JP2009242916A - Wire steel or bar steel in which spheroidizing is omissible - Google Patents

Wire steel or bar steel in which spheroidizing is omissible Download PDF

Info

Publication number
JP2009242916A
JP2009242916A JP2008093527A JP2008093527A JP2009242916A JP 2009242916 A JP2009242916 A JP 2009242916A JP 2008093527 A JP2008093527 A JP 2008093527A JP 2008093527 A JP2008093527 A JP 2008093527A JP 2009242916 A JP2009242916 A JP 2009242916A
Authority
JP
Japan
Prior art keywords
steel
less
deformation resistance
ferrite
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093527A
Other languages
Japanese (ja)
Other versions
JP5357439B2 (en
Inventor
Toru Imamura
徹 今村
Masamichi Chiba
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008093527A priority Critical patent/JP5357439B2/en
Publication of JP2009242916A publication Critical patent/JP2009242916A/en
Application granted granted Critical
Publication of JP5357439B2 publication Critical patent/JP5357439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wire steel or a bar steel that has excellent cold workability even when heat treatment such as spheroidizing is omitted and the steel is in a hot-rolled state and that can be manufactured by actual equipment, and particularly, to provide a wire steel or a bar steel can reduce dynamic strain ageing and reduce deformation resistance of steel in a process heat generation area even when the steel has a high deformation resistance at room temperature. <P>SOLUTION: The steel includes N, B and Ti satisfying an expression (1): -0.0060≤[N]-1.3×[B]-0.29×[Ti]≤0.0020, wherein [ ] represents the content of each element, and the balance iron and unavoidable impurities. The steel has a mixture structure of ferrite and pearlite, in which grain numbers of the ferrite present in a range from the center of the steel to a position of D/8, wherein D is the diameter of the steel, are from 6 to 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、球状化焼鈍を省略しても冷間加工性が良好な線状鋼または棒状鋼、および該鋼を用いて得られる機械部品に関するものである。   The present invention relates to a linear steel or rod-shaped steel having good cold workability even when spheroidizing annealing is omitted, and a machine part obtained using the steel.

ボルトやナット、ねじ等の機械部品や電装部品は、圧延して得られた線状鋼(線材)や棒状鋼(棒鋼)を酸洗して脱スケールし、例えば非りん被膜被覆処理した後、冷間引抜き加工により加工率10〜40%程度で伸線してから冷間加工を行うのが一般的であった。冷間加工は、熱間加工や切削加工に比べて生産性が高いうえ、鋼材の歩留まりも良好なことから汎用されている。しかし上記方法は、冷間加工時の加工率を高くして加工荷重を大きくすると、加工に用いる工具の寿命が短くなるという問題があった。また、上記線状鋼や棒状鋼の延性が低い場合には、冷間加工時に割れが発生することがあった。   Machine parts and electrical parts such as bolts, nuts and screws are pickled and descaled by rolling the linear steel (wire material) and bar steel (bar steel) obtained by rolling. Generally, cold drawing is performed after drawing at a processing rate of about 10 to 40% by cold drawing. Cold working is widely used because it is more productive than hot working or cutting, and the yield of steel is good. However, the above-described method has a problem that the life of a tool used for processing is shortened when the processing rate during cold processing is increased to increase the processing load. Moreover, when the ductility of the said linear steel and rod-shaped steel was low, the crack might generate | occur | produce at the time of cold work.

そこで、冷間加工時の加工荷重が大きい場合や、冷間加工時に割れが発生する場合には、冷間加工前に、低温焼鈍や焼鈍、球状化焼鈍等の熱処理が実施されている。熱処理を行なうことで、鋼材を軟化し、且つ延性を高めた状態で冷間加工できる。   Therefore, when the working load during cold working is large or when cracks occur during cold working, heat treatment such as low temperature annealing, annealing, spheroidizing annealing, etc. is performed before cold working. By performing the heat treatment, it is possible to cold work in a state where the steel material is softened and the ductility is increased.

ところが上記熱処理は、数時間〜数十時間の長時間に亘って行なう必要があるため、生産性の向上や省エネルギー対策、ひいてはコスト低減を目的として、球状化焼鈍等の熱処理を省略できる線状鋼または棒状鋼の開発が切望されている。   However, since the above heat treatment needs to be performed for a long time of several hours to several tens of hours, a linear steel that can omit heat treatment such as spheroidizing annealing for the purpose of improving productivity, energy saving measures, and cost reduction. Or the development of bar steel is eagerly desired.

また、冷間加工に使用される鋼材は、冷間加工性に優れていることが要求される。具体的には、冷間加工時の変形抵抗が小さく(即ち、加工荷重が小さく)、且つ延性(伸びや絞り)が高いことが要求される。鋼の変形抵抗が大きくなると、冷間加工時に用いる工具の寿命が低下してしまい、一方、延性が低くなると、冷間加工時に割れが発生し易くなり、不良品発生の原因になる。特に、冷間加工を行うと、加工発熱が起こるため、鋼の変形抵抗は、通常、上昇する。   Moreover, the steel material used for cold work is required to be excellent in cold workability. Specifically, it is required that the deformation resistance during cold working is small (that is, the working load is small) and the ductility (elongation and drawing) is high. When the deformation resistance of steel increases, the life of the tool used during cold working decreases, whereas when the ductility decreases, cracks are likely to occur during cold working, causing defective products. In particular, when cold working is performed, processing heat is generated, so that the deformation resistance of steel usually increases.

球状化焼鈍等の熱処理を省略し、熱間圧延ままの状態でも冷間加工性に優れた線状鋼または棒状鋼を提供する技術を本出願人は特許文献1や特許文献2に提案している。   The present applicant proposes a technique for providing a linear steel or a rod-like steel that is excellent in cold workability even in a hot-rolled state while omitting heat treatment such as spheroidizing annealing in Patent Document 1 and Patent Document 2. Yes.

特許文献1と特許文献2には、室温での鋼の変形抵抗と加工発熱領域での鋼の変形抵抗の両方の上昇を抑制することにより、鋼の冷間加工性を改善するという思想に基づき、Ti、Nb、V等のようなフェライト結晶粒を微細化する元素を添加するのではなく、フェライト結晶粒を微細化させない(むしろ粗大化させる)BやZrを添加することにより固溶N量を制御して鋼の冷間加工性を高める技術を開示している。
特開2001−303189号公報 特開2001−342544号公報
Patent Literature 1 and Patent Literature 2 are based on the idea of improving the cold workability of steel by suppressing an increase in both the deformation resistance of steel at room temperature and the deformation resistance of steel in the processing heat generation region. Instead of adding an element that refines ferrite crystal grains such as Ti, Nb, V, etc., the amount of solid solution N is increased by adding B or Zr that does not refine (rather coarsen) the ferrite crystal grains. Discloses a technique for improving the cold workability of steel by controlling the temperature.
JP 2001-303189 A JP 2001-342544 A

上記特許文献1や特許文献2では、ZrとBとNの関係を適切に制御することによって、球状化焼鈍等の熱処理を省略した場合における鋼の冷間加工性を改善することができた。しかし上記特許文献1や特許文献2では、主要元素としてZrを添加していたため、実験室レベルでは良好な結果が得られていたものの、製造スケールを実機レベルに拡大すると、安定して所期の特性が得られないことがあった。   In the said patent document 1 and patent document 2, the cold workability of steel in the case where heat processing, such as spheroidizing annealing, was abbreviate | omitted by controlling appropriately the relationship between Zr, B, and N was able to be improved. However, in Patent Document 1 and Patent Document 2 described above, since Zr was added as a main element, good results were obtained at the laboratory level. However, when the production scale was expanded to the actual machine level, the expected value was stably obtained. Some characteristics could not be obtained.

ところで、加工発熱領域(例えば、300℃程度)での鋼の変形抵抗は、室温での鋼の変形抵抗にある程度依存し、室温での鋼の変形抵抗が大きい場合は、加工発熱領域での鋼の変形抵抗も大きくなる傾向がある。この室温での鋼の変形抵抗は、鋼の成分組成(特に、C、Si、Mn)に大きく影響を受ける。そのため室温での鋼の変形抵抗が大きい場合は、冷間加工性が悪くなる。そこで室温での鋼の変形抵抗が大きい場合であっても、加工発熱領域での鋼の変形抵抗を低減して冷間加工性を改善することが望まれている。   By the way, the deformation resistance of steel in the processing heat generation region (for example, about 300 ° C.) depends to some extent on the deformation resistance of steel at room temperature. There is also a tendency for the deformation resistance to increase. The deformation resistance of steel at room temperature is greatly influenced by the composition of steel (particularly, C, Si, Mn). Therefore, when the deformation resistance of steel at room temperature is large, cold workability is deteriorated. Therefore, even when the deformation resistance of steel at room temperature is large, it is desired to improve the cold workability by reducing the deformation resistance of steel in the processing heat generation region.

