JP2014189854A - Steel material for bearing excellent in rolling fatigue characteristic and machinability, and bearing parts - Google Patents

Steel material for bearing excellent in rolling fatigue characteristic and machinability, and bearing parts Download PDF

Info

Publication number
JP2014189854A
JP2014189854A JP2013067442A JP2013067442A JP2014189854A JP 2014189854 A JP2014189854 A JP 2014189854A JP 2013067442 A JP2013067442 A JP 2013067442A JP 2013067442 A JP2013067442 A JP 2013067442A JP 2014189854 A JP2014189854 A JP 2014189854A
Authority
JP
Japan
Prior art keywords
less
rolling fatigue
steel
inclusions
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067442A
Other languages
Japanese (ja)
Other versions
JP5976584B2 (en
Inventor
Yosuke Shinto
陽介 新堂
Akihiro Owaki
章弘 大脇
Masaki Shimamoto
正樹 島本
Tomoko Sugimura
朋子 杉村
Sei Kimura
世意 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013067442A priority Critical patent/JP5976584B2/en
Publication of JP2014189854A publication Critical patent/JP2014189854A/en
Application granted granted Critical
Publication of JP5976584B2 publication Critical patent/JP5976584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel material for a bearing excellent in rolling fatigue characteristic and machinability.SOLUTION: The steel material for a bearing contains, C:0.8 to 1.1%, Si:0.15 to 0.8%, Mn:0.10 to 1%, P:0.05% or less (excluding 0%), S:0.005% to 0.015%, Cr:1.3 to 1.8%, Al:0.0002 to 0.005%, Ti:0.0005 to 0.010%, N:0.010% or less (excluding 0%), Ca:0.0002 to 0.002%, O:0.0030% or less (excluding 0%) and the balance iron with inevitable impurities. In the steel material for a bearing, an average composition of oxide-based inclusion contains, by mass%, CaO:20 to 50%, AlO:15 to 50%, SiO:20 to 62%, TiO:3 to 10%, and an estimated value of square root of a projected area of the maximum sulfide-based inclusion (√area max) is 50 to 150 μm.

Description

本発明は、軸受用鋼材を各種産業機械や自動車等に使用される軸受用の転動体(コロ、ニードル、玉、レース等)に加工したときに優れた切削加工性を発揮し、また軸受用の転動体として用いたときに、優れた転動疲労特性を発揮する軸受用鋼材に関するものである。また本発明はこのような軸受用鋼材から得られる軸受部品に関するものである。   The present invention exhibits excellent machinability when bearing steel is processed into rolling elements (rollers, needles, balls, races, etc.) for bearings used in various industrial machines and automobiles. The present invention relates to a bearing steel material that exhibits excellent rolling fatigue characteristics when used as a rolling element. The present invention also relates to a bearing component obtained from such a bearing steel material.

各種の産業機械や自動車等の分野に使用される軸受用の転動体には、ラジアル方向(回転体の軸と垂直方向)から高い繰り返し応力が付与される。そのため、軸受用の転動体には転動疲労特性に優れることが求められている。転動疲労特性への要求は、産業機械類の高性能化、軽量化に対応して、年々厳しいものになっており、軸受部品の更なる耐久性向上のため、軸受用鋼材にはより一層良好な転動疲労特性が求められている。   High rolling stress is applied from the radial direction (perpendicular to the axis of the rotating body) to the rolling elements for bearings used in various industrial machines and automobiles. For this reason, rolling elements for bearings are required to have excellent rolling fatigue characteristics. The requirements for rolling fatigue characteristics are becoming stricter year by year in response to the higher performance and lighter weight of industrial machinery. To further improve the durability of bearing parts, the steel materials for bearings are even more demanding. Good rolling fatigue characteristics are required.

