JP2010007092A - Bearing steel and method for producing the same - Google Patents

Bearing steel and method for producing the same Download PDF

Info

Publication number
JP2010007092A
JP2010007092A JP2008163962A JP2008163962A JP2010007092A JP 2010007092 A JP2010007092 A JP 2010007092A JP 2008163962 A JP2008163962 A JP 2008163962A JP 2008163962 A JP2008163962 A JP 2008163962A JP 2010007092 A JP2010007092 A JP 2010007092A
Authority
JP
Japan
Prior art keywords
steel
less
reduction
rolling
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008163962A
Other languages
Japanese (ja)
Other versions
JP5035137B2 (en
Inventor
Shinji Higashida
真志 東田
Koichiro Kawakami
浩一郎 川上
Hitoshi Matsumoto
斉 松本
Takayuki Nishi
隆之 西
Yutaka Neishi
豊 根石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008163962A priority Critical patent/JP5035137B2/en
Publication of JP2010007092A publication Critical patent/JP2010007092A/en
Application granted granted Critical
Publication of JP5035137B2 publication Critical patent/JP5035137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Rolling Contact Bearings (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing steel which has satisfactory durability to breakage due to rolling fatigue, can secure excellent rolling fatigue life, and has excellent cold workability as well. <P>SOLUTION: The bearing steel has chemical components comprising 0.85 to 1.2% C, 0.1 to 0.5% Si, 0.05 to 0.6% Mn, ≤0.03% P, ≤0.010% S, 1.2 to 1.7% Cr, ≤0.005% Al, ≤0.0005% Ca and ≤0.0020% O, and the balance Fe with impurities, and in which, regarding nonmetallic inclusions, the average compositions of oxides satisfy, by mass, CaO: 10 to 60%, Al<SB>2</SB>O<SB>3</SB>≤35%, MnO≤35% and MgO≤15%, and the balance SiO<SB>2</SB>with impurities, and further, the value of the arithmetic average of the maximum thickness of oxides and the arithmetic average of the maximum thickness of sulfides present in the area of 100 mm<SP>2</SP>at the 10 places of the longitudinal section in the longitudinal direction of the steel is ≤8.5 μm, respectively, and further, the average cross-sectional hardness from the surface of the steel to the position of the R/2 part is ≤290 by Vickers hardness; wherein, R denotes the radius of the bearing steel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軸受鋼鋼材およびその製造方法に関し、詳しくは、転動疲労寿命および冷間加工性に優れた軸受鋼鋼材とその製造方法に関する。   The present invention relates to a bearing steel material and a manufacturing method thereof, and more particularly, to a bearing steel material excellent in rolling fatigue life and cold workability and a manufacturing method thereof.

各種の産業機械や自動車などに使用される「玉軸受」や「コロ軸受」といった転がり軸受には、従来、主として、JIS G 4805(1999)に記載の「高炭素クロム軸受鋼鋼材」が使用されてきた。   Conventionally, "high carbon chromium bearing steel" described in JIS G 4805 (1999) has been used for rolling bearings such as "ball bearings" and "roller bearings" used in various industrial machines and automobiles. I came.

上記の転がり軸受は、熱間圧延などの熱間加工で製造された棒鋼、線材といった軸受鋼鋼材を素材として、一般的には先ず、「球状化焼鈍」と呼ばれる長時間にわたる軟質化熱処理を施した後に切断し、熱間鍛造や冷間鍛造によって所定の形状に成形され、焼入れ焼戻し処理を行って製造される。熱間鍛造により成形した場合には、焼入れ焼戻しの前に、再度球状化焼鈍が行われた後に、旋削加工が行われる。   The rolling bearings described above are generally made from a steel material such as a steel bar or wire manufactured by hot working such as hot rolling. First, the rolling bearing is first subjected to a softening heat treatment called “spheroidizing annealing” for a long time. Then, it is cut, formed into a predetermined shape by hot forging or cold forging, and manufactured by quenching and tempering. In the case of forming by hot forging, turning is performed after spheroidizing annealing is performed again before quenching and tempering.

なお、転がり軸受には、高い面圧が繰返し作用するため、長い転動疲労寿命が必要である。転動疲労特性(転動疲労寿命)は鋼中の非金属介在物(以下、単に「介在物」ともいう。)、特に、酸化物により低下することが知られている。そのため、従来は、製鋼プロセスによって鋼中の酸素含有量を少なくする試みがなされてきた。その結果、近年では酸素の含有量が質量割合で、10ppmを下回る鋼材を安定して製造することが可能となり、それに伴って転動疲労寿命も向上してきた。   In addition, since a high surface pressure acts repeatedly on a rolling bearing, a long rolling fatigue life is required. It is known that rolling fatigue characteristics (rolling fatigue life) are deteriorated by non-metallic inclusions in steel (hereinafter also simply referred to as “inclusions”), particularly oxides. Therefore, conventionally, attempts have been made to reduce the oxygen content in steel by a steel making process. As a result, in recent years, it has become possible to stably produce a steel material in which the oxygen content is less than 10 ppm by mass, and the rolling fatigue life has been improved accordingly.

一方、近年では、例えば、エンジンの高出力化や周辺部品の小型化によって、転がり軸受の使用環境がますます高面圧化、高温化して過酷なものとなり、このため、転がり軸受に対してより一層長い転動疲労寿命が求められるようになってきた。   On the other hand, in recent years, for example, with higher engine output and smaller peripheral components, the usage environment of rolling bearings has become increasingly severe due to higher surface pressure and higher temperatures. Longer rolling fatigue life has been demanded.

しかしながら、単に酸素の含有量を低減させるだけでは所望の良好な転動疲労寿命を確保することができず、このため、鋼中の酸化物のサイズを小さくして転動疲労寿命を改善することが特許文献1および特許文献2に提案されている。   However, simply reducing the oxygen content does not ensure the desired good rolling fatigue life. For this reason, reducing the size of the oxide in the steel improves the rolling fatigue life. Are proposed in Patent Document 1 and Patent Document 2.

すなわち、特許文献1に、「重量%にて、C:0.15〜1.10%、Si:0.15〜0.70%、Cr:0.50〜1.60%、Mo:0.10〜1.00%、Mn:0.10%以下、O:8ppm以下を含み、さらに、必要に応じて、Ni:0.4〜5.0%を含有し、残部Feおよび不可避不純物元素からなり、酸化物系介在物の粒子径が15μm以下であることを特徴とする電子ビーム溶解法による超清浄度軸受用鋼」に関する技術が開示されている。   That is, in Patent Document 1, “in weight%, C: 0.15 to 1.10%, Si: 0.15 to 0.70%, Cr: 0.50 to 1.60%, Mo: 0.00. 10 to 1.00%, Mn: 0.10% or less, O: 8ppm or less, and further, if necessary, containing Ni: 0.4-5.0%, from the balance Fe and inevitable impurity elements Thus, a technique relating to “super clean bearing steel by electron beam melting method, wherein the oxide inclusions have a particle size of 15 μm or less” is disclosed.

また、特許文献2に、「鋼の化学成分が、JIS G 4805を満足すると共に、O:0.0009質量%以下、Al:0.005質量%以下およびS:0.005質量%以下を満足する鋼からなり、圧延方向に平行な検鏡断面積160mm2中に存在する大きさ3μm以上の酸化物個数が100個以下、そのうち大きさ10μm以上のものが2個以下であり、さらにそれらの組成別構成比率として、
アルミナ系:(MgO)も(SiO2)も3%未満で且つ(CaO)も(CaO)/((CaO)+(Al23))の比で0.08以下であるもの。
スピネル系:3%〜20%の範囲の(MgO)に残部が(Al23)である2元系に、15%以内の(CaO)および/または15%以内の(SiO2)が混入する場合があるスピネル型結晶構造のもの。
の定義によるアルミナ系とスピネル系との合計個数が全酸化物個数の60%未満であることを特徴とする高炭素クロム軸受鋼」に関する技術が開示されている。
Patent Document 2 states that “the chemical composition of steel satisfies JIS G 4805, O: 0.0009 mass% or less, Al: 0.005 mass% or less, and S: 0.005 mass% or less. The number of oxides having a size of 3 μm or more present in a cross-sectional area 160 mm 2 parallel to the rolling direction is 100 or less, of which 2 or less is 10 μm or more. As composition ratio by composition,
Alumina system: (MgO) and (SiO 2 ) are less than 3%, and (CaO) and (CaO) / ((CaO) + (Al 2 O 3 )) are not more than 0.08.
Spinel system: (MgO) in the range of 3% to 20% and binary system with the balance being (Al 2 O 3 ) contain 15% (CaO) and / or 15% (SiO 2 ). It may have a spinel crystal structure.
A technique relating to a “high carbon chrome bearing steel characterized in that the total number of alumina-based and spinel-based in accordance with the above definition is less than 60% of the total number of oxides” is disclosed.

そして、特許文献2には、前記の高炭素クロム軸受鋼が、転炉または電気炉による酸化精錬後の脱酸およびその後の成分調整に際し実質Alを含まない脱酸剤を使用する工程、次の取鍋精練におけるスラグの塩基度((CaO)%/(SiO2)%)が0.8以上3.0未満となるように制御する工程、それに引き続く35分以上の真空脱ガス処理工程を含む製造工程をとることによって得られることが示されている。 Patent Document 2 discloses a process in which the high carbon chromium bearing steel uses a deoxidizer that does not substantially contain Al during deoxidation after oxidation refining by a converter or an electric furnace and subsequent component adjustment. Including a step of controlling the basicity of slag ((CaO)% / (SiO 2 )%) in ladle scouring to be 0.8 or more and less than 3.0, followed by a vacuum degassing treatment step of 35 minutes or more It is shown to be obtained by taking a manufacturing process.

なお、高炭素クロム軸受鋼は、前記JIS G 4805(1999)にも示されているように質量%で、1.0%程度のCを含有する過共析鋼であるので、熱間加工された鋼材は、通常、板状の初析セメンタイトとパーライトからなる組織を呈する。そのため、硬さはビッカース硬さ(以下、「Hv硬さ」ともいう。)で350〜400程度の硬質なものとなり、熱間加工した鋼材を切断あるいは冷間鍛造する際には、前処理として球状化焼鈍などの軟質化熱処理を施す必要がある。   The high carbon chromium bearing steel is a hypereutectoid steel containing about 1.0% C by mass% as shown in JIS G 4805 (1999). Steel materials usually exhibit a structure composed of plate-like pro-eutectoid cementite and pearlite. Therefore, the hardness is Vickers hardness (hereinafter also referred to as “Hv hardness”) of about 350 to 400, and when the hot-worked steel material is cut or cold forged, as a pretreatment Softening heat treatment such as spheroidizing annealing is required.

このため、近年では熱間加工ままのセメンタイトの形状を制御することによって、球状化焼鈍などの軟質化熱処理の簡略化ができる程度の冷間加工性を有する鋼材が提案されている。   For this reason, in recent years, steel materials having cold workability to such an extent that the softening heat treatment such as spheroidizing annealing can be simplified by controlling the shape of cementite as hot-worked have been proposed.

具体的には、特許文献3に、「質量%で、C:0.6〜1.5%、Mn:0.2〜1.5%、Si:0.05〜1.2%、Cr:0.5〜2.5%、P:0.03%以下、S:0.02%以下、残部:鉄および不可避的不純物元素からなる鋼組成、あるいはさらに、質量%で、Al:0.01〜0.03%、Cu:0.2%以下、Ni:0.2%以下およびMo:0.1%以下から選んだ1種または2種以上を含有する鋼組成を有し、かつセメンタイトのうちアスペクト比(長径/短径)が2以下であるものの割合が70%以上であることを特徴とする熱間圧延ままで球状化炭化物組織を有する軸受け用線材・棒鋼」に関する技術が開示されている。   Specifically, Patent Document 3 states that “in mass%, C: 0.6 to 1.5%, Mn: 0.2 to 1.5%, Si: 0.05 to 1.2%, Cr: 0.5 to 2.5%, P: 0.03% or less, S: 0.02% or less, balance: steel composition composed of iron and inevitable impurity elements, or, in addition, by mass, Al: 0.01 ~ 0.03%, Cu: 0.2% or less, Ni: 0.2% or less and Mo: 0.1% or less steel composition containing one or more selected from cementite, and of cementite Among them, a technology relating to “wires and steel bars for bearings having a spheroidized carbide structure as hot rolled, characterized in that the ratio of those having an aspect ratio (major axis / minor axis) of 2 or less is 70% or more” is disclosed. Yes.

そして、特許文献3には、上記の「軸受け用線材・棒鋼」が、熱間圧延の仕上圧延を該鋼素材の(Ar1−50℃)〜(Ar1+50℃)の温度域で減面率20%以上となるように行い、直ちに冷却速度0.5℃/s以下で、500℃以下まで冷却することにより得られることが示されている。 Patent Document 3 discloses that the above-mentioned “bearing wire rod / bar” reduces surface finish of hot rolling in the temperature range of (Ar 1 −50 ° C.) to (Ar 1 + 50 ° C.) of the steel material. It is shown that it can be obtained by immediately cooling to 500 ° C. or less at a cooling rate of 0.5 ° C./s or less.

特開平7−109541号公報JP-A-7-109541 特開2006−200027号公報JP 2006-200027 A 特開2004−190127号公報JP 2004-190127 A

前記の特許文献1で提案された技術は、通常の量産鋼の製造方法によって製造された鋼を母材とし、電子ビーム溶解によって再溶解させることで、Al23のような酸化物を低減させる方法である。このため、製造コストが極めて高くなって、工業的な規模での量産には適用し難いものである。しかも、近年における転がり軸受の厳しい使用環境下では、その転動疲労寿命は必ずしも十分といえるものではなかった。さらに、この技術は、熱間加工した鋼材を切断や冷間鍛造する場合の冷間加工性については何ら配慮されたものではなかった。 The technique proposed in Patent Document 1 described above reduces the oxides such as Al 2 O 3 by using a steel produced by an ordinary mass production steel production method as a base material and remelting it by electron beam melting. It is a method to make it. For this reason, the manufacturing cost becomes extremely high and it is difficult to apply to mass production on an industrial scale. Moreover, the rolling fatigue life of rolling bearings in recent years has not always been sufficient. Furthermore, this technique did not give any consideration to the cold workability when cutting or cold forging a hot-worked steel material.

特許文献2で提案された技術は、酸化物系介在物のみに着目したものであり、上記の特許文献1で開示された技術の場合と同様に、近年における転がり軸受の厳しい使用環境下においては、その転動疲労寿命は必ずしも十分といえるものではなかった。さらに、その高炭素クロム軸受鋼は、切削性は良好ではあるものの、切断や冷間鍛造など他の冷間加工性については十分といえるものではなかった。   The technique proposed in Patent Document 2 focuses only on oxide inclusions, and, in the same way as the technique disclosed in Patent Document 1 described above, under the severe usage environment of rolling bearings in recent years. The rolling fatigue life was not always sufficient. Furthermore, although the high carbon chromium bearing steel has good machinability, it cannot be said that other cold workability such as cutting or cold forging is sufficient.

特許文献3で提案された軸受け用線材・棒鋼は、熱間圧延のままで球状化炭化物組織を有するものの、上記特許文献1および特許文献2で開示された技術の場合と同様に、近年における転がり軸受の厳しい使用環境においては、その転動疲労寿命が必ずしも十分といえるものではなかった。   Although the wire rods and steel bars for bearings proposed in Patent Document 3 have a spheroidized carbide structure while being hot-rolled, they are rolling in recent years as in the case of the techniques disclosed in Patent Document 1 and Patent Document 2 above. The rolling fatigue life is not always sufficient in the severe use environment of the bearing.

そこで、本発明は、近年の転がり軸受の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、優れた転動疲労寿命を確保できるとともに、冷間加工性に優れるため、熱間加工後に施す球状化焼鈍など長時間にわたる軟質化熱処理を簡略化することが可能な軸受鋼鋼材およびその製造方法を提供することを目的とする。   Therefore, the present invention has good durability against damage due to rolling fatigue even under the severe usage environment of rolling bearings in recent years, and can ensure excellent rolling fatigue life and cold workability. Therefore, it is an object of the present invention to provide a bearing steel material capable of simplifying a softening heat treatment over a long period of time, such as spheroidizing annealing performed after hot working, and a method for manufacturing the same.

本発明者らは、先に、酸化物に関して検討した結果、
(a)鋼のいわゆる「二次精錬」の過程におけるスラグの主要構成成分を主にCaOおよびSiO2とし、さらに、Al23が極力少量となるように厳密な制御を行うことで、軟質な酸化物が得られること、さらには、この軟質酸化物は圧下を加えることによって微細化できること、
(b)上記(a)のようにして精錬する方法で製造された鋼の場合、硫化物中にMnOと思われる酸化物が含有されやすくなる傾向があり、この硫化物は従来のAl添加により脱酸処理した軸受鋼中の硫化物とは異なり、圧下によって延伸、分断されることが難しいが、Sの含有量を質量%で、0.010%以下とし、かつ、圧下比や加工温度などの圧下条件を適正に制御すれば、酸化物だけではなく硫化物をも延伸、分断させて微細化することができ、結果として、過酷な使用環境下においても、優れた転動疲労寿命を有する軸受鋼鋼材を得ることができること、
を見出し、特願2007−204872の特許出願で「軸受鋼鋼材およびその製造方法」を提案した。
The inventors of the present invention previously examined oxides,
(A) The main constituents of slag in the process of so-called “secondary refining” of steel are mainly CaO and SiO 2, and further, strict control is performed so that the amount of Al 2 O 3 is as small as possible. That this oxide can be obtained, and that this soft oxide can be refined by applying a reduction,
(B) In the case of steel manufactured by the method of refining as described in (a) above, there is a tendency that an oxide that seems to be MnO tends to be contained in the sulfide. Unlike sulfides in bearing steel subjected to deoxidation treatment, it is difficult to be drawn and divided by reduction, but the S content is 0.010% or less in mass%, and reduction ratio, processing temperature, etc. If the rolling conditions are properly controlled, not only oxides but also sulfides can be stretched, broken and refined, resulting in excellent rolling fatigue life even in harsh usage environments. Bearing steel material can be obtained,
And proposed “Bearing Steel and its Manufacturing Method” in Japanese Patent Application No. 2007-204872.