本発明は、このような状況に鑑みて成されたものであり、その目的は、球状化焼鈍処理等の熱処理を省略し、熱間圧延のままの状態であっても冷間加工性に優れた線状鋼または棒状鋼であって、実機を用いて製造することができる線状鋼または棒状鋼を提供することにある。特に、本発明では、室温での鋼の変形抵抗が大きい場合であっても、動的ひずみ時効を低減でき、加工発熱領域での鋼の変形抵抗を小さくできる線状鋼または棒状鋼を提供することにある。本発明の他の目的は、上記線状鋼または棒状鋼を用いて得られるボルトやナットなどの機械部品を提供することにある。   The present invention has been made in view of such a situation, and the purpose thereof is to omit heat treatment such as spheroidizing annealing, and is excellent in cold workability even in a state of hot rolling. It is another object of the present invention to provide a linear steel or a bar steel that can be manufactured using an actual machine. In particular, the present invention provides a linear steel or a rod-like steel that can reduce dynamic strain aging even when the deformation resistance of the steel at room temperature is large and can reduce the deformation resistance of the steel in the processing heat generation region. There is. Another object of the present invention is to provide mechanical parts such as bolts and nuts obtained by using the linear steel or bar steel.

上記課題を解決することのできた本発明に係る線状鋼または棒状鋼は、C:0.05〜0.35%(質量%の意味。以下同じ。)、Si:0.3%以下(0%を含まない)、Mn:0.15〜1.8%、P:0.015%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Cr:0.01〜0.5%、sol.Al:0.01〜0.06%、N:0.0005〜0.006%、B:0.0003〜0.0015%、Ti:0.003〜0.030%を満足し、且つNとBとTiが下記(1)式を満足し、残部が鉄および不可避不純物からなる鋼であり、該鋼は、フェライトとパーライトの混合組織を有し、この鋼の直径をDとしたとき、鋼の中心からD/8位置までの範囲に存在するフェライトの粒度番号が6〜12番である点に要旨を有する。
−0.0060≦[N]−1.3×[B]−0.29×[Ti]≦0.0020
(式中、[ ]は、各元素の含有量を表す。)
本発明には、上記線状鋼または棒状鋼を用いて得られる機械部品も包含される。
The linear steel or rod-shaped steel according to the present invention that has solved the above problems is C: 0.05 to 0.35% (meaning mass%, the same shall apply hereinafter), Si: 0.3% or less (0 %), Mn: 0.15 to 1.8%, P: 0.015% or less (not including 0%), S: 0.02% or less (not including 0%), Cr: 0 .01-0.5%, sol. Al: 0.01-0.06%, N: 0.0005-0.006%, B: 0.0003-0.0015%, Ti: 0.003-0.030% are satisfied, and N B and Ti satisfy the following formula (1), and the balance is steel composed of iron and inevitable impurities. The steel has a mixed structure of ferrite and pearlite, and when the diameter of the steel is D, the steel The gist of the present invention is that the grain size number of the ferrite present in the range from the center of the steel to the D / 8 position is 6-12.
−0.0060 ≦ [N] −1.3 × [B] −0.29 × [Ti] ≦ 0.0020
(In the formula, [] represents the content of each element.)
The present invention also includes a machine part obtained by using the linear steel or rod-shaped steel.

本発明によれば、上記特許文献1や特許文献2で添加していたZrの代わりにTiを用いることにより製造スケールを実機レベルに拡大しても安定して球状化焼鈍処理等の熱処理が省略可能な冷間加工性に優れた線状鋼または棒状鋼を提供できる。また、本発明によれば、N、BおよびTiの含有バランスを適切に制御することによって、室温での鋼の変形抵抗が大きい場合であっても、動的ひずみ時効を低減して加工発熱領域での鋼の変形抵抗を小さくすることができる。   According to the present invention, by using Ti instead of Zr added in Patent Document 1 and Patent Document 2 described above, heat treatment such as spheroidizing annealing is stably eliminated even when the production scale is expanded to the actual machine level. It is possible to provide a linear steel or a bar steel excellent in possible cold workability. In addition, according to the present invention, by appropriately controlling the balance of N, B, and Ti, even when the deformation resistance of steel at room temperature is large, the dynamic strain aging is reduced and the processing heat generation region The deformation resistance of steel at can be reduced.

本発明者らが、上記特許文献1や特許文献2で提案した鋼を実機レベルで製造すると、所期の特性が安定して得られないことが判明した。この理由について更に検討したところ、Zrが酸化物を形成し易い点に原因があることが分かった。即ち、1500℃前後の溶鋼中では、Zrが酸化物を形成するときの自由エネルギーは、窒化物を形成するときの自由エネルギーよりも小さく、Zrは、O(酸素)と結合して、窒化物よりも酸化物を形成し易くなっていた。更にZrは、他の酸化物(例えば、Alの酸化物)から酸素を奪ってZr酸化物を形成することもある。実験室レベルでは、溶鋼に含まれるO量が少ないため、酸化物を形成するZrも少なくなり、固溶Nの制御に有効に寄与するZrを確保できていたと考えられる。しかし製造スケールを実機レベルに拡大すると、溶鋼に含まれるO量が多くなるため、Zrは酸化物として消費されてしまい、固溶Nの制御に有効に寄与することが難しいと考えられる。   When the present inventors manufactured the steel proposed in Patent Document 1 and Patent Document 2 at the actual machine level, it was found that the desired characteristics could not be obtained stably. Further examination of this reason revealed that the cause is that Zr easily forms an oxide. That is, in molten steel at around 1500 ° C., the free energy when Zr forms an oxide is smaller than the free energy when forming a nitride, and Zr combines with O (oxygen) to form a nitride. It was easier to form oxides. Further, Zr may deprive oxygen from other oxides (for example, Al oxide) to form Zr oxide. At the laboratory level, since the amount of O contained in the molten steel is small, the amount of Zr that forms oxide is also reduced, and it is considered that Zr that effectively contributes to the control of solute N can be secured. However, when the production scale is expanded to the actual machine level, the amount of O contained in the molten steel increases, so that Zr is consumed as an oxide, and it is considered difficult to effectively contribute to the control of the solute N.

そこで本発明者らは、球状化焼鈍等の熱処理を省略した場合でも、冷間加工時の動的ひずみ時効を抑制し、加工発熱領域における鋼の変形抵抗を小さくして良好な冷間加工性を示す線状鋼または棒状鋼を実機レベルで製造して提供するために鋭意検討を重ねてきた。その結果、Zrの代わりにTiを添加すると共に、N、B、Tiの含有量バランスを適切に制御すれば、実機でも所望の線状鋼または棒状鋼を製造できることを見出し、本発明を完成した。   Therefore, the present inventors suppressed dynamic strain aging during cold working even when heat treatment such as spheroidizing annealing was omitted, and reduced the deformation resistance of the steel in the work heat generation region, resulting in good cold workability. In order to produce and provide a linear steel or a bar-shaped steel at the actual machine level, intensive studies have been made. As a result, it was found that if Ti is added instead of Zr and the content balance of N, B, and Ti is appropriately controlled, the desired linear steel or rod-like steel can be produced even with an actual machine, and the present invention has been completed. .

本発明で添加するTiは、Zrに比べて酸化物を形成し難い元素であり、しかも他の酸化物を還元してTi酸化物になることもない。従ってTiを添加すると、効率良くTi窒化物を形成し、固溶N量を安定して調整することができ、実機レベルでも鋼の冷間加工性を向上させることができる。   Ti added in the present invention is an element that hardly forms an oxide as compared with Zr, and does not reduce other oxides to become a Ti oxide. Therefore, when Ti is added, Ti nitride can be efficiently formed, the amount of dissolved N can be stably adjusted, and the cold workability of steel can be improved even at the actual machine level.

まず、本発明を特徴付けるNとBとTiの含有量バランスについて説明する。   First, the content balance of N, B, and Ti characterizing the present invention will be described.