従来、転動疲労特性は、鋼中に生成する酸化物系介在物のなかでも、主にAl脱酸鋼を用いたときに生成するAl23等のような、硬質酸化物系介在物の個数密度と深く相関していると考えられていた。そのため、上記硬質酸化物系介在物の個数密度を低減することによって転動疲労特性を改善する方法が検討されていた。例えば、製鋼プロセスにおいて、鋼中の酸素含有量を低減して転動疲労特性を改善する試みがなされてきた。 Conventionally, the rolling fatigue characteristics are hard oxide inclusions such as Al 2 O 3 produced mainly when using Al deoxidized steel among oxide inclusions produced in steel. It was thought to be deeply correlated with the number density of. Therefore, a method for improving rolling fatigue characteristics by reducing the number density of the hard oxide inclusions has been studied. For example, attempts have been made to improve rolling fatigue properties by reducing the oxygen content in the steel in the steel making process.

しかしながら近年では、転動疲労特性と、酸化物系介在物に代表される非金属系介在物の関係に関する研究が進み、酸化物系介在物の個数密度と転動疲労特性とは必ずしも相関関係がないことが判明している。即ち、転動疲労特性は、非金属系介在物のサイズ、例えば非金属系介在物の面積の平方根と密接な相関関係があり、転動疲労特性を改善するには、非金属系介在物の個数密度を低減するよりも、非金属系介在物のサイズを小さくすることが有効であることが明らかになっている。   However, in recent years, research on the relationship between rolling fatigue characteristics and nonmetallic inclusions typified by oxide inclusions has progressed, and the number density of oxide inclusions and the rolling fatigue characteristics are not necessarily correlated. It turns out not. That is, the rolling fatigue characteristics are closely correlated with the size of the nonmetallic inclusions, for example, the square root of the area of the nonmetallic inclusions. It has become clear that reducing the size of non-metallic inclusions is more effective than reducing the number density.

そこで、従来のようなAl脱酸鋼を用いるのではなく、鋼中のAl含有量を極力抑えると共に、Si脱酸鋼にすることで、生成する酸化物の組成を、Al23主体ではなくSiO2、CaOなどを主体とする組成に制御し、これにより、圧延工程で非金属系介在物を延伸、分断させて非金属系介在物のサイズを低減し、転動疲労特性を改善する方法が提案されている。 Therefore, instead of using the conventional Al deoxidized steel, while suppressing the Al content in the steel as much as possible, and making it a Si deoxidized steel, the composition of the oxide produced is mainly Al 2 O 3 Control to a composition mainly composed of SiO 2 , CaO, etc., thereby reducing the size of the nonmetallic inclusions by extending and dividing the nonmetallic inclusions in the rolling process and improving the rolling fatigue characteristics. A method has been proposed.

例えば特許文献1は、鋼材の化学成分組成、および酸化物系介在物の平均組成等を制御することで、冷間加工性と転動疲労特性の向上を図る技術が開示されている。特に酸化物系介在物の平均組成を、CaO:10〜60%、Al23:35%以下、MnO:35%以下、およびMgO:15%以下、残部SiO2及び不純物に制御することで、転動疲労特性を向上させる技術が開示されている。 For example, Patent Document 1 discloses a technique for improving cold workability and rolling fatigue characteristics by controlling the chemical component composition of steel, the average composition of oxide inclusions, and the like. In particular an average composition of the oxide inclusions, CaO: 10~60%, Al 2 O 3: 35% or less, MnO: 35% or less, and MgO: 15% or less, by controlling the balance SiO 2 and impurities A technique for improving rolling fatigue characteristics is disclosed.

また特許文献2には、Teを添加することで、硫化物系介在物を偏晶凝固させて転動疲労特性を向上させる技術が開示されている。   Further, Patent Document 2 discloses a technique for improving rolling fatigue characteristics by adding Te to crystallize a sulfide-based inclusion into a crystal.

