018154250A
Other languages
Japanese (ja)
Inventor
土田 武広
Takehiro Tsuchida
武広 土田
梶原 桂
Katsura Kajiwara
桂 梶原
Original Assignee
株式会社神戸製鋼所
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, Kobe Steel Ltd filed Critical 株式会社神戸製鋼所
Priority to JP2018154250A priority Critical patent/JP2019011510A/en
Publication of JP2019011510A publication Critical patent/JP2019011510A/en
Ceased legal-status Critical Current

Links

Images

Abstract

To provide a steel sheet for carburization that combines cold workability with toughness after subjected to carburization heat treatment, and furthermore can materialize reduction in cost of a steel material for use in manufacturing of machine structural components.SOLUTION: There is provided the steel sheet for carburization that has a sheet thickness of 2 to 10 mm and a component composition containing, by mass%, each of C:0.05 to 0.30%, Mn:0.3 to 3.0%, Al:0.015 to 0.1%, N:0.003 to 0.030% and the balance iron with inevitable impurities, and has a steel structure composed of ferrite and carbide. In the ferrite, the number of ferrite crystal particles having an aspect ratio defined as major axis/minor axis of 3 or less is 60% or more of the number of all ferrite crystal particle, and an average crystal particle diameter of the all crystal particle is in the range of 3 to 50 μm. In the carbide, the number of the carbide having an aspect ratio defined as major axis/minor axis of 2 or less is 80% or more of the number of all carbide and average circle-equivalent diameter of all of the carbide is 0.6 μm or less.SELECTED DRAWING: None

Description

本発明は、熱処理前の加工中は良好な冷間加工性を示しつつ、浸炭熱処理後は良好な靱性を示す浸炭用鋼板に関し、詳しくは、自動車、電車、産業用機械などにおいて、鋼板からプレス成形工程を経て、さらに耐摩耗性や耐疲労特性を改善するため、浸炭焼入れまたは浸炭窒化焼入れ処理による表面硬質化処理の行なわれる機械構造部品、特にギア、クラッチプレート、ダンパー、ブレーキプレート、リクライニングシート、ドアロック部品などを製造するための素材として有用な浸炭用鋼板に関するものである。   The present invention relates to a carburized steel sheet that exhibits good cold workability during processing before heat treatment and exhibits good toughness after carburizing heat treatment, and more particularly, presses from steel sheets in automobiles, trains, industrial machinery, etc. Machine structural parts that are hardened by carburizing or carbonitriding to improve wear resistance and fatigue resistance after the molding process, especially gears, clutch plates, dampers, brake plates, reclining sheets The present invention relates to a carburized steel plate useful as a material for manufacturing door lock parts and the like.

近年、自動車の燃費向上に対するニーズや産業機械における高強度化(強度・靱性・耐久性向上)とコストダウンのニーズがますます強くなり、機械構造部品はより耐久性が高く、安価に製造できてことが求められている。このような機械構造部品に対する高強度化のニーズに対して、一般に用いられる鋼材およびその製造方法としては、棒鋼を熱間鍛造した鋼材(熱間鍛造材)が用いられ、切削と浸炭焼入れが採用されてきた(例えば、特許文献1参照)。また、浸炭焼入れ後の強度・靱性を確保するために、鋼材成分として高価なMoを添加したJIS−SCM420鋼などが一般的に採用されている。これに対し、部品製造工程におけるCO2の排出量削減のため、これまで熱間鍛造によって加工されていた歯車などの部品の冷間鍛造化に関する要求も高まっている。さらにコストダウンの方法として、棒鋼を素材として切削加工するのではなく、鋼板を素材として打抜き、曲げ加工、絞り加工などのプレス成形も検討されている。また、鋼材価格自体もできるだけ低下させる要望がある。   In recent years, the needs for improving the fuel efficiency of automobiles and the need for higher strength (strength, toughness, durability) and cost reduction in industrial machinery have become stronger, and machine structural parts are more durable and can be manufactured at low cost. It is demanded. In response to the need for higher strength for such mechanical structural parts, steel materials that are generally used and their manufacturing methods are steel materials that are hot-forged steel bars (hot forging materials), and cutting and carburizing and quenching are used. (For example, refer to Patent Document 1). Moreover, in order to ensure the strength and toughness after carburizing and quenching, JIS-SCM420 steel to which expensive Mo is added as a steel component is generally employed. On the other hand, in order to reduce CO2 emission in the component manufacturing process, there is an increasing demand for cold forging of components such as gears that have been processed by hot forging. Further, as a cost reduction method, press forming such as punching, bending, drawing, etc., using a steel plate as a raw material, instead of cutting with a steel bar as a raw material, is also being studied. In addition, there is a demand to reduce the steel price itself as much as possible.

一方、プレス成形性の評価としては穴広げ性が用いられる場合があるが、鋼板の穴広げ性を向上させる方法としては、球状化焼鈍によって炭化物を球状化し、そのサイズを適当な範囲に制御することで穴広げ性を改善する技術が多く知られている(例えば、特許文献2参照)。特許文献2では、鋼板の打抜き性を向上させる方法として、球状炭化物の球状化率と平均粒径を規定することで打抜き性を改善できること、さらには、浸炭時に結晶粒が粗大化するのを防止するためにTiやBを添加してもよいことが開示されている。しかしながら、同文献に示された球状炭化物の規定範囲では、打抜き性の向上は十分でなく、特にC量が0.3質量%以下のときに部品の内部の強度を確保することが難しく、本発明が対象とするような高強度の部品には適用できない。   On the other hand, hole expansibility may be used as an evaluation of press formability, but as a method of improving the hole expansibility of a steel sheet, carbide is spheroidized by spheroidizing annealing and the size is controlled within an appropriate range. There are many known techniques for improving hole expansibility (see, for example, Patent Document 2). In Patent Document 2, as a method for improving the punchability of a steel sheet, the punchability can be improved by defining the spheroidization rate and average particle size of the spherical carbide, and further, the crystal grains are prevented from coarsening during carburizing. For this purpose, it is disclosed that Ti or B may be added. However, in the specified range of the spherical carbide shown in the same document, the punchability is not sufficiently improved, and it is difficult to secure the internal strength of the component, particularly when the C content is 0.3% by mass or less. It cannot be applied to high-strength parts as the subject of the invention.

また、特許文献3では、フェライト平均粒径を1〜10μm、フェライト粒径の標準偏差を3.0μm以下、介在物の形状比を2.0以下とすることによって鋼板の伸びフランジ性を改善することが開示されている。しかしながら、同文献の実施例にも本発明が対象とするC量0.3%以下の鋼板は見当たらず、浸炭用としての使用を意図したものではなく、また、P量が多いため、仮に浸炭したとしても十分な靱性が得られない。   Moreover, in patent document 3, the stretch flangeability of a steel plate is improved by making a ferrite average particle diameter 1-10 micrometers, the standard deviation of a ferrite particle diameter 3.0 micrometers or less, and the shape ratio of an inclusion 2.0 or less. It is disclosed. However, no steel sheet having a C content of 0.3% or less, which is an object of the present invention, is found in the examples of this document, and is not intended for carburizing use. Also, since the P content is large, carburizing temporarily. However, sufficient toughness cannot be obtained.

上記のように、良好な穴広げ性、高強度、さらに低コストの3つを高いレベルで兼ね備えた浸炭用鋼板についてはこれまでほとんど検討がなされていなかった。   As described above, a carburizing steel sheet that combines high hole expandability, high strength, and low cost at a high level has hardly been studied so far.

特許第3094856号公報Japanese Patent No. 3094856 特許第4465057号公報Japanese Patent No. 4465057 特許第4276504号公報Japanese Patent No. 4276504

そこで、本発明は、冷間加工性と浸炭熱処理後の靱性を兼備しつつ、機械構造部品の製造に使用される鋼材の低コスト化を実現しうる浸炭用鋼板を提供することを目的とする。   Then, this invention aims at providing the steel plate for carburization which can implement | achieve the cost reduction of the steel materials used for manufacture of a machine structural component, combining cold workability and the toughness after carburizing heat processing. .

本発明の第1発明に係る浸炭用鋼板は、
板厚が2〜10mmであり、
成分組成が、
質量%で、
C :0.05〜0.30%、
Mn:0.3〜3.0%、
Al:0.015〜0.1%、
N :0.003〜0.030%をそれぞれ含み、
残部は鉄および不可避的不純物からなり、
鋼組織が、
フェライトと炭化物からなり、
前記フェライトについて、長軸/短軸で定義されるアスペクト比が3以下のフェライト結晶粒の個数が全フェライト結晶粒の個数の60%以上であるとともに、前記全結晶粒の平均結晶粒径が3〜50μmの範囲であり、かつ、
前記炭化物について、前記長軸/短軸で定義されるアスペクト比が2以下の炭化物の個数が全炭化物の個数の80%以上であるとともに、前記全炭化物の平均円相当直径が0.6μm以下である
ことを特徴とするものである。
The steel plate for carburizing according to the first invention of the present invention,
The plate thickness is 2 to 10 mm,
Ingredient composition
% By mass
C: 0.05 to 0.30%
Mn: 0.3-3.0%
Al: 0.015-0.1%
N: each containing 0.003 to 0.030%
The balance consists of iron and inevitable impurities,
Steel structure
Made of ferrite and carbide,
Regarding the ferrite, the number of ferrite crystal grains having an aspect ratio defined by the major axis / minor axis of 3 or less is 60% or more of the total number of ferrite crystal grains, and the average crystal grain size of all the crystal grains is 3 In the range of ~ 50 μm, and
For the carbide, the number of carbides having an aspect ratio defined by the major axis / minor axis of 2 or less is 80% or more of the number of all carbides, and the average equivalent circle diameter of all the carbides is 0.6 μm or less. It is characterized by being.

本発明の第2発明に係る浸炭用鋼板は、
上記第1発明において、
成分組成が、質量%で、さらに、
Cr:0%超3.0%以下、
Mo:0%超1.0%以下、
Ni:0%超3.0%以下よりなる群から選択される少なくとも1種
を含むものである。
The steel plate for carburizing according to the second invention of the present invention,
In the first invention,
Ingredient composition is mass%, and
Cr: more than 0% and 3.0% or less,
Mo: more than 0% and 1.0% or less,
Ni: At least one selected from the group consisting of more than 0% and not more than 3.0% is included.

本発明の第3発明に係る浸炭用鋼板は、
上記第1または第2発明において、
前記不可避的不純物のうち、Si:0.5%以下、P:0.030%以下、S:0.035%以下であるものである。
The carburized steel sheet according to the third aspect of the present invention is
In the first or second invention,
Among the inevitable impurities, Si is 0.5% or less, P is 0.030% or less, and S is 0.035% or less.

本発明の第4発明に係る浸炭用鋼板は、
上記第1〜第3発明のいずれか1つの発明において、
成分組成が、質量%で、さらに、
Cu:0%超2.0%以下、
Co:0%超5%以下よりなる群から選ばれる少なくとも1種
を含むものである。
The carburized steel sheet according to the fourth aspect of the present invention is
In any one of the first to third inventions,
Ingredient composition is mass%, and
Cu: more than 0% and 2.0% or less,
Co: Contains at least one selected from the group consisting of more than 0% and 5% or less.