本発明の鋼は、N、B、Ti量が下記(1)式の関係を満足することが重要である。式中、[ ]は、各元素の含有量(質量%)を意味している。なお、以下では、説明の便宜上、(1)式の中辺を「Z値」と呼ぶ[下記(2)式参照]。
−0.0060≦[N]−1.3×[B]−0.29×[Ti]≦0.0020 ・・・(1)
Z値=[N]−1.3×[B]−0.29×[Ti] ・・・(2)
In the steel of the present invention, it is important that the amounts of N, B and Ti satisfy the relationship of the following formula (1). In the formula, [] means the content (% by mass) of each element. In the following, for convenience of explanation, the middle side of the equation (1) is referred to as “Z value” [see the following equation (2)].
−0.0060 ≦ [N] −1.3 × [B] −0.29 × [Ti] ≦ 0.0020 (1)
Z value = [N] −1.3 × [B] −0.29 × [Ti] (2)

上記(1)式の上限値は、添加されるN、B、Ti量を考慮し、固溶Nが過剰にならないように設定した。即ち、Z値が0.0020を超える場合は、BとTi量に対してN量が過剰になるため、過剰なNが鋼中に固溶Nとして存在し、冷間加工時に動的ひずみ時効が起って加工発熱領域における鋼の変形抵抗が増大し、冷間加工性が悪くなる。また、冷間加工時に割れが発生し易くなる。   The upper limit of the above formula (1) was set so that the amount of solute N was not excessive in consideration of the amounts of N, B and Ti added. That is, when the Z value exceeds 0.0020, the amount of N is excessive with respect to the amount of B and Ti, so excess N exists as solid solution N in the steel, and dynamic strain aging occurs during cold working. Occurs, the deformation resistance of the steel in the heat generation region increases, and the cold workability deteriorates. In addition, cracks are likely to occur during cold working.

従って本発明の鋼は、上記Z値が0.0020以下となるようにN、B、Tiの含有量を制御する。Z値は、好ましくは0.0015以下であり、より好ましくは0.001以下である。   Therefore, the steel of the present invention controls the contents of N, B and Ti so that the Z value is 0.0020 or less. Z value becomes like this. Preferably it is 0.0015 or less, More preferably, it is 0.001 or less.

一方、上記(1)式の下限値は、添加されるN、B、Ti量を考慮し、BとTiによる固溶N固定化作用を有効に発揮させるために設定した。即ち、Z値が−0.0060を下回ると、BやTiが過剰となり、鋼中に固溶BやTiCが生成し、冷間加工時に割れが発生し易くなる。また、特にTiCは、析出強化を起こし、冷間加工時の加工発熱領域における鋼の変形抵抗を大きくする原因となる。   On the other hand, the lower limit value of the above formula (1) is set in order to effectively exhibit the solid solution N fixing action by B and Ti in consideration of the amount of added N, B and Ti. That is, when the Z value is less than -0.0060, B and Ti become excessive, so that solute B and TiC are generated in the steel, and cracks are likely to occur during cold working. In particular, TiC causes precipitation strengthening, which increases the deformation resistance of steel in the heat generation region during cold working.

従って本発明の鋼は、上記Z値が−0.0060以上となるようにN、B、Tiの含有量を制御する。Z値は、好ましくは−0.0055以上であり、より好ましくは−0.0050以上である。   Therefore, in the steel of the present invention, the contents of N, B, and Ti are controlled so that the Z value is −0.0060 or more. The Z value is preferably −0.0055 or more, more preferably −0.0050 or more.

本発明の鋼は、NとBとTi量の関係が、上記(1)式の関係を満足するものであるが、これらNとBとTi量は、下記の範囲を満足している必要がある。   In the steel of the present invention, the relationship between the amount of N, B and Ti satisfies the relationship of the above formula (1), but the amount of N, B and Ti must satisfy the following range. is there.

[N:0.0005〜0.006%]
Nは、フェライト中に固溶し、冷間加工時の動的ひずみ時効発生の原因となるので、できるだけ少ない方が好ましい。従って本発明では、別途添加するB量とTi量を考慮して上限を0.006%に定めた。好ましくは0.0055%以下であり、より好ましくは0.005%以下である。Nの下限は特に限定されないが、0.0005%未満にまで低減するには、工業上コストに見合う生産が困難となる。好ましくは0.001%以上、より好ましくは0.002%以上である。
[N: 0.0005 to 0.006%]
N is preferably dissolved as little as possible because it dissolves in ferrite and causes dynamic strain aging during cold working. Therefore, in the present invention, the upper limit is set to 0.006% in consideration of the separately added B amount and Ti amount. Preferably it is 0.0055% or less, More preferably, it is 0.005% or less. The lower limit of N is not particularly limited, but in order to reduce it to less than 0.0005%, it becomes difficult to produce industrially suitable for cost. Preferably it is 0.001% or more, More preferably, it is 0.002% or more.

[B:0.0003〜0.0015%]
Bは、Nと結合してBNを形成することによって鋼中の固溶Nを低減し、冷間加工時の動的ひずみ時効を抑制して加工発熱領域における鋼の変形抵抗を低減すると共に、固溶Nによる固溶強化を抑制して冷間加工時に割れが発生するのを防止するのに有効に作用する元素である。また、TiがNと結合することによりBが固溶状態のまま存在すると、焼入性元素として有効に作用し、部品の最終工程における焼入れ焼戻しで強度を調整するのに作用する元素である。従ってBは0.0003%以上とする。好ましくは0.0004%以上、より好ましくは0.0005%以上である。しかし過剰に含有すると、固溶Bが多くなり、却って冷間加工時に割れを発生する原因となる。従ってBは0.0015%以下とする。好ましくは0.0013%以下であり、より好ましくは0.001%以下である。
[B: 0.0003 to 0.0015%]
B combines with N to form BN to reduce solute N in the steel, suppress dynamic strain aging during cold working and reduce the deformation resistance of the steel in the heat generation region, It is an element that effectively acts to suppress solid solution strengthening by solid solution N and to prevent cracking during cold working. Further, when Ti is bonded to N and B exists in a solid solution state, it effectively acts as a hardenable element, and is an element that acts to adjust the strength by quenching and tempering in the final process of the part. Therefore, B is made 0.0003% or more. Preferably it is 0.0004% or more, More preferably, it is 0.0005% or more. However, when it contains excessively, the amount of solid solution B will increase and it will cause a crack at the time of cold work on the contrary. Therefore, B is 0.0015% or less. Preferably it is 0.0013% or less, More preferably, it is 0.001% or less.

[Ti:0.003〜0.030%]
Tiは、Bと同様に、Nと結合してTiNを形成することによって鋼中の固溶Nを低減し、冷間加工時の動的ひずみ時効を抑制して加工発熱領域における鋼の変形抵抗を低減すると共に、固溶Nによる固溶強化を抑制して冷間加工時に割れが発生するのを防止するのに有効に作用する元素である。また上述したように、Bと同時に添加すれば、固溶Bによる焼入性向上効果を存分に発揮させることができる。これらの効果を発揮させるには、Tiを0.003%以上含有する。好ましくは0.004%以上であり、より好ましくは0.005%以上である。しかしTiを過剰に含有すると、TiCを形成して析出強化を生じ、冷間加工時の加工発熱領域における鋼の変形抵抗を増大させる原因となる。従ってTiは0.030%以下とする。好ましくは0.028%以下とし、より好ましくは0.025%以下とする。
[Ti: 0.003-0.030%]
Ti, like B, forms TiN by combining with N to reduce solid solution N in the steel, suppresses dynamic strain aging during cold working, and suppresses deformation resistance of steel in the heat generation region. It is an element that effectively acts to reduce cracking and prevent cracking during cold working by suppressing solid solution strengthening by solid solution N. Moreover, as mentioned above, if it is added simultaneously with B, the hardenability improving effect by the solid solution B can be fully exhibited. In order to exert these effects, 0.003% or more of Ti is contained. Preferably it is 0.004% or more, More preferably, it is 0.005% or more. However, if Ti is contained excessively, TiC is formed to cause precipitation strengthening, which causes an increase in the deformation resistance of the steel in the heat generation region during cold working. Therefore, Ti is made 0.030% or less. Preferably it is 0.028% or less, More preferably, it is 0.025% or less.

本発明の鋼は、上記範囲でN、BおよびTiを含有する他、C、Si、Mn、P、S、Cr、sol.Alを下記の範囲で含有している。   The steel of the present invention contains N, B, and Ti in the above range, as well as C, Si, Mn, P, S, Cr, sol. Al is contained in the following range.