特開2010−07092号公報JP 2010-07092 A 特開2012−36434号公報JP 2012-36434 A

近年、製造コストを低減する観点から、軸受用鋼材から各種軸受部品を製造する際の切削加工性の改善が求められている。軸受用鋼材は難切削材であるため球状化焼鈍(軟化処理)が施されるが、それでも工具の摩耗が激しく、工具寿命が短いことが問題となっている。したがって軸受用鋼材は転動疲労特性に優れているだけでなく、切削加工性にも優れていることが望まれているが、両特性を兼備した軸受用鋼材は未だ開発されていない。   In recent years, from the viewpoint of reducing manufacturing costs, improvement in machinability when manufacturing various bearing parts from bearing steel has been demanded. Since steel for bearings is difficult to cut, it is subjected to spheroidizing annealing (softening treatment), but there is still a problem that tool wear is severe and tool life is short. Therefore, it is desired that the steel for bearings not only has excellent rolling fatigue characteristics but also has excellent machinability, but a steel for bearings having both characteristics has not been developed yet.

本発明は上記のような事情に着目してなされたものであって、その目的は、転動疲労特性と切削加工性に優れた特性を有する軸受用鋼材、および軸受部品を提供することである。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to provide a steel material for bearings and bearing parts having excellent rolling fatigue characteristics and excellent machinability. .

上記課題を解決し得た本発明に係る転動疲労特性と切削加工性に優れた軸受用鋼材は、C:0.8〜1.1%、Si:0.15〜0.8%、Mn:0.10〜1%、P:0.05%以下(0%を含まない)、S:0.005〜0.015%、Cr:1.3〜1.8%、Al:0.0002〜0.005%、Ti:0.0005〜0.010%、N:0.010%以下(0%を含まない)、Ca:0.0002〜0.002%、O:0.0030%以下(0%を含まない)を含有し、残部が鉄および不可避不純物からなり、鋼中に含まれる酸化物系介在物の平均組成が質量%で、CaO:20〜50%、Al23:15〜50%、SiO2:20〜62%、TiO2:3〜10%を含有し、且つ、最大の硫化物系介在物の投影面積の平方根(√area max)の予測値が50〜150μmであることに要旨を有する。 Steel materials for bearings having excellent rolling fatigue characteristics and cutting workability according to the present invention that can solve the above problems are: C: 0.8 to 1.1%, Si: 0.15 to 0.8%, Mn : 0.10 to 1%, P: 0.05% or less (not including 0%), S: 0.005 to 0.015%, Cr: 1.3 to 1.8%, Al: 0.0002 -0.005%, Ti: 0.0005-0.010%, N: 0.010% or less (excluding 0%), Ca: 0.0002-0.002%, O: 0.0030% or less (The content is 0%), the balance is iron and inevitable impurities, the average composition of oxide inclusions contained in the steel is mass%, CaO: 20 to 50%, Al 2 O 3 : 15~50%, SiO 2: 20~62% , TiO 2: containing 3-10%, and, the projected area of the largest sulfide inclusions square ( Predictive value of area max) has the gist that a 50 to 150 [mu] m.

本発明の好ましい実施態様において、上記軸受用鋼材は更にCu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびMo:0.5%以下(0%を含まない)よりなる群から選択される少なくとも一種を含有するものである。   In a preferred embodiment of the present invention, the bearing steel further includes Cu: 0.5% or less (excluding 0%), Ni: 0.5% or less (excluding 0%), and Mo: 0.5. % Containing at least one selected from the group consisting of% or less (not including 0%).

本発明には、上記軸受用鋼材を用いて得られる軸受部品も包含される。   The present invention also includes a bearing component obtained using the bearing steel material.