本発明の第5発明に係る浸炭用鋼板は、
上記第1〜第4発明のいずれか1つの発明において、
成分組成が、質量%で、さらに、
V:0%超0.5%以下、
Ti:0%超0.1%以下、
Nb:0%超0.1%以下よりなる群から選ばれる少なくとも1種
を含むものである。
The carburized steel sheet according to the fifth aspect of the present invention is
In any one of the first to fourth inventions,
Ingredient composition is mass%, and
V: more than 0% and 0.5% or less,
Ti: more than 0% and 0.1% or less,
Nb: Contains at least one selected from the group consisting of more than 0% and 0.1% or less.

本発明の第6発明に係る浸炭用鋼板は、
上記第1〜第5発明のいずれか1つの発明において、
成分組成が、質量%で、さらに、
Ca:0%超0.08%以下、
Zr:0%超0.08%以下よりなる群から選ばれる少なくとも1種
を含むものである。
The carburized steel sheet according to the sixth aspect of the present invention is
In any one of the first to fifth inventions,
Ingredient composition is mass%, and
Ca: more than 0% and 0.08% or less,
Zr: It contains at least one selected from the group consisting of more than 0% and 0.08% or less.

本発明の第7発明に係る浸炭用鋼板は、
上記第1〜第6発明のいずれか1つの発明において、
成分組成が、質量%で、さらに、
Sb:0%超0.02%以下
を含むものである。
The carburized steel sheet according to the seventh aspect of the present invention is
In any one of the first to sixth inventions,
Ingredient composition is mass%, and
Sb: more than 0% and 0.02% or less.

本発明の第8発明に係る浸炭用鋼板は、
上記第1〜第7発明のいずれか1つの発明において、
成分組成が、質量%で、さらに、
REM:0%超0.05%以下、
Mg:0%超0.02%以下、
Li:0%超0.02%以下、
Pb:0%超0.5%以下、
Bi:0%超0.5%以下よりなる群から選ばれる少なくとも1種
を含むものである。
The carburized steel sheet according to the eighth aspect of the present invention is
In any one of the first to seventh inventions,
Ingredient composition is mass%, and
REM: more than 0% and 0.05% or less,
Mg: more than 0% and 0.02% or less,
Li: more than 0% and 0.02% or less,
Pb: more than 0% and 0.5% or less,
Bi: At least one selected from the group consisting of more than 0% and 0.5% or less is included.

本発明によれば、フェライト中に炭化物が分散した鋼組織において、フェライト結晶粒を等軸化かつ微細化するとともに、炭化物を球状化かつ微細化することで、冷間加工性を確保しつつ、浸炭熱処理後に所定の靱性が得られる浸炭用鋼板を提供できるようになった。また、これにより、機械構造部品の製造に使用される鋼材の低コスト化が実現できるようになった。   According to the present invention, in the steel structure in which carbides are dispersed in ferrite, the ferrite crystal grains are equiaxed and refined, and the carbides are spheroidized and refined to ensure cold workability, It has become possible to provide a carburized steel sheet that can obtain a predetermined toughness after carburizing heat treatment. In addition, this has made it possible to reduce the cost of steel materials used in the manufacture of machine structural parts.

実施例で用いたシャルピー衝撃試験片の外観形状および寸法を示す、(a)は側面図、(b)は正面図である。The external appearance shape and dimension of the Charpy impact test piece used in the Example are shown, (a) is a side view, and (b) is a front view.

以下、本発明に係る浸炭用鋼板(以下、「本発明鋼板」、あるいは、単に「鋼板」ともいう。)について、さらに詳細に説明する。本発明鋼板は、上記特許文献1に記載された熱間鍛造材(高強度高靭性肌焼き用鋼)と成分組成が重複するが、鋼組織をフェライト中に炭化物が分散した組織としたうえで、フェライト結晶粒を等軸化かつ微細化すとともに、炭化物を球状化かつ微細化する点で異なっている。   Hereinafter, the steel plate for carburizing according to the present invention (hereinafter also referred to as “the steel plate of the present invention” or simply “the steel plate”) will be described in more detail. The steel sheet of the present invention overlaps with the hot forging material (high-strength, high-toughness case-hardening steel) described in Patent Document 1 above, but the steel structure is a structure in which carbides are dispersed in ferrite. The difference is that the ferrite crystal grains are equiaxed and refined, and the carbides are spheroidized and refined.

〔本発明鋼板の板厚:2〜10mm〕
まず、本発明鋼板は、板厚が2〜10mmのものを対象とする。板厚が2mm未満では、構造体としての剛性が確保できなくなる。一方、板厚が10mmを超えると、本発明で規定する組織形態を達成することが難しく、所望の効果が得られなくなる。好ましい板厚は3〜9mm、さらに好ましい板厚は4〜7mmである。
[Thickness of the steel plate of the present invention: 2 to 10 mm]
First, the steel sheet of the present invention has a thickness of 2 to 10 mm. If the plate thickness is less than 2 mm, rigidity as a structure cannot be secured. On the other hand, if the plate thickness exceeds 10 mm, it is difficult to achieve the tissue form defined in the present invention, and the desired effect cannot be obtained. A preferable plate thickness is 3 to 9 mm, and a more preferable plate thickness is 4 to 7 mm.

次に、本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。   Next, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%.

〔本発明鋼板の成分組成〕
<C :0.05〜0.30%>
Cは、最終的に得られる浸炭(もしくは浸炭窒化)焼入れ部品としての芯部強度を確保するうえで欠くことのできない元素であり、0.05%未満では十分な強度が得られなくなる。しかし、過剰に含有させると靭性が劣化するほか、被削性や冷間鍛造性が低下して加工性を損なうので0.30%を上限とする。Cの好ましい含有量は0.08〜0.25%の範囲である。
[Component composition of the steel sheet of the present invention]
<C: 0.05 to 0.30%>
C is an element indispensable for securing the core strength of the carburized (or carbonitrided) quenching part finally obtained. If it is less than 0.05%, sufficient strength cannot be obtained. However, if it is contained excessively, the toughness is deteriorated, and the machinability and cold forgeability are deteriorated and the workability is impaired, so 0.30% is made the upper limit. The preferable content of C is in the range of 0.08 to 0.25%.

<Mn:0.3〜3.0%>
Mnは、溶鋼の脱酸に有効な元素であり、その効果を有効に発揮させるには0.3%以上含有させなければならないが、過度に含有させると、冷間加工性や被削性に悪影響を与えるとともに、結晶粒界への偏析量の増大によって粒界強度を低下させ、ひいては衝撃特性に悪影響を及ぼすようになるので、3.0%以下に抑えなければならない。Mnの好ましい含有量は0.5〜2.0%の範囲である。
<Mn: 0.3 to 3.0%>
Mn is an element effective for deoxidation of molten steel, and in order to exert its effect effectively, it must be contained in an amount of 0.3% or more. However, if it is excessively contained, cold workability and machinability are reduced. In addition to having an adverse effect and increasing the amount of segregation to the crystal grain boundary, it lowers the grain boundary strength and thus adversely affects the impact characteristics, so it must be suppressed to 3.0% or less. A preferable content of Mn is in the range of 0.5 to 2.0%.

<Al:0.015〜0.1%>
Alは鋼材の脱酸材として鋼中に含まれてくる元素であり、鋼中のNと結合してAlNを生成し、結晶粒の粗大化を防止する作用を有している。こうした効果を有効に発揮させるには0.015%以上含有させなければならないが、その効果は0.1%程度で飽和し、それを超えると酸素と結合して非金属系介在物となり、衝撃特性等に悪影響を及ぼすようになるので、0.1%を上限と定めた。 好ましくは0.08%以下であり、さらに好ましくは0.06%以下、特に好ましくは0.04%以下である。
<Al: 0.015-0.1%>
Al is an element contained in steel as a deoxidizing material for steel, and has an action of binding to N in steel to produce AlN and preventing coarsening of crystal grains. In order to exert such an effect effectively, it must be contained at 0.015% or more, but the effect is saturated at about 0.1%, and beyond that, it combines with oxygen to form a non-metallic inclusion, Since it adversely affects the characteristics, etc., the upper limit was set to 0.1%. Preferably it is 0.08% or less, More preferably, it is 0.06% or less, Most preferably, it is 0.04% or less.

<N :0.003〜0.030%>
Nは鋼中でAl,V,Ti,Nb等と結合して窒化物を生成し、結晶粒の粗大化を抑制する作用を有しており、その効果は0.003%以上含有させることによって有効に発揮される。好ましくは、0.005%以上である。しかし、それらの効果は約0.030%で飽和し、それ以上に含有させると窒化物が介在物となって物性に悪影響を及ぼすようになるので、それ以上の添加は避けなければならない。好ましくは0.02%以下であり、さらに好ましくは0.015%以下である。
<N: 0.003-0.030%>
N combines with Al, V, Ti, Nb, etc. in steel to produce nitrides, and has the effect of suppressing the coarsening of crystal grains. The effect is by containing 0.003% or more. Effectively demonstrated. Preferably, it is 0.005% or more. However, these effects saturate at about 0.030%, and if it is contained more than that, nitrides become inclusions and adversely affect the physical properties, so addition beyond this must be avoided. Preferably it is 0.02% or less, More preferably, it is 0.015% or less.

本発明鋼板は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、不可避的に混入してくるSi,PおよびSは、下記の理由からそれぞれできるだけ少なく抑えることが望ましい。   The steel sheet of the present invention basically contains the above components, and the balance is iron and unavoidable impurities, but it is desirable to keep Si, P and S mixed unavoidably as small as possible for the following reasons.

<Si:0.5%以下>
Siは、強化元素あるいは脱酸性元素として有効に作用する反面、粒界酸化を助長して曲げ疲労特性を劣化させるとともに冷間鍛造性にも悪影響を及ぼす。したがってこうした障害をなくすにはその含有量を0.5%以下に抑えなければならず、特に高レベルの曲げ疲労特性が求められるときは、その含有量を0.1%以下に抑えることが望まれる。こうした観点から、Siのより好ましい含有量は0.02〜0.1%の範囲である。
<Si: 0.5% or less>
Si effectively acts as a strengthening element or a deacidifying element, but promotes grain boundary oxidation to deteriorate bending fatigue properties and adversely affects cold forgeability. Therefore, in order to eliminate such obstacles, the content must be suppressed to 0.5% or less, and particularly when a high level of bending fatigue characteristics is required, it is desirable to suppress the content to 0.1% or less. It is. From such a viewpoint, the more preferable content of Si is in the range of 0.02 to 0.1%.

<P:0.030%以下>
Pは結晶粒界に偏析して靭性を低下させるので、その上限は0.030%と定めた。Pのより好ましい含有量は0.020%以下、さらに好ましくは0.010%以下である。
<P: 0.030% or less>
P segregates at the grain boundaries and lowers the toughness, so the upper limit was set to 0.030%. The more preferable content of P is 0.020% or less, and further preferably 0.010% or less.