[C:0.05〜0.35%]
Cは、鋼自体の強度を確保するのに必要な元素である。従ってCは0.05%以上とする。好ましくは0.10%以上、より好ましくは0.15%以上である。しかしCが過剰になると、鋼自体の強度が高くなり過ぎて変形抵抗が大きくなる。従って、上述したように、固溶N量を適切に制御しても、冷間加工時の加工発熱領域における鋼の変形抵抗を充分に低減できず、冷間加工に用いる工具寿命を極端に低下させる。従ってCは0.35%以下とする。好ましくは0.33%以下であり、より好ましくは0.30%以下である。
[C: 0.05 to 0.35%]
C is an element necessary for ensuring the strength of the steel itself. Therefore, C is made 0.05% or more. Preferably it is 0.10% or more, more preferably 0.15% or more. However, when C is excessive, the strength of the steel itself becomes too high and the deformation resistance increases. Therefore, as described above, even when the amount of dissolved N is appropriately controlled, the deformation resistance of steel in the heat generation region during cold working cannot be sufficiently reduced, and the tool life used for cold working is extremely reduced. Let Therefore, C is set to 0.35% or less. Preferably it is 0.33% or less, More preferably, it is 0.30% or less.

[Si:0.3%以下(0%を含まない)]
Siは、脱酸剤として有用な元素であるが、過剰に含有すると、固溶強化により鋼の変形抵抗が増大する原因となる。従ってSiは0.3%以下とする。好ましくは0.25%以下とし、より好ましくは0.2%以下とする。Siの下限は特に限定されないが、脱酸剤として有効に作用させるには、0.005%以上含有させることが好ましい。より好ましくは0.01%以上であり、更に好ましくは0.05%以上、特に好ましくは0.1%以上である。
[Si: 0.3% or less (excluding 0%)]
Si is an element useful as a deoxidizing agent, but if contained excessively, it causes the deformation resistance of steel to increase due to solid solution strengthening. Therefore, Si is made 0.3% or less. Preferably it is 0.25% or less, more preferably 0.2% or less. Although the minimum of Si is not specifically limited, In order to make it act effectively as a deoxidizer, it is preferable to make it contain 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.05% or more, Most preferably, it is 0.1% or more.

[Mn:0.15〜1.8%]
Mnは、脱酸剤および脱硫剤として有用な元素である。こうした作用を発揮させるには、0.15%以上含有させる必要がある。好ましくは0.2%以上、より好ましくは0.25%以上である。しかしMnを過剰に含有すると、鋼自体の強度が高くなり過ぎて変形抵抗が大きくなる。従ってMnは1.8%以下とする。好ましくは1.5%以下であり、より好ましくは1%以下、更に好ましくは0.8%以下である。
[Mn: 0.15 to 1.8%]
Mn is an element useful as a deoxidizer and a desulfurizer. In order to exert such an effect, it is necessary to contain 0.15% or more. Preferably it is 0.2% or more, More preferably, it is 0.25% or more. However, if Mn is contained excessively, the strength of the steel itself becomes too high and the deformation resistance increases. Therefore, Mn is 1.8% or less. Preferably it is 1.5% or less, More preferably, it is 1% or less, More preferably, it is 0.8% or less.

[P:0.015%以下(0%を含まない)]
Pは、凝固時にミクロ偏析し、熱間圧延時に粒界に偏析して粒界を脆化させる元素であり、粒界の脆化によって冷間加工時に割れが発生し易くなる。従って本発明ではPをできるだけ低減することが推奨され、0.015%以下とする。好ましくは0.014%以下であり、より好ましくは0.013%以下である。なお、Pは、通常、0.001%程度含有している。
[P: 0.015% or less (excluding 0%)]
P is an element that microsegregates during solidification and segregates at the grain boundaries during hot rolling and embrittles the grain boundaries, and cracks are likely to occur during cold working due to the embrittlement of the grain boundaries. Therefore, in the present invention, it is recommended to reduce P as much as possible, and it should be 0.015% or less. Preferably it is 0.014% or less, More preferably, it is 0.013% or less. In addition, P is usually contained about 0.001%.

[S:0.02%以下(0%を含まない)]
Sは、MnSなどの硫化物系介在物を形成し、熱間圧延時に粒界に偏析して粒界を脆化させる元素であり、粒界の脆化によって冷間加工時に割れが発生し易くなる。従って本発明ではSを極力低減するのがよく、0.02%以下とする。好ましくは0.018%以下とし、より好ましくは0.015%以下である。なお、Sは、通常、0.001%程度含有している。
[S: 0.02% or less (excluding 0%)]
S is an element that forms sulfide inclusions such as MnS, segregates at the grain boundaries during hot rolling and embrittles the grain boundaries, and easily cracks during cold working due to the embrittlement of the grain boundaries. Become. Therefore, in the present invention, S is preferably reduced as much as possible, and is 0.02% or less. Preferably it is 0.018% or less, More preferably, it is 0.015% or less. In addition, S is usually contained about 0.001%.

[Cr:0.01〜0.5%]
Crは、熱間圧延時にフェライト+パーライト変態を促進させ、鋼自体の強度を必要以上に高めることなく炭化物を析出させて固溶Cを低減し、固溶Cによる動的ひずみ時効の低減に寄与する元素である。こうした効果を発揮させるには、Crは0.01%以上含有させる。好ましくは0.03%以上であり、より好ましくは0.05%以上である。しかしCrが過剰になると、鋼自体の強度が大きくなり過ぎて変形抵抗が大きくなる。従ってCrは0.5%以下とする。好ましくは0.4%以下であり、より好ましくは0.3%以下である。
[Cr: 0.01 to 0.5%]
Cr promotes ferrite + pearlite transformation during hot rolling, precipitates carbide without increasing the strength of the steel more than necessary, reduces solid solution C, and contributes to reduction of dynamic strain aging due to solid solution C Element. In order to exhibit such an effect, Cr is contained by 0.01% or more. Preferably it is 0.03% or more, More preferably, it is 0.05% or more. However, when Cr becomes excessive, the strength of the steel itself becomes too large and the deformation resistance increases. Therefore, Cr is 0.5% or less. Preferably it is 0.4% or less, More preferably, it is 0.3% or less.

[sol.Al:0.01〜0.06%]
sol.Alは、脱酸剤として有用に作用する元素であり、0.01%以上含有する。好ましくは0.015%以上であり、より好ましくは0.02%以上である。
[Sol. Al: 0.01 to 0.06%]
sol. Al is an element usefully acting as a deoxidizer, and is contained in an amount of 0.01% or more. Preferably it is 0.015% or more, More preferably, it is 0.02% or more.

しかしAlは、Ti、Bの次に窒化物(AlN)を生成し易い元素であり、このAlNが多くなると、結晶粒が微細化されるため、フェライトの粒度番号を6〜12番の範囲に制御する観点からすれば、Alの添加はできるだけ抑える必要がある。従ってAlは0.06%以下とする。好ましくは0.055%以下であり、より好ましくは0.05%以下である。   However, Al is an element that easily produces nitride (AlN) next to Ti and B. When the amount of AlN increases, the grain size becomes finer, so the ferrite grain size number is in the range of 6-12. From the viewpoint of control, it is necessary to suppress the addition of Al as much as possible. Therefore, Al is made 0.06% or less. Preferably it is 0.055% or less, More preferably, it is 0.05% or less.

本発明で規定する含有元素は上記の通りであり、残部成分は、鉄であるが、鋼中に、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物の混入が許容される。   The contained elements defined in the present invention are as described above, and the remaining component is iron. However, inevitable impurities brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc. are allowed.

次に、本発明の鋼の金属組織について説明する。   Next, the metal structure of the steel of the present invention will be described.

本発明の線状鋼または棒状鋼の金属組織は、フェライトとパーライトの混合組織であり、この鋼の直径をDとしたとき、鋼の中心(D/2位置)からD/8位置までの範囲に存在するフェライトの粒度番号が6〜12番である。なお、ベイニティックフェライトは延性に乏しいため、上記フェライトには含まれない。   The metal structure of the linear steel or rod-shaped steel of the present invention is a mixed structure of ferrite and pearlite, and when the diameter of this steel is D, the range from the center of the steel (D / 2 position) to the D / 8 position. The grain size number of ferrite present in No. 6 is No. 6-12. Bainitic ferrite is not included in the ferrite because it has poor ductility.