本発明者らは、その後さらに、上記特許出願で提案した軸受鋼鋼材の冷間加工性改善について検討した。その結果、全圧下比が15以上となる2以上の圧下工程のうちの最終圧下工程において、被圧下材の加熱条件およびその圧下工程中の被圧下材の表面温度をより厳しく制御すれば、軟質な鋼材を得ることができることを知見した。   The inventors then further studied the cold workability improvement of the bearing steel proposed in the above patent application. As a result, in the final reduction step of the two or more reduction steps in which the total reduction ratio is 15 or more, if the heating conditions of the reduction material and the surface temperature of the reduction material during the reduction step are controlled more strictly, It has been found that a simple steel material can be obtained.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記(1)に示す軸受鋼鋼材ならびに(2)および(3)に示す軸受鋼鋼材の製造方法にある。   The present invention has been completed based on the above findings, and the gist of the present invention resides in a bearing steel material shown in the following (1) and a manufacturing method of the bearing steel materials shown in (2) and (3).

(1)質量%で、C:0.85〜1.2%、Si:0.1〜0.5%、Mn:0.05〜0.6%、P:0.03%以下、S:0.010%以下、Cr:1.2〜1.7%、Al:0.005%以下、Ca:0.0005%以下およびO:0.0020%以下を含有し、残部はFeおよび不純物からなる化学成分を有し、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:35%以下、MnO:35%以下およびMgO:15%以下で残部SiO2および不純物からなるとともに、鋼材の長手方向縦断面10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であり、さらに、鋼材の表面からR/2部位置までの平均断面硬さがビッカース硬さで290以下であることを特徴とする軸受鋼鋼材。
但し、「R」は軸受鋼鋼材の半径を表す。
(1) By mass%, C: 0.85 to 1.2%, Si: 0.1 to 0.5%, Mn: 0.05 to 0.6%, P: 0.03% or less, S: 0.010% or less, Cr: 1.2 to 1.7%, Al: 0.005% or less, Ca: 0.0005% or less and O: 0.0020% or less, with the balance being Fe and impurities Non-metallic inclusions having an average composition of oxides by mass%, CaO: 10 to 60%, Al 2 O 3 : 35% or less, MnO: 35% or less, and MgO: 15% or less The arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide, which is composed of the remainder SiO 2 and impurities, and is present in the area of 100 mm 2 in 10 longitudinal sections of the steel material Is 8.5 μm or less, respectively, and further from the surface of the steel material to the R / 2 part position. Bearing steels, wherein the average cross-sectional hardness of 290 or less in Vickers hardness.
However, “R” represents the radius of the bearing steel.

(2)上記(1)に記載の化学成分および酸化物の平均組成を有する鋳片または鋼塊に2以上の圧下工程によって全圧下比が15以上となる圧下を加えて軸受鋼鋼材を製造する方法であって、該2以上の圧下工程のうちの最終圧下工程において、下記の〔1〕〜〔3〕の全てを満たすようにして圧下し、さらに、最終圧下工程における圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却することを特徴とする軸受鋼鋼材の製造方法。   (2) A bearing steel material is produced by applying a reduction to a total reduction ratio of 15 or more to a slab or steel ingot having the average composition of chemical components and oxides described in (1) above by two or more reduction steps. In the final reduction step of the two or more reduction steps, the reduction is performed so as to satisfy all of the following [1] to [3], and after the completion of the reduction in the final reduction step, 400 A method for producing a bearing steel material, wherein the temperature range up to 0 ° C. is cooled at a cooling rate of 5 ° C./s or less.

〔1〕被圧下材をAe1点〜Aem点の温度域に加熱して圧下を開始すること、
〔2〕圧下工程中の被圧下材の表面温度が、680℃〜(Aem点−30℃)の温度範囲内であること、
〔3〕圧下比が4以上であること。
但し、全圧下比とは、鋳片または鋼塊の断面積を、最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指し、また、最終圧下工程での圧下比とは、最終圧下工程で圧下が加えられる前の被圧下材の断面積を最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指す。
[1] Start the reduction by heating the material to be pressed to a temperature range of Ae 1 point to Aem point;
[2] The surface temperature of the material to be rolled during the rolling step is within a temperature range of 680 ° C. to (Aem point−30 ° C.),
[3] The reduction ratio is 4 or more.
However, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or steel ingot by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction process, and the reduction in the final reduction process. The ratio refers to a value obtained by dividing the cross-sectional area of the material to be reduced before the reduction is applied in the final reduction process by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction process.

(3)鋳片または鋼塊が、一次精錬としての酸化精錬を行った後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行って、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:20%以下になるように制御し、続いて鋳造されたものであることを特徴とする上記(2)に記載の軸受鋼鋼材の製造方法。 (3) After the slab or steel ingot is subjected to oxidative refining as primary refining, secondary refining is performed by using a flux that does not substantially contain Al without performing Al deoxidation treatment. Final slag basicity CaO / SiO 2 value after refining is 0.8 to 2.0, and slag composition is mass%, MgO: 15% or less, F: 10% or less, Al 2 O 3 : The method for producing a bearing steel material according to (2) above, wherein the steel material is controlled to be 20% or less and subsequently cast.

なお、酸化物の平均組成における「不純物」とは、Cr23、Na2O、ZrO2などを指す。 Note that the “impurity” in the average composition of the oxide refers to Cr 2 O 3 , Na 2 O, ZrO 2 and the like.

「長手方向縦断面」(以下、「L断面」という。)とは、鋼材の長手方向に平行に切断した面をいう。   The “longitudinal longitudinal section” (hereinafter referred to as “L section”) refers to a surface cut in parallel to the longitudinal direction of the steel material.

圧下を終了した後400℃までの温度域における冷却速度は、当該温度域での被圧延材の表面における平均冷却速度を指す。   The cooling rate in the temperature range up to 400 ° C. after finishing the rolling refers to the average cooling rate on the surface of the material to be rolled in the temperature range.

スラグ組成における「残部」は、MnO、FeO、TiO2、Cr23などである。 The “remainder” in the slag composition is MnO, FeO, TiO 2 , Cr 2 O 3 or the like.

また、「実質的にAlを含有しないフラックス」とは、フラックス中のAl23が3%未満であることを指す。 Further, “a flux that does not substantially contain Al” means that Al 2 O 3 in the flux is less than 3%.

さらに、本発明における「Ae1点」および「Aem点」はそれぞれ、平衡状態における共析温度および平衡状態においてセメンタイトがオーステナイトに完全に固溶する温度を指す。 Furthermore, “Ae 1 point” and “Aem point” in the present invention refer to the eutectoid temperature in an equilibrium state and the temperature at which cementite completely dissolves in austenite in the equilibrium state, respectively.

以下、上記 (1)の軸受鋼鋼材に係る発明ならびに(2)および(3)の軸受鋼鋼材の製造方法に係る発明を、それぞれ、「本発明(1)」〜「本発明(3)」という。また、総称して「本発明」という。   Hereinafter, the invention relating to the bearing steel material of (1) and the invention relating to the manufacturing method of the bearing steel material of (2) and (3) are respectively referred to as “present invention (1)” to “present invention (3)”. That's it. Also, collectively referred to as “the present invention”.

本発明の軸受鋼鋼材は、近年の転がり軸受の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、転動疲労寿命が長いことから、各種の産業機械や自動車などに使用される「玉軸受」や「コロ軸受」といった転がり軸受の素材として利用することができる。また、本発明の軸受鋼鋼材は、冷間加工性に優れるため、球状化焼鈍などの軟質化熱処理を簡略化することが可能で、製造コストを低減することができる。この軸受鋼鋼材は本発明の方法によって製造することができる。   The bearing steel material of the present invention has various durability against the damage caused by rolling fatigue and has a long rolling fatigue life even in the severe usage environment of recent rolling bearings. It can be used as a material for rolling bearings such as “ball bearings” and “roller bearings” used in automobiles and automobiles. Moreover, since the bearing steel material of the present invention is excellent in cold workability, it is possible to simplify softening heat treatment such as spheroidizing annealing and reduce manufacturing costs. This bearing steel can be manufactured by the method of the present invention.

以下、本発明の各要件について詳しく説明する。なお、各元素と酸化物の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element and oxide means "mass%".

(A)鋼の化学成分:
C:0.85〜1.2%
Cは、焼入れ時の硬さを確保して転動疲労寿命を向上させる元素であり、0.85%以上の含有量とする必要がある。しかしながら、Cの含有量が多くなって、特に1.2%を超えると、耐摩耗性は向上するものの、母材の硬さが高くなりすぎて冷間鍛造性の悪化、切削時の工具寿命の低下、焼割れの原因となる。したがって、Cの含有量を0.85〜1.2%とした。なお、C含有量の好ましい下限は0.9%である。また、好ましい上限は1.1%である。
(A) Chemical composition of steel:
C: 0.85-1.2%
C is an element that secures the hardness at the time of quenching and improves the rolling fatigue life, and needs to be 0.85% or more. However, if the C content increases and exceeds 1.2% in particular, the wear resistance is improved, but the hardness of the base material becomes too high and the cold forgeability deteriorates, and the tool life during cutting is increased. Cause deterioration and burning cracks. Therefore, the content of C is set to 0.85 to 1.2%. In addition, the minimum with preferable C content is 0.9%. Moreover, a preferable upper limit is 1.1%.

Si:0.1〜0.5%
Siは、焼入れ性を高めて転動疲労寿命を向上させるのに有効な元素であり、0.1%以上含有させなければならない。しかしながら、0.5%を超えてSiを含有させると、母材の硬さが高くなって切削時の工具寿命の低下や冷間鍛造性の悪化をきたす。したがって、Siの含有量を0.1〜0.5%とした。なお、Si含有量の好ましい下限は0.15%である。また、好ましい上限は0.35%である。
Si: 0.1 to 0.5%
Si is an element effective for improving the hardenability and improving the rolling fatigue life, and must be contained by 0.1% or more. However, when Si is contained exceeding 0.5%, the hardness of the base material becomes high, and the tool life during cutting and the cold forgeability are deteriorated. Therefore, the Si content is set to 0.1 to 0.5%. In addition, the minimum with preferable Si content is 0.15%. Moreover, a preferable upper limit is 0.35%.

Mn:0.05〜0.6%
Mnは、焼入れ性を高めて転動疲労寿命を向上させるのに有効な元素であり、0.05%以上含有させなければならない。しかしながら、0.6%を超えてMnを含有させると、母材の硬さが高くなって切削時の工具寿命の低下や冷間鍛造性の悪化をきたし、さらには、焼割れの原因ともなる。したがって、Mnの含有量を0.05〜0.6%とした。なお、Mn含有量の好ましい下限は0.1%である。また、好ましい上限は0.5%である。
Mn: 0.05 to 0.6%
Mn is an element effective for enhancing the hardenability and improving the rolling fatigue life, and must be contained by 0.05% or more. However, if Mn is contained in excess of 0.6%, the hardness of the base material is increased, resulting in a decrease in tool life at the time of cutting and deterioration of cold forgeability, and further causes cracking. . Therefore, the Mn content is set to 0.05 to 0.6%. In addition, the minimum with preferable Mn content is 0.1%. Moreover, a preferable upper limit is 0.5%.

P:0.03%以下
Pは、結晶粒界に偏析して転動疲労寿命を短くしてしまう。特に、その含有量が0.03%を超えると、転動疲労寿命の低下が著しくなる。したがって、Pの含有量を0.03%以下とした。好ましいP含有量の範囲は0.02%以下である。
P: 0.03% or less P segregates at the grain boundary and shortens the rolling fatigue life. In particular, when the content exceeds 0.03%, the rolling fatigue life is significantly reduced. Therefore, the content of P is set to 0.03% or less. The range of preferable P content is 0.02% or less.

S:0.010%以下
Sは、硫化物を形成する元素であり、その含有量が0.010%を超えると、粗大な硫化物が残存するため転動疲労寿命を短くしてしまう。したがって、Sの含有量を0.010%以下とした。なお、転動疲労寿命の向上という観点からは、Sの含有量は低ければ低いほど好ましいが、Sには被削性を高める作用があり、その含有量が0.005%以上で被削性向上効果が確実に得られる。このため被削性を重視する場合には、Sの含有量は0.005%以上とすることが好ましい。
S: 0.010% or less S is an element that forms sulfides. If the content exceeds 0.010%, coarse sulfides remain and the rolling fatigue life is shortened. Therefore, the content of S is set to 0.010% or less. From the viewpoint of improving the rolling fatigue life, the lower the S content, the better. However, S has an effect of improving the machinability, and when the content is 0.005% or more, the machinability is improved. The improvement effect is surely obtained. For this reason, when importance is attached to machinability, the S content is preferably set to 0.005% or more.

Cr:1.2〜1.7%
Crは、焼入れ性を高めて転動疲労寿命を向上させるのに有効な元素であり、1.2%以上含有させなければならない。しかしながら、1.7%を超えてCrを含有させると、母材の硬さが高くなって切削時の工具寿命の低下や冷間鍛造性の悪化をきたし、さらには、焼割れが発生する場合がある。したがって、Crの含有量を1.2〜1.7%とした。なお、Cr含有量の好ましい下限は1.3%である。また、好ましい上限は1.6%である。
Cr: 1.2-1.7%
Cr is an element effective for improving the hardenability and improving the rolling fatigue life, and must be contained by 1.2% or more. However, when Cr is contained exceeding 1.7%, the hardness of the base metal becomes high, the tool life at the time of cutting is reduced and the cold forgeability is deteriorated, and further, when cracking occurs. There is. Therefore, the Cr content is set to 1.2 to 1.7%. In addition, the minimum with preferable Cr content is 1.3%. Moreover, a preferable upper limit is 1.6%.

Al:0.005%以下
Alは、好ましくない元素であり、本発明においては、Alは極力少なくする必要がある。したがって、後述するように一次精錬としての酸化精錬後のAl添加による脱酸処理は行わないし、フラックスを投入して新たに生成されたスラグと溶鋼を強攪拌する際に用いるフラックスもAl23の含有量の少ない、実質的にAlを含有しないものを用いる。しかしながら、Alの含有量が多くなって、特に、0.005%を超えると、Al23を主体とする硬質な酸化物の生成量が多くなり、しかも、圧下した後も粗大な酸化物として残存するので、転動疲労寿命が短くなってしまう。したがって、Alの含有量を0.005%以下とした。なお、Alは、0.003%以下の含有量とすることが好ましく、低ければ低いほどよい。
Al: 0.005% or less Al is an undesirable element, and in the present invention, it is necessary to reduce Al as much as possible. Therefore, as will be described later, deoxidation treatment is not performed by adding Al after oxidative refining as the primary refining, and the flux used when stirring the newly generated slag and molten steel is also Al 2 O 3 A material having a low content of Al and containing substantially no Al is used. However, when the Al content increases, especially when it exceeds 0.005%, the amount of hard oxides mainly composed of Al 2 O 3 increases, and the coarse oxides after the reduction. As a result, the rolling fatigue life is shortened. Therefore, the Al content is set to 0.005% or less. The Al content is preferably 0.003% or less, and the lower the better.

Ca:0.0005%以下
本発明においては、後述するように、一次精錬としての酸化精錬で生成したスラグの除滓後に、主成分がCaOであるフラックスを投入して、新たに生成されたスラグと溶鋼を強攪拌する。この際に、Caは軟質な酸化物として、フラックスから鋼中に極微量混入する。ただし、Caの含有量が多くなり、0.0005%を超えると、酸化物組成におけるCaOの割合が高くなりすぎて、粗大な酸化物となってしまう。したがって、Caの含有量を0.0005%以下とした。好ましいCa含有量は、0.0003%以下であり、さらに好ましくは0.0002%以下である。なお、含有されるCaの量の下限値は、特に規定するものではなく、鋼材中の酸化物の平均組成におけるCaOが10%以上であればよい。
Ca: 0.0005% or less In the present invention, as will be described later, after the removal of slag produced by oxidative refining as primary refining, a flux whose main component is CaO is introduced to newly produce slag. And stir the molten steel. At this time, Ca is mixed as a soft oxide from the flux into the steel. However, if the Ca content increases and exceeds 0.0005%, the ratio of CaO in the oxide composition becomes too high, resulting in a coarse oxide. Therefore, the Ca content is set to 0.0005% or less. The preferable Ca content is 0.0003% or less, and more preferably 0.0002% or less. In addition, the lower limit of the amount of Ca contained is not particularly specified, and it is sufficient that CaO in the average composition of oxides in the steel material is 10% or more.

O:0.0020%以下
Oは、好ましくない不純物元素である。Oの含有量が多くなって、特に、0.0020%を超えると、圧下した後に粗大な酸化物として残存し、転動疲労寿命の低下を招く。したがって、Oの含有量を0.0020%以下とした。なお、好ましいO含有量の範囲は0.0015%以下である。
O: 0.0020% or less O is an undesirable impurity element. When the content of O increases, and particularly exceeds 0.0020%, it remains as a coarse oxide after rolling, leading to a decrease in rolling fatigue life. Therefore, the content of O is set to 0.0020% or less. In addition, the range of preferable O content is 0.0015% or less.