<S:0.035%以下>
SはMnSを生成し、被削性の向上に寄与するが、本発明を歯車等に適用する場合は、縦目の衝撃特性だけでなく横目の衝撃特性も重要であり、横目の衝撃特性向上には異方性の低減が必要となり、そのためにはS含有量を0.035%以下に抑えなければならない。Sのより好ましい含有量は0.025%以下、さらに好ましくは0.020%以下である。
<S: 0.035% or less>
S generates MnS and contributes to the improvement of machinability. However, when the present invention is applied to gears and the like, not only the impact characteristics of the vertical eyes but also the impact characteristics of the horizontal eyes are important, and the impact characteristics of the horizontal eyes are improved. In order to reduce the anisotropy, the S content must be suppressed to 0.035% or less. The more preferable content of S is 0.025% or less, and further preferably 0.020% or less.

また本発明鋼板には、上記の基本成分に加えて、本発明の作用を損なわない範囲で、以下の許容成分を含有させることができる。   Moreover, in addition to said basic component, this invention steel plate can be made to contain the following allowable components in the range which does not impair the effect | action of this invention.

<Cr:0%超3.0%以下、
Mo:0%超1.0%以下、
Ni:0%超3.0%以下よりなる群から選択される少なくとも1種>
これらの元素は、焼入性を高めあるいは焼入れ組織を微細化する作用を有する点で有用元素であり、特にCrは優れた焼入性向上効果を有しており、またMoは不完全焼入れ組織の低減と焼入性の向上、さらには粒界強度の向上に有効に作用し、さらにNiは焼入れ後の組織を微細化して耐衝撃性の向上に寄与する。こうした効果は、好ましくはCr:0.2%程度以上、Mo:0.08%程度以上、Ni:0.2%程度以上のうち少なくとも1種を含有させることによって有効に発揮されるが、Cr量が3.0%を超えるとCrが炭化物を生成して粒界偏析を起こし、粒界強度を低下させて靭性に悪影響を及ぼし、Moの上記効果は約1.0%で飽和し、またNiの上記効果も3.0%で飽和するので、それ以上の添加は経済的に全く無駄である。
<Cr: more than 0% and 3.0% or less,
Mo: more than 0% and 1.0% or less,
Ni: at least one selected from the group consisting of more than 0% and not more than 3.0%>
These elements are useful elements in that they have a function of enhancing hardenability or refining the hardened structure, particularly Cr has an excellent effect of improving hardenability, and Mo is an incompletely hardened structure. This effectively acts to improve the hardenability and the grain boundary strength, and Ni contributes to the improvement of impact resistance by refining the structure after quenching. Such an effect is preferably exhibited by including at least one of Cr: about 0.2% or more, Mo: about 0.08% or more, and Ni: about 0.2% or more. If the amount exceeds 3.0%, Cr produces carbides and segregates at the grain boundaries, lowers the grain boundary strength and adversely affects toughness, and the above effect of Mo is saturated at about 1.0%. Since the above effect of Ni is saturated at 3.0%, the addition of more than that is economically useless.

<Cu:0%超2.0%以下、
Co:0%超5%以下よりなる群から選ばれる少なくとも1種>
Cuは耐食性の向上に有効に作用する元素であり、その効果は好ましくは0.3%以上含有させることによって有効に発揮されるが、その効果は2.0%で飽和するのでそれ以上の含有は無駄である。なおCuを単独で含有させると、鋼材の熱間加工性が悪くなる傾向があるので、こうした弊害を回避するには、熱間加工性向上効果を有するNiを前記含有量の範囲で併用することが望ましい。
<Cu: more than 0% and 2.0% or less,
Co: at least one selected from the group consisting of more than 0% and 5% or less>
Cu is an element that effectively acts to improve corrosion resistance, and the effect is preferably exerted by inclusion of 0.3% or more, but the effect is saturated at 2.0%, so it is contained more than that. Is useless. If Cu is contained alone, the hot workability of the steel material tends to deteriorate. Therefore, in order to avoid such adverse effects, Ni having the effect of improving the hot workability should be used in the above content range. Is desirable.

またCuとCoは、いずれも鋼材をひずみ時効させ、硬化させる作用があり、加工後強度を向上させるのに有効な元素である。このような作用を有効に発揮させるためには、これらの元素は、それぞれ0.1%以上、さらには0.3%以上含有させることが好ましい。しかし、Coの含有量が過剰であると、鋼材をひずみ時効および硬化させる効果、さらに、加工後強度を向上させる効果が飽和し、また、割れを促進させるおそれがあるため、Coの含有量は5%以下、さらには4%以下、特に3%以下とすることが推奨される。   Cu and Co are both effective in strain-aging and hardening the steel and are effective in improving the strength after processing. In order to effectively exhibit such an action, these elements are preferably contained in an amount of 0.1% or more, and more preferably 0.3% or more. However, if the Co content is excessive, the effects of strain aging and hardening of the steel material, and the effect of improving the strength after processing are saturated, and there is a possibility of promoting cracking, so the Co content is It is recommended to set it to 5% or less, further 4% or less, especially 3% or less.

<V:0%超0.5%以下、
Ti:0%超0.1%以下、
Nb:0%超0.1%以下よりなる群から選ばれる少なくとも1種>
これらの元素はCやNと結合して炭化物や窒化物を生成し、結晶粒を微細化して靭性(耐衝撃性)の向上に寄与するが、それぞれ上限値付近でその効果は飽和し、かえって被削性や冷間加工性に悪影響を及ぼすおそれがでてくるので、それぞれ上限値以下に抑えなければならない。これら元素の添加効果を有効に発揮させるための好ましい下限値はV:0.03%程度、Ti:0.005%程度およびNb:0.005%程度である。
<V: more than 0% and 0.5% or less,
Ti: more than 0% and 0.1% or less,
Nb: at least one selected from the group consisting of more than 0% and 0.1% or less>
These elements combine with C and N to form carbides and nitrides, refine the crystal grains and contribute to the improvement of toughness (impact resistance), but the effect is saturated near the upper limit, respectively. Since there is a risk of adversely affecting the machinability and cold workability, each must be suppressed to the upper limit value or less. Preferable lower limit values for effectively exhibiting the effect of addition of these elements are V: about 0.03%, Ti: about 0.005% and Nb: about 0.005%.

<Ca:0%超0.08%以下、
Zr:0%超0.08%以下よりなる群から選ばれる少なくとも1種>
Caは、硬質の介在物を柔軟な介在物で包み込み、またZrはMnSを球状化させ、いずれも被削性の向上に寄与するほか、両元素ともMnSの球状化による異方性の低減によって横目の衝撃特性を高める作用を有しているが、それらの効果はそれぞれ0.08%で飽和するので、それぞれ0.08%以下、さらには0.05%以下、特に0.01%以下とすることが推奨される。なおこれらの元素の上記効果を有効に発揮させるための好ましい下限値は、Ca:0.0005%程度(さらには0.001%程度)、Zr:0.002%程度である。
<Ca: more than 0% and 0.08% or less,
Zr: at least one selected from the group consisting of more than 0% and 0.08% or less>
Ca wraps hard inclusions with flexible inclusions, and Zr spheroidizes MnS, both of which contribute to improving machinability, and both elements are reduced by anisotropy due to spheroidization of MnS. Although it has the effect | action which improves the impact characteristic of a horizontal eye, since those effects are saturated at 0.08%, respectively, it is 0.08% or less, Furthermore, 0.05% or less, Especially 0.01% or less It is recommended to do. In addition, the preferable lower limit for effectively exhibiting the above effects of these elements is about Ca: 0.0005% (further about 0.001%) and Zr: about 0.002%.

<Sb:0%超0.02%以下>
Sbは、粒界酸化を抑制して曲げ疲労強度を高めるうえで有効な元素であるが、その効果は0.02%で飽和するので、それ以上の添加は経済的に無駄である。該Sbの添加効果を有効に発揮させるための好ましい下限値は0.001%程度である。
<Sb: more than 0% and 0.02% or less>
Sb is an element effective for suppressing the grain boundary oxidation and increasing the bending fatigue strength, but since the effect is saturated at 0.02%, the addition of more is economically useless. A preferable lower limit value for effectively exhibiting the effect of adding Sb is about 0.001%.

<REM:0%超0.05%以下、
Mg:0%超0.02%以下、
Li:0%超0.02%以下、
Pb:0%超0.5%以下、
Bi:0%超0.5%以下よりなる群から選ばれる少なくとも1種>
REMは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、REMは、0.0005%以上、さらには0.001%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.05%以下、さらには0.03%以下、特に0.01質量%以下が推奨される。
なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。
<REM: more than 0% and 0.05% or less,
Mg: more than 0% and 0.02% or less,
Li: more than 0% and 0.02% or less,
Pb: more than 0% and 0.5% or less,
Bi: at least one selected from the group consisting of more than 0% and 0.5% or less>
REM is an element that, like Ca, spheroidizes compound inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, REM is preferably contained in an amount of 0.0005% or more, more preferably 0.001% or more. However, even if contained excessively, the effect is saturated, and an effect commensurate with the content cannot be expected, so 0.05% or less, further 0.03% or less, particularly 0.01% by mass or less is recommended. .
In the present invention, REM means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.

Mgは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めるとともに、被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Mgは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。   Mg, like Ca, is an element that spheroidizes sulfide-based inclusions such as MnS to increase the deformability of steel and contribute to the improvement of machinability. In order to effectively exhibit such an action, Mg is preferably contained in an amount of 0.0002% or more, more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.

Liは、Caと同様にMnSなどの硫化化合物系介在物を球状化させ、鋼の変形能を高めることができ、また、Al系酸化物を低融点化して無害化して被削性の向上に寄与する元素である。このような作用を有効に発揮させるためには、Liは、0.0002%以上、さらには0.0005%以上含有させることが好ましい。しかし、過剰に含有しても、その効果が飽和し、含有量に見合う効果が期待できないため、0.02%以下、さらには0.015%以下、特に0.01%以下が推奨される。   Li can spheroidize sulfide compound inclusions such as MnS and increase the deformability of steel like Ca, and lower the melting point of Al-based oxides to make them harmless and improve machinability. It is a contributing element. In order to effectively exhibit such an action, Li is preferably contained in an amount of 0.0002% or more, and more preferably 0.0005% or more. However, even if contained excessively, the effect is saturated and an effect commensurate with the content cannot be expected, so 0.02% or less, further 0.015% or less, and particularly 0.01% or less is recommended.

Pbは、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Pbは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させると、圧延疵の発生等の製造上の問題を生じるため、0.5%以下、さらには0.4%以下、特に0.3質量%以下が推奨される。   Pb is an effective element for improving machinability. In order to effectively exhibit such an action, Pb is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, if it is contained excessively, production problems such as the occurrence of rolling defects occur, so 0.5% or less, further 0.4% or less, and particularly 0.3% by mass or less are recommended.