本発明によれば、鋼材の化学成分組成、鋼材中に含まれる酸化物系介在物の平均組成、および硫化物系介在物(√area max)の予測値が適切に制御されているため、転動疲労特性、および切削加工性に極めて優れた軸受用鋼材を提供できる。このような軸受用鋼材は、切削加工性に優れているため、工具寿命を向上させることができ、製造コストの低減を達成できる。   According to the present invention, the chemical composition of the steel material, the average composition of the oxide inclusions contained in the steel material, and the predicted value of the sulfide inclusion (√area max) are appropriately controlled. It is possible to provide a steel material for bearings that is extremely excellent in dynamic fatigue characteristics and machinability. Such a steel material for bearings is excellent in machinability, so that the tool life can be improved and the manufacturing cost can be reduced.

また本発明の軸受用鋼材は、コロ、ニードル、玉等、主にラジアル方向の荷重が繰り返し付与される軸受部品の素材として有用である。更に本発明の軸受用鋼材は、レース等、ストラス方向の荷重も繰り返し付与される軸受部品の素材としても有用であり、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができる。   Moreover, the steel material for bearings of the present invention is useful as a material for bearing parts, such as rollers, needles, balls, etc., which are repeatedly subjected to a load mainly in the radial direction. Furthermore, the steel material for bearings of the present invention is useful as a material for bearing parts, such as races, which are repeatedly subjected to a load in the strus direction, and stably improves the rolling fatigue characteristics regardless of the direction in which the load is applied. be able to.

本発明者らは、Alによる脱酸処理を行なわなくても、荷重の付与される方向にかかわらず転動疲労特性を安定的に改善することができ、早期剥離を抑制できると共に、鋼材(軸受用鋼材を意味する。以下同じ)に切削加工等を施して最終形状に仕上げるときの切削加工性(例えば、旋削加工の工具寿命など)が良好な軸受用のSi脱酸鋼材を提供するため、検討を重ねてきた。   The present inventors can stably improve the rolling fatigue characteristics regardless of the direction in which the load is applied without performing deoxidation treatment with Al, and can suppress early peeling, and steel (bearing In order to provide Si deoxidized steel for bearings with good cutting workability (for example, turning tool life, etc.) when finishing to the final shape by performing cutting etc. I have been studying it.

まず、Si脱酸で得られる酸化物系介在物は、熱間加工などの高温域で結晶化し、多結晶体となる。多結晶体となった酸化物系介在物は、母相である鋼に比べて変形抵抗が高いため、熱間加工や冷間加工時に鋼(母相)と酸化物系介在物の界面に空隙を発生し易く、き裂が発生して転動疲労特性が悪化する原因となる。そこで本発明者らは、Si脱酸で得られる上記酸化物系介在物の組成を制御することによって結晶化を抑制し、非晶質体とすることで空隙の発生を抑制する方法について鋭意検討した。その結果、Si脱酸で得られる酸化物系介在物中に、従来含有されていなかったTiO2を含むことで結晶化を抑制できることが明らかになった。具体的には、鋼中成分としてTiを所定範囲内で含み、且つ、酸化物系介在物としてTiO2を所定範囲内で含むSi脱酸鋼材を用いれば、転動疲労特性を向上できることを見出した。 First, oxide inclusions obtained by Si deoxidation are crystallized in a high temperature region such as hot working to become a polycrystal. Polycrystalline oxide inclusions have higher deformation resistance than the parent phase steel, so there are voids at the interface between the steel (matrix) and oxide inclusions during hot working or cold working. , Which causes cracks and deteriorates the rolling fatigue characteristics. Therefore, the present inventors have intensively studied a method for suppressing crystallization by controlling the composition of the oxide inclusions obtained by Si deoxidation and suppressing the generation of voids by using an amorphous body. did. As a result, it became clear that crystallization can be suppressed by including TiO 2 that has not been conventionally contained in the oxide inclusions obtained by Si deoxidation. Specifically, it has been found that rolling fatigue characteristics can be improved by using a Si deoxidized steel material containing Ti as a component in steel within a predetermined range and TiO 2 as an oxide inclusion within a predetermined range. It was.