上記の理由から、本発明(1)に係る軸受鋼鋼材は、C、Si、Mn、P、S、Cr、Al、Ca、Oを上述した範囲で含有し、残部はFeおよび不純物の化学成分からなることと規定した。   For the above reasons, the bearing steel according to the present invention (1) contains C, Si, Mn, P, S, Cr, Al, Ca, O in the above-described range, and the balance is the chemical component of Fe and impurities. It was defined as consisting of

また、本発明(2)においても、C、Si、Mn、P、S、Cr、Al、Ca、Oを上述した範囲で含有し、残部はFeおよび不純物の化学成分を有する鋳片または鋼塊を用いることとした。   Also in the present invention (2), a slab or steel ingot containing C, Si, Mn, P, S, Cr, Al, Ca, O in the above-described range, and the balance having chemical components of Fe and impurities. It was decided to use.

なお、粗大なTiNが生成すると転動疲労寿命を低下させてしまうため、不純物におけるTiは0.003%以下、不純物におけるNは0.010%以下とすることが好ましい。   In addition, since rolling fatigue life will be reduced when coarse TiN is generated, it is preferable that Ti in the impurity is 0.003% or less and N in the impurity is 0.010% or less.

(B)非金属介在物:
(B−1)酸化物の平均組成:
本発明においては、非金属介在物について、先ず、酸化物の平均組成が、質量%で、CaO:10〜60%、Al23:35%以下、MnO:35%以下およびMgO:15%以下で残部SiO2および不純物からなるものでなければならない。以下、質量%での酸化物の平均組成における含有量を「濃度」ともいう。
(B) Non-metallic inclusions:
(B-1) Average composition of oxide:
In the present invention, for non-metallic inclusions, first, the average composition of oxides is, by mass, CaO: 10 to 60%, Al 2 O 3 : 35% or less, MnO: 35% or less, and MgO: 15%. In the following, it must consist of the remainder SiO 2 and impurities. Hereinafter, the content in the average composition of oxide in mass% is also referred to as “concentration”.

本発明でいう「酸化物」は、主としてCaO、SiO2、Al23、MnOおよびMgOの5元系を基本として構成されるものであり、酸化物の平均組成が上記の範囲にある場合には酸化物は全体的に軟質であり、圧延などの圧下工程において容易に延伸、分断されて微細になるため、転動疲労寿命を低下させることがなく、したがって、過酷な使用環境下においても優れた転動疲労寿命を確保できるからである。 The “oxide” in the present invention is mainly composed of a ternary system of CaO, SiO 2 , Al 2 O 3 , MnO and MgO, and the average composition of the oxide is in the above range. In general, oxides are soft as a whole, and are easily stretched, divided, and made finer in a rolling process such as rolling, so that the rolling fatigue life is not reduced, and therefore, even under severe use environments. This is because an excellent rolling fatigue life can be secured.

以下に、各酸化物組成の限定理由を示す。   The reasons for limiting each oxide composition are shown below.

CaO:10〜60%
酸性酸化物であるSiO2を基本組成とする酸化物は、塩基性であるCaOを含むことにより酸化物の液相線温度が下がり、圧延などの圧下温度域で延性を示すようになる。上記の効果は、酸化物の平均組成におけるCaO濃度が10%以上で得られるが、60%を超えると相対的にSiO2濃度が低下して却って延性を示さなくなる。したがって、酸化物の平均組成におけるCaO濃度を10〜60%とした。なお、圧延などの圧下温度域で安定した延性が得られるようにするための上記CaO濃度の好ましい上限は50%である。
CaO: 10 to 60%
An oxide having a basic composition of SiO 2 , which is an acidic oxide, contains CaO, which is basic, so that the liquidus temperature of the oxide is lowered and becomes ductile in a rolling temperature range such as rolling. The above effect is obtained when the CaO concentration in the average composition of the oxide is 10% or more. However, when it exceeds 60%, the SiO 2 concentration is relatively lowered and the ductility is not exhibited. Therefore, the CaO concentration in the average composition of the oxide is set to 10 to 60%. In addition, the preferable upper limit of the said CaO density | concentration for making the ductility stable in rolling reduction temperature ranges, such as rolling, is 50%.

Al23:35%以下
両性酸化物であるAl23の酸化物の平均組成における濃度が35%を超えると、Al23(コランダム)相が晶出したり、後述するMgOとともにMgO・Al23(スピネル)相が晶出する。これらの固相は硬質で圧延などの圧下でも延伸することなく、晶出した際の厚みを保つ。したがって、酸化物の平均組成におけるAl23濃度は35%以下とする必要がある。なお、前記硬質相の生成を安定かつ確実に抑制するための上記Al23濃度の好ましい上限は25%である。
Al 2 O 3 : 35% or less When the concentration in the average composition of the amphoteric oxide Al 2 O 3 exceeds 35%, an Al 2 O 3 (corundum) phase is crystallized or MgO together with MgO described later.・ Al 2 O 3 (spinel) phase crystallizes out. These solid phases are hard and maintain the thickness at the time of crystallization without stretching even under rolling or the like. Therefore, the Al 2 O 3 concentration in the average composition of the oxide needs to be 35% or less. A preferable upper limit of the concentration of Al 2 O 3 to stably and reliably suppress generation of the hard phase is 25%.

MnO:35%以下
MnOは、酸化物としては塩基性を有し、SiO2系の軟質化を助長するので、比較的高い濃度まで許容できる。しかしながら、MnOは鋼が弱脱酸状態の時に安定な、いわゆる低級酸化物であり、MnO濃度が高いと鋼中のO(酸素)の含有量も高くなる。すなわち、酸化物の平均組成におけるMnO濃度が35%を超えるとO含有量を0.0020%以下とすることができない場合がある。したがって、酸化物の平均組成におけるMnO濃度を35%以下とした。なお、前述したOの含有量を0.0015%以下にするために、酸化物の平均組成におけるMnO濃度は25%以下とすることが好ましい。
MnO: 35% or less MnO is basic as an oxide and promotes softening of the SiO 2 system, so that a relatively high concentration is acceptable. However, MnO is a so-called lower oxide that is stable when the steel is in a weakly deoxidized state. If the MnO concentration is high, the content of O (oxygen) in the steel also increases. That is, if the MnO concentration in the average composition of the oxide exceeds 35%, the O content may not be 0.0020% or less. Therefore, the MnO concentration in the average composition of the oxide is set to 35% or less. In order to make the above-described O content 0.0015% or less, the MnO concentration in the average composition of the oxides is preferably 25% or less.

MgO:15%以下
MgOは塩基性酸化物であり、少量ではSiO2系酸化物の軟質化ができるが、一方でその溶解度が低く、硬質のMgO(ペリクレース)相およびAl23とともにMgO・Al23(スピネル)相が晶出する。酸化物の平均組成におけるMgOが15%を超えると、上述した硬質相を晶出する蓋然性が高くなる。したがって、酸化物の平均組成におけるMgO濃度を15%以下とした。なお、前記した硬質相の晶出をより確実に抑制するために、酸化物の平均組成におけるMgO濃度は10%以下とすることが好ましい。
MgO: 15% or less MgO is a basic oxide, and a small amount can soften a SiO 2 -based oxide, but its solubility is low, while it has a low MgO (periclase) phase and Al 2 O 3 together with MgO. The Al 2 O 3 (spinel) phase crystallizes out. If MgO in the average composition of the oxide exceeds 15%, the probability of crystallizing the hard phase described above increases. Therefore, the MgO concentration in the average composition of the oxide is set to 15% or less. In order to more reliably suppress the crystallization of the hard phase described above, the MgO concentration in the average composition of the oxide is preferably 10% or less.

本発明でいう「酸化物」は、主としてCaO、SiO2、Al23、MnOおよびMgOの5元系を基本として構成されるものであるが、Cr23、Na2O、ZrO2などの酸化物における不純物の総和は5%以下であることが好ましい。 The “oxide” as used in the present invention is mainly composed of a ternary system of CaO, SiO 2 , Al 2 O 3 , MnO and MgO, but is composed of Cr 2 O 3 , Na 2 O and ZrO 2. It is preferable that the sum total of impurities in oxides such as 5% or less.

なお、酸化物の平均組成は、CaO:10〜50%、Al23:25%以下、MnO:25%以下およびMgO:10%以下で残部がSiO2および5%以下の不純物であることが好ましい。 The average composition of the oxide is CaO: 10 to 50%, Al 2 O 3 : 25% or less, MnO: 25% or less, and MgO: 10% or less, with the balance being SiO 2 and 5% or less impurities. Is preferred.

また、酸化物の平均組成において、Al23、MnOおよびMgOの下限は、特に規定する必要はない。 Further, in the average composition of the oxide, the lower limit of Al 2 O 3 , MnO and MgO does not need to be specified.

上述の理由から、本発明(1)に係る軸受鋼鋼材の酸化物の平均組成を、質量%で、CaO:10〜60%、Al23:35%以下、MnO:35%以下およびMgO:15%以下で残部SiO2および不純物からなることと規定した。 For the reasons mentioned above, the average composition of oxides of bearing steels according to the present invention (1), by mass%, CaO: 10~60%, Al 2 O 3: 35% or less, MnO: 35% or less and MgO : 15% or less and the balance being SiO 2 and impurities.

また、本発明(2)においても、上記酸化物の平均組成を有する鋳片または鋼塊を用いることとした。   Also in the present invention (2), a slab or a steel ingot having an average composition of the oxide is used.

なお、酸化物の平均組成は、例えば、鋼材を長手方向に平行に切出したL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を複数個、例えば20個について、測定した組成を算術平均して求めればよい。   In addition, the average composition of the oxide is, for example, a plurality of arbitrary oxides having a thickness of 3 μm or more by energy dispersive X-ray spectroscopy after mirror-polishing the L cross-section obtained by cutting the steel material parallel to the longitudinal direction, For example, 20 compositions may be obtained by arithmetically averaging the measured compositions.

なお、上記した酸化物の平均組成は、例えば、次の〈1〉および〈2〉に述べる製鋼方法を採用し、その後、常法の連続鋳造法や鋳型法によって鋳片や鋼塊を作製することによって得ることができる。   In addition, the average composition of the above oxide employs, for example, the steelmaking method described in the following <1> and <2>, and thereafter, a slab or a steel ingot is produced by a conventional continuous casting method or a casting method. Can be obtained.

〈1〉軸受鋼の製鋼過程で、いわゆる「一次精錬炉」である転炉や電気炉などでの酸化精錬後に不純物として含まれる酸素を除くために通常実施されるAl添加での脱酸処理を行わない。   <1> In the steelmaking process of bearing steel, deoxidation treatment with Al addition that is usually performed to remove oxygen contained as impurities after oxidation refining in converters and electric furnaces that are so-called “primary refining furnaces” Not performed.

〈2〉二次精錬終了後の最終的なスラグについて、塩基度(CaO/SiO2)が0.8〜2.0で、かつ組成が質量%で、MgO:15%以下、F:10%以下、Al23:20%以下になるように制御する。なお、上記のF(フッ素)は造滓剤としてのほたる石の主成分であるCaF2に由来する。 <2> About the final slag after the completion of secondary refining, the basicity (CaO / SiO 2 ) is 0.8 to 2.0, the composition is mass%, MgO: 15% or less, F: 10% Hereinafter, control is performed so that Al 2 O 3 : 20% or less. The above F (fluorine) is derived from CaF 2 as the main component of the fluorite as Zokasu agent.

なお、二次精錬終了後の最終的なスラグについて、上記〈2〉の組成とするためには、一次精錬炉から取り鍋へ出鋼した後、「二次精錬」におけるスラグ組成制御を容易にするために、先ず、一次精錬炉から流出した酸化精錬で生成したスラグの除滓を実施し、除滓後に、主成分がCaOであり、実質的にAlを含まない、Al23やMgOの含有量の少ないフラックスを投入して、新たに生成したスラグと溶鋼を強攪拌すればよい。既に述べたように、上記のスラグ組成における「残部」は、MnO、FeO、TiO2、Cr23などである。 For the final slag after the completion of secondary refining, in order to obtain the composition of <2> above, after the steel is discharged from the primary refining furnace to the ladle, slag composition control in “secondary refining” can be easily performed. In order to achieve this, first, slag produced by oxidative refining flowing out from the primary smelting furnace is removed, and after removal, the main component is CaO and substantially free of Al, Al 2 O 3 and MgO. What is necessary is just to stir the newly produced | generated slag and molten steel by throwing in the flux with little content of. As already stated, the “remainder” in the slag composition is MnO, FeO, TiO 2 , Cr 2 O 3 or the like.

なお、強攪拌を得るための手段としては、例えば、減圧下での攪拌、インジェクションによる攪拌や取り鍋底部からの底吹き攪拌などを適用すればよい。インジェクションによる攪拌を行う場合には、上述のフラックスを同時に吹き込むのが好ましい。また、減圧処理を実施する場合には、あくまでも攪拌のための減圧処理に留める必要がある。これは、長時間の減圧処理を実施すれば、却って耐火物からの硬質介在物の混入やスラグの巻き込みを招くことになって、清浄性を低下させることに繋がるからである。   In addition, as means for obtaining strong stirring, for example, stirring under reduced pressure, stirring by injection, bottom blowing stirring from the bottom of the ladle, or the like may be applied. When stirring by injection, it is preferable to blow the above-mentioned flux at the same time. Moreover, when implementing a pressure reduction process, it is necessary to stop at the pressure reduction process for stirring to the last. This is because, if the decompression process for a long time is performed, the inclusion of hard inclusions from the refractory and the entrainment of slag are caused, leading to a decrease in cleanliness.

また、鋼のCa含有量が0.0005%を超えない範囲であれば、二次精錬の過程でさらに溶鋼中にCaを添加しても構わない。   In addition, as long as the Ca content of the steel does not exceed 0.0005%, Ca may be further added to the molten steel during the secondary refining process.

(B−2)酸化物の最大厚さと硫化物の最大厚さ:
酸化物、硫化物の双方ともに、その厚さが大きい場合には、転動疲労寿命の低下を招く。転動疲労寿命に最も影響を及ぼすものは、軌道面下に存在する最も粗大な介在物である。特に、鋼材のL断面の100mm2の面積中において8.5μmを超えるような最大厚さの酸化物や硫化物が、鋼材中の数多くの部位で存在すると、軌道面に存在する確率が高くなり、転動疲労寿命の著しい低下をきたす。
(B-2) Maximum thickness of oxide and maximum thickness of sulfide:
When both the oxide and sulfide are thick, the rolling fatigue life is reduced. What has the greatest influence on the rolling fatigue life is the coarsest inclusions existing below the raceway surface. In particular, if oxides and sulfides with a maximum thickness exceeding 8.5 μm in an area of 100 mm 2 of the L cross-section of the steel material are present at a number of sites in the steel material, the probability of existing on the raceway surface increases. As a result, the rolling fatigue life is significantly reduced.

上述の理由から、本発明(1)に係る軸受鋼鋼材は、鋼材のL断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であることと規定した。 For the reasons described above, the bearing steel according to the present invention (1) has an arithmetic average value of the maximum oxide thickness and the maximum thickness of sulfide existing in an area of 100 mm 2 at 10 locations on the L cross section of the steel material. It was specified that the arithmetic average values were 8.5 μm or less, respectively.

上記の酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値はいずれも、7μm以下であることが好ましい。   The arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide are both preferably 7 μm or less.

なお、「L断面」とは、鋼材の長手方向に平行に切断した面を指すことは既に述べたとおりである。   As already described, the “L cross section” refers to a surface cut in parallel to the longitudinal direction of the steel material.

(C)鋼材の表面からR/2部位置までの平均断面硬さ:
一般に、熱間加工ままの高炭素クロム軸受鋼鋼材のHv硬さは350〜400程度であるため、切断や冷間鍛造などの冷間加工を施す場合には、熱間加工後に球状化焼鈍など長時間にわたる軟質化熱処理を施す必要があった。しかしながら、鋼材の冷間加工性は、鋼材の表面からR/2部位置までの変形能に大きく支配され、高炭素クロム軸受鋼鋼材であっても、熱間加工ままでの上記部位における平均断面硬さがHv硬さで290以下であれば、熱間加工ままあるいは軟質化熱処理時間を短くしても良好な冷間加工性を確保することができる。
(C) Average cross section hardness from the surface of the steel material to the R / 2 part position:
In general, since the Hv hardness of the high carbon chromium bearing steel as hot worked is about 350 to 400, when performing cold working such as cutting or cold forging, spheroidizing annealing after hot working, etc. It was necessary to perform a softening heat treatment for a long time. However, the cold workability of the steel material is largely governed by the deformability from the surface of the steel material to the R / 2 part position, and even in the case of a high carbon chrome bearing steel material, the average cross-section at the above-mentioned site as hot-worked If the hardness is 290 or less in terms of Hv hardness, good cold workability can be ensured even with hot working or shortening the softening heat treatment time.

したがって、本発明(1)に係る軸受鋼鋼材について、その表面からR/2部位置までの平均断面硬さをHv硬さで290以下であることとした。   Therefore, about the bearing steel material which concerns on this invention (1), it was decided that the average cross-section hardness from the surface to R / 2 part position is 290 or less in Hv hardness.

上記部位におけるHv硬さでの好ましい平均断面硬さは270以下であり、さらに好ましくは250以下である。上記部位での平均断面硬さは、低ければ低いほど優れた冷間加工性が得られるので、平均断面硬さの下限は特に規定するものではない。   The preferred average cross-sectional hardness in Hv hardness at the above part is 270 or less, more preferably 250 or less. The lower the average cross-sectional hardness at the above part, the better the cold workability that can be obtained, so the lower limit of the average cross-sectional hardness is not particularly specified.