Biは、Pbと同様に、被削性を向上させるために有効な元素である。このような作用を有効に発揮させるためには、Biは0.005%以上、さらには0.01%以上含有させることが好ましい。しかし、過剰に含有させても被削性向上の効果が飽和するため、0.5質量%以下、さらには0.4%以下、特に0.3%以下が推奨される。   Bi is an element effective for improving the machinability like Pb. In order to effectively exhibit such an action, Bi is preferably contained in an amount of 0.005% or more, and more preferably 0.01% or more. However, since the effect of improving the machinability is saturated even if contained excessively, 0.5% by mass or less, further 0.4% or less, particularly 0.3% or less is recommended.

次に、本発明鋼板を特徴づける組織について説明する。   Next, the structure characterizing the steel sheet of the present invention will be described.

〔本発明鋼板の組織〕
上述したとおり、本発明鋼板は、フェライト中に炭化物を分散した鋼組織とするものであるが、特に、フェライト結晶粒につき、等軸化の程度とサイズをそれぞれ特定範囲に制御するとともに、炭化物につき、球状化の程度とサイズをそれぞれ特定範囲に制御することを特徴とする。
[Structure of the steel sheet of the present invention]
As described above, the steel sheet of the present invention has a steel structure in which carbides are dispersed in ferrite. In particular, with respect to ferrite crystal grains, the degree and size of equiaxing are controlled within a specific range, and The degree and size of spheroidization are controlled within a specific range.

<鋼組織が、フェライトと炭化物からなる>
本発明鋼板は、後記「好ましい製造方法」のところで説明するように、例えばフェライト+パーライト主体組織の熱延板をさらに球状化焼鈍することにより製造されるものであることから、鋼組織は、フェライト中に炭化物(主としてセメンタイト)が分散(析出)したものとなる。
<The steel structure consists of ferrite and carbide>
Since the steel sheet of the present invention is produced by further spheroidizing and annealing a hot rolled sheet of ferrite + pearlite main structure, for example, as described later in “Preferred production method”, the steel structure is made of ferrite. The carbide (mainly cementite) is dispersed (precipitated) therein.

<前記フェライトについて、長軸/短軸で定義されたアスペクト比が3以下の結晶粒の個数が全結晶粒の個数の60%以上>
フェライト結晶粒の形状が等軸粒であることが、伸びフランジ性(穴広げ性)の向上と、熱処理後における表面から深い部分である板厚中心部の硬さ(内部硬さ)の確保の両立に必要である。このため、等軸粒である、アスペクト比(長軸/短軸)が3以下のフェライト結晶粒の個数を、全フェライト結晶粒の個数の60%以上、好ましくは70%以上、さらに好ましくは80%以上とする。
<About the ferrite, the number of crystal grains having an aspect ratio defined by the major axis / minor axis of 3 or less is 60% or more of the total number of crystal grains>
The shape of ferrite crystal grains is equiaxed grains to improve stretch flangeability (hole expandability) and ensure the hardness (internal hardness) of the plate thickness center that is deep from the surface after heat treatment Necessary for compatibility. For this reason, the number of ferrite crystal grains that are equiaxed grains and have an aspect ratio (major axis / minor axis) of 3 or less is 60% or more, preferably 70% or more, more preferably 80% of the total number of ferrite crystal grains. % Or more.

<前記全結晶粒の平均結晶粒径が3〜50μmの範囲>
フェライト結晶粒が大きくなりすぎると、表面性状が悪化し、表面割れを起こすとともに、穴広げ性が劣化する。このため、全フェライト結晶粒の平均結晶粒径を、50μm以下、好ましくは40μm以下、さらに好ましくは30μm以下とする。一方、下限値については、フェライト結晶粒は微細になるほど特性は良くなるが、圧延能力や冷却能力を高くする必要があり、生産性を低下させる。このため、全フェライト結晶粒の平均結晶粒径は3μm以上、好ましくは5μm以上、さらに好ましくは7μm以上とする。
<A range where the average crystal grain size of all the crystal grains is 3 to 50 μm>
If the ferrite crystal grains become too large, the surface properties deteriorate, causing surface cracks, and the hole-expandability deteriorates. For this reason, the average crystal grain size of all ferrite crystal grains is 50 μm or less, preferably 40 μm or less, and more preferably 30 μm or less. On the other hand, as the lower limit value, the finer the ferrite crystal grains, the better the characteristics, but it is necessary to increase the rolling ability and the cooling ability, and the productivity is lowered. For this reason, the average crystal grain size of all ferrite crystal grains is 3 μm or more, preferably 5 μm or more, and more preferably 7 μm or more.

<炭化物について、長軸/短軸で定義されたアスペクト比が2以下の炭化物の個数が全炭化物の個数の80%以上であるとともに、前記全炭化物の平均円相当径が0.6μm以下>
炭化物が偏平化したり、粗大化したりすると、打抜き加工時に打ち抜き断面にき裂を発生させて部品になった際の品質低下につながるほか、さらに穴広げ加工をした場合にも破壊の起点となることから、炭化物を球状化かつ微細化する必要がある。このため、球状炭化物である、アスペクト比(長軸/短軸)が2以下の炭化物の個数を、全炭化物の個数の80%以上、好ましくは83%以上、さらに好ましくは85%以上とするとともに、全炭化物の平均円相当径を0.6μm以下、好ましくは0.55μm以下、さらに好ましくは0.5μm以下とする。
ここに、「炭化物」は、主にFe3Cの構造をもつセメンタイトであるが、CrやV、Ti、Nb等が含有される場合は、これらの元素を固溶するセメンタイトやVC、TiC、NbCをも含むものとする。ただし、後述のSEM観察による炭化物サイズの測定において観察できない微細なVC、TiC、NbCなど(円相当径0.1μm未満)は含まないものとする。なお、このような円相当径が0.1μm未満の微細な炭化物は上記した打ち抜き加工性や穴広げ性に影響を及ぼすものでもない。
<About the carbides, the number of carbides having an aspect ratio defined by the major axis / minor axis of 2 or less is 80% or more of the total number of carbides, and the average equivalent circle diameter of all the carbides is 0.6 μm or less>
If the carbide is flattened or coarsened, cracks will occur in the punched section during punching, leading to quality deterioration when the part is made into parts, and it will also be the starting point of fracture when drilling further. Therefore, it is necessary to spheroidize and refine the carbide. For this reason, the number of carbides that are spherical carbides with an aspect ratio (major axis / minor axis) of 2 or less is 80% or more, preferably 83% or more, more preferably 85% or more of the total number of carbides. The average equivalent circle diameter of all carbides is 0.6 μm or less, preferably 0.55 μm or less, and more preferably 0.5 μm or less.
Here, “carbide” is mainly cementite having a structure of Fe 3 C. However, when Cr, V, Ti, Nb or the like is contained, cementite that dissolves these elements, VC, TiC, or NbC is included. Shall also be included. However, fine VC, TiC, NbC, etc. (equivalent circle diameter less than 0.1 μm) that cannot be observed in the carbide size measurement by SEM observation described later are not included. Such fine carbide having an equivalent circle diameter of less than 0.1 μm does not affect the punching workability and hole expansibility described above.

〔フェライト結晶粒のアスペクト比の測定方法〕
上記フェライト結晶粒について、最大フェレ径、最小フェレ径を測定し、その比(長軸/短軸)をアスペクト比と定義した。
[Method for measuring the aspect ratio of ferrite crystal grains]
With respect to the ferrite crystal grains, the maximum ferret diameter and the minimum ferret diameter were measured, and the ratio (long axis / short axis) was defined as the aspect ratio.

〔平均フェライト結晶粒径の測定方法〕
上記走査型電子顕微鏡による撮像を画像解析することにより全フェライト結晶粒について個々の重心直径を求め、この重心直径を全結晶粒の個数で算術平均したものを、全フェライト結晶粒の平均結晶粒径とした。
[Method for measuring average ferrite crystal grain size]
By analyzing the image taken by the scanning electron microscope, the individual centroid diameters of all ferrite crystal grains are obtained, and the average grain size of all ferrite crystal grains is obtained by arithmetically averaging the centroid diameters by the number of all crystal grains. It was.

〔炭化物のアスペクト比および平均円相当直径の測定方法〕
板厚の1/4深さ面を研磨およびエッチングしてSEM(走査型電子顕微鏡)試験片を作製し、8000倍の画像を4視野撮影し、写りこんだ炭化物のうち、画像解析ソフト(「Image−Pro Plus」 Media Cybernetics社製)によって、円相当径が0.1μm以上のものの全粒子のアスペクト比(長軸/短軸)および円相当直径を測定し、アスペクト比が2.0以下の粒子および全粒子の各個数をカウントしてその比率を算出するとともに、円相当直径の平均値を算出した。
[Measurement method of carbide aspect ratio and average equivalent circle diameter]
A SEM (Scanning Electron Microscope) specimen was prepared by polishing and etching the 1/4 depth surface of the plate thickness, and four fields of view of 8000 times images were taken, and image analysis software (“ Image-Pro Plus ”(Media Cybernetics) measured the aspect ratio (major axis / minor axis) and equivalent circle diameter of all particles having an equivalent circle diameter of 0.1 μm or more, and the aspect ratio was 2.0 or less. The number of particles and the total number of particles were counted to calculate the ratio, and the average value of equivalent circle diameters was calculated.

次に、上記本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining the said steel plate of this invention is demonstrated below.

〔本発明鋼板の好ましい製造方法〕
本発明鋼板は、例えば、上記成分組成を有する原料鋼を溶解、鋳造してスラブとし、スラブまま、または、表面面削したスラブを、加熱、熱間粗圧延、仕上げ圧延の各工程を経て得られた熱延コイル上がり材としての熱延板を用い、この中間材としての熱延板にさらに球状化焼鈍を施した球状化材として製造することができる。その後、表面状態や板厚精度等の必要条件に応じて、さらに、酸洗、スキンパスを施してもよい。
[Preferred production method of the steel sheet of the present invention]
The steel sheet of the present invention is obtained, for example, by melting and casting raw material steel having the above-mentioned composition to form a slab, and by subjecting the slab as it is or surface chamfered to each step of heating, hot rough rolling, and finish rolling. It is possible to produce a spheroidizing material obtained by further subjecting the hot-rolled plate as the intermediate material to further spheroidizing annealing. Thereafter, pickling and skin pass may be further performed according to necessary conditions such as surface condition and plate thickness accuracy.

ここで、球状化焼鈍前の鋼組織(すなわち、熱延板ままの鋼組織)が、面積率で、フェライト:10〜50%、パーライト:15〜50%、残部:ベイナイトからなり、前記フェライトおよびパーライトを含む全ての相の結晶粒(以下、「全結晶粒」という。)について、アスペクト比(長軸/短軸)が3以下の結晶粒の個数が前記全結晶粒の個数の60%以上であるとともに、前記全結晶粒の平均結晶粒径が3〜50μmの範囲であることが重要である。   Here, the steel structure before spheroidizing annealing (that is, the steel structure as a hot-rolled sheet) is composed of ferrite: 10 to 50%, pearlite: 15 to 50%, and the balance: bainite. Regarding the crystal grains of all phases including pearlite (hereinafter referred to as “total crystal grains”), the number of crystal grains having an aspect ratio (major axis / short axis) of 3 or less is 60% or more of the total crystal grains. In addition, it is important that the average crystal grain size of all the crystal grains is in the range of 3 to 50 μm.