本発明において、酸化物系介在物について、TiO2を含む組成とすることにより転動疲労特性が向上する理由は詳細には不明であるが、以下のように考えられる。 In the present invention, the reason why the rolling fatigue characteristics are improved by setting the oxide inclusions to a composition containing TiO 2 is unknown in detail, but is considered as follows.

すなわち、Si脱酸で得られるSiO2含有酸化物系介在物にTiO2が含まれるようになると、TiO2濃化相(A相)とSiO2濃化相(B相)の2相に分離する。2相に分離する理由は、溶鋼段階でTiO2とSiO2との2液相に分離する性質があるためと考えられる。その結果、SiO2濃化相(B相)中のSiO2濃度が上昇し、Si脱酸鋼において発生し易かったゲーレナイト(Gehlenite)、スピネル(Spinel、MgO・Al23)などの結晶質化が抑制される。一方、TiO2濃化相(A相)も、酸化物系介在物中にTiO2が含まれることにより、液相線温度も低下し、上述したゲーレナイト、スピネルなどの結晶質化が抑制される。そのため、従来法では避けられなかった、上記SiO2含有酸化物系介在物の熱間加工時における結晶化を抑制できる。また、母相の鋼と酸化物系介在物との界面に発生する空洞を抑制することができる。更には、多結晶体である酸化物系介在物の内部に発生する空洞をも抑制することができる。その結果、転動疲労特性を著しく向上することができる。 That is, when SiO 2 -containing oxide inclusions obtained by Si deoxidation contain TiO 2, they are separated into two phases of TiO 2 concentrated phase (A phase) and SiO 2 concentrated phase (B phase). To do. The reason for separating into two phases is considered to be due to the property of separating into two liquid phases of TiO 2 and SiO 2 at the molten steel stage. As a result, SiO 2 is SiO 2 concentration in the concentrated phase (B phase) increases, gehlenite was easy to occur in the Si-deoxidized steel (Gehlenite), spinel (Spinel, MgO · Al 2 O 3) crystalline, such as Is suppressed. On the other hand, in the TiO 2 concentrated phase (A phase), when TiO 2 is contained in the oxide inclusions, the liquidus temperature also decreases, and the above-described crystallization of gehlenite, spinel, etc. is suppressed. . Therefore, it is possible to suppress crystallization during hot working of the SiO 2 -containing oxide inclusions, which was unavoidable in the conventional method. Further, cavities generated at the interface between the parent phase steel and the oxide inclusions can be suppressed. Furthermore, it is possible to suppress cavities generated inside the oxide inclusions that are polycrystalline. As a result, the rolling fatigue characteristics can be significantly improved.

更に、SiO2濃化相(B相)はSiO2濃度が高いため、非晶質でありながら熱間加工時の変形抵抗が高い。そのため、非晶質を維持しながらも熱間加工時の介在物の延伸を抑制することができる。その結果、アスペクト比(長径/短径)を低く抑えることができるため、荷重の付与される方向にかかわらず、転動疲労特性を安定的に改善することができ、早期剥離を抑制することができる。 Furthermore, since the SiO 2 concentrated phase (B phase) has a high SiO 2 concentration, it is amorphous but has high deformation resistance during hot working. Therefore, the extension of inclusions during hot working can be suppressed while maintaining an amorphous state. As a result, the aspect ratio (major axis / minor axis) can be kept low, so that the rolling fatigue characteristics can be stably improved regardless of the direction in which the load is applied, and early peeling can be suppressed. it can.

これに対し、酸化物系介在物中に所定のTiO2濃度を確保していない場合、母相の鋼と酸化物系介在物の界面に発生する空洞や、酸化物系介在物内部の結晶体と結晶体の界面や、結晶体と非晶質体との界面に発生する空洞を抑制できない。その結果、所望とする転動疲労特性を確保できないことが判明した。 On the other hand, when a predetermined TiO 2 concentration is not ensured in the oxide inclusions, cavities generated at the interface between the mother phase steel and the oxide inclusions, and the crystals inside the oxide inclusions And a cavity generated at the interface between the crystal and the crystal and the amorphous cannot be suppressed. As a result, it was found that desired rolling fatigue characteristics could not be ensured.