本発明の鋼は、D/2〜D/8位置の範囲に存在するフェライトの粒度番号が6〜12番である。上記フェライトの粒度番号が12番を超えると、フェライト結晶粒が微細化し過ぎて鋼自体の強度が高くなり、変形抵抗が大きくなる。従ってフェライトの粒度番号は12番以下とする。好ましくは11番以下である。しかしフェライト結晶粒が粗大化し過ぎてフェライトの粒度番号が6番未満になると、冷間加工時に割れが発生し易くなる。従ってフェライトの粒度番号は6番以上とする。好ましくは7番以上である。上記フェライト結晶粒度番号は、後述する実施例に示す方法で測定し、規定したものである。   In the steel of the present invention, the grain size number of ferrite existing in the range of D / 2 to D / 8 positions is 6-12. If the ferrite grain size number exceeds 12, the ferrite crystal grains become too fine, the strength of the steel itself increases, and the deformation resistance increases. Therefore, the grain size number of ferrite is 12 or less. Preferably it is 11 or less. However, if the ferrite crystal grains become too coarse and the ferrite grain size number is less than 6, cracks are likely to occur during cold working. Therefore, the grain size number of ferrite is 6 or more. Preferably it is 7 or more. The ferrite grain size number is measured and defined by the method shown in the examples described later.

次に、本発明に係る線状鋼または棒状鋼を製造する方法について説明する。   Next, a method for producing the linear steel or the bar steel according to the present invention will be described.

本発明の線状鋼または棒状鋼の特徴は、上述したように、N、B、Tiの含有量のバランスを適切に制御した点にあり、上記特許文献1や特許文献2で用いていたZrの代わりにTiを用いることで、安定して固溶Nの固定が可能となる。   As described above, the feature of the wire steel or rod steel of the present invention is that the balance of the content of N, B, and Ti is appropriately controlled, and Zr used in Patent Document 1 and Patent Document 2 described above. By using Ti instead of, solid solution N can be stably fixed.

本発明の鋼を溶製するに当っては、SiとAlを用いて脱酸した後に、BとTiを添加して溶鋼中のNを固定すればよい。溶製して得られた鋼片から本発明の線状鋼または棒状鋼を製造する条件は、上記特許文献1や特許文献2に開示した条件がそのまま適用できる。即ち、本発明で目的とする所定の組織を得る為には、鋼片を800〜1100℃の範囲まで加熱し、750〜1100℃の範囲で所定の線径まで圧延した後、主に水流によって600〜6000℃/分の冷却速度で500〜800℃まで冷却し、復熱によって回復した温度(調整冷却開始温度)を750〜875℃に制御することが必要である。   In melting the steel of the present invention, after deoxidizing using Si and Al, B and Ti may be added to fix N in the molten steel. The conditions disclosed in Patent Document 1 and Patent Document 2 can be applied as they are as conditions for producing the linear steel or rod-shaped steel of the present invention from the steel pieces obtained by melting. That is, in order to obtain the desired microstructure of the present invention, the steel slab is heated to a range of 800 to 1100 ° C., rolled to a predetermined wire diameter in the range of 750 to 1100 ° C., and then mainly by water flow. It is necessary to cool to 500 to 800 ° C. at a cooling rate of 600 to 6000 ° C./min and control the temperature recovered by recuperation (adjusted cooling start temperature) to 750 to 875 ° C.

以下、各要件について説明する。   Hereinafter, each requirement will be described.

[鋼片の加熱温度:800〜1100℃]
加熱温度は、フェライト結晶粒の微細化を抑制し、鋼の変形抵抗の低減を図るために設定した。「鋼片の加熱温度」とは、放射温度計によって測定されたものであり、厳密には、「鋼片の表面温度」を意味する。
[Heating temperature of steel slab: 800 to 1100 ° C]
The heating temperature was set to suppress the refinement of ferrite crystal grains and to reduce the deformation resistance of the steel. The “heating temperature of the steel slab” is measured by a radiation thermometer, and strictly speaking, means “the surface temperature of the steel slab”.

1100℃を超えて加熱すると、フェライト結晶粒径が大きくなり過ぎてしまい、延性が低下する。好ましくは1050℃以下、より好ましくは1000℃以下である。一方、加熱温度が800℃未満になると、冷間加工時の加工発熱領域における鋼の変形抵抗が高くなり過ぎてしまい、圧延ロールの摩耗や、圧延モータのトリップ等を引き起こし、生産阻害を招く恐れがある。好ましくは850℃以上である。   When heated above 1100 ° C., the ferrite crystal grain size becomes too large and the ductility decreases. Preferably it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less. On the other hand, if the heating temperature is less than 800 ° C., the deformation resistance of the steel in the processing heat generation area during cold working becomes too high, which may cause wear of the rolling roll, trip of the rolling motor, etc., resulting in production hindrance. There is. Preferably it is 850 degreeC or more.

[圧延温度:750〜1100℃]
圧延温度は、圧延時においても上記鋼片加熱時と同様、フェライト結晶粒度の微細化を抑制し、鋼の変形抵抗の低減を図るために設定されたものである。「圧延温度」も、放射温度計によって測定されたものであり、厳密には、「鋼片の表面温度」を意味する。
[Rolling temperature: 750-1100 ° C.]
The rolling temperature is set in order to suppress the refinement of the ferrite crystal grain size and reduce the deformation resistance of the steel during rolling, as in the case of heating the steel slab. “Rolling temperature” is also measured by a radiation thermometer, and strictly speaking, it means “surface temperature of a steel slab”.

1100℃を超えて圧延すると、フェライト結晶粒径が大きくなり過ぎてしまい、延性が低下する。好ましくは1050℃以下、より好ましくは1000℃以下である。一方、圧延温度が750℃未満になると、フェライト結晶粒径が小さくなるのみならず、再結晶しきれずにフェライト粒内に不要な転位が残り易くなり、圧延後の強度が上昇する。好ましくは850℃以上である。   When it rolls over 1100 degreeC, a ferrite crystal grain size will become large too much and ductility will fall. Preferably it is 1050 degrees C or less, More preferably, it is 1000 degrees C or less. On the other hand, when the rolling temperature is less than 750 ° C., not only the ferrite crystal grain size becomes small, but also the dislocations are not easily recrystallized and unnecessary dislocations are easily left in the ferrite grains, and the strength after rolling increases. Preferably it is 850 degreeC or more.

[調整冷却開始温度:750〜875℃]
調整冷却開始温度とは、最終圧延後に、主に水を媒体として、600〜6000℃/分の冷却速度で最表面温度が最低500〜800℃程度にまで冷却された後、冷却帯(冷却コンベア)に巻取られながら、鋼片の保有する熱(復熱)によって回復する温度を意味する。
[Adjusted cooling start temperature: 750-875 ° C.]
The adjusted cooling start temperature refers to a cooling zone (cooling conveyor) after the final rolling, after cooling the outermost surface temperature to a minimum of about 500 to 800 ° C. at a cooling rate of 600 to 6000 ° C./min mainly using water as a medium. ) Means the temperature recovered by the heat (recovery) of the billet.

875℃よりも高い温度では、スケールが厚くなり、その後の脱スケール工程でトラブルが発生し易くなるのみならず、冷却時間が長くなる為、生産性を阻害する。好ましくは850℃以下である。一方、750℃よりも低くなると、冷却時に発生した表層部のマルテンサイトが復熱によって回復せず、焼戻しマルテンサイトが生成され、硬くて脆い鋼になる為、冷間加工用には適さない。実操業レベルで好ましいのは775℃以上である。   When the temperature is higher than 875 ° C., the scale becomes thick, and not only troubles are likely to occur in the subsequent descaling process, but also the cooling time becomes long, which hinders productivity. Preferably it is 850 degrees C or less. On the other hand, when the temperature is lower than 750 ° C., martensite in the surface layer portion generated during cooling is not recovered by recuperation, and tempered martensite is generated and becomes hard and brittle steel, which is not suitable for cold working. A preferable operating level is 775 ° C or higher.

[600℃までの冷却速度:0.05〜5℃/秒]
本発明では、上記調整冷却開始温度に達してから、600℃まで冷却する際における冷却速度を特定している。本発明のように、組織をフェライトとパーライトの混合組織に制御するには、冷却速度を小さくする程好ましいが、小さくなり過ぎると、パーライト(フェライトとセメンタイトの層状組織)中のラメラー間隔が広くなり、延性に乏しい組織となる恐れがあるため、下限を0.05℃/秒とした。上限は5℃/秒である。工業生産上、品質安定性などを考慮すれば、0.2℃/秒以上、3℃/秒以下とすることが推奨される。
[Cooling rate to 600 ° C .: 0.05 to 5 ° C./second]
In the present invention, the cooling rate at the time of cooling to 600 ° C. after reaching the adjusted cooling start temperature is specified. As in the present invention, in order to control the structure to be a mixed structure of ferrite and pearlite, it is preferable to reduce the cooling rate. However, if it is too small, the lamellar spacing in pearlite (layered structure of ferrite and cementite) becomes wide. The lower limit was set to 0.05 ° C./second because there is a risk of forming a structure with poor ductility. The upper limit is 5 ° C./second. In consideration of quality stability and the like in industrial production, it is recommended that the temperature be 0.2 ° C./second or more and 3 ° C./second or less.