なぜならば、最終的にはその後の球状化焼鈍を経て炭化物(主としてセメンタイト)の形態を所定の範囲に制御する必要があり、その前段階の組織としては、上記のように適度にフェライト、パーライトを含むことが必要である。仮にフェライトが多すぎるとフェライトが粗大化しやすくなるだけでなく、炭化物も粗大化しやすくなる。また、パーライトが多すぎる場合は、言い換えると熱間圧延後の冷却速度が不足している場合か合金元素が不足している場合であり、全体的に組織が粗大化するため、球状化焼鈍後のフェライトやセメンタイトが粗大化しやすくなる。逆にベイナイトが多すぎると鋼板の硬さが高くなりすぎて、操業上の取扱いが難しくなる。   Because it is necessary to finally control the form of carbide (mainly cementite) to a predetermined range through the subsequent spheroidizing annealing, as the structure in the previous stage, ferrite and pearlite are appropriately added as described above. It is necessary to include. If there is too much ferrite, not only will the ferrite be prone to coarsening, but the carbides will also be prone to coarsening. Moreover, when there is too much pearlite, in other words, the case where the cooling rate after hot rolling is insufficient or the case where the alloying elements are insufficient, the entire structure becomes coarse, so after spheroidizing annealing Of ferrite and cementite are likely to be coarsened. Conversely, if there is too much bainite, the hardness of the steel sheet becomes too high, making it difficult to handle in operation.

[溶鋼の調製]
まず、溶存酸素量と全酸素量を調整した溶鋼に、所定の順番で所定の合金元素を添加することによって、所望の酸化物を生成させることができる。特に本発明では、粗大な酸化物が生成しないように、溶存酸素量を調整した後、全酸素量を調整することが極めて重要である。
[Preparation of molten steel]
First, a desired oxide can be generated by adding a predetermined alloy element in a predetermined order to molten steel in which the dissolved oxygen amount and the total oxygen amount are adjusted. Particularly in the present invention, it is extremely important to adjust the total oxygen amount after adjusting the dissolved oxygen amount so that coarse oxides are not formed.

溶存酸素とは、酸化物を形成しておらず、溶鋼中に存在するフリーな状態の酸素を意味する。全酸素とは、溶鋼に含まれる全ての酸素、すなわち、フリー酸素と酸化物を形成している酸素の総和を意味する。   Dissolved oxygen means oxygen in a free state that does not form an oxide and exists in molten steel. Total oxygen means the sum of all oxygen contained in molten steel, that is, free oxygen and oxygen forming oxides.

まず、溶鋼の溶存酸素量を0.0010〜0.0060%の範囲に調整する。溶鋼の溶存酸素量が0.0010%未満では、溶鋼中の溶存酸素量が不足するため、Al−O系酸化物を所定量確保することができず、所望のサイズ分布が得られない。また、溶存酸素量が不足すると、REMを添加する場合は、REMが硫化物を形成するため、介在物が粗大となり特性を劣化させる原因となる。したがって、上記溶存酸素量は0.0010%以上とする。上記溶存酸素は、好ましくは0.0013%以上、より好ましくは0.0020%以上である。   First, the dissolved oxygen content of the molten steel is adjusted to a range of 0.0010 to 0.0060%. When the amount of dissolved oxygen in the molten steel is less than 0.0010%, the amount of dissolved oxygen in the molten steel is insufficient, so that a predetermined amount of Al—O-based oxide cannot be secured, and a desired size distribution cannot be obtained. In addition, when the amount of dissolved oxygen is insufficient, when REM is added, REM forms sulfides, so that inclusions become coarse and deteriorate characteristics. Therefore, the amount of dissolved oxygen is set to 0.0010% or more. The dissolved oxygen is preferably 0.0013% or more, more preferably 0.0020% or more.

一方、上記溶存酸素量が0.0060%を超えると、溶鋼中の酸素量が多くなりすぎるため、溶鋼中の酸素と上記元素の反応が激しくなって溶製作業上好ましくないばかりか、粗大な酸化物を生成して却って特性を劣化させる。したがって、上記溶存酸素量は0.0060%以下に抑えるべきである。上記溶存酸素量は、好ましくは0.0055%以下、より好ましくは0.0053%以下とする。   On the other hand, if the amount of dissolved oxygen exceeds 0.0060%, the amount of oxygen in the molten steel becomes too large, and the reaction between the oxygen in the molten steel and the above elements becomes violent, which is not preferable for melting work, and is coarse. Oxide is produced and the characteristics are deteriorated. Therefore, the amount of dissolved oxygen should be suppressed to 0.0060% or less. The amount of dissolved oxygen is preferably 0.0055% or less, more preferably 0.0053% or less.

ところで、転炉や電気炉で一次精錬された溶鋼中の溶存酸素量は、通常0.010%を超えている。そこで本発明の製法では、溶鋼中の溶存酸素量を何らかの方法で上記範囲に調整する必要がある。   By the way, the amount of dissolved oxygen in molten steel primarily refined in a converter or electric furnace usually exceeds 0.010%. Therefore, in the production method of the present invention, it is necessary to adjust the amount of dissolved oxygen in the molten steel to the above range by some method.

溶鋼中の溶存酸素量を調整する方法としては、例えばRH式脱ガス精錬装置を用いて真空C脱酸する方法や、SiやMn、Alなどの脱酸性元素を添加する方法などが挙げられ、これらの方法を適宜組み合わせて溶存酸素量を調整してもよい。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて溶存酸素量を調整してもよい。この場合、真空C脱酸による溶存酸素量の調整はできないため、溶存酸素量の調整にはSi等の脱酸性元素を添加する方法を採用すればよい。Si等の脱酸性元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。   Examples of the method for adjusting the amount of dissolved oxygen in the molten steel include a method of vacuum C deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, and Al. The amount of dissolved oxygen may be adjusted by appropriately combining these methods. Moreover, you may adjust the amount of dissolved oxygen using a ladle heating type refining apparatus, a simple molten steel processing facility, etc. instead of the RH type degassing refining apparatus. In this case, since the amount of dissolved oxygen cannot be adjusted by vacuum C deoxidation, a method of adding a deacidifying element such as Si may be adopted to adjust the amount of dissolved oxygen. When employing a method of adding a deoxidizing element such as Si, the deoxidizing element may be added when steel is removed from the converter to the ladle.

溶鋼の溶存酸素量を0.0010〜0.0060%の範囲に調整した後は溶鋼を攪拌し、溶鋼中の酸化物を浮上分離することによって溶鋼中の全酸素量を0.0010〜0.0070%に調整する。このように本発明では、溶存酸素量が適切に制御された溶鋼を撹拌し、不要な酸化物を除去してから、粗大な酸化物、すなわち、粗大な介在物の生成を防止できる。   After adjusting the dissolved oxygen content of the molten steel to the range of 0.0010 to 0.0060%, the molten steel is stirred, and the oxide in the molten steel is floated and separated, whereby the total oxygen content in the molten steel is 0.0010 to 0.00. Adjust to 0070%. As described above, in the present invention, the molten steel in which the amount of dissolved oxygen is appropriately controlled is stirred to remove unnecessary oxides, and then generation of coarse oxides, that is, coarse inclusions can be prevented.

上記全酸素量が0.0010%未満では、所望の酸化物量不足になるため、介在物の微細なサイズ分布に寄与する酸化物量を確保することができない。したがって、上記全酸素量は0.0010%以上とする。上記全酸素量は、好ましくは0.0015%以上、より好ましくは0.0018%以上である。   If the total oxygen amount is less than 0.0010%, the desired amount of oxide is insufficient, so that the amount of oxide contributing to the fine size distribution of inclusions cannot be ensured. Therefore, the total oxygen amount is set to 0.0010% or more. The total oxygen amount is preferably 0.0015% or more, more preferably 0.0018% or more.

一方、上記全酸素量が0.0070%を超えると、溶鋼中の酸化物量が過剰となり、粗大な酸化物、すなわち、粗大な介在物が生成して特性が劣化する。したがって、上記全酸素量は0.0070%以下に抑えるべきである。上記全酸素量は、好ましくは0.0060%以下、より好ましくは0.0050%以下とする。   On the other hand, if the total oxygen amount exceeds 0.0070%, the amount of oxide in the molten steel becomes excessive, and coarse oxides, that is, coarse inclusions are generated to deteriorate the characteristics. Therefore, the total oxygen amount should be suppressed to 0.0070% or less. The total oxygen amount is preferably 0.0060% or less, more preferably 0.0050% or less.

溶鋼中の全酸素量は、概ね溶鋼の攪拌時間に相関して変化することから、撹拌時間を調整するなどして制御することができる。具体的には、溶鋼を撹拌し、浮上してきた酸化物を除去した後の溶鋼中の全酸素量を適宜測定しながら、溶鋼中の全酸素量を適切に制御する。   Since the total amount of oxygen in the molten steel changes in correlation with the stirring time of the molten steel, it can be controlled by adjusting the stirring time. Specifically, the total amount of oxygen in the molten steel is appropriately controlled while appropriately measuring the total amount of oxygen in the molten steel after stirring the molten steel and removing the floating oxide.

鋼材にREMを添加する場合は、溶鋼中の全酸素量を上記範囲に調整した後に、REMを添加してから鋳造する。全酸素量を調整した溶鋼へ上記の元素を添加することによって所望とする酸化物が得られる。   When adding REM to a steel material, after adjusting the total oxygen amount in molten steel to the said range, it casts, after adding REM. The desired oxide can be obtained by adding the above elements to the molten steel with the total oxygen content adjusted.

溶鋼へ添加するREMの形態は特に限定されず、例えば、REMとして、純Laや純Ce、純Yなど、あるいは純Ca、さらにはFe−Si−La合金、Fe−Si−Ce合金、Fe−Si−Ca合金、Fe−Si−La−Ce合金、Fe−Ca合金、Ni−Ca合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40〜50%程度、Laを20〜40%程度含有している。ただし、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は、本発明で規定する好適範囲を満足する必要がある。   The form of REM added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, etc., pure Ca, Fe—Si—La alloy, Fe—Si—Ce alloy, Fe— A Si—Ca alloy, a Fe—Si—La—Ce alloy, a Fe—Ca alloy, a Ni—Ca alloy, or the like may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% Ce and about 20 to 40% La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, it is necessary to satisfy the preferred range defined in the present invention.