更に切削加工性を改善するためには、非金属系介在物を適切にコントロールすることが重要であると考えた。切削加工性の向上のみを考慮するのであれば、従来から鋼材の化学成分組成を最適化することが提案されている。しかしながら上記酸化物系介在物の組成を制御する観点からは鋼材の化学成分組成を大きく変更することは難しい。そこで本発明者らは鋼材中に生成する非金属系介在物を制御して切削加工性を向上させること検討した。   Furthermore, in order to improve the machinability, it was considered important to appropriately control non-metallic inclusions. If only the improvement of the machinability is considered, it has been conventionally proposed to optimize the chemical composition of the steel material. However, from the viewpoint of controlling the composition of the oxide inclusions, it is difficult to greatly change the chemical composition of the steel material. Therefore, the present inventors have studied to improve the machinability by controlling the nonmetallic inclusions generated in the steel material.

上記したように転動疲労特性に影響を与える要因の一つとして、鋼材中の非金属系介在物を起点とした疲労剥離(転動疲労損傷)が知られている。そしてこのような疲労剥離については、極値統計法に基づく評価面積(area)における最大の硫化物系介在物の投影面積の平方根(√area max)の予測値(以下、「硫化物系介在物(√area max)の予測値」ということがある)を小さく(すなわち、硫化物系介在物(√area max)のサイズを微細化すること)することが有効であることも知られている。   As described above, fatigue peeling (rolling fatigue damage) starting from non-metallic inclusions in steel is known as one of the factors affecting the rolling fatigue characteristics. For such fatigue peeling, the predicted value of the square root (√area max) of the projected area of the maximum sulfide inclusion in the evaluation area (area) based on the extreme value statistical method (hereinafter referred to as “sulfide inclusion”). It is also known that it is effective to reduce (sometimes referred to as a predicted value of √area max) (that is, to reduce the size of sulfide inclusions (√area max)).

しかしながら本発明者らが研究を重ねた結果、硫化物系介在物は転動疲労特性には悪影響を及ぼすものの、切削加工性向上には有効であることがわかった。すなわち、転動疲労特性向上の観点からは硫化物系介在物(√area max)の予測値を小さくすることが有効であるが、切削加工性が悪化することがわかった(後記表2の試験No.15、16)。一方、切削加工性向上の観点からは硫化物系介在物(√area max)の予測値を大きくすることが有効であるが、転動疲労特性が悪化することがわかった(後記表2の試験No.17、19)。   However, as a result of repeated studies by the present inventors, it has been found that sulfide inclusions are effective in improving machinability, although they adversely affect rolling fatigue characteristics. That is, from the viewpoint of improving rolling fatigue characteristics, it was effective to reduce the predicted value of sulfide inclusions (√area max), but it was found that the machinability deteriorated (the test in Table 2 below). No. 15, 16). On the other hand, from the viewpoint of improving machinability, it was effective to increase the predicted value of sulfide inclusions (√area max), but it was found that the rolling fatigue characteristics deteriorated (the test shown in Table 2 below). No. 17, 19).

そして本発明者らは更に研究を重ねた結果、酸化物系介在物を所定の組成に制御しつつ、硫化物系介在物(√area max)の予測値を最適化すれば、転動疲労特性と切削加工性の両特性を兼備した軸受用鋼材を提供できることを見出し、本発明を完成した。   As a result of further research, the present inventors have optimized the predicted value of sulfide inclusions (√area max) while controlling the oxide inclusions to a predetermined composition, so that rolling fatigue characteristics are improved. The present invention has been completed by finding that a steel material for bearings having both the characteristics of cutting and machinability can be provided.

本発明はこのような知見に基づいてなされたものであって、その具体的な構成は以下のとおりである。   The present invention has been made on the basis of such knowledge