尚、本発明によれば熱間圧延ままの線材や棒鋼でも優れた冷間加工性が得られるが、この線材または棒鋼を、酸(塩酸、硫酸等)の浴槽に浸漬したり、機械的に歪みを付与する等してスケールを除去した後、燐酸亜鉛皮膜、燐酸カルシウム皮膜、石灰等の伸線前処理を行い、金属石鹸などを潤滑剤として用いて伸線,冷間圧延などを施した鋼線においても、同様の優れた冷間加工性が得られる。   In addition, according to the present invention, excellent cold workability can be obtained even with a hot-rolled wire or steel bar, but this wire or steel bar is immersed in a bath of acid (hydrochloric acid, sulfuric acid, etc.) or mechanically. After removing the scale by applying strain, etc., pre-drawing of zinc phosphate coating, calcium phosphate coating, lime, etc., and drawing, cold rolling, etc. using metal soap as a lubricant The same excellent cold workability can be obtained also in a steel wire.

本発明の線状鋼または棒状鋼は、その用途について限定するものでもなく、例えば、機械構造用鋼部品として、ボルト、ねじ、ナット、ソケット、ボールジョイント、トーションバー、クラッチケース、ケージ、ハウジング、ハブ、カバー、ケース、受座金、タペット、サドル、バルグ、インナーケース、クラッチ、スリーブ、アウターレース、スプロケット、コアー、ステータ、アンビル、スパイダー、ロッカーアーム、ボディー、フランジ、ドラム、継手、コネクター、プーリー、金具、ヨーク、口金、バルブリフター、スパークプラグ、ブラケットナット、ブラケットボルト、ユニバーサルジョイント等の自動車部品の他、機械部品、電装部品等の製造に適用することができる。   The wire steel or rod steel of the present invention is not limited in its application. For example, as steel parts for machine structures, bolts, screws, nuts, sockets, ball joints, torsion bars, clutch cases, cages, housings, Hub, cover, case, washer, tappet, saddle, bulg, inner case, clutch, sleeve, outer race, sprocket, core, stator, anvil, spider, rocker arm, body, flange, drum, fitting, connector, pulley, In addition to automobile parts such as metal fittings, yokes, caps, valve lifters, spark plugs, bracket nuts, bracket bolts, universal joints, the present invention can be applied to the manufacture of machine parts, electrical parts, and the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all included in the technical scope of the present invention.

下記表1に記載の化学成分を含有する供試鋼(残部は鉄および不可避不純物)を実験室スケールで真空溶製して得られた鋼片を熱間加工し、次いで調整冷却して直径20mmの線状鋼を得た。供試鋼を溶製するに当っては、最終的に得られる線状鋼に含まれるO量が、実機で製造したときに得られる線状鋼に含まれるO量と同程度となるように酸素量を調整した。   A steel piece obtained by vacuum-melting a test steel containing the chemical components shown in Table 1 below (the balance is iron and inevitable impurities) on a laboratory scale is hot-worked, then adjusted and cooled to a diameter of 20 mm. A linear steel was obtained. In melting the test steel, the amount of O contained in the finally obtained wire steel is approximately the same as the amount of O contained in the wire steel obtained when manufactured with an actual machine. The amount of oxygen was adjusted.

熱間圧延は、圧延開始温度を890℃、圧延温度を870℃として行い、最終圧延後の調整冷却開始温度は810℃、上記調整冷却開始温度から600℃まで冷却するときの冷却速度は0.3℃/秒とした。   Hot rolling is performed at a rolling start temperature of 890 ° C. and a rolling temperature of 870 ° C., the adjusted cooling start temperature after final rolling is 810 ° C., and the cooling rate when cooling from the adjusted cooling start temperature to 600 ° C. is 0.00. The temperature was 3 ° C / second.

下記表1には、上記供試鋼に含まれるN、B、Ti量から下記(2)式を用いて算出したZ値を併せて示す。[ ]は、各元素の含有量を示す。
Z値=[N]−1.3×[B]−0.29×[Ti] ・・・(2)
なお、Zrを含む例(下記表1のNo.1)については、Zr量による影響を考慮した下記(3)式からZ1値を算出した。算出結果を下記表1に示す。
1値=[N]−1.3×[B]−0.29×[Ti]−0.15×[Zr] ・・・(3)
Table 1 below also shows Z values calculated using the following formula (2) from the amounts of N, B, and Ti contained in the test steel. [] Shows content of each element.
Z value = [N] −1.3 × [B] −0.29 × [Ti] (2)
Note that the examples containing Zr (No.1 in Table 1), was calculated Z 1 value from the following equation (3) in consideration of the influence of the amount of Zr. The calculation results are shown in Table 1 below.
Z 1 value = [N] −1.3 × [B] −0.29 × [Ti] −0.15 × [Zr] (3)

次に、得られた圧延材の金属組織を以下の要領で観察した。   Next, the metal structure of the obtained rolled material was observed as follows.

圧延材の断面直径をDとしたとき、D/8位置における金属組織を光学顕微鏡を用いて倍率400倍で観察した。観察した結果、下記表1のNo.1〜11、15、16はフェライト(F)とパーライト(P)の混合組織であった。No.12〜14は、ベイニティックフェライトフェライト(BF)とパーライトの混合組織であった。   When the cross-sectional diameter of the rolled material was D, the metal structure at the D / 8 position was observed at a magnification of 400 times using an optical microscope. As a result of observation, no. 1 to 11, 15 and 16 were mixed structures of ferrite (F) and pearlite (P). No. Nos. 12 to 14 were mixed structures of bainitic ferrite ferrite (BF) and pearlite.

また、圧延材の中心(D/2位置)からD/8位置までの範囲に存在するフェライトの粒度番号を、JIS G0552に規定される方法で求めた。フェライト粒度番号の測定箇所は3箇所とし、平均値を算出した。算出結果を下記表2に示す。   Moreover, the particle size number of the ferrite which exists in the range from the center (D / 2 position) of a rolling material to D / 8 position was calculated | required by the method prescribed | regulated to JISG0552. The number of measurement points of the ferrite particle size number was three, and the average value was calculated. The calculation results are shown in Table 2 below.

次に、得られた圧延材を、球状化焼鈍することなく、酸洗し、スケール除去した後、潤滑皮膜を形成し、これを伸線して冷間加工試験用線材を作製した。冷間加工試験用線材の直径は、10mmまたは15mmに調整した。   Next, the obtained rolled material was pickled and scale-removed without spheroidizing annealing, and then a lubricating film was formed, and this was drawn to produce a cold work test wire. The diameter of the cold work test wire was adjusted to 10 mm or 15 mm.

冷間加工試験用線材を用い、(A)圧縮試験による鋼の変形抵抗の測定と、(B)圧縮したときの割れ投影面積を測定し、線材の冷間加工性を評価した。   Using the wire for cold work test, (A) the measurement of deformation resistance of the steel by the compression test, and (B) the crack projected area when compressed, the cold workability of the wire was evaluated.

(A)鋼の変形抵抗は、直径10mmまたは直径15mmの冷間加工試験用線材を、直径をDとしたときに、長さが「1.5×D」mmとなるように切断した円柱状の試験片を用い、拘束型耐圧板を使用して据え込み圧縮試験を行って測定した。圧縮時における歪速度は10s-1とし、圧縮率は80%とし、70%での鋼の変形抵抗値を測定した。試験温度は、室温(23℃)と300℃とし、室温で測定した結果をσRT(MPa)、300℃で測定した結果をσ300(MPa)として下記表2に示す。300℃で圧縮試験を行った理由は、加工発熱領域における鋼の変形抵抗を模擬するためである。 (A) The deformation resistance of steel is a cylindrical shape obtained by cutting a cold work test wire having a diameter of 10 mm or a diameter of 15 mm so that the length is “1.5 × D” mm when the diameter is D. Using the test piece, an upset compression test was performed using a constrained pressure plate, and measurement was performed. The strain rate during compression was 10 s −1 , the compression rate was 80%, and the deformation resistance value of the steel at 70% was measured. The test temperatures are room temperature (23 ° C.) and 300 ° C., and the results measured at room temperature are shown as σ RT (MPa), and the results measured at 300 ° C. are shown as σ 300 (MPa) in Table 2 below. The reason why the compression test was performed at 300 ° C. is to simulate the deformation resistance of steel in the processing heat generation region.