本発明でREMを添加した場合は、粗大な酸化物の除去を促進する目的で、REMを添加した後は、40分を超えない範囲で溶鋼を攪拌することが好ましい。攪拌時間が40分を超えると、微細な酸化物が溶鋼中で凝集・合体するため酸化物が粗大化し、特性が劣化する。したがって、攪拌時間は40分以内とすることが好ましい。攪拌時間は、より好ましくは35分以内であり、さらに好ましくは30分以内である。溶鋼の攪拌時間の下限値は特に限定されないが、攪拌時間が短過ぎると添加元素の濃度が不均一となり、鋼材全体として所望の効果が得られない。したがって、容器サイズに応じた所望の攪拌時間が必要となる。   When REM is added in the present invention, it is preferable to stir the molten steel within a range not exceeding 40 minutes after adding REM for the purpose of promoting the removal of coarse oxides. When the stirring time exceeds 40 minutes, fine oxides aggregate and coalesce in the molten steel, so that the oxides become coarse and the characteristics deteriorate. Therefore, the stirring time is preferably within 40 minutes. The stirring time is more preferably within 35 minutes, and further preferably within 30 minutes. The lower limit of the stirring time of the molten steel is not particularly limited, but if the stirring time is too short, the concentration of the additive element becomes non-uniform, and the desired effect cannot be obtained as a whole steel material. Accordingly, a desired stirring time corresponding to the container size is required.

以上のようにして、成分組成が調整された溶鋼が得られる。得られた溶鋼を用いて鋳造し、鋼片を得る。   As described above, a molten steel having an adjusted composition can be obtained. It casts using the obtained molten steel, and obtains a steel piece.

次に、加熱、仕上げ圧延を含む熱間圧延、熱延後の急冷、急冷停止後の緩冷、緩冷後の急冷、巻取りを行って中間材としての熱延板を製造する。   Next, hot rolling including heating and finish rolling, rapid cooling after hot rolling, slow cooling after quenching stop, rapid cooling after slow cooling, and winding are performed to produce a hot rolled sheet as an intermediate material.

[加熱]
熱間圧延前の加熱は1150〜1300℃で行う。この加熱によりオーステナイト単相とする。これにより固溶元素(V、Nbなどの添加元素を含む)は、オーステナイトに固溶させる。加熱温度が1150℃未満ではオーステナイトに固溶できず、粗大な炭化物が形成されるため疲労特性改善効果が得られない。一方、1300℃を超える加熱温度は操業上困難である。また、添加元素としてTiが含まれる場合、炭化物のうち最も溶体化温度の高いTiを固溶させる点でも、TiCの溶体化温度以上1300℃以下が必要である。加熱温度のより好ましい下限は1200℃である。
[heating]
Heating before hot rolling is performed at 1150 to 1300 ° C. An austenite single phase is obtained by this heating. Thereby, solid solution elements (including additive elements such as V and Nb) are dissolved in austenite. If the heating temperature is less than 1150 ° C., it cannot be dissolved in austenite, and coarse carbides are formed, so that the effect of improving fatigue characteristics cannot be obtained. On the other hand, heating temperatures exceeding 1300 ° C. are difficult to operate. Moreover, when Ti is contained as an additive element, the TiC solution solution temperature or higher and 1300 ° C. or lower are necessary also in terms of solid solution of Ti having the highest solution temperature among carbides. A more preferable lower limit of the heating temperature is 1200 ° C.

[熱間粗圧延]
粗圧延では、本発明で規定する所定形状の等軸粒の存在割合を確保するため、再結晶オーステナイトの組織制御を行う。粗圧延温度は、以後の仕上げ圧延の温度確保も考慮して900〜1200℃とし、粗圧延でのオーステナイト粒の微細化、繰り返し再結晶化させることで、所定形状の等軸粒の存在割合を制御することができる。粗圧延温度は、より好ましくは900〜1100℃、さらに好ましくは900〜1000℃である。
[Hot rough rolling]
In rough rolling, the microstructure control of recrystallized austenite is performed in order to ensure the proportion of equiaxed grains having a predetermined shape defined in the present invention. The rough rolling temperature is set to 900 to 1200 ° C. in consideration of securing the temperature of the subsequent finish rolling, and the austenite grains in the rough rolling are refined and repeatedly recrystallized so that the proportion of equiaxed grains having a predetermined shape is increased. Can be controlled. The rough rolling temperature is more preferably 900 to 1100 ° C, still more preferably 900 to 1000 ° C.

[熱間仕上げ圧延]
熱間圧延は、仕上げ圧延温度が800℃以上になるように行う。仕上げ圧延温度を低温化しすぎるとフェライト変態が高温で起るようになり、フェライト中の析出炭化物が粗大化するため、一定以上の仕上げ圧延温度が必要である。仕上げ圧延温度は、オーステナイト粒を粗大化してベイナイトの粒径を大きくするため、850℃以上とするのがより好ましい。
[Hot finish rolling]
Hot rolling is performed so that the finish rolling temperature is 800 ° C. or higher. If the finish rolling temperature is too low, ferrite transformation occurs at a high temperature and the precipitated carbides in the ferrite are coarsened, so that a certain finish rolling temperature is required. The finish rolling temperature is more preferably 850 ° C. or higher in order to coarsen austenite grains and increase the grain size of bainite.

[熱間仕上げ圧延の入り側温度と出側温度の差]
熱間仕上げ圧延の入り側温度と出側温度の差を150℃以下とする。この温度差が150℃を超える場合は、仕上げ圧延前の温度が高い場合であり、結晶粒(オーステナイト粒)が粗大になるとともに、仕上げ圧延中に生成する再結晶粒も大きくなりやすい。また入側と出側の温度差が大きい場合は、仕上げ圧延中に生成する再結晶組織が不均一になりやすく、アスペクト比が大きい結晶粒が残存しやすい。これらの理由により、アスペクト比が3以下の結晶粒の個数が全結晶粒の個数の60%未満となる。この温度差は、より好ましくは100℃以下である。
[Difference between entry temperature and exit temperature of hot finish rolling]
The difference between the entry side temperature and the exit side temperature of hot finish rolling is set to 150 ° C. or less. When this temperature difference exceeds 150 ° C., the temperature before the finish rolling is high, the crystal grains (austenite grains) become coarse and the recrystallized grains generated during the finish rolling tend to be large. When the temperature difference between the entry side and the exit side is large, the recrystallized structure generated during finish rolling tends to be non-uniform, and crystal grains having a large aspect ratio tend to remain. For these reasons, the number of crystal grains having an aspect ratio of 3 or less is less than 60% of the total number of crystal grains. This temperature difference is more preferably 100 ° C. or less.

[熱延後の急冷]
上記仕上げ圧延終了後、5s以内に20℃/s以上の冷却速度(急冷速度)で急冷し、580℃以上670℃未満の温度(急冷停止温度)で急冷を停止する。フェライト変態の開始温度を低温化することによりフェライト中に形成される析出炭化物を微細化するためである。冷却速度(急冷速度)が20℃/s未満ではパーライト変態が促進され、または、急冷停止温度が580℃未満ではパーライト変態またはベイナイト変態が促進され、冷間加工性が低下する。一方、急冷停止温度が670℃以上になるとフェライト中の析出炭化物が粗大化してしまい、耐疲労特性が確保できない。急冷停止温度は、好ましくは600〜650℃、さらに好ましくは610〜640℃である。
[Rapid cooling after hot rolling]
After finishing the finish rolling, quenching is performed at a cooling rate (quenching rate) of 20 ° C./s or more within 5 s, and the quenching is stopped at a temperature of 580 ° C. or more and less than 670 ° C. (quenching stop temperature). This is because the precipitation carbide formed in the ferrite is refined by lowering the starting temperature of the ferrite transformation. When the cooling rate (quenching rate) is less than 20 ° C./s, pearlite transformation is promoted, or when the quenching stop temperature is less than 580 ° C., pearlite transformation or bainite transformation is promoted, and cold workability is lowered. On the other hand, when the quenching stop temperature is 670 ° C. or higher, the precipitated carbides in the ferrite are coarsened, and fatigue resistance characteristics cannot be ensured. The quenching stop temperature is preferably 600 to 650 ° C, more preferably 610 to 640 ° C.

[急冷停止後の緩冷]
上記急冷停止後は、5℃/s以上20℃/s未満の冷却速度(緩冷速度)で緩冷する。緩冷速度を5℃/s以上とすることで、熱延中における初析フェライトの形成を抑制し、フェライト中の析出炭化物を適度に微細化させること、熱延板での結晶粒組織を制御することにより、最終鋼板における集合組織形態を制御するためである。緩冷速度が5℃/s未満では、初析フェライトの形成量が多くなり、粗大粒が生成するとともに、最終鋼板で粗大粒が生成し、炭化物の不均一状態を生じ、冷間加工性を劣化させる。
[Slow cooling after rapid cooling stop]
After the rapid cooling stop, it is slowly cooled at a cooling rate (slow cooling rate) of 5 ° C / s or more and less than 20 ° C / s. By setting the slow cooling rate to 5 ° C./s or more, the formation of pro-eutectoid ferrite during hot rolling is suppressed, the precipitated carbides in ferrite are appropriately refined, and the grain structure of the hot rolled sheet is controlled. This is to control the texture form in the final steel sheet. When the slow cooling rate is less than 5 ° C./s, the amount of pro-eutectoid ferrite is increased and coarse grains are produced, and coarse grains are produced in the final steel plate, resulting in a non-uniform state of carbides, resulting in cold workability. Deteriorate.

[緩冷後の急冷、巻取り]
上記緩冷後、550℃超650℃以下で巻き取る。巻取り温度が650℃超では、表面酸化スケールが多く形成され、表面性状が劣化し、一方550℃未満では、マルテンサイトが多く形成され、冷間加工性が低下する。
[Rapid cooling after slow cooling, winding]
After the above-described slow cooling, the film is wound at over 550 ° C and below 650 ° C. When the coiling temperature is higher than 650 ° C., many surface oxide scales are formed and the surface properties are deteriorated. On the other hand, when it is less than 550 ° C., many martensites are formed and cold workability is lowered.

以上のようにして熱延板が製造される。製造された熱延板に対して、さらに球状化焼鈍を施すことで、本発明鋼板が得られる。   A hot-rolled sheet is manufactured as described above. The steel sheet of the present invention is obtained by further subjecting the manufactured hot-rolled sheet to spheroidizing annealing.

[球状化焼鈍]
球状化焼鈍の条件は、通常よりも低温・短時間とすることが必要である。すなわち、加熱温度は705〜740℃とし、保持時間は加熱温度に応じて2〜6時間とし、その後の680℃までの平均冷却速度は0.001〜0.01℃/sとするとよい。加熱温度が高すぎると、炭化物(主としてセメンタイト)が粗大化しやすく、一方加熱温度が低すぎるとパーライトが残存して炭化物のアスペクト比が大きくなりやすい。平均冷却速度が上記規定範囲内になるように途中で等温保持してもよい。平均冷却速度が0.01℃/sを超えると再生パーライトが生成して球状炭化物のアスペクト比が大きくなる。一方平均冷却速度が0.001℃/sを下回ると工業的に時間がかかりすぎるだけでなく、球状炭化物が粗大化しやすくなる。
[Spheroidizing annealing]
The spheroidizing annealing conditions need to be lower and shorter than usual. That is, the heating temperature is 705 to 740 ° C., the holding time is 2 to 6 hours depending on the heating temperature, and the average cooling rate up to 680 ° C. thereafter is 0.001 to 0.01 ° C./s. If the heating temperature is too high, the carbide (mainly cementite) tends to coarsen, whereas if the heating temperature is too low, pearlite remains and the aspect ratio of the carbide tends to increase. You may hold | maintain isothermal on the way so that an average cooling rate may become in the said prescription | regulation range. When the average cooling rate exceeds 0.01 ° C./s, regenerated pearlite is generated and the aspect ratio of the spherical carbide is increased. On the other hand, when the average cooling rate is less than 0.001 ° C./s, not only industrially it takes too much time, but also the spherical carbide is easily coarsened.