なお、前記(A)項に記載の化学成分および(B)項に記載の酸化物の平均組成を有する鋳片または鋼塊に対して、例えば、次の(D)項で述べるような、全圧下比が15以上となる2以上の圧下工程のうちの最終圧下工程において、被圧下材の加熱温度およびその圧下工程中の被圧下材の表面温度を適正化すれば、変形能に大きな影響を及ぼす上記の表面からR/2部位置までのセメンタイトの球状化が促進されので、上記部位における平均断面硬さをHv硬さで290以下にすることができる。   In addition, for the slab or steel ingot having the chemical composition described in the item (A) and the average composition of the oxide described in the item (B), for example, as described in the following item (D) In the final reduction step of two or more reduction steps with a reduction ratio of 15 or more, if the heating temperature of the material to be reduced and the surface temperature of the material to be reduced during the reduction step are optimized, the deformability is greatly affected. Since the spheroidization of cementite from the above surface to the R / 2 part position is promoted, the average cross-sectional hardness at the above portion can be made 290 or less in terms of Hv hardness.

なお、鋼材の表面からR/2部位置までの平均断面硬さは、例えば、鋼材を長手方向と垂直に切出した「横断面」(以下、「C断面」という。)を鏡面研磨した後、表面下0.5mm程度の位置からR/2部位置までを、ビッカース硬さ試験機を用いて、JIS Z 2244(2003)に記載された条件を満足するようにほぼ等間隔で、10点測定した後、算術平均して求めればよい。   The average cross-sectional hardness from the surface of the steel material to the R / 2 part position is, for example, after mirror-polishing a “cross section” (hereinafter referred to as “C section”) obtained by cutting the steel material perpendicularly to the longitudinal direction. Ten points measurement from about 0.5mm below the surface to R / 2 part position using Vickers hardness tester at almost equal intervals to satisfy the conditions described in JIS Z 2244 (2003) After that, the arithmetic average may be obtained.

なお、前述したとおり、「R」は軸受鋼鋼材の半径を表す。   As described above, “R” represents the radius of the bearing steel.

(D)軸受鋼鋼材の製造方法:
本発明(1)の軸受鋼鋼材は、例えば、本発明(2)の方法、具体的には、前記(A)項で述べた化学成分からなり、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片または鋼塊に、2以上の圧下工程によって全圧下比が15以上となる圧下を加えるに際し、該2以上の圧下工程のうちの最終圧下工程が、下記の〔1〕〜〔3〕の全てを満たすようにして圧下し、さらに、最終圧下工程における圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却することによって製造することができる。
(D) Manufacturing method of bearing steel:
The bearing steel of the present invention (1) comprises, for example, the method of the present invention (2), specifically, the chemical components described in the above section (A), and the nonmetallic inclusion (B-1). When a reduction in which the total reduction ratio is 15 or more is applied to a slab or steel ingot having the average composition of the oxide described in the section by two or more reduction steps, the final reduction step of the two or more reduction steps is performed. In order to satisfy all of the following [1] to [3], further, the temperature range up to 400 ° C. is cooled at a cooling rate of 5 ° C./s or less after finishing the reduction in the final reduction step. Can be manufactured by.

〔1〕被圧下材をAe1点〜Aem点の温度域に加熱して圧下を開始すること、
〔2〕圧下工程中の被圧下材の表面温度が、680℃〜(Aem点−30℃)の温度範囲内であること、
〔3〕圧下比が4以上であること。
[1] Start the reduction by heating the material to be pressed to a temperature range of Ae 1 point to Aem point;
[2] The surface temperature of the material to be rolled during the rolling step is within a temperature range of 680 ° C. to (Aem point−30 ° C.),
[3] The reduction ratio is 4 or more.

なお、既に述べたように、全圧下比とは、鋳片または鋼塊の断面積を、最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指し、また、最終圧下工程での圧下比とは、最終圧下工程で圧下が加えられる前の被圧下材の断面積を最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指す。   As already stated, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or the steel ingot by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction process, The reduction ratio in the final reduction step refers to a value obtained by dividing the cross-sectional area of the material to be reduced before the reduction is applied in the final reduction step by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction step. .

また、本発明(2)に係る化学成分と酸化物の平均組成を有する鋳片または鋼塊、つまり前記(A)項で述べた化学成分を有し、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片または鋼塊は、例えば、前記(B−1)項の〈1〉および〈2〉で述べた方法を採用した後、続いて常法の連続鋳造法や鋳型法で鋳造することによって得ることができる。   Further, the slab or steel ingot having the average composition of the chemical component and oxide according to the present invention (2), that is, the chemical component described in the item (A), and the non-metallic inclusion (B-1) For the slab or steel ingot having the average composition of the oxide described in the item (1), for example, after adopting the method described in the items (1) and (2) in the item (B-1), It can be obtained by casting by a continuous casting method or a mold method.

以下、本発明(1)の軸受鋼鋼材の一例として具体的に棒鋼、線材を取り上げ、これらの鋼材を製造する方法について詳しく説明する。   Hereinafter, as an example of the bearing steel material of the present invention (1), a steel bar and a wire are specifically taken up, and a method for producing these steel materials will be described in detail.

前述の化学成分および酸化物の平均組成を有する鋳片または鋼塊を、2以上の圧下工程によって全圧下比が15以上となる圧下を加えて、具体的には、例えば、常法どおり1000℃を超える温度域で分塊圧延して得た鋼片を用いて、これにさらに、熱間での鍛造工程、熱間での圧延と鍛造からなる工程、あるいは、熱間での棒鋼連続圧延や線材連続圧延などの工程で圧下を加え、全圧下比が15以上となるようにして最終の棒鋼や線材に加工する。   The slab or steel ingot having an average composition of the chemical components and oxides described above is subjected to reduction at a total reduction ratio of 15 or more by two or more reduction steps. In addition to this, using a steel slab obtained by split rolling in a temperature range exceeding, a hot forging process, a process consisting of hot rolling and forging, or hot bar steel continuous rolling or Reduction is applied in a process such as continuous rolling of the wire rod, so that the final bar steel or wire rod is processed so that the total reduction ratio is 15 or more.

上記工程において、鋳片又は鋼塊を最終の棒鋼や線材に加工する場合の全圧下比が15を下回る場合には、たとえ前述の(A)項で述べた化学成分からなり、(B−1)項で述べた酸化物の平均組成を有する鋳片又は鋼塊を用いても、軸受鋼鋼材に前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さの条件を満足させることができず、このため、過酷な使用環境下において、所望の優れた転動疲労寿命を確保させることができない。   In the above process, if the total reduction ratio is less than 15 when the slab or steel ingot is processed into the final bar or wire, it consists of the chemical components described in the above section (A), and (B-1 The conditions of the maximum thickness of the oxide and the maximum thickness of the sulfide described in the above (B-2) are applied to the bearing steel material even if the slab or the steel ingot having the average composition of the oxide described in the section) is used. Therefore, the desired excellent rolling fatigue life cannot be ensured in a severe use environment.

なお、上記の全圧下比が大きいほど、前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さが小さくなって、転動疲労特性(転動疲労寿命)は向上する。このため、上記全圧下比の上限は特に規定する必要はなく、鋳片や鋼塊の寸法とそれらを加工して得られる最終の棒鋼や線材の寸法や設備面から決定される最大の値であってもよい。   In addition, the larger the total rolling reduction ratio, the smaller the maximum oxide thickness and sulfide maximum thickness described in the above section (B-2), and the rolling fatigue characteristics (rolling fatigue life) are improved. To do. For this reason, the upper limit of the total reduction ratio does not need to be specified in particular, and is the maximum value determined from the dimensions of the slab and the steel ingot, the dimensions of the final bar and wire obtained by processing them, and the equipment surface. There may be.

なお、全圧下比は30以上であることが好ましい。   The total reduction ratio is preferably 30 or more.

しかしながら、軸受鋼鋼材としての棒鋼や線材に前記(B−2)項で述べた酸化物の最大厚さと硫化物の最大厚さの条件を満足させるとともに、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さがHv硬さで290以下という条件を満足させるためには、2以上の圧下工程によって全圧下比が15以上を満たすようにするだけでは不十分である。   However, the steel bar or wire rod as the bearing steel material satisfies the conditions of the maximum oxide thickness and sulfide maximum thickness described in the above section (B-2), and the steel material described in the above section (C). In order to satisfy the condition that the average cross-sectional hardness from the surface to the R / 2 part position is 290 or less in terms of Hv hardness, it is not sufficient to satisfy the total reduction ratio of 15 or more by two or more reduction processes. It is.

すなわち、酸化物の平均組成が前記(B−1)項で述べたものである時、同時に存在する硫化物にはMnOと思われる酸化物が含有されており、Al添加で脱酸処理した場合に比べて硫化物は硬質化しているので、加工によって延伸、分断され難く、したがって、軸受鋼鋼材としての棒鋼や線材に、先ず前記(B−2)項で述べた硫化物の最大厚さの条件を満足させるためには、全圧下比が15以上を満たすようにし、しかも、特願2007−204872の特許出願で提案したとおり、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下する必要がある。   That is, when the average composition of the oxide is as described in the above section (B-1), the sulfide present at the same time contains an oxide that seems to be MnO, and the deoxidation treatment is performed by adding Al. Since the sulfide is hardened compared to the above, it is difficult to be stretched and divided by processing. Therefore, first of all, the maximum thickness of the sulfide described in the section (B-2) is applied to the steel bar or wire as the bearing steel material. In order to satisfy the conditions, the total reduction ratio should satisfy 15 or more, and as proposed in the patent application of Japanese Patent Application No. 2007-204872, the reduction ratio in a temperature range of 1000 ° C. or less is included in the reduction. It is necessary to reduce the pressure to 4 or more.

これは、マトリックス(素地)の変形抵抗は硫化物に比較して小さいため、高い温度で加えられる圧下、特に、1000℃を超える温度域で加えられる圧下は、マトリックスを優先的に変形させてしまうため、上記温度域における圧下では、硫化物は延伸、分断され難く、前記(B−2)項で述べた硫化物の最大厚さの条件を満足することができないからである。そして、この場合には、過酷な使用環境下において、所望の優れた転動疲労寿命を確保させることができない。   This is because the deformation resistance of the matrix (base material) is smaller than that of sulfides, and therefore, the pressurization applied at a high temperature, particularly the pressurization applied in a temperature range exceeding 1000 ° C., preferentially deforms the matrix. Therefore, under the pressure in the above temperature range, the sulfide is hardly stretched and divided, and the maximum thickness condition of the sulfide described in the above section (B-2) cannot be satisfied. In this case, the desired excellent rolling fatigue life cannot be ensured in a severe use environment.

これに対して、圧下を加える温度域を1000℃以下に低下させれば、マトリックスと硫化物の変形抵抗の差は小さくなるので、硫化物は延伸、分断されやすくなって前記(B−2)項で述べた硫化物の最大厚さの条件を満足するようになるからである。   On the other hand, if the temperature range to which the reduction is applied is lowered to 1000 ° C. or less, the difference in deformation resistance between the matrix and the sulfide is reduced, and the sulfide is easily stretched and divided (B-2). This is because the conditions for the maximum thickness of the sulfide described in the section are satisfied.

しかしながら、軸受鋼鋼材としての棒鋼や線材に前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を同時に満足させるためには、特願2007−204872の特許出願で提案した全圧下比が15以上を満たし、その圧下のうちで1000℃以下の温度域での圧下比を4以上として圧下するだけでは不十分であり、2以上の圧下工程によって全圧下比が15以上となる圧下を加えるに際し、該2以上の圧下工程のうちの最終圧下工程が、前述した〔1〕〜〔3〕の全てを満たすようにして圧下し、さらに、最終圧下工程における圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却することが必要になる。   However, in order to simultaneously satisfy the condition of the average cross-sectional hardness from the surface of the steel material described in the above item (C) to the R / 2 part position in the steel bar or wire material as the bearing steel material, Japanese Patent Application No. 2007-204872 The total reduction ratio proposed in the patent application satisfies 15 or more, and it is not sufficient to reduce the reduction ratio in the temperature range of 1000 ° C. or less to 4 or more, and the total reduction is performed by two or more reduction processes. When applying the reduction at a ratio of 15 or more, the final reduction step of the two or more reduction steps is reduced so as to satisfy all of the above [1] to [3], and further in the final reduction step. After finishing the reduction, it is necessary to cool the temperature range up to 400 ° C. at a cooling rate of 5 ° C./s or less.

すなわち、被圧下材をAe1点〜Aem点の温度域に加熱して圧下を開始するという条件〔1〕によって、最終圧下工程前の被圧下材に存在していたパーライト中の微細な粒状や球状のセメンタイトを、最終圧下工程での圧下開始時に旧オーステナイト粒内に残存させることができる。そして、最終圧下工程中の被圧下材の表面温度が、680℃〜(Aem点−30℃)の温度範囲内であるという条件〔2〕およびその際の圧下比が4以上であるという条件〔3〕を満たし、さらに、圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却すれば、上記の旧オーステナイト粒内に残存させた微細な粒状や球状のセメンタイト(以下、「残存セメンタイト」という。)付近に歪みが集積するので、上記残存セメンタイトの近傍に微細な初析セメンタイトをさらに均一に加工誘起析出させることができ、アスペクト比、つまり、「長径/短径」の極めて小さい球状に近い形態のセメンタイトを得ることができる。それにより、(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を同時に満足させることが可能になるのである。 That is, according to the condition [1] in which the material to be pressed is heated to the temperature range of Ae 1 point to Aem point to start the reduction, fine particles in the pearlite existing in the material to be reduced before the final reduction process Spherical cementite can be left in the prior austenite grains at the start of rolling in the final rolling step. And the condition [2] that the surface temperature of the material to be reduced during the final reduction step is in the temperature range of 680 ° C. to (Aem point−30 ° C.) and the condition that the reduction ratio at that time is 4 or more [ 3], and when the temperature range up to 400 ° C. after cooling is cooled at a cooling rate of 5 ° C./s or less, the fine granular or spherical cementite (in the above-mentioned prior austenite grains ( (Hereinafter referred to as “residual cementite”), since strain accumulates in the vicinity, fine pro-eutectoid cementite can be further uniformly induced by processing in the vicinity of the residual cementite, and the aspect ratio, that is, “major axis / minor axis” Can be obtained. Thereby, it becomes possible to simultaneously satisfy the condition of the average cross-sectional hardness from the surface of the steel material to the R / 2 part position described in the section (C).

最終圧下工程での被圧下材の加熱温度がAe1点より低い場合には、最終圧下工程における圧下開始段階で被圧下材のパーライトそのものが残存し、圧下後の組織は板状セメンタイトが多数残存するものとなり、球状に近い形態のセメンタイト組織は得られない。このため、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足できない。 When the heating temperature of the material to be reduced in the final reduction process is lower than Ae 1 point, the pearlite itself of the reduction material remains at the reduction start stage in the final reduction process, and a large amount of plate-like cementite remains in the structure after reduction. Therefore, a cementite structure having a nearly spherical shape cannot be obtained. For this reason, the condition of the average cross-section hardness from the surface of the steel material described in the above (C) to the R / 2 part position cannot be satisfied.

一方、上記加熱温度がAem点を超える場合には、被圧下材はオーステナイト化して残存セメンタイトがマトリックス中に完全に固溶してしまうので、最終圧下工程における圧下開始段階では析出サイトとなるべき残存セメンタイトは存在しない。このため、最終圧下工程中の被圧下材の表面温度を条件〔2〕の680℃〜(Aem点−30℃)という温度範囲に制御しても、微細な初析セメンタイトを旧オーステナイト粒界および粒内に均一に加工誘起析出させることができないので、圧下終了後の冷却過程でオーステナイトはパーライト変態し、旧オーステナイト粒内に板状セメンタイトが析出してしまい、球状に近い形態のセメンタイト組織を得ることができない。よって、この場合にも前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足させることができない。   On the other hand, when the heating temperature exceeds the Aem point, the material to be pressed becomes austenite and the remaining cementite is completely dissolved in the matrix, so that it remains as a precipitation site in the rolling start stage in the final rolling process. There is no cementite. For this reason, even if the surface temperature of the material to be pressed during the final reduction process is controlled within the temperature range of 680 ° C. to (Aem point−30 ° C.) of the condition [2], fine proeutectoid cementite and the prior austenite grain boundaries and Since it cannot be uniformly induced by processing in the grains, austenite undergoes pearlite transformation in the cooling process after completion of the reduction, and plate-like cementite is precipitated in the prior austenite grains, thereby obtaining a cementite structure having a nearly spherical shape. I can't. Therefore, also in this case, the condition of the average cross-section hardness from the surface of the steel material to the R / 2 part position described in the above (C) item cannot be satisfied.

最終圧下工程中の被圧下材の表面温度が680℃を下回る場合には、多くの転位を導入できるものの、その温度で保持されることによって、オーステナイトとセメンタイトとの2相組織におけるオーステナイトがパーライト変態を開始してしまう。そして、変態によって生成したパーライトを圧下した場合には、パーライト中の一部の板状セメンタイトはわずかに分断されるものの、セメンタイトのアスペクト比はあまり小さくはならない。このため、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足させることができない。しかも、パーライトの変形抵抗は極めて大きいので、圧下設備の負荷が極めて増大してしまう。   When the surface temperature of the material to be reduced during the final reduction step is less than 680 ° C., many dislocations can be introduced, but by maintaining at that temperature, austenite in the two-phase structure of austenite and cementite is transformed into pearlite. Will start. And when the pearlite produced | generated by transformation is reduced, although some plate-like cementite in pearlite is partly divided, the aspect ratio of cementite does not become so small. For this reason, the condition of the average cross-sectional hardness from the surface of the steel material described in the above (C) to the R / 2 part position cannot be satisfied. In addition, since the deformation resistance of pearlite is extremely large, the load on the reduction equipment is extremely increased.