また、室温での鋼の変形抵抗に対する300℃での鋼の変形抵抗の低減率を下記(4)式から算出し、算出結果を下記表2に示す。なお、本発明では、鋼の変形抵抗の低減率が12.0%以上の場合を合格、12.0%未満の場合を不合格と評価した。
鋼の変形抵抗の低減率(%)=[(σRT−σ300)/σRT]×100 ・・・(4)
Z値(またはZ1値)と、鋼の変形抵抗の低減率との関係を図1に示す。図1中、●は下記表2のNo.1の例、○は下記表2のNo.2〜10の例、▲は下記表2のNo.11〜16の例の結果を夫々示している。
Moreover, the reduction rate of the deformation resistance of the steel at 300 ° C. with respect to the deformation resistance of the steel at room temperature was calculated from the following equation (4), and the calculation results are shown in Table 2 below. In addition, in this invention, the case where the reduction rate of the deformation resistance of steel was 12.0% or more was evaluated as the pass, and the case of less than 12.0% was evaluated as the failure.
Reduction rate of deformation resistance of steel (%) = [(σ RT −σ 300 ) / σ RT ] × 100 (4)
FIG. 1 shows the relationship between the Z value (or Z 1 value) and the reduction rate of deformation resistance of steel. In FIG. No. 1 in Table 1, ○ is No. in Table 2 below. Examples 2 to 10 and ▲ are Nos. In Table 2 below. The results of the examples 11 to 16 are shown.

また、参考例として、上記特許文献1に開示した一部の例について、Z値またはZ1値を算出すると共に、鋼の変形抵抗の低減率を算出した。表3に鋼の化学成分組成(残部は鉄および不可避不純物)、表4にσRT、σ300、鋼の変形抵抗の低減率を示した。 Further, as a reference example, the Z value or the Z 1 value was calculated for some examples disclosed in Patent Document 1, and the reduction rate of the deformation resistance of the steel was calculated. Table 3 shows the chemical composition of steel (the balance is iron and inevitable impurities), and Table 4 shows σ RT , σ 300 , and the deformation resistance reduction rate of steel.

また、Z値(またはZ1値)と、鋼の変形抵抗の低減率との関係を図1に併せて示す。図1中、■が下記表4のNo.21〜24の例の結果である。 Further, Z value (or Z 1 value) are also shown a relationship between reduction rate of deformation resistance of the steel in FIG. In FIG. It is a result of the example of 21-24.

(B)割れ投影面積は、圧縮率80%で圧縮した試験片の側面を写真撮影し、画像解析して亀裂部(割れ発生部)とそれ以外を二値化して、亀裂部の面積率を算出した。   (B) The crack projection area is obtained by taking a photograph of the side surface of the test piece compressed at a compression ratio of 80%, and analyzing the image to binarize the cracked part (cracking part) and the rest, and determine the area ratio of the cracked part. Calculated.

写真撮影は、圧縮した試験片の任意の一側面とした。試験片の側面を撮影した写真を図2(a)〜図7(a)に示す。図2は下記表2のNo.4の側面、図3は下記表2のNo.6の側面、図4は下記表2のNo.7の側面、図5は下記表2のNo.8の側面、図6は下記表2のNo.15の側面、図7は下記表2のNo.16の側面、を夫々撮影した図面代用写真である。   Photography was on one side of the compressed specimen. The photograph which image | photographed the side surface of the test piece is shown to Fig.2 (a)-FIG.7 (a). FIG. 4 side, FIG. No. 6 side, FIG. 7 side surface, FIG. No. 8 side, FIG. No. 15 side, FIG. It is a drawing substitute photograph which each image | photographed 16 sides.

画像解析は、Adobe社製の「Photoshop(ソフト名)」を用い、二値化のしきい値を20/255〜60/255として亀裂部とそれ以外とを二値化した。   For image analysis, “Photoshop (software name)” manufactured by Adobe was used, and the threshold value for binarization was set to 20/255 to 60/255, and the cracked portion and the others were binarized.

下記表2のNo.4、6、7、8、15、16の側面を撮影した写真を画像解析して二値化した結果を図2〜図7の(b)に示す。   No. in Table 2 below. FIGS. 2 to 7B show the results obtained by binarizing the photographs obtained by photographing the side surfaces of 4, 6, 7, 8, 15, and 16 by image analysis.

亀裂部の面積率は、写真撮影した試験片側面の面積に対する亀裂部の面積の割合(割れ投影面積)を算出した。算出結果を下記表2に示す。   For the area ratio of the cracked portion, the ratio of the area of the cracked portion to the area of the side surface of the photographed test piece (the crack projected area) was calculated. The calculation results are shown in Table 2 below.

本発明では、割れ投影面積(亀裂部の面積率)が5%以上の場合を冷間加工性が悪いと評価し、5%未満の場合を冷間加工性が良好と評価した。なお、割れ投影面積は、直径が15mmの冷間加工試験用線材を用いた場合についてのみ測定した。   In the present invention, when the crack projected area (area ratio of the crack portion) is 5% or more, the cold workability was evaluated as bad, and when it was less than 5%, the cold workability was evaluated as good. In addition, the crack projection area was measured only about the case where the wire for cold work tests whose diameter is 15 mm was used.

表1、表2から次のように考察できる。No.1は、上記特許文献1、2に開示されている線状鋼を模擬した例であり、ZrとBを用いて固溶N量を制御しているため、実機を想定して製造した場合には、室温での鋼の変形抵抗に対する加工発熱領域における鋼の変形抵抗の低減率が小さくなっている。   From Tables 1 and 2, it can be considered as follows. No. 1 is an example of simulating the wire steel disclosed in Patent Documents 1 and 2 described above. Since the amount of solute N is controlled using Zr and B, when manufactured assuming an actual machine, The reduction rate of the deformation resistance of the steel in the processing heat generation region with respect to the deformation resistance of the steel at room temperature is small.

No.2〜10は、いずれも本発明で規定する要件を満足する例である。TiとBを用いて固溶N量を制御し、N、B、Tiの含有量バランスを適切に調整しているため、実機を想定して製造した場合であっても、室温での鋼の変形抵抗に対する冷間加工時の加工発熱領域における鋼の変形抵抗を大きく低減できている。また、冷間加工時に割れの発生も防止できている。従って冷間加工性に優れた鋼が得られている。   No. 2 to 10 are examples that satisfy the requirements defined in the present invention. The amount of solute N is controlled using Ti and B, and the balance of N, B, and Ti content is appropriately adjusted. Therefore, even when manufactured assuming an actual machine, It is possible to greatly reduce the deformation resistance of the steel in the heat generation region during cold working for the deformation resistance. In addition, the occurrence of cracks during cold working can be prevented. Therefore, steel excellent in cold workability is obtained.

No.11〜16は、本発明で規定するいずれかの要件を外れる例であり、室温での鋼の変形抵抗に対する加工発熱領域における鋼の変形抵抗の低減率が小さくなっている。また、冷間加工時に割れが発生している。特に、No.11〜14、16は、BとTi量に比べてN量が過剰になって固溶N量が多くなり、冷間加工時に動的ひずみ時効が発生し、加工発熱領域における鋼の変形抵抗が大きくなっている。   No. 11 to 16 are examples that do not satisfy any of the requirements defined in the present invention, and the reduction rate of the deformation resistance of the steel in the processing heat generation region with respect to the deformation resistance of the steel at room temperature is small. Moreover, the crack has generate | occur | produced at the time of cold processing. In particular, no. Nos. 11 to 14 and 16 have an excessive amount of N in comparison with the amounts of B and Ti, resulting in an increase in the amount of dissolved N, dynamic strain aging occurs during cold working, and the deformation resistance of steel in the heat generation region is low. It is getting bigger.

No.21〜24は、本出願人が先に提案した鋼であり、これらの例と、本発明例(No.2〜10)を比較すると、本発明例の方が、室温での鋼の変形抵抗に対する冷間加工時の加工発熱領域における鋼の変形抵抗の低減率を大きくすることができている。   No. 21 to 24 are steels previously proposed by the present applicant. When these examples are compared with the present invention examples (Nos. 2 to 10), the present invention examples are more resistant to deformation of steel at room temperature. It is possible to increase the reduction rate of deformation resistance of steel in the heat generation region during cold working.