以下、本発明を実施例によってさらに詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記表1に示す成分組成の鋼を真空溶解法により溶製し、厚さ120mmのインゴットに鋳造し、これを下記表2に示す条件にて熱間圧延して熱延板を作製した後、さらに球状化焼鈍を施し、球状化材を作製した。なお、いずれの試験においても、熱間圧延における急冷停止後の冷却は10℃/s以下の冷却速度で5〜20s緩冷する条件であった。   After the steel having the component composition shown in Table 1 below was melted by a vacuum melting method and cast into a 120 mm thick ingot, this was hot rolled under the conditions shown in Table 2 below to produce a hot-rolled sheet, Further, spheroidizing annealing was performed to produce a spheroidizing material. In any of the tests, the cooling after the rapid cooling stop in the hot rolling was a condition of slow cooling for 5 to 20 seconds at a cooling rate of 10 ° C./s or less.

真空溶解炉(容量150kg)を用い、表1に示した化学成分を含有する供試鋼を溶製し、150kgのインゴットに鋳造して冷却した。真空溶解炉で供試鋼を溶製するに当っては、Al、REM、Ca以外の元素について成分調整するとともに、C,SiおよびMnから選ばれる少なくとも1種の元素を用いて脱酸して溶鋼の溶存酸素量を調整した。溶存酸素量を調整した溶鋼を1〜10分程度攪拌して溶鋼中の酸化物を浮上分離させることによって溶鋼の全酸素量を調整した。   Using a vacuum melting furnace (capacity 150 kg), a test steel containing chemical components shown in Table 1 was melted, cast into a 150 kg ingot, and cooled. In melting the test steel in a vacuum melting furnace, the components are adjusted for elements other than Al, REM, and Ca, and deoxidized using at least one element selected from C, Si, and Mn. The amount of dissolved oxygen in the molten steel was adjusted. The total amount of oxygen in the molten steel was adjusted by stirring the molten steel in which the amount of dissolved oxygen was adjusted for about 1 to 10 minutes to float and separate oxides in the molten steel.

なお、REMおよびCaを添加する場合は、添加全酸素量を調整した溶鋼に添加することによって成分調整した溶鋼を得た。なお、REMはLaを約25%とCeを約50%含有するミッシュメタルの形態で、CaはNi−Ca合金、またはCa−Si合金、またはFe−Ca圧粉体の形態で、それぞれ添加した。   In addition, when adding REM and Ca, the molten steel which adjusted the component was obtained by adding to the molten steel which adjusted the total amount of added oxygen. REM was added in the form of a misch metal containing about 25% La and about 50% Ce, and Ca was added in the form of Ni-Ca alloy, Ca-Si alloy, or Fe-Ca green compact, respectively. .

そして、得られたインゴットを表2に示す各条件で熱間圧延して所定板厚の熱延上がり板を作製し、さらに球状化焼鈍を施して球状化材を製造した。   And the obtained ingot was hot-rolled on each condition shown in Table 2, and the hot-rolled board of predetermined thickness was produced, and also spheroidizing annealing was performed and the spheroidizing material was manufactured.

このようにして得られた球状化材について、上記[発明を実施するための形態]の項で説明した測定方法により、フェライト結晶粒のアスペクト比、結晶粒径、およびその個数、ならびに、炭化物のアスペクト比、円相当直径、およびその個数を調査した。   For the spheroidized material thus obtained, the aspect ratio, the crystal grain size, and the number of ferrite crystal grains, and the carbides were measured by the measurement method described in the above [Mode for Carrying Out the Invention]. The aspect ratio, equivalent circle diameter, and number of them were investigated.

また、上記各球状化材について、冷間加工性を評価するため、穴広げ率を測定し、穴広げ率が48%以上のものを合格とした。   Moreover, in order to evaluate cold workability about each said spheroidization material, the hole expansion rate was measured and the thing with a hole expansion rate of 48% or more was set as the pass.

また、上記各球状化材から、圧延方向が試験片の長手方向に、板厚方向が試験片の幅方向にそれぞれなるように幅5mmのサブサイズシャルピー試験片(図1参照)を切り出し、Rノッチのある面以外を銅めっきして浸炭させないようにした(すなわち、Rノッチのある面のみ浸炭させるようにした)うえで、以下の条件で浸炭熱処理を施した。   Further, from each of the spheroidized materials, a sub-size Charpy test piece (see FIG. 1) having a width of 5 mm is cut out so that the rolling direction is in the longitudinal direction of the test piece and the plate thickness direction is in the width direction of the test piece. The surface other than the notched surface was plated with copper so as not to be carburized (that is, only the surface having the R notch was carburized), and then carburized heat treatment was performed under the following conditions.

〔浸炭熱処理条件〕
カーボンポテンシャル(CP値)=0.8%のガス雰囲気中で、900℃×2.5h保持後さらに850℃×0.5h保持して浸炭処理を施した後、100℃で油焼き入れをし、その後160℃×2h保持して焼き戻し処理を施した後、空冷した。
[Carburizing heat treatment conditions]
In a gas atmosphere of carbon potential (CP value) = 0.8%, after holding at 900 ° C. × 2.5 h and further carburizing by holding at 850 ° C. × 0.5 h, oil quenching was performed at 100 ° C. Then, after holding at 160 ° C. for 2 hours and performing a tempering treatment, it was air-cooled.

<浸炭熱処理後の靱性>
そして、浸炭熱処理後の靱性を評価するため、上記各試験片についてシャルピー衝撃試験を実施し、衝撃値50J/cm2以上を合格とした。
<Toughness after carburizing heat treatment>
And in order to evaluate the toughness after carburizing heat processing, the Charpy impact test was implemented about each said test piece, and the impact value of 50 J / cm2 or more was set as the pass.

<浸炭熱処理後の内部硬さ>
また、浸炭熱処理後の材料強度を評価するため、内部硬さとして、ビッカース硬さ試験機を用いて、測定位置:上記各シャルピー試験片の長手方向端面から15mm位置の断面中央部を、荷重:10kg、測定回数:5回の条件で、ビッカース硬さ(Hv)を測定し、300Hv以上のものを合格とした。
<Internal hardness after carburizing heat treatment>
Further, in order to evaluate the material strength after the carburizing heat treatment, as the internal hardness, using a Vickers hardness tester, the measurement position: the central portion of the cross section at a position of 15 mm from the end surface in the longitudinal direction of each Charpy test piece, the load: Vickers hardness (Hv) was measured under the conditions of 10 kg, number of measurements: 5 times, and those with 300 Hv or more were regarded as acceptable.

これらの測定結果を下記表3に示す。   The measurement results are shown in Table 3 below.

上記表3に示すように、鋼No.1、2、6〜20はいずれも、本発明の成分組成規定の要件を満足する鋼種を用い、推奨の熱間圧延条件および球状化焼鈍条件で製造した結果、本発明の組織規定の要件を充足する発明鋼であり、穴広げ率ならびに浸炭熱処理後の衝撃値および内部硬さはすべて合格基準を満たしており、良好な冷間加工性を確保しつつ、浸炭熱処理後は所定の靱性と内部硬さを示す浸炭用鋼板が得られることが確認できた。   As shown in Table 3 above, Steel No. 1, 2, and 6 to 20 are all manufactured using recommended steel rolling conditions and spheroidizing annealing conditions using steel types that satisfy the requirements of the compositional composition of the present invention. It is a satisfactory invention steel, and the hole expansion ratio, impact value and internal hardness after carburizing heat treatment all satisfy the acceptance criteria, and after securing the good toughness and internal toughness while ensuring good cold workability It was confirmed that a carburized steel sheet showing hardness was obtained.

これに対し、鋼No.3〜5、21〜29は本発明で規定する成分組成および組織の要件のうち少なくともいずれかを満足しない比較鋼であり、穴広げ率ならびに浸炭熱処理後の靱性および内部硬さのうち少なくともいずれかが合格基準を満たしていない。   On the other hand, Steel No. 3 to 5, 21 to 29 are comparative steels that do not satisfy at least one of the component composition and the structure requirements defined in the present invention, and at least one of the hole expansion ratio, toughness and internal hardness after carburizing heat treatment Does not meet the acceptance criteria.

例えば、鋼No.3は、成分組成の要件は満たしているものの、熱延前の加熱温度が推奨範囲を外れて低すぎるため、熱延板の段階でパーライトが過剰に形成され、その結果、球状化材の段階でフェライト結晶粒が偏平化し、穴広げ性が劣っている。   For example, steel no. No. 3, although the requirements of the component composition are satisfied, the heating temperature before hot rolling is too low outside the recommended range, so excessive pearlite is formed at the stage of hot rolling, and as a result, the stage of spheroidizing material The ferrite crystal grains are flattened and the hole expandability is inferior.

また、鋼No.4は、成分組成の要件は満たしているものの、熱延後の板厚が規定範囲を外れて大きすぎるため、熱延板の段階でフェライトが過剰に形成され、その結果、球状化材の段階でフェライト結晶粒が粗大化し、穴広げ性が劣っている。   Steel No. No. 4, although the requirements of the component composition are satisfied, the plate thickness after hot rolling is too large outside the specified range, so that ferrite is excessively formed at the stage of hot rolling, and as a result, the stage of spheroidizing material The ferrite crystal grains are coarsened and the hole expandability is inferior.

また、鋼No.5は、成分組成の要件は満たしているものの、仕上げ圧延における入側温度と出側温度の差が推奨範囲を外れて大きすぎ、フェライト結晶粒が偏平化し、穴広げ性が劣っている。   Steel No. No. 5 satisfies the requirements for the component composition, but the difference between the entry side temperature and the exit side temperature in the finish rolling is too large outside the recommended range, the ferrite crystal grains are flattened, and the hole expandability is inferior.

また、鋼No.21(鋼種q)は、熱延条件は推奨範囲にあるものの、C含有量が低すぎるため、熱延板の段階でフェライトが過剰に形成され、浸炭熱処理後の内部硬さが劣っている。   Steel No. Although 21 (steel type q) has a hot rolling condition in the recommended range, since the C content is too low, ferrite is excessively formed at the stage of hot rolling and the internal hardness after carburizing heat treatment is inferior.

一方、鋼No.22(鋼種r)は、熱延条件は推奨範囲にあるものの、C含有量が高すぎるため、熱延板の段階でパーライトが過剰に形成されて、球状化材の段階でフェライト結晶粒が偏平化し、穴広げ性と浸炭熱処理後の靱性が劣っている。   On the other hand, Steel No. 22 (steel grade r), although the hot rolling conditions are in the recommended range, the C content is too high, so excessive pearlite is formed at the hot-rolled sheet stage, and the ferrite crystal grains are flattened at the spheroidizing stage. The hole expandability and toughness after carburizing heat treatment are inferior.