一方、最終圧下工程中の被圧下材の表面温度が(Aem点−30℃)を超えた場合には、圧下で導入された加工歪みは容易に消失し、微細な初析セメンタイトを均一に加工誘起析出させることができなくなる。そのため、球状に近い形態のセメンタイト組織は得られず、その結果、この場合にも前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足させることができない。   On the other hand, when the surface temperature of the material to be pressed during the final reduction process exceeds (Aem point −30 ° C.), the processing strain introduced under reduction easily disappears, and fine proeutectoid cementite is processed uniformly. It is impossible to induce precipitation. For this reason, a cementite structure having a nearly spherical shape cannot be obtained. As a result, in this case as well, the condition of the average cross-sectional hardness from the surface of the steel material to the R / 2 part position described in the above (C) section should be satisfied. I can't.

なお、本発明においては、加工発熱により最終圧下工程中の被圧下材の表面温度が(Aem点−30℃)を超えてしまいそうな場合には、最終圧下工程中の途中段階での中間冷却、すなわち、熱間での棒鋼連続圧延や線材連続圧延における圧延機間での中間冷却帯での冷却を行っても構わない。この場合、被圧下材の表面温度が一時的に680℃を下回る場合があるものの、続く圧下開始までに680℃以上に復熱し、被圧下材の表面温度が条件〔2〕の680℃〜(Aem点−30℃)という温度範囲で圧下を続ける程度の短時間の軽微な冷却であれば、内質にはほとんど影響を及ぼさず、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さがビッカース硬さで290以下の条件を満足させることができる。この場合、中間冷却帯での冷却開始から冷却終了後被圧延材の表面温度がAe1点以上に復熱するまでの時間Δtは10s以下であることが好ましい。 In the present invention, when the surface temperature of the pressed material during the final reduction process is likely to exceed (Aem point −30 ° C.) due to processing heat generation, intermediate cooling at an intermediate stage in the final reduction process is performed. That is, cooling in an intermediate cooling zone between rolling mills in hot steel bar continuous rolling or wire rod continuous rolling may be performed. In this case, although the surface temperature of the pressed material may temporarily fall below 680 ° C., it is reheated to 680 ° C. or more by the start of the subsequent rolling, and the surface temperature of the pressed material is 680 ° C .- ( If the cooling is performed in a short time so as to continue the reduction in the temperature range of (Aem point−30 ° C.), the inner quality is hardly affected, and from the surface of the steel material described in the above (C), R / 2 The condition that the average cross-sectional hardness up to the part position is 290 or less in terms of Vickers hardness can be satisfied. In this case, it is preferable that the time Δt from the start of cooling in the intermediate cooling zone to the reheating of the surface temperature of the material to be rolled after the end of cooling to Ae 1 point or more is 10 s or less.

なお、最終圧下工程での圧下比が2以上であれば、微細な初析セメンタイトを均一に加工誘起析出させ、球状に近い形態のセメンタイト組織を得て、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足させることができるものの、前記(B−2)項で述べた硫化物の最大厚さを得るためには、最終圧下工程における圧下比は条件〔3〕の4以上とする必要がある。上記最終圧下工程における圧下比は大きいほど硫化物の最大厚さが小さくなるため、6以上が好ましく、8以上であればさらに好ましい。   If the reduction ratio in the final reduction step is 2 or more, fine proeutectoid cementite is uniformly processed and induced to obtain a cementite structure having a nearly spherical shape, and the steel material described in the section (C) is obtained. Although the condition of the average cross-sectional hardness from the surface to the R / 2 part position can be satisfied, in order to obtain the maximum thickness of the sulfide described in the item (B-2), the reduction in the final reduction step The ratio needs to be 4 or more of the condition [3]. The greater the reduction ratio in the final reduction step, the smaller the maximum thickness of the sulfide. Therefore, it is preferably 6 or more, and more preferably 8 or more.

上記の最終圧下工程における圧下を終了した後は、400℃までの温度域を5℃/s以下の冷却速度で冷却する必要があるのは、400℃までの温度域の最終冷却速度が5℃/sを超える場合には、当該冷却時における初析セメンタイトや残存セメンタイトの成長が阻害されるとともに、パーライト変態して、板状のセメンタイトが析出してしまうので、初析セメンタイトが旧オーステナイト粒界に沿ってネットワーク状に析出し、球状に近い形態のセメンタイト組織が得られず、このため、前記(C)項で述べた鋼材の表面からR/2部位置までの平均断面硬さの条件を満足させることができないからである。   After finishing the reduction in the final reduction step, it is necessary to cool the temperature range up to 400 ° C. at a cooling rate of 5 ° C./s or less. The final cooling rate in the temperature range up to 400 ° C. is 5 ° C. / S exceeds the growth of pro-eutectoid cementite and residual cementite at the time of cooling, and pearlite transformation occurs and plate-like cementite precipitates. Accordingly, a cementite structure having a nearly spherical shape is not obtained, and therefore, the condition of the average cross-sectional hardness from the surface of the steel material to the R / 2 part position described in the section (C) is determined. It is because it cannot be satisfied.

なお、上述の5℃/s以下の冷却速度で冷却する温度域は最終圧下工程における圧下を終了した後400℃までとすれば十分であって、400℃を下回る温度域については特に規定する必要がない。このため、製造設備や生産性を勘案して、例えば、空冷(放冷)、強制風冷やミスト冷却などから適宜決定すればよい。   It should be noted that the temperature range for cooling at the cooling rate of 5 ° C./s or less described above is sufficient to be 400 ° C. after finishing the reduction in the final reduction step, and the temperature range below 400 ° C. needs to be specified in particular. There is no. For this reason, it may be determined as appropriate from, for example, air cooling (cooling), forced air cooling, mist cooling, etc. in consideration of manufacturing equipment and productivity.

また、上記の400℃までの温度域の最終冷却速度の下限は、冷却速度を遅くすれば、パーライトの抑制効果が大きくなるが、冷却速度を遅くするための温度制御設備が必要となり、結果として製造コストの増加を招くことから、5℃/hとするのが好ましい。   In addition, the lower limit of the final cooling rate in the temperature range up to 400 ° C. is that if the cooling rate is slowed down, the effect of suppressing pearlite increases, but a temperature control facility for slowing down the cooling rate is necessary, and as a result Since it causes an increase in manufacturing cost, it is preferably 5 ° C./h.

なお、既に述べたように、全圧下比とは、鋳片または鋼塊の断面積を、最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指し、また、最終圧下工程での圧下比とは、最終圧下工程で圧下が加えられる前の被圧下材の断面積を最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指す。   As already stated, the total reduction ratio refers to the value obtained by dividing the cross-sectional area of the slab or the steel ingot by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction process, The reduction ratio in the final reduction step refers to a value obtained by dividing the cross-sectional area of the material to be reduced before the reduction is applied in the final reduction step by the cross-sectional area of the bearing steel obtained by the final reduction in the final reduction step. .

上述の理由から、本発明(2)においては、本発明(1)に記載の化学成分および酸化物の平均組成を有する鋳片または鋼塊、換言すれば、前記(A)項で述べた化学成分を有するとともに、非金属介在物について前記(B−1)項で述べた酸化物の平均組成を有する鋳片または鋼塊に、2以上の圧下工程によって全圧下比が15以上となる圧下を加えるに際し、該2以上の圧下工程のうちの最終圧下工程が、前記の〔1〕〜〔3〕の全てを満たすようにして圧下し、さらに、最終圧下工程における圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却することと規定した。   For the reasons described above, in the present invention (2), a slab or steel ingot having the average composition of the chemical components and oxides described in the present invention (1), in other words, the chemistry described in the above section (A). The slab or steel ingot having the components and having the average composition of the oxide described in the above (B-1) for the non-metallic inclusions is subjected to reduction at a total reduction ratio of 15 or more by two or more reduction steps. When adding, the final reduction step of the two or more reduction steps is reduced so as to satisfy all of the above [1] to [3], and further, after finishing the reduction in the final reduction step, up to 400 ° C. The temperature range was defined as cooling at a cooling rate of 5 ° C./s or less.

また、本発明(3)においては、一次精錬としての酸化精錬後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行い、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:20%以下になるように制御し、続いて鋳造された鋳片や鋼塊を用いることと規定した。 Further, in the present invention (3), after oxidative refining as primary refining, secondary refining is performed using a flux that does not substantially contain Al, without performing Al deoxidation treatment, and after secondary refining is completed. Final slag basicity CaO / SiO 2 value is 0.8-2.0, and slag composition is mass%, MgO: 15% or less, F: 10% or less, Al 2 O 3 : 20% It was regulated to use slabs and steel ingots that were subsequently cast and controlled to be as follows.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例1)
表1に示す種々の化学組成を有する軸受鋼の鋳片1〜21を製造した。
Example 1
Cast steel slabs 1 to 21 having various chemical compositions shown in Table 1 were produced.

なお、表1中の鋼1〜12および鋼14〜17は、化学組成が本発明で規定する範囲内にある鋼であり、鋼13および鋼18〜21は、化学組成が本発明で規定する条件から外れた比較例の鋼である。比較例の鋼のうち鋼20および鋼21は従来のAlキルド鋼に相当する鋼である。   In Table 1, Steels 1 to 12 and Steels 14 to 17 are steels whose chemical compositions are within the range defined by the present invention, and Steels 13 and 18 to 21 are chemical compositions defined by the present invention. It is a comparative steel that is out of the conditions. Among the steels of the comparative examples, steel 20 and steel 21 are steels corresponding to conventional Al killed steel.

表1には、株式会社材料設計技術研究所で開発・販売されている状態図計算ソフトウェア「Pandat ver.6.0」によって求めた各鋼のAe1点およびAem点も併せて示した。 Table 1 also shows the Ae 1 point and Aem point of each steel determined by the phase diagram calculation software “Pandat ver. 6.0” developed and sold by Materials Design Technology Laboratory Co., Ltd.

Figure 2010007092
Figure 2010007092

上記の各鋼のうち、鋼1〜19については、転炉で一次精錬としての酸化精錬を行った後、除滓し、フラックスを投入した。そして、フラックスインジェクション法によるフラックスの吹き込みを行った後、溶鋼中にフラックスを混入させた状態で、アーク式加熱装置付き真空溶鋼攪拌設備(以下、「VAD」という。)により、Ar雰囲気下で、Ar流量40〜60L/分の溶鋼攪拌を40分間行った。その後、連続鋳造して300mm×400mmの鋳片にした。なお、鋼19については、転炉からの出鋼時にAlを僅かに添加し、軽く脱酸処理を行ったが、鋼1〜18については、Al添加の脱酸処理を行わなかった。   Among the above steels, steels 1 to 19 were subjected to oxidative refining as primary refining in a converter, then removed and charged with flux. And after blowing the flux by the flux injection method, in a state in which the flux is mixed in the molten steel, in an Ar atmosphere by a vacuum molten steel stirring equipment with an arc heating device (hereinafter referred to as “VAD”), Molten steel stirring was performed for 40 minutes at an Ar flow rate of 40 to 60 L / min. Thereafter, continuous casting was performed to obtain a slab of 300 mm × 400 mm. In addition, about steel 19, Al was added slightly at the time of steel extraction from a converter, and it deoxidized lightly, but about steel 1-18, the deoxidation process of Al addition was not performed.

鋼20および鋼21については、転炉で一次精錬としての酸化精錬を行った後、転炉からの出鋼時にAl添加による脱酸処理を行ってから、除滓し、フラックスを投入した。そして、VADにより、Ar雰囲気下で、Ar流量40〜60L/分の溶鋼攪拌を40分間行い、さらにRH真空脱ガス装置による処理を40分間行って、Al23を主体とする硬質な酸化物を除去した。その後、連続鋳造して300mm×400mmの鋳片にした。 Steels 20 and 21 were subjected to oxidative refining as primary refining in a converter, then deoxidized by addition of Al at the time of steel removal from the converter, and then removed and charged with flux. Then, by VAD, molten steel is stirred for 40 minutes under an Ar atmosphere in an Ar atmosphere for 40 minutes, and further processed by an RH vacuum degassing apparatus for 40 minutes, so that hard oxidation mainly composed of Al 2 O 3 is performed. The thing was removed. Thereafter, continuous casting was performed to obtain a slab of 300 mm × 400 mm.

表2に、鋼1〜21の除滓後に投入したフラックスの組成、および鋼1〜19のフラックスインジェクション法で使用したフラックスの組成を示す。   Table 2 shows the composition of the flux introduced after removing steels 1 to 21 and the composition of the flux used in the flux injection method for steels 1 to 19.

また、表3に、鋼1〜21のVAD処理後の質量%でのスラグの組成と塩基度(CaO/SiO2)を示す。 Also, it is shown in Table 3, the slag composition and basicity by mass percent after VAD processing of steel 1-21 of (CaO / SiO 2).

なお、表2のフラックスインジェクション法で使用したフラックスの組成における「残部」は、C、S、Pなどであり、また、表3のスラグ組成における「残部」は、MnO、FeO、TiO2、Cr23などである。 The “remainder” in the composition of the flux used in the flux injection method in Table 2 is C, S, P, etc., and the “remainder” in the slag composition in Table 3 is MnO, FeO, TiO 2 , Cr 2 O 3 and the like.

Figure 2010007092
Figure 2010007092

Figure 2010007092
Figure 2010007092

このようにして得た鋼1〜21の鋳片のT/4部(但し、「T」は鋳片の厚みを表す。)から、すなわち、鋳片の外面と中心の中間部位から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   From the T / 4 part of the slabs of steels 1 to 21 obtained in this way (where "T" represents the thickness of the slab), that is, from the intermediate part between the outer surface and the center of the slab, the oxide After cutting out a block for composition measurement, embedding the block in a resin, and mirror-polishing the L cross section, select 20 arbitrary oxides with a thickness of 3 μm or more by energy dispersive X-ray spectroscopy. It was measured.

そして、20個の酸化物について測定した組成を算術平均して、各鋳片における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetic-averaged, and the "average composition" of the oxide in each slab was calculated | required.

表4に、鋼1〜21の各鋳片について上記のようにして測定した酸化物の平均組成を示す。なお、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。 In Table 4, the average composition of the oxide measured as mentioned above about each slab of steel 1-21 is shown. The balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like.

Figure 2010007092
Figure 2010007092

上記鋼1〜19の鋳片については、これらを1250℃で均熱した後、1150〜1100℃の温度域で分塊圧延して160mm×160mmの鋼片とし、さらに、その鋼片を830℃に加熱した後、830〜750℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、直径70mm(以下、「φ70mm」という。)の棒鋼を製造した。なお、400℃を下回る温度域における冷却は、大気中での放冷とした。   About the slabs of the above steels 1 to 19, these were soaked at 1250 ° C., and then rolled at a temperature range of 1150 to 1100 ° C. to form a steel slab of 160 mm × 160 mm. After heating, the steel bar is rolled in a temperature range of 830 to 750 ° C., and the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s after the rolling, and the diameter is 70 mm (hereinafter referred to as “φ70 mm”). .) Steel bar was manufactured. The cooling in the temperature range below 400 ° C. was allowed to cool in the atmosphere.

一方、鋼20および鋼21の鋳片については、これらを1250℃で均熱した後、1150〜1100℃の温度域で分塊圧延して160mm×160mmの鋼片とし、さらにその鋼片を1200℃に加熱した後、1150〜1050℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造した。なお、400℃を下回る温度域における冷却は、大気中での放冷とした。   On the other hand, for the slabs of Steel 20 and Steel 21, these were soaked at 1250 ° C., and then rolled at a temperature range of 1150 to 1100 ° C. to obtain a steel slab of 160 mm × 160 mm. After heating to ° C., steel bars were rolled in a temperature range of 1150 to 1050 ° C., and after the end of rolling, the temperature range up to 400 ° C. was cooled at a cooling rate of 0.4 ° C./s to produce φ70 mm bar steel. The cooling in the temperature range below 400 ° C. was allowed to cool in the atmosphere.

上記のようにして得た鋼1〜21のφ70mmの棒鋼のR/2部(但し、「R」は棒鋼の半径を表す。)から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   A block for measuring the oxide composition was cut out from R / 2 part (where “R” represents the radius of the steel bar) of a steel bar of φ70 mm of steels 1 to 21 obtained as described above, and the block was resinized. After embedding in L and mirror-polishing the L cross section, 20 arbitrary oxides having a thickness of 3 μm or more were selected by energy dispersive X-ray spectroscopy, and the respective compositions were measured.

そして、20個の酸化物について測定した組成を算術平均して、各φ70mmの棒鋼における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetically averaged, and the "average composition" of the oxide in each steel bar of (phi) 70mm was calculated | required.

また、鋼1〜21のφ70mmの棒鋼のR/2部から、縦断方向に100mm2のブロックを10個切出してL断面が被検面になるように樹脂に埋め込んで鏡面研磨し、次いで、100mm2の各L断面中に存在する酸化物の最大厚さおよび硫化物の最大厚さを光学顕微鏡を用いて測定し、それぞれ、算術平均した。 In addition, 10 blocks of 100 mm 2 are cut out from the R / 2 part of φ70 mm steel bars of steels 1 to 21 and embedded in resin so that the L cross section becomes the test surface, and then mirror polished, and then 100 mm The maximum thickness of oxide and the maximum thickness of sulfide existing in each L cross section of 2 were measured using an optical microscope, and each was arithmetically averaged.

具体的には、光学顕微鏡観察の倍率を400倍として、先ず、100mm2のL断面中で最も厚さの大きい酸化物と硫化物をそれぞれ検出し、次いで、倍率を1000倍としてそれぞれの厚さを測定し、この測定を10個のブロックについて行い、それぞれ10個の算術平均値を求めた。 Specifically, assuming that the magnification of observation with an optical microscope is 400 times, first, oxides and sulfides having the largest thickness are detected in the L cross section of 100 mm 2 , and then each magnification is 1000 times. Was measured for 10 blocks, and 10 arithmetic average values were obtained for each of the 10 blocks.