図1は、Z値(Z1値)と鋼の変形抵抗の低減率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the Z value (Z 1 value) and the reduction rate of deformation resistance of steel. 図2は、表2のNo.4について、割れ投影面積を測定したときの様子を示した図である。FIG. 4 is a diagram showing a state when a crack projection area is measured for No. 4. FIG. 図3は、表2のNo.6について、割れ投影面積を測定したときの様子を示した図である。FIG. 6 is a diagram showing a state when a crack projection area is measured for No. 6. FIG. 図4は、表2のNo.7について、割れ投影面積を測定したときの様子を示した図である。FIG. FIG. 7 is a diagram showing a state when a crack projection area is measured for 7; 図5は、表2のNo.8について、割れ投影面積を測定したときの様子を示した図である。FIG. 8 is a diagram showing a state when a crack projection area is measured for No. 8. FIG. 図6は、表2のNo.15について、割れ投影面積を測定したときの様子を示した図である。FIG. It is the figure which showed the mode when the crack projection area was measured about 15. FIG. 図7は、表2のNo.16について、割れ投影面積を測定したときの様子を示した図である。FIG. It is the figure which showed the mode when the crack projection area was measured about 16. FIG.

Claims (2)

C :0.05〜0.35%(質量%の意味。以下同じ。)、
Si:0.3%以下(0%を含まない)、
Mn:0.15〜1.8%、
P :0.015%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Cr:0.01〜0.5%、
sol.Al:0.01〜0.06%、
N :0.0005〜0.006%、
B :0.0003〜0.0015%、
Ti:0.003〜0.030%を満足し、且つ
NとBとTiが下記(1)式を満足し、
残部が鉄および不可避不純物からなる鋼であり、
該鋼は、フェライトとパーライトの混合組織を有し、
この鋼の直径をDとしたとき、鋼の中心からD/8位置までの範囲に存在するフェライトの粒度番号が6〜12番であることを特徴とする球状化焼鈍が省略可能な線状鋼または棒状鋼。
−0.0060≦[N]−1.3×[B]−0.29×[Ti]≦0.0020
(式中、[ ]は、各元素の含有量を表す。)
C: 0.05 to 0.35% (meaning mass%, the same shall apply hereinafter),
Si: 0.3% or less (excluding 0%),
Mn: 0.15 to 1.8%,
P: 0.015% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Cr: 0.01 to 0.5%
sol. Al: 0.01 to 0.06%,
N: 0.0005 to 0.006%,
B: 0.0003 to 0.0015%,
Ti: 0.003 to 0.030% is satisfied, N, B and Ti satisfy the following formula (1),
The balance is steel consisting of iron and inevitable impurities,
The steel has a mixed structure of ferrite and pearlite,
When the diameter of this steel is D, the grain size number of ferrite existing in the range from the center of the steel to the D / 8 position is No. 6-12, and a linear steel capable of omitting spheroidizing annealing Or bar steel.
−0.0060 ≦ [N] −1.3 × [B] −0.29 × [Ti] ≦ 0.0020
(In the formula, [] represents the content of each element.)
請求項1に記載の線状鋼または棒状鋼を用いて得られる機械部品。 A machine part obtained by using the linear steel or rod-shaped steel according to claim 1.
JP2008093527A 2008-03-31 2008-03-31 Linear steel or bar steel that can omit spheroidizing annealing Active JP5357439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093527A JP5357439B2 (en) 2008-03-31 2008-03-31 Linear steel or bar steel that can omit spheroidizing annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093527A JP5357439B2 (en) 2008-03-31 2008-03-31 Linear steel or bar steel that can omit spheroidizing annealing

Publications (2)

Publication Number Publication Date
JP2009242916A true JP2009242916A (en) 2009-10-22
JP5357439B2 JP5357439B2 (en) 2013-12-04

Family

ID=41305142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093527A Active JP5357439B2 (en) 2008-03-31 2008-03-31 Linear steel or bar steel that can omit spheroidizing annealing

Country Status (1)

Country Link
JP (1) JP5357439B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007089A (en) * 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
CN102927107A (en) * 2012-11-13 2013-02-13 江苏海大印染机械有限公司 Novel nut structure
WO2013051513A1 (en) * 2011-10-07 2013-04-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and manufacturing processes therefor
KR101289118B1 (en) 2011-08-10 2013-07-23 주식회사 포스코 Steel without spheroidizing heat treatment and method for manufacturing the same
WO2017033773A1 (en) * 2015-08-25 2017-03-02 株式会社神戸製鋼所 Mechanical structure steel for cold-working and manufacturing method therefor
EP3156511A4 (en) * 2014-06-16 2017-12-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel for mechanical structure for cold working, and method for producing same
JP2019500489A (en) * 2015-11-12 2019-01-10 ポスコPosco Wire material excellent in cold forgeability and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143737A (en) * 1997-07-23 1999-02-16 Nippon Steel Corp Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JP2000119808A (en) * 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture
JP2000212696A (en) * 1998-11-19 2000-08-02 Kobe Steel Ltd Steel for bolt and production of bolt
JP2005133152A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd High-strength wire rod to be induction-hardened superior in cold workability and impact resistance, and steel component using the wire rod
JP2006291237A (en) * 2005-04-05 2006-10-26 Kobe Steel Ltd Steel superior in cold-forgeability and machinability for machine structural use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143737A (en) * 1997-07-23 1999-02-16 Nippon Steel Corp Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production
JP2000119808A (en) * 1998-10-13 2000-04-25 Kobe Steel Ltd Steel wire capable of papid spheroidizing and excellent in cold forgeability, and its manufacture
JP2000212696A (en) * 1998-11-19 2000-08-02 Kobe Steel Ltd Steel for bolt and production of bolt
JP2005133152A (en) * 2003-10-30 2005-05-26 Kobe Steel Ltd High-strength wire rod to be induction-hardened superior in cold workability and impact resistance, and steel component using the wire rod
JP2006291237A (en) * 2005-04-05 2006-10-26 Kobe Steel Ltd Steel superior in cold-forgeability and machinability for machine structural use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007089A (en) * 2011-06-23 2013-01-10 Kobe Steel Ltd Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
KR101289118B1 (en) 2011-08-10 2013-07-23 주식회사 포스코 Steel without spheroidizing heat treatment and method for manufacturing the same
WO2013051513A1 (en) * 2011-10-07 2013-04-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and manufacturing processes therefor
JP2013082963A (en) * 2011-10-07 2013-05-09 Kobe Steel Ltd Steel wire for bolt, bolt and manufacturing method therefor
US9835194B2 (en) 2011-10-07 2017-12-05 Kobe Steel, Ltd. Steel wire for bolt, bolt, and manufacturing processes therefor
CN102927107A (en) * 2012-11-13 2013-02-13 江苏海大印染机械有限公司 Novel nut structure
EP3156511A4 (en) * 2014-06-16 2017-12-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel for mechanical structure for cold working, and method for producing same
WO2017033773A1 (en) * 2015-08-25 2017-03-02 株式会社神戸製鋼所 Mechanical structure steel for cold-working and manufacturing method therefor
JP2019500489A (en) * 2015-11-12 2019-01-10 ポスコPosco Wire material excellent in cold forgeability and manufacturing method thereof
US10988821B2 (en) 2015-11-12 2021-04-27 Posco Wire rod having excellent cold forgeability and manufacturing method therefor

Also Published As

Publication number Publication date
JP5357439B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
KR101599163B1 (en) Wire material for non-refined machine component steel wire for non-refined machine component non-refined machine component and method for manufacturing wire material for non-refined machine component steel wire for non-refined machine component and non-refined machine component
JP5486634B2 (en) Steel for machine structure for cold working and method for producing the same
JP5332646B2 (en) Manufacturing method of carburizing steel with excellent cold forgeability
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
JP5357439B2 (en) Linear steel or bar steel that can omit spheroidizing annealing
JP5277658B2 (en) Manufacturing method of hot press member
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP2007270331A (en) Steel sheet superior in fine blanking workability, and manufacturing method therefor
JP5332517B2 (en) Manufacturing method of carburizing steel
JP5204328B2 (en) High carbon steel wire and method for producing high carbon steel wire
JP2010007092A (en) Bearing steel and method for producing the same
JP3474545B2 (en) Machine parts
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP3949926B2 (en) Linear or bar-shaped steel with excellent wire drawing workability that can omit heat treatment before wire drawing, and bearing parts
JP5385661B2 (en) Steel with improved impact deformation resistance
JP3779584B2 (en) Linear or bar steel with excellent deformability and machine parts
JP2004292876A (en) High-strength forged parts superior in drawing characteristic, and manufacturing method therefor
JP4976986B2 (en) Manufacturing method of steel wire with excellent low-temperature torsional characteristics
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JP2005307320A (en) Steel having excellent cold forgeability, cutting property, and fatigue strength
JP4806887B2 (en) Steel material excellent in fatigue crack propagation characteristics and method for producing the same
JP5633426B2 (en) Steel for heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130830

R150 Certificate of patent or registration of utility model

Ref document number: 5357439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150