また、鋼No.23(鋼種s)は、熱延条件は推奨範囲にあるものの、Mn含有量が低すぎ、フェライト結晶粒が偏平化し、浸炭熱処理後の内部硬さが劣っている。   Steel No. Although No. 23 (steel type s) has a hot rolling condition in the recommended range, the Mn content is too low, the ferrite crystal grains are flattened, and the internal hardness after carburizing heat treatment is inferior.

一方、鋼No.24(鋼種t)は、熱延条件は推奨範囲にあるものの、Mn含有量が高すぎ、熱延板の段階でフェライトの形成が不足する一方でパーライトが過剰に形成され、球状化材の段階で穴広げ性が劣っている。   On the other hand, Steel No. 24 (steel grade t), although the hot rolling conditions are in the recommended range, the Mn content is too high, and ferrite formation is insufficient at the hot-rolled sheet stage, while pearlite is excessively formed, and the spheroidizing material stage. The hole expandability is inferior.

また、鋼No.25(鋼種u)は、熱延条件は推奨範囲にあるものの、Al含有量が低すぎ、穴広げ性が劣っているとともに、溶製段階で脱酸不足により酸化物系介在物が増加すると推定されることから靱性も劣っている。   Steel No. No. 25 (steel grade u), although the hot rolling conditions are in the recommended range, the Al content is too low, the hole expandability is inferior, and it is estimated that oxide inclusions increase due to insufficient deoxidation at the melting stage. Therefore, toughness is also inferior.

一方、鋼No.26(鋼種v)は、熱延条件は推奨範囲にあるものの、Al含有量が高すぎ、穴広げ性が劣っているとともに、固溶Alが脆化要因となって靱性も劣化している。   On the other hand, Steel No. Although No. 26 (steel type v) has a hot rolling condition in the recommended range, the Al content is too high, the hole expandability is inferior, and the solid solution Al becomes a cause of embrittlement and the toughness is also deteriorated.

また、鋼No.27(鋼種w)は、熱延条件は推奨範囲にあるものの、N含有量が高すぎ、穴広げ性が劣っているとともに、固溶Nが脆化要因となって靱性も劣化している。   Steel No. In No. 27 (steel type w), although the hot rolling conditions are in the recommended range, the N content is too high, the hole expandability is inferior, and the solid solution N becomes a brittle factor and the toughness is also deteriorated.

鋼No.28は、球状化焼鈍の加熱保持時間が長すぎるため、炭化物が粗大化して、穴広げ性が劣っている。   Steel No. In No. 28, since the heating and holding time of the spheroidizing annealing is too long, the carbide is coarsened and the hole expandability is inferior.

また、鋼No.29は、球状化焼鈍の加熱温度が高すぎるとともに加熱保持後の冷却速度が大きすぎるため、再生パーライトが生成して炭化物が偏平化し、穴広げ性が劣っている。   Steel No. In No. 29, since the heating temperature of spheroidizing annealing is too high and the cooling rate after heating and holding is too high, regenerated pearlite is generated, the carbide is flattened, and the hole expandability is poor.

以上より、本発明の適用性が確認できた。
From the above, the applicability of the present invention was confirmed.

Claims (8)

板厚が2〜10mmであり、
成分組成が、
質量%で、
C :0.05〜0.30%、
Mn:0.03〜3.0%、
Al:0.015〜0.1%、
N :0.003〜0.030%をそれぞれ含み、
残部は鉄および不可避的不純物からなり、
鋼組織が、
フェライトと炭化物からなり、
前記フェライトについて、長軸/短軸で定義されるアスペクト比が3以下のフェライト結晶粒の個数が全フェライト結晶粒の個数の60%以上であるとともに、前記全結晶粒の平均結晶粒径が3〜50μmの範囲であり、かつ、
前記炭化物について、前記長軸/短軸で定義されるアスペクト比が2以下の炭化物の個数が全炭化物の個数の80%以上であるとともに、前記全炭化物の平均円相当直径が0.6μm以下であり、
上記成分組成を有する原料鋼を溶解、鍛造してスラブとし、
このスラブを加熱、熱間粗圧延、仕上げ圧延して熱延板とし、
上記熱延板に球状化焼鈍を施して得られる
ことを特徴とする冷間加工性と浸炭熱処理後の靱性に優れる浸炭用鋼板。
The plate thickness is 2 to 10 mm,
Ingredient composition
% By mass
C: 0.05 to 0.30%
Mn: 0.03 to 3.0%,
Al: 0.015-0.1%
N: each containing 0.003 to 0.030%
The balance consists of iron and inevitable impurities,
Steel structure
Made of ferrite and carbide,
Regarding the ferrite, the number of ferrite crystal grains having an aspect ratio defined by the major axis / minor axis of 3 or less is 60% or more of the total number of ferrite crystal grains, and the average crystal grain size of all the crystal grains is 3 In the range of ~ 50 μm, and
For the carbide, the number of carbides having an aspect ratio defined by the major axis / minor axis of 2 or less is 80% or more of the number of all carbides, and the average equivalent circle diameter of all the carbides is 0.6 μm or less. Yes,
Melting, forging raw steel having the above component composition into a slab,
This slab is heated, hot rough rolled, and finish rolled to form a hot rolled sheet,
A carburized steel sheet excellent in cold workability and toughness after carburizing heat treatment, obtained by subjecting the hot-rolled sheet to spheroidizing annealing.
成分組成が、質量%で、さらに、
Cr:0%超3.0%以下、
Mo:0%超1.0%以下、
Ni:0%超3.0%以下よりなる群から選択される少なくとも1種
を含むものである請求項1に記載の浸炭用鋼板。
Ingredient composition is mass%, and
Cr: more than 0% and 3.0% or less,
Mo: more than 0% and 1.0% or less,
The steel plate for carburization according to claim 1, comprising at least one selected from the group consisting of Ni: more than 0% and not more than 3.0%.
前記不可避的不純物のうち、Si:0.5%以下、P:0.030%以下、S:0.035%以下である請求項1または2に記載の浸炭用鋼板。   The steel plate for carburizing according to claim 1 or 2, wherein among the inevitable impurities, Si: 0.5% or less, P: 0.030% or less, and S: 0.035% or less. 成分組成が、質量%で、さらに、
Cu:0%超2.0%以下、
Co:0%超5%以下よりなる群から選ばれる少なくとも1種
を含むものである請求項1〜3のいずれか1項に記載の浸炭用鋼板。
Ingredient composition is mass%, and
Cu: more than 0% and 2.0% or less,
The steel plate for carburizing according to any one of claims 1 to 3, which includes at least one selected from the group consisting of Co: more than 0% and not more than 5%.
成分組成が、質量%で、さらに、
V:0%超0.5%以下、
Ti:0%超0.1%以下、
Nb:0%超0.1%以下よりなる群から選ばれる少なくとも1種
を含むものである請求項1〜4のいずれか1項に記載の浸炭用鋼板。
Ingredient composition is mass%, and
V: more than 0% and 0.5% or less,
Ti: more than 0% and 0.1% or less,
The steel plate for carburizing according to any one of claims 1 to 4, comprising at least one selected from the group consisting of Nb: more than 0% and 0.1% or less.
成分組成が、質量%で、さらに、
Ca:0%超0.08%以下、
Zr:0%超0.08%以下よりなる群から選ばれる少なくとも1種
を含むものである請求項1〜5のいずれか1項に記載の浸炭用鋼板。
Ingredient composition is mass%, and
Ca: more than 0% and 0.08% or less,
The steel plate for carburizing according to any one of claims 1 to 5, comprising at least one selected from the group consisting of Zr: more than 0% and not more than 0.08%.
成分組成が、質量%で、さらに、
Sb:0%超0.02%以下
を含むものである請求項1〜6のいずれか1項に記載の浸炭用鋼板。
Ingredient composition is mass%, and
The steel plate for carburizing according to any one of claims 1 to 6, comprising Sb: more than 0% and 0.02% or less.
成分組成が、質量%で、さらに、
REM:0%超0.05%以下、
Mg:0%超0.02%以下、
Li:0%超0.02%以下、
Pb:0%超0.5%以下、
Bi:0%超0.5%以下よりなる群から選ばれる少なくとも1種
を含むものである請求項1〜7のいずれか1項に記載の浸炭用鋼板。
Ingredient composition is mass%, and
REM: more than 0% and 0.05% or less,
Mg: more than 0% and 0.02% or less,
Li: more than 0% and 0.02% or less,
Pb: more than 0% and 0.5% or less,
The steel plate for carburizing according to any one of claims 1 to 7, which contains at least one selected from the group consisting of Bi: more than 0% and 0.5% or less.
JP2018154250A 2018-08-20 2018-08-20 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment Ceased JP2019011510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018154250A JP2019011510A (en) 2018-08-20 2018-08-20 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018154250A JP2019011510A (en) 2018-08-20 2018-08-20 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015051444A Division JP2016169433A (en) 2015-03-13 2015-03-13 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Publications (1)

Publication Number Publication Date
JP2019011510A true JP2019011510A (en) 2019-01-24

Family

ID=65226708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018154250A Ceased JP2019011510A (en) 2018-08-20 2018-08-20 Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment

Country Status (1)

Country Link
JP (1) JP2019011510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057650A (en) * 2019-05-20 2019-07-26 常德力元新材料有限责任公司 The evaluation method of steel band crystal grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110057650A (en) * 2019-05-20 2019-07-26 常德力元新材料有限责任公司 The evaluation method of steel band crystal grain

Similar Documents

Publication Publication Date Title
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP6068314B2 (en) Hot-rolled steel sheet with excellent cold workability and surface hardness after carburizing heat treatment
KR101528084B1 (en) High strength hot rolled steel sheet having excellent blanking workability and method for manufacturing the same
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP6143355B2 (en) Hot-rolled steel sheet with excellent drawability and surface hardness after carburizing heat treatment
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
JP6065120B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2014148739A (en) Hot rolled steel sheet excellent in cold workability and surface hardness after processing
WO2016043273A1 (en) Hot-rolled steel sheet
KR101892526B1 (en) High-carbon hot-rolled steel sheet and method for manufacturing the same
JP2015017283A (en) High carbon hot-rolled steel sheet excellent in hardenability and workability, and method for manufacturing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2011225938A (en) High strength thin steel sheet having excellent hole expansibility and local ductility and method for producing the same
KR20200039611A (en) Carburizing steel sheet, and manufacturing method of carburizing steel sheet
JP6058508B2 (en) Hot-rolled steel sheet with excellent cold workability, surface properties and hardness after processing
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP6284813B2 (en) Hot-rolled steel sheet with excellent cold workability and excellent hardness after processing
JP6068291B2 (en) Soft high carbon steel sheet
JP2005314727A (en) High carbon steel sheet having excellent workability, hardenability and toughness
JP6068172B2 (en) Soft high carbon steel sheet
CN111655893B (en) High carbon hot-rolled steel sheet and method for producing same
JP4196485B2 (en) Machine structural steel with excellent machinability, cold forgeability and hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20200128