なお、酸化物と硫化物が分離せずに複合している場合は、酸化物と硫化物の厚さをそれぞれ測定し、それらの厚さが測定したL断面中で最も大きかった場合に、それぞれを、対象とする100mm2のL断面中で最も厚さの大きい酸化物や硫化物として、算術平均した。 In addition, when the oxide and the sulfide are combined without separation, the thicknesses of the oxide and the sulfide are respectively measured, and when the thicknesses are the largest in the measured L cross section, Was arithmetically averaged as the oxide or sulfide having the largest thickness in the 100 mm 2 L cross section.

表5に、鋼1〜21の各φ70mmの棒鋼について上記のようにして測定した酸化物の平均組成ならびに10個の100mm2のL断面中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を示す。なお、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。また、表5においては、上記の酸化物の最大厚さの算術平均の値および硫化物の最大厚さの算術平均の値をそれぞれ、「酸化物の最大厚さ」および「硫化物の最大厚さ」と表記した。以下の説明においても、酸化物の最大厚さの算術平均の値および硫化物の最大厚さの算術平均の値をそれぞれ、「酸化物の最大厚さ」および「硫化物の最大厚さ」という。 Table 5 shows the average composition of oxides measured as described above for each 70 mm steel bar of steels 1 to 21 and the arithmetic average value of the maximum thickness of oxides present in 10 100 mm 2 L cross sections. And the arithmetic mean value of the maximum thickness of sulfide. The balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like. In Table 5, the arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide are respectively expressed as “maximum oxide thickness” and “maximum sulfide thickness”. "". Also in the following description, the arithmetic average value of the maximum oxide thickness and the arithmetic average value of the maximum sulfide thickness are referred to as “maximum oxide thickness” and “maximum sulfide thickness”, respectively. .

Figure 2010007092
Figure 2010007092

また、上記のようにして得た鋼1〜21のφ70mmの棒鋼から長手方向と垂直に切出したC断面を樹脂に埋め込み、検鏡研磨した後、ビッカース硬さ試験機を用いて棒鋼の表面からR/2部位置までの平均断面硬さを測定した。   Moreover, after embedding C cross section cut perpendicularly to the longitudinal direction from φ70 mm steel bars of steels 1 to 21 obtained as described above in a resin, and specularly polishing, from the surface of the steel bars using a Vickers hardness tester The average cross-section hardness up to the R / 2 part position was measured.

具体的には、JIS Z 2244(2003)に記載の「ビッカース硬さ試験−試験方法」に記載された条件を満足するようにほぼ等間隔で、試験力を9.807Nとして、C断面の表面下0.5mmの位置からR/2部位置までのHv硬さを等間隔にて10点測定した後、算術平均して平均断面硬さを求めた。   Specifically, the surface of the C cross section is set at a test force of 9.807 N at substantially equal intervals so as to satisfy the conditions described in “Vickers hardness test-test method” described in JIS Z 2244 (2003). After measuring the Hv hardness from the lower 0.5 mm position to the R / 2 part position at equal intervals, the average cross-sectional hardness was obtained by arithmetic averaging.

表5に、上記のようにして求めた表面下からR/2部位置までの平均断面硬さを「平均硬さ」と表記して併せて示した。   In Table 5, the average cross-sectional hardness from the bottom surface to the R / 2 part position determined as described above is also shown as “average hardness”.

さらに、鋼1〜21のφ70mmの棒鋼から、いずれもC断面のR/4部位置、つまり表面とR/2部位置の中間の位置を基準として、直径が14mmで高さが21mmの圧縮試験片を圧延方向と一致するように切出し、冷間加工性を評価した。   Furthermore, from steel bars 1 to 21 with a diameter of 70 mm, a compression test with a diameter of 14 mm and a height of 21 mm based on the R / 4 part position of the C cross section, that is, the intermediate position between the surface and the R / 2 part position. The piece was cut out so as to coincide with the rolling direction, and the cold workability was evaluated.

すなわち、プレス機械を用いて、上記の試験片を10〜65%の圧縮率で各6個ずつ圧縮し、割れ発生率と圧縮率の関係を求め、3個の試験片に割れが発生した場合の最小の圧縮率を限界圧縮率として冷間加工性を評価した。   That is, using a press machine, compressing each of the above test pieces at a compression rate of 10 to 65% and determining the relationship between the crack generation rate and the compression rate, and when cracks occur on the three test pieces The cold workability was evaluated with the minimum compression ratio as the critical compression ratio.

なお、上記の「圧縮率」とは、プレス機械を用いて圧縮加工した後の試験片の高さをh(mm)として、{(21−h)/21}×100で表される値をいう。   In addition, said "compression rate" means the value represented by {(21-h) / 21} * 100 by making the height of the test piece after compressing using a press machine into h (mm). Say.

表5に、上記のようにして求めた限界圧縮率を併せて示した。   Table 5 also shows the limit compression ratio obtained as described above.

次いで、完全に球状化焼鈍された状態での転動疲労特性を評価するため、前記のようにして得た鋼1〜21のφ70mmの棒鋼をいずれも、780℃にて6時間保持した後炉冷を行う、全在炉時間20時間の通常の球状化焼鈍を行い、その後、長手方向が素形材の厚みとなるように、直径が60mmで厚みが5.5mmの素形材をスライスして採取した。   Next, in order to evaluate the rolling fatigue characteristics in the state of being completely spheroidized and annealed, each of the steels 1 to 21 obtained as described above was maintained at 780 ° C. for 6 hours after being held at 780 ° C. for 6 hours. Perform normal spheroidizing annealing for 20 hours in total furnace time, and then slice the shaped material having a diameter of 60 mm and a thickness of 5.5 mm so that the longitudinal direction is the thickness of the shaped material. And collected.

上記の直径が60mmで厚みが5.5mmの素形材を、830℃で30分加熱した後、油焼入れし、その後さらに、180℃で1時間加熱してから大気中で放冷する焼戻しを行った。   The above-mentioned shaped material having a diameter of 60 mm and a thickness of 5.5 mm is heated at 830 ° C. for 30 minutes, then oil-quenched, and further heated at 180 ° C. for 1 hour, and then tempered to cool in the atmosphere. went.

このようにして焼入れ−焼戻しした素形材の表面をラッピング加工して転動疲労試験片を作製して、転動疲労試験に供した。   The surface of the shaped material thus quenched and tempered was lapped to produce a rolling fatigue test piece, which was subjected to a rolling fatigue test.

転動疲労試験は、スラスト型の転動疲労試験機を用いて、最大接触面圧5230MPa、繰返し速度1800cpm(cycle per minute)の条件で行った。   The rolling fatigue test was performed using a thrust type rolling fatigue tester under conditions of a maximum contact surface pressure of 5230 MPa and a repetition rate of 1800 cpm (cycle per minute).

表6に、転動疲労試験の詳細条件を示す。   Table 6 shows the detailed conditions of the rolling fatigue test.

Figure 2010007092
Figure 2010007092

転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命を「転動疲労寿命」として評価した。 The rolling fatigue test results were plotted on a Weibull distribution probability paper, and the L 10 life showing 10% failure probability was evaluated as “rolling fatigue life”.

前記の表5に、上記のようにして求めた転動疲労寿命を併せて示した。   Table 5 also shows the rolling fatigue life determined as described above.

表5から、鋼の化学成分、非金属介在物(つまり、酸化物の平均組成および鋼材のL断面の10箇所の100mm2の面積中に存在する酸化物の最大厚さと硫化物の最大厚さ)および鋼材の表面からR/2部位置までの平均断面硬さが本発明(1)の規定を満たす試験番号1〜12の場合には、6.29×107以上の長い転動疲労寿命が得られており、また、50%以上の高い限界圧縮率も得られている。 From Table 5, the chemical composition of steel, non-metallic inclusions (that is, the average composition of oxide and the maximum thickness of oxide and the maximum thickness of sulfide existing in 10 areas of 100 mm 2 in the L cross section of steel) ) And an average cross-section hardness from the surface of the steel material to the R / 2 part position is test numbers 1 to 12 satisfying the provision of the present invention (1), a long rolling fatigue life of 6.29 × 10 7 or more. In addition, a high critical compression ratio of 50% or more is also obtained.

これに対して、鋼の化学成分および鋼材の表面からR/2部位置までの平均断面硬さが本発明(1)の規定を満たしても、本発明(3)の規定から外れる方法で製造し、非金属介在物が本発明(1)で規定する条件から外れる試験番号14〜17の場合には転動疲労寿命は短い。   On the other hand, even if the chemical composition of steel and the average cross-sectional hardness from the surface of the steel material to the R / 2 part position satisfy the provisions of the present invention (1), it is manufactured by a method deviating from the provisions of the present invention (3) However, in the case of test numbers 14 to 17 in which the nonmetallic inclusions deviate from the conditions specified in the present invention (1), the rolling fatigue life is short.

すなわち、上記の各試験番号の場合、硫化物の最大厚さは本発明(1)で規定する条件を満たすものの、酸化物の平均組成が本発明(1)で規定する条件から外れるため、酸化物が硬質なものとなり、その結果、酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命はそれぞれ、2.57×107、2.88×107、3.29×107および2.21×107と短いものである。 That is, in the case of each of the above test numbers, although the maximum thickness of the sulfide satisfies the conditions specified in the present invention (1), the average composition of the oxides deviates from the conditions specified in the present invention (1). Since the product becomes hard and as a result, the maximum thickness of the oxide is increased and deviates from the conditions defined in the present invention (1), the rolling fatigue life is 2.57 × 10 7 , 2.88, respectively. × 10 7 , 3.29 × 10 7 and 2.21 × 10 7 are short.

また、鋼の化学成分が本発明の規定から外れる場合も、転動疲労寿命は短い。   Also, the rolling fatigue life is short when the chemical composition of steel deviates from the provisions of the present invention.

すなわち、試験番号13は、酸化物の平均組成、酸化物の最大厚さおよび鋼材の表面からR/2部位置までの平均断面硬さは本発明(1)で規定する条件を満たすものの、用いた鋼13のS含有量が、0.016%と高く、本発明(1)で規定する値を超えるため、硫化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命は、2.76×107と短いものである。 That is, the test number 13 is used for the average composition of oxide, the maximum thickness of the oxide, and the average cross-sectional hardness from the surface of the steel material to the R / 2 part position satisfy the conditions specified in the present invention (1). Since the S content of the steel 13 is as high as 0.016% and exceeds the value specified in the present invention (1), the maximum thickness of the sulfide increases and deviates from the conditions specified in the present invention (1). Therefore, the rolling fatigue life is as short as 2.76 × 10 7 .

試験番号18は、酸化物の平均組成、硫化物の最大厚さおよび鋼材の表面からR/2部位置までの平均断面硬さは本発明(1)で規定する条件を満たすものの、用いた鋼18のO含有量が0.0021%と高く、本発明(1)で規定する値を超えるため、酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命は2.56×107と短い。 Test No. 18 shows that the average composition of oxide, the maximum thickness of sulfide, and the average cross-sectional hardness from the surface of the steel material to the R / 2 part position satisfy the conditions specified in the present invention (1), but the steel used Since the O content of 18 is as high as 0.0021% and exceeds the value specified in the present invention (1), the maximum thickness of the oxide is increased and deviates from the conditions specified in the present invention (1). The dynamic fatigue life is as short as 2.56 × 10 7 .

試験番号19は、硫化物の最大厚さおよび鋼材の表面からR/2部位置までの平均断面硬さは本発明(1)で規定する条件を満たすものの、用いた鋼19のAl含有量が、0.008%と高く、本発明(1)で規定する値を超えるため、酸化物の平均組成が本発明(1)で規定する条件から外れて、硬質な酸化物となり、その結果、酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命は1.97×107と短いものである。 Test No. 19 shows that the maximum content of sulfide and the average cross-sectional hardness from the surface of the steel material to the R / 2 part position satisfy the conditions specified in the present invention (1), but the Al content of the steel 19 used is , 0.008%, which exceeds the value specified in the present invention (1), so that the average composition of the oxide deviates from the conditions defined in the present invention (1) and becomes a hard oxide. Since the maximum thickness of the object becomes larger and deviates from the conditions specified in the present invention (1), the rolling fatigue life is as short as 1.97 × 10 7 .

なお、試験番号20および試験番号21は、従来のAlキルド鋼に相当する鋼20および鋼21を従来の方法により製造した圧延鋼材であり、Al含有量がそれぞれ、0.019%および0.021%と高く、本発明(1)で規定する値を超え、硫化物の最大厚さは本発明(1)で規定する条件を満たすものの、酸化物の平均組成が本発明(1)で規定する条件から外れて、硬質な酸化物となり、その結果、酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.10×107および2.15×107と短い。さらに、鋼材の表面からR/2部位置までの平均断面硬さに関してもそれぞれ、362および353と本発明(1)で規定する条件から外れるため、その限界圧縮率は双方ともに15%と低い。 Test number 20 and test number 21 are rolled steel materials produced by conventional methods of steel 20 and steel 21 corresponding to conventional Al killed steel, and the Al contents are 0.019% and 0.021, respectively. %, Exceeding the value specified in the present invention (1), and the maximum thickness of the sulfide satisfies the condition defined in the present invention (1), but the average composition of the oxide is defined in the present invention (1). When the condition is not met, the oxide becomes a hard oxide, and as a result, the maximum thickness of the oxide is increased and deviates from the condition defined in the present invention (1), so that the rolling fatigue life is 3.10 × 10 7. And 2.15 × 10 7 . Furthermore, since the average cross-sectional hardness from the surface of the steel material to the R / 2 part position is also outside the conditions defined in 362 and 353 and the present invention (1), both of the critical compression ratios are as low as 15%.

(実施例2)
実施例1で作製した鋼3、鋼11、鋼13、鋼17および鋼20の300mm×400mmの鋳片を1250℃で均熱した後、1150〜1100℃の温度域で分塊圧延して160mm×160mmの鋼片にした。
(Example 2)
A 300 mm × 400 mm slab of Steel 3, Steel 11, Steel 13, Steel 17, and Steel 20 produced in Example 1 was soaked at 1250 ° C., and then subjected to block rolling in a temperature range of 1150 to 1100 ° C. to 160 mm. A steel piece of × 160 mm was used.

次いで、上記の鋼片を用いて、次の《1》〜《6》に示す条件で棒鋼圧延し、直径70mm(φ70mm)または直径100mm(φ100mm)の棒鋼を製造した。   Next, using the steel pieces, the steel bars were rolled under the conditions shown in the following << 1 >> to << 6 >> to produce steel bars having a diameter of 70 mm (φ70 mm) or a diameter of 100 mm (φ100 mm).

《1》鋼片を1200℃に加熱した後、1150〜1050℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造、
《2》鋼片を830℃に加熱した後、830〜750℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造、
《3》鋼片を1000℃に加熱した後、830〜780℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造、
《4》鋼片を780℃に加熱した後、720〜600℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造、
《5》鋼片を850℃に加熱した後、920〜810℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.4℃/sの冷却速度で冷却して、φ70mmの棒鋼を製造、
《6》鋼片を830℃に加熱した後、830〜750℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.3℃/sの冷却速度で冷却して、φ100mmの棒鋼を製造。
<< 1 >> After heating the steel slab to 1200 ° C., the steel bar is rolled in a temperature range of 1150 to 1050 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s, φ70 mm Steel bar manufacturing,
<2> After heating the steel slab to 830 ° C., the steel bar is rolled in a temperature range of 830 to 750 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s, φ70 mm Steel bar manufacturing,
<3> After the steel slab is heated to 1000 ° C., the steel bar is rolled in a temperature range of 830 to 780 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s, φ70 mm Steel bar manufacturing,
<4> After heating the steel slab to 780 ° C., the steel bar is rolled in a temperature range of 720 to 600 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s, φ70 mm Steel bar manufacturing,
<5> After heating the steel slab to 850 ° C., the steel bar is rolled in a temperature range of 920 to 810 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.4 ° C./s, φ70 mm Steel bar manufacturing,
<6> After the steel slab is heated to 830 ° C., the steel bar is rolled in a temperature range of 830 to 750 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.3 ° C./s, and φ100 mm Steel bar manufacture.

また、上記の実施例1で作製した鋼3、鋼11、鋼13、鋼17および鋼20の300mm×400mmの鋳片を1250℃で均熱した後、1150〜1100℃の温度域で分塊圧延して240mm×240mmの鋼片とし、さらに、その鋼片を用いて、次の《7》に示す条件で棒鋼圧延し、直径120mm(φ120mm)の棒鋼を製造した。   In addition, 300 mm × 400 mm slabs of Steel 3, Steel 11, Steel 13, Steel 17, and Steel 20 produced in Example 1 above were soaked at 1250 ° C., and then splitted in a temperature range of 1150 to 1100 ° C. The steel pieces were rolled into 240 mm × 240 mm steel pieces, and further steel bars were rolled using the steel pieces under the conditions shown in the following << 7 >> to produce a steel bar having a diameter of 120 mm (φ120 mm).

《7》鋼片を860℃に加熱した後、830〜780℃の温度域で棒鋼圧延し、圧延終了後400℃までの温度域を0.2℃/sの冷却速度で冷却して、φ120mmの棒鋼を製造。   <7> After heating the steel slab to 860 ° C., the steel bar is rolled in a temperature range of 830 to 780 ° C., and after the end of rolling, the temperature range up to 400 ° C. is cooled at a cooling rate of 0.2 ° C./s, φ120 mm Steel bar manufacture.

なお、上記の《1》〜《7》のいずれの場合も、400℃を下回る温度域における冷却は、大気中での放冷とした。   In any case of the above << 1 >> to << 7 >>, the cooling in the temperature range below 400 ° C. was allowed to cool in the air.

表7に、上記した各棒鋼の製造条件の詳細を示す。   Table 7 shows the details of the manufacturing conditions for each steel bar described above.

Figure 2010007092
Figure 2010007092

上記のようにして製造した鋼3、鋼11、鋼13、鋼17および鋼20のφ70mm、φ100mmおよびφ120mmの棒鋼のR/2部から、酸化物組成測定用のブロックを切出し、そのブロックを樹脂に埋め込んでL断面を鏡面研磨した後、エネルギー分散型X線分光法によって、厚さ3μm以上の任意の酸化物を20個選び、それぞれの組成を測定した。   A block for measuring the oxide composition was cut out from the R / 2 part of the steel bars of steel 3, steel 11, steel 13, steel 17, and steel 20 manufactured as described above, and the blocks were made of resin. After embedding in L and mirror-polishing the L cross section, 20 arbitrary oxides having a thickness of 3 μm or more were selected by energy dispersive X-ray spectroscopy, and the respective compositions were measured.

そして、20個の酸化物について測定した組成を算術平均して、φ70mm、φ100mmおよびφ120mmの棒鋼における酸化物の「平均組成」を求めた。   And the composition measured about 20 oxides was arithmetic-averaged, and the "average composition" of the oxide in the bar steel of (phi) 70mm, (phi) 100mm, and (phi) 120mm was calculated | required.

また、前記鋼3、鋼11、鋼13、鋼17および鋼20のφ70mm、φ100mmおよびφ120mmの棒鋼のR/2部から、縦断方向に100mm2のブロックを10個切出してL断面が被検面になるように樹脂に埋め込んで鏡面研磨し、次いで、100mm2の各L断面中に存在する酸化物の最大厚さおよび硫化物の最大厚さを光学顕微鏡を用いて測定し、それぞれ、算術平均した。 Further, 10 blocks of 100 mm 2 are cut out in the longitudinal direction from the R / 2 portion of the steel 3, steel 11, steel 13, steel 17, and steel 20 φ70 mm, φ100 mm, and φ120 mm steel bars, and the L cross section is the test surface. Embedded in the resin so as to be mirror-polished, and then the maximum thickness of the oxide and the maximum thickness of the sulfide existing in each L cross section of 100 mm 2 were measured using an optical microscope. did.

具体的には、光学顕微鏡観察の倍率を400倍として、先ず、100mm2のL断面中で最も厚さの大きい酸化物と硫化物をそれぞれ検出し、次いで、倍率を1000倍としてそれぞれの厚さを測定し、この測定を10個のブロックについて行い、それぞれ10個の算術平均値を求めた。 Specifically, assuming that the magnification of observation with an optical microscope is 400 times, first, oxides and sulfides having the largest thickness are detected in the L cross section of 100 mm 2 , and then each magnification is 1000 times. Was measured for 10 blocks, and 10 arithmetic average values were obtained for each of the 10 blocks.

なお、酸化物と硫化物が分離せずに複合している場合は、酸化物と硫化物の厚さをそれぞれ測定し、それらの厚さが測定したL断面中で最も大きかった場合に、それぞれを、対象とする100mm2のL断面中で最も厚さの大きい酸化物や硫化物として、算術平均した。 In addition, when the oxide and the sulfide are combined without separation, the thicknesses of the oxide and the sulfide are respectively measured, and when the thicknesses are the largest in the measured L cross section, Was arithmetically averaged as the oxide or sulfide having the largest thickness in the 100 mm 2 L cross section.

表8に、前記の各棒鋼について上記のようにして測定した酸化物の平均組成ならびに10個の100mm2のL断面中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を示す。なお、先にも述べたように、酸化物の平均組成における残部は「不純物」、すなわち、Cr23、Na2O、ZrO2などを指す。また、「酸化物の最大厚さ」および「硫化物の最大厚さ」は、それぞれ、酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値を指す。 Table 8 shows the average composition of oxides measured as described above for each of the steel bars, the arithmetic average value of the maximum thickness of oxides present in 10 100 mm 2 L cross sections, and the maximum of sulfides. The arithmetic average value of thickness is shown. As described above, the balance in the average composition of the oxide refers to “impurities”, that is, Cr 2 O 3 , Na 2 O, ZrO 2 and the like. The “maximum oxide thickness” and “maximum sulfide thickness” refer to the arithmetic average value of the maximum oxide thickness and the arithmetic average value of the maximum sulfide thickness, respectively.

Figure 2010007092
Figure 2010007092

また、上記のようにして得た鋼3、鋼11、鋼13、鋼17および鋼20のφ70mm、φ100mmおよびφ120mmの棒鋼から長手方向と垂直に切出したC断面を樹脂に埋め込み、検鏡研磨した後、ビッカース硬さ試験機を用いて棒鋼の表面からR/2部位置までの平均断面硬さを測定した。   In addition, steel C, steel 11, steel 13, steel 17 and steel 20 obtained as described above were cut from φ70 mm, φ100 mm, and φ120 mm steel bars perpendicularly to the longitudinal direction, embedded in resin, and specularly polished. Thereafter, the average cross-sectional hardness from the surface of the steel bar to the R / 2 part position was measured using a Vickers hardness tester.

具体的には、JIS Z 2244(2003)に記載の「ビッカース硬さ試験−試験方法」に記載された条件を満足するようにほぼ等間隔で、試験力を9.807Nとして、C断面の表面下0.5mmの位置からR/2部位置までのHv硬さをほぼ等間隔にて10点測定した後、算術平均して平均断面硬さを求めた。   Specifically, the surface of the C cross section is set at a test force of 9.807 N at substantially equal intervals so as to satisfy the conditions described in “Vickers hardness test-test method” described in JIS Z 2244 (2003). After measuring the Hv hardness from the lower 0.5 mm position to the R / 2 part position at approximately equal intervals, the average cross-sectional hardness was obtained by arithmetic averaging.

表8に、上記のようにして求めた表面からR/2部位置までの平均断面硬さを「平均硬さ」と表記して併せて示した。   In Table 8, the average cross-sectional hardness from the surface to the R / 2 part position determined as described above is also shown as “average hardness”.

さらに、上記の鋼3、鋼11、鋼13、鋼17および鋼20のφ70mm、φ100mmおよびφ120mmの棒鋼から、いずれもC断面のR/4部位置、つまり表面とR/2部位置の中間の位置を基準として、直径が14mmで高さが21mmの圧縮試験片を圧延方向と一致するように切出し、冷間加工性を評価した。   Further, from the above steel 3, steel 11, steel 13, steel 17 and steel 20 of φ70 mm, φ100 mm and φ120 mm steel bars, all are R / 4 part positions of the C cross section, that is, intermediate between the surface and R / 2 part positions. Based on the position, a compression test piece having a diameter of 14 mm and a height of 21 mm was cut out so as to coincide with the rolling direction, and the cold workability was evaluated.

すなわち、プレス機械を用いて、上記の試験片を10〜65%の圧縮率で各6個ずつ圧縮し、割れ発生率と圧縮率の関係を求め、3個の試験片に割れが発生した場合の最小の圧縮率を限界圧縮率として冷間加工性を評価した。   That is, using a press machine, compressing each of the above test pieces at a compression rate of 10 to 65% and determining the relationship between the crack generation rate and the compression rate, and when cracks occur on the three test pieces The cold workability was evaluated with the minimum compression ratio as the critical compression ratio.

なお、既に述べたように、上記の「圧縮率」とは、プレス機械を用いて圧縮加工した後の試験片の高さをh(mm)として、{(21−h)/21}×100で表される値をいう。   As described above, the above-mentioned “compression rate” means {(21−h) / 21} × 100 where h (mm) is the height of the test piece after compression processing using a press machine. The value represented by

表8に、上記のようにして求めた限界圧縮率を併せて示した。   Table 8 also shows the limit compression ratio obtained as described above.

次いで、完全に球状化焼鈍された状態での転動疲労特性を評価するため、前記のようにして得た鋼3、鋼11、鋼13、鋼17および鋼20のφ70mm、φ100mmおよびφ120mmの棒鋼をいずれも、780℃にて6時間保持した後炉冷を行う、全在炉時間20時間の通常の球状化焼鈍を行い、その後、長手方向が素形材の厚みとなるように、直径が60mmで厚みが5.5mmの素形材をスライスして採取した。   Next, in order to evaluate the rolling fatigue characteristics in the state of complete spheroidizing annealing, the steel 3, steel 11, steel 13, steel 17 and steel 20 obtained as described above are φ70 mm, φ100 mm and φ120 mm steel bars. Both are held at 780 ° C. for 6 hours and then cooled in the furnace, followed by normal spheroidizing annealing for a total furnace time of 20 hours, and then the diameter is adjusted so that the longitudinal direction is the thickness of the shaped material. A shaped material having a thickness of 60 mm and a thickness of 5.5 mm was sliced and collected.

上記の直径が60mmで厚みが5.5mmの素形材を、830℃で30分加熱した後、油焼入れし、その後さらに、180℃で1時間加熱して大気中で放冷する焼戻しを行った。   The above-mentioned shaped material having a diameter of 60 mm and a thickness of 5.5 mm was heated at 830 ° C. for 30 minutes, then oil-quenched, and then further heated at 180 ° C. for 1 hour and allowed to cool in the atmosphere for tempering. It was.

このようにして焼入れ−焼戻しした素形材の表面をラッピング加工して転動疲労試験片を作製して、転動疲労試験に供した。   The surface of the shaped material thus quenched and tempered was lapped to produce a rolling fatigue test piece, which was subjected to a rolling fatigue test.

転動疲労試験は、スラスト型の転動疲労試験機を用いて、最大接触面圧5230MPa、繰返し速度1800cpmの条件で行った。   The rolling fatigue test was performed using a thrust type rolling fatigue tester under conditions of a maximum contact surface pressure of 5230 MPa and a repetition rate of 1800 cpm.

なお、転動疲労試験の詳細条件は前記表6に示したとおりである。   The detailed conditions of the rolling fatigue test are as shown in Table 6 above.

転動疲労試験結果は、ワイブル分布確率紙上にプロットし、10%破損確率を示すL10寿命を「転動疲労寿命」として評価した。 The rolling fatigue test results were plotted on a Weibull distribution probability paper, and the L 10 life showing 10% failure probability was evaluated as “rolling fatigue life”.

前記の表8に、上記のようにして求めた転動疲労寿命を併せて示した。   Table 8 also shows the rolling fatigue life determined as described above.

表8から、鋼の化学成分および非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定を満たす鋳片を、本発明(2)の方法で圧下した試験番号23および試験番号30の場合には、7.13×107以上という長い転動疲労寿命が得られ、50%以上という高い限界圧縮率も得られていることがわかる。 From Table 8, a test number 23 in which a slab in which the chemical composition and non-metallic inclusions (that is, the average composition of oxides) of the steel satisfy the provisions of the present invention (2) was reduced by the method of the present invention (2) and In the case of test number 30, it can be seen that a long rolling fatigue life of 7.13 × 10 7 or more and a high critical compression ratio of 50% or more are obtained.

これに対して、鋼の化学成分および非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定を満たす鋳片に全圧下比が15以上となる圧下を加えた場合であっても、最終圧下工程としての棒鋼圧延に際して、鋼片加熱温度と棒鋼圧延中の表面温度が本発明(2)で規定する条件〔1〕と〔2〕の少なくともいずれか一方から外れた試験番号22、試験番号24〜26、試験番号29および試験番号31〜33の場合には、鋼材の表面からR/2部位置までの平均断面硬さが本発明(1)で規定する条件から外れている。このため、これらの試験番号における限界圧縮率は15〜25%と低く冷間加工性に劣っている。   In contrast, when the steel chemical composition and non-metallic inclusions (that is, the average composition of oxides) satisfy the provisions of the present invention (2), a reduction with a total reduction ratio of 15 or more is applied. Even when the steel bar is rolled as the final reduction step, the test in which the steel slab heating temperature and the surface temperature during the steel bar rolling deviate from at least one of the conditions [1] and [2] defined in the present invention (2). In the case of No. 22, Test Nos. 24-26, Test No. 29, and Test Nos. 31-33, the average cross-sectional hardness from the surface of the steel material to the R / 2 part position deviates from the conditions specified in the present invention (1). ing. For this reason, the critical compression ratio in these test numbers is as low as 15 to 25%, which is inferior in cold workability.

上記試験番号のうちでも、鋼片加熱温度と棒鋼圧延中の表面温度の双方が1000℃を超える試験番号22および試験番号29の場合には、硫化物の最大厚さも本発明(1)で規定する条件から外れている。このため、転動疲労寿命はそれぞれ、3.11×107および3.24×107と短い。 Among the above test numbers, in the case of test number 22 and test number 29 in which both the steel slab heating temperature and the surface temperature during steel bar rolling exceed 1000 ° C., the maximum thickness of the sulfide is also defined in the present invention (1). It is out of the condition to do. For this reason, the rolling fatigue life is as short as 3.11 × 10 7 and 3.24 × 10 7 , respectively.

また、鋼の化学成分および非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定を満たす鋳片を用いて、本発明(2)の規定を満たす15以上という全圧下比で圧下し、最終圧下工程としての棒鋼圧延に際して、本発明(2)で規定する条件〔1〕と〔2〕の鋼片加熱温度と棒鋼圧延中の表面温度を満たす場合であっても、棒鋼圧延工程における圧下比が本発明(2)で規定する条件〔3〕から外れた試験番号27および試験番号34の場合には、硫化物の最大厚さが本発明(1)で規定する条件から外れている。このため、転動疲労寿命はそれぞれ、2.51×107および2.76×107と低い。 Further, using a slab in which the chemical composition of steel and non-metallic inclusions (that is, the average composition of oxides) satisfy the provisions of the present invention (2), the total pressure of 15 or more satisfying the provisions of the present invention (2) When rolling steel bars as a final reduction process, the steel slab heating temperature and the surface temperature during steel bar rolling in the conditions [1] and [2] defined in the present invention (2) are satisfied. In the case of test number 27 and test number 34 where the rolling reduction ratio in the steel bar rolling process deviates from the condition [3] defined in the present invention (2), the maximum thickness of the sulfide is defined in the present invention (1). It is off. For this reason, the rolling fatigue life is as low as 2.51 × 10 7 and 2.76 × 10 7 , respectively.

さらに、鋼の化学成分および非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定を満たす鋳片を用いて、最終圧下工程としての棒鋼圧延に際して、本発明(2)で規定する条件〔1〕〜〔3〕の鋼片加熱温度、棒鋼圧延中の表面温度および圧下比を満たすようにしても、全圧下比が10.6と低く、本発明(2)で規定する条件から外れる試験番号28および試験番号35の場合には、酸化物の最大厚さおよび硫化物の最大厚さが本発明(1)で規定する条件から外れている。このため、転動疲労寿命はそれぞれ、2.09×107および1.87×107と低い。 Further, the present invention (2) is used for rolling steel bars as a final reduction process using a slab in which the chemical composition of steel and non-metallic inclusions (that is, the average composition of oxides) satisfy the provisions of the present invention (2). Even if the steel slab heating temperature, the surface temperature during rolling of the steel bar and the rolling ratio are satisfied, the total rolling ratio is as low as 10.6, which is defined by the present invention (2). In the case of test number 28 and test number 35 that deviate from the above conditions, the maximum oxide thickness and the maximum sulfide thickness deviate from the conditions defined in the present invention (1). For this reason, the rolling fatigue life is as low as 2.09 × 10 7 and 1.87 × 10 7 , respectively.

さらに、非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定を満たしても鋼の化学成分としてのS含有量が本発明(2)の規定から外れる鋳片を用いた試験番号36〜42の場合には、圧下条件に拘わらず硫化物の最大厚さが大きくなって本発明(1)で規定する条件から外れ、しかも、圧下条件によっては試験番号42のように酸化物の最大厚さも大きくなり、本発明(1)で規定する条件から外れるので、転動疲労寿命はそれぞれ、2.43×107、2.76×107、1.89×107、2.55×107、2.12×107、2.81×107および1.64×107と短いものである。 Furthermore, even if the non-metallic inclusions (that is, the average composition of the oxide) satisfy the provisions of the present invention (2), the slab whose S content as a chemical component of steel deviates from the provisions of the present invention (2) is used. In the case of the test numbers 36 to 42, the maximum thickness of the sulfide was increased regardless of the reduction condition and deviated from the condition defined in the present invention (1). Moreover, depending on the reduction condition, Since the maximum thickness of the oxide also increases and deviates from the conditions specified in the present invention (1), the rolling fatigue life is 2.43 × 10 7 , 2.76 × 10 7 , 1.89 × 10 7 , respectively. It is as short as 2.55 × 10 7 , 2.12 × 10 7 , 2.81 × 10 7 and 1.64 × 10 7 .

上記試験番号のうちでも、最終圧下工程としての棒鋼圧延に際して、鋼片加熱温度と棒鋼圧延中の表面温度が本発明(2)で規定する条件〔1〕と〔2〕の少なくともいずれか一方から外れた試験番号36および試験番号38〜40の場合には、鋼材の表面からR/2部位置までの平均断面硬さも本発明(1)で規定する条件から外れている。このため、これらの試験番号における限界圧縮率は15〜25%と低く冷間加工性にも劣っている。   Among the above test numbers, the steel strip heating temperature and the surface temperature during the steel bar rolling are determined from at least one of the conditions [1] and [2] defined in the present invention (2) during the steel bar rolling as the final reduction step. In the case of the test number 36 and the test numbers 38 to 40 which are deviated, the average cross-sectional hardness from the surface of the steel material to the R / 2 part position is also out of the conditions defined in the present invention (1). For this reason, the limit compression rate in these test numbers is as low as 15 to 25%, and the cold workability is also inferior.

鋼の化学成分が本発明(2)の規定を満たしても非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定から外れる鋳片を用いた試験番号43〜49の場合には、圧下条件に拘わらず酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れ、しかも、圧下条件によっては試験番号43および試験番号48、49のように硫化物の最大厚さも大きくなり、本発明(1)で規定する条件から外れるので、転動疲労寿命はそれぞれ、2.42×107、2.21×107、1.78×107、2.39×107、1.96×107、2.37×107および1.55×107と短いものである。 Test Nos. 43 to 49 using slabs in which the non-metallic inclusions (that is, the average composition of oxides) deviate from the definition of the present invention (2) even if the chemical composition of the steel satisfies the provision of the present invention (2) In this case, the maximum thickness of the oxide becomes large regardless of the rolling condition and deviates from the condition defined in the present invention (1). In addition, depending on the rolling condition, sulfidation like test number 43 and test numbers 48 and 49 occurs. Since the maximum thickness of the object also increases and deviates from the conditions specified in the present invention (1), the rolling fatigue life is 2.42 × 10 7 , 2.21 × 10 7 , 1.78 × 10 7 , 2 .39 × 10 7 , 1.96 × 10 7 , 2.37 × 10 7 and 1.55 × 10 7 .

上記試験番号のうちでも、最終圧下工程としての棒鋼圧延に際して、鋼片加熱温度と棒鋼圧延中の表面温度が本発明(2)で規定する条件〔1〕と〔2〕の少なくともいずれか一方から外れた試験番号43および試験番号45〜47の場合には、鋼材の表面からR/2部位置までの平均断面硬さも本発明(1)で規定する条件から外れている。このため、これらの試験番号における限界圧縮率は15〜25%と低く冷間加工性にも劣っている。   Among the above test numbers, the steel strip heating temperature and the surface temperature during the steel bar rolling are determined from at least one of the conditions [1] and [2] defined in the present invention (2) during the steel bar rolling as the final reduction step. In the case of the test number 43 and the test numbers 45 to 47 which are deviated, the average cross-sectional hardness from the surface of the steel material to the R / 2 part position is also out of the conditions defined in the present invention (1). For this reason, the limit compression rate in these test numbers is as low as 15 to 25%, and the cold workability is also inferior.

従来のAlキルド鋼に相当する鋼の化学成分および非金属介在物(つまり、酸化物の平均組成)が本発明(2)の規定から外れる鋳片を用いた試験番号50〜56の場合には、圧下条件に拘わらず酸化物の最大厚さが大きくなって本発明(1)で規定する条件から外れるので、転動疲労寿命はそれぞれ、3.10×107、3.31×107、2.99×107、2.89×107、2.14×107、2.53×107および1.99×107と短いものである。 In the case of test numbers 50 to 56 using slabs in which the chemical components and non-metallic inclusions (that is, the average composition of oxides) corresponding to conventional Al killed steel deviate from the provisions of the present invention (2) In addition, the maximum thickness of the oxide is increased regardless of the rolling condition and deviates from the conditions specified in the present invention (1), so that the rolling fatigue life is 3.10 × 10 7 , 3.31 × 10 7 , respectively. It is as short as 2.99 × 10 7 , 2.89 × 10 7 , 2.14 × 10 7 , 2.53 × 10 7, and 1.99 × 10 7 .

上記試験番号のうちでも、最終圧下工程としての棒鋼圧延に際して、鋼片加熱温度と棒鋼圧延中の表面温度が本発明(2)で規定する条件〔1〕と〔2〕の少なくともいずれか一方から外れた試験番号50および試験番号52〜54の場合には、鋼材の表面からR/2部位置までの平均断面硬さも本発明(1)で規定する条件から外れている。このため、これらの試験番号における限界圧縮率は15〜25%と低く冷間加工性にも劣っている。   Among the above test numbers, the steel strip heating temperature and the surface temperature during the steel bar rolling are determined from at least one of the conditions [1] and [2] defined in the present invention (2) during the steel bar rolling as the final reduction step. In the case of the test number 50 and the test numbers 52 to 54 deviated, the average cross-sectional hardness from the surface of the steel material to the R / 2 part position is also outside the conditions defined in the present invention (1). For this reason, the limit compression rate in these test numbers is as low as 15 to 25%, and the cold workability is also inferior.

本発明の軸受鋼鋼材は、近年の転がり軸受の過酷な使用環境下においても、転動疲労による破損に対して良好な耐久性を有し、転動疲労寿命が長いことから、各種の産業機械や自動車などに使用される「玉軸受」や「コロ軸受」といった転がり軸受の素材として利用することができる。また、本発明の軸受鋼鋼材は、冷間加工性に優れるため、球状化焼鈍などの軟質化熱処理を簡略化することが可能で、製造コストを低減することができる。この軸受鋼鋼材は本発明の方法によって製造することができる。   The bearing steel material of the present invention has various durability against the damage caused by rolling fatigue and has a long rolling fatigue life even in the severe usage environment of recent rolling bearings. It can be used as a material for rolling bearings such as “ball bearings” and “roller bearings” used in automobiles and automobiles. Moreover, since the bearing steel material of the present invention is excellent in cold workability, it is possible to simplify softening heat treatment such as spheroidizing annealing and reduce manufacturing costs. This bearing steel can be manufactured by the method of the present invention.

Claims (3)

質量%で、C:0.85〜1.2%、Si:0.1〜0.5%、Mn:0.05〜0.6%、P:0.03%以下、S:0.010%以下、Cr:1.2〜1.7%、Al:0.005%以下、Ca:0.0005%以下およびO:0.0020%以下を含有し、残部はFeおよび不純物からなる化学成分を有し、非金属介在物について、酸化物の平均組成が質量%で、CaO:10〜60%、Al23:35%以下、MnO:35%以下およびMgO:15%以下で残部SiO2および不純物からなるとともに、鋼材の長手方向縦断面10箇所の100mm2の面積中に存在する酸化物の最大厚さの算術平均の値と硫化物の最大厚さの算術平均の値が、それぞれ、8.5μm以下であり、さらに、鋼材の表面からR/2部位置までの平均断面硬さがビッカース硬さで290以下であることを特徴とする軸受鋼鋼材。
但し、「R」は軸受鋼鋼材の半径を表す。
In mass%, C: 0.85 to 1.2%, Si: 0.1 to 0.5%, Mn: 0.05 to 0.6%, P: 0.03% or less, S: 0.010 %: Cr: 1.2-1.7%, Al: 0.005% or less, Ca: 0.0005% or less, and O: 0.0020% or less, with the balance being Fe and impurities. With respect to non-metallic inclusions, the average composition of oxides is mass%, CaO: 10 to 60%, Al 2 O 3 : 35% or less, MnO: 35% or less, and MgO: 15% or less, and the balance SiO. 2 and impurities, and the arithmetic average value of the maximum thickness of the oxide and the arithmetic average value of the maximum thickness of the sulfide existing in the area of 100 mm 2 in the longitudinal longitudinal section of the steel material are 10 respectively. 8.5 μm or less, and further, an average break from the steel surface to the R / 2 part position Bearing steels, wherein the hardness is 290 or less in Vickers hardness.
However, “R” represents the radius of the bearing steel.
請求項1に記載の化学成分および酸化物の平均組成を有する鋳片または鋼塊に2以上の圧下工程によって全圧下比が15以上となる圧下を加えて軸受鋼鋼材を製造する方法であって、該2以上の圧下工程のうちの最終圧下工程において、下記の〔1〕〜〔3〕の全てを満たすようにして圧下し、さらに、最終圧下工程における圧下を終了した後400℃までの温度域を5℃/s以下の冷却速度で冷却することを特徴とする軸受鋼鋼材の製造方法。
〔1〕被圧下材をAe1点〜Aem点の温度域に加熱して圧下を開始すること
〔2〕圧下工程中の被圧下材の表面温度が、680℃〜(Aem点−30℃)の温度範囲内であること
〔3〕圧下比が4以上であること
但し、全圧下比とは、鋳片または鋼塊の断面積を、最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指し、また、最終圧下工程での圧下比とは、最終圧下工程で圧下が加えられる前の被圧下材の断面積を最終圧下工程における最終の圧下によって得られた軸受鋼鋼材の断面積で除した値を指す。
A method for producing a bearing steel by applying a reduction of a total reduction ratio of 15 or more to a slab or steel ingot having an average composition of chemical components and oxides according to claim 1 by two or more reduction steps. In the final reduction step of the two or more reduction steps, the reduction is performed so as to satisfy all of the following [1] to [3], and the temperature is reduced to 400 ° C. after completion of the reduction in the final reduction step. The region is cooled at a cooling rate of 5 ° C./s or less.
[1] Heating the pressed material to a temperature range of Ae 1 point to Aem point and starting the rolling [2] The surface temperature of the pressed material during the rolling process is 680 ° C. to (Aem point−30 ° C.) [3] The reduction ratio is 4 or more. However, the total reduction ratio is a bearing steel material obtained by final reduction in the final reduction step in the cross-sectional area of a slab or steel ingot. The reduction ratio in the final reduction step is obtained by the final reduction in the final reduction step in the cross-sectional area of the material to be reduced before the reduction is applied in the final reduction step. The value divided by the cross-sectional area of bearing steel.
鋳片または鋼塊が、一次精錬としての酸化精錬を行った後に、Al脱酸処理を行わずに、実質的にAlを含有しないフラックスを用いて二次精錬を行って、二次精錬終了後の最終的なスラグの塩基度CaO/SiO2の値が0.8〜2.0で、かつスラグ組成が質量%で、MgO:15%以下、F:10%以下、Al23:20%以下になるように制御し、続いて鋳造されたものであることを特徴とする請求項2に記載の軸受鋼鋼材の製造方法。 After the slab or steel ingot is oxidatively smelted as primary smelting, Al deoxidation treatment is not performed, secondary smelting is performed using a flux that does not substantially contain Al, and after secondary smelting is completed The final slag has a basicity CaO / SiO 2 value of 0.8 to 2.0 and a slag composition of mass%, MgO: 15% or less, F: 10% or less, Al 2 O 3 : 20 The method for producing a bearing steel material according to claim 2, wherein the steel material is controlled to be not more than% and subsequently cast.
JP2008163962A 2008-06-24 2008-06-24 Bearing steel and manufacturing method thereof Active JP5035137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163962A JP5035137B2 (en) 2008-06-24 2008-06-24 Bearing steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163962A JP5035137B2 (en) 2008-06-24 2008-06-24 Bearing steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010007092A true JP2010007092A (en) 2010-01-14
JP5035137B2 JP5035137B2 (en) 2012-09-26

Family

ID=41587906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163962A Active JP5035137B2 (en) 2008-06-24 2008-06-24 Bearing steel and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5035137B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132771A1 (en) 2011-03-31 2012-10-04 株式会社神戸製鋼所 Bearing steel with excellent rolling fatigue characteristics, and bearing parts
WO2014017362A1 (en) * 2012-07-24 2014-01-30 株式会社神戸製鋼所 Bearing steel material with excellent rolling fatigue property and bearing part
JP2014189854A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Steel material for bearing excellent in rolling fatigue characteristic and machinability, and bearing parts
CN104087719A (en) * 2014-07-04 2014-10-08 常州东大中天钢铁研究院有限公司 Smelting process of high-carbon bearing steel
JP2015036437A (en) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 Bearing steel material excellent in rolling contact fatigue characteristic and bearing component
JP2016135901A (en) * 2015-01-23 2016-07-28 株式会社神戸製鋼所 Steel material for bearing excellent in rolling contact fatigue property and bearing member
KR20170026590A (en) 2014-08-21 2017-03-08 가부시키가이샤 고베 세이코쇼 Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
CN115369333A (en) * 2022-07-12 2022-11-22 江阴兴澄特种钢铁有限公司 Steel for high-speed bullet train bearing rolling body and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379741A (en) * 1989-08-22 1991-04-04 Daido Steel Co Ltd Steel excellent in rolling fatigue characteristic
JPH04349A (en) * 1990-04-16 1992-01-06 Kobe Steel Ltd Bearing steel excellent in workability and rolling fatigue characteristic
JPH11131176A (en) * 1997-10-28 1999-05-18 Kawasaki Steel Corp Induction hardened parts and production thereof
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor
JP2009030145A (en) * 2007-07-05 2009-02-12 Sumitomo Metal Ind Ltd Bearing steel member, and method for producing the same
JP2009041046A (en) * 2007-08-07 2009-02-26 Sumitomo Metal Ind Ltd Steel for induction hardening, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379741A (en) * 1989-08-22 1991-04-04 Daido Steel Co Ltd Steel excellent in rolling fatigue characteristic
JPH04349A (en) * 1990-04-16 1992-01-06 Kobe Steel Ltd Bearing steel excellent in workability and rolling fatigue characteristic
JPH11131176A (en) * 1997-10-28 1999-05-18 Kawasaki Steel Corp Induction hardened parts and production thereof
JP2006200027A (en) * 2005-01-24 2006-08-03 Nippon Steel Corp High-carbon chromium steel for bearing and production method therefor
JP2009030145A (en) * 2007-07-05 2009-02-12 Sumitomo Metal Ind Ltd Bearing steel member, and method for producing the same
JP2009041046A (en) * 2007-08-07 2009-02-26 Sumitomo Metal Ind Ltd Steel for induction hardening, and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692892A4 (en) * 2011-03-31 2015-01-28 Kobe Steel Ltd Bearing steel with excellent rolling fatigue characteristics, and bearing parts
CN103459642A (en) * 2011-03-31 2013-12-18 株式会社神户制钢所 Bearing steel with excellent rolling fatigue characteristics, and bearing parts
WO2012132771A1 (en) 2011-03-31 2012-10-04 株式会社神戸製鋼所 Bearing steel with excellent rolling fatigue characteristics, and bearing parts
US9394593B2 (en) 2011-03-31 2016-07-19 Kobe Steel, Ltd. Bearing steel material with excellent rolling contact fatigue properties and a bearing part
EP2692892A1 (en) * 2011-03-31 2014-02-05 Kabushiki Kaisha Kobe Seiko Sho Bearing steel with excellent rolling fatigue characteristics, and bearing parts
JP2012214829A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Bearing steel material with excellent rolling fatigue characteristic and bearing part
JP2014025083A (en) * 2012-07-24 2014-02-06 Kobe Steel Ltd Bearing steel material, and bearing part with excellent rolling fatigue characteristic
EP2878694A4 (en) * 2012-07-24 2016-03-16 Kobe Steel Ltd Bearing steel material with excellent rolling fatigue property and bearing part
TWI491743B (en) * 2012-07-24 2015-07-11 Kobe Steel Ltd Rotational fatigue characteristics of the bearing steel and bearing parts
US9359661B2 (en) 2012-07-24 2016-06-07 Kobe Steel, Ltd. Bearing steel material with excellent rolling fatigue property and bearing part
WO2014017362A1 (en) * 2012-07-24 2014-01-30 株式会社神戸製鋼所 Bearing steel material with excellent rolling fatigue property and bearing part
JP2014189854A (en) * 2013-03-27 2014-10-06 Kobe Steel Ltd Steel material for bearing excellent in rolling fatigue characteristic and machinability, and bearing parts
JP2015036437A (en) * 2013-08-13 2015-02-23 株式会社神戸製鋼所 Bearing steel material excellent in rolling contact fatigue characteristic and bearing component
CN104087719A (en) * 2014-07-04 2014-10-08 常州东大中天钢铁研究院有限公司 Smelting process of high-carbon bearing steel
KR20170026590A (en) 2014-08-21 2017-03-08 가부시키가이샤 고베 세이코쇼 Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
EP3184652A4 (en) * 2014-08-21 2018-04-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for controlling ti concentration in steel, and method for producing silicon-deoxidized steel
JP2016135901A (en) * 2015-01-23 2016-07-28 株式会社神戸製鋼所 Steel material for bearing excellent in rolling contact fatigue property and bearing member
WO2016117571A1 (en) * 2015-01-23 2016-07-28 株式会社神戸製鋼所 Steel material for bearings that has excellent rolling fatigue characteristics, and bearing part
CN115369333A (en) * 2022-07-12 2022-11-22 江阴兴澄特种钢铁有限公司 Steel for high-speed bullet train bearing rolling body and manufacturing method thereof

Also Published As

Publication number Publication date
JP5035137B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP5035137B2 (en) Bearing steel and manufacturing method thereof
JP5266686B2 (en) Bearing steel and its manufacturing method
JP6079903B2 (en) Bearing parts, steel materials for bearing parts, and manufacturing methods thereof
JP4252837B2 (en) Steel material with excellent rolling fatigue life and method for producing the same
JP6038026B2 (en) High carbon chromium bearing steel and manufacturing method thereof
JP5783014B2 (en) Steel bar for bearing
JP6248026B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP4900127B2 (en) Induction hardening steel and manufacturing method thereof
JP5783056B2 (en) Carburized bearing steel
JP5605912B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5316495B2 (en) Bearing steel
JP2006028619A (en) High strength low alloy steel wire rod
JP5137082B2 (en) Steel for machine structure and manufacturing method thereof
JP5833984B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JPWO2016002931A1 (en) Rolled steel bar for machine structure and manufacturing method thereof
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JPH11131187A (en) Rapidly graphitizable steel and its production
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP6249100B2 (en) Rolled steel bar for machine structure and manufacturing method thereof
JPH11264049A (en) High carbon steel strip and its production
JP5867324B2 (en) Bearing steel
JP2003193199A (en) Steel for bearing having excellent cold workability as hot-worked and production method therefor
JP2016172916A (en) Bearing steel material excellent in rolling contact fatigue characteristics and cold forgeability, and bearing component
JP2005272953A (en) Bearing material and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5035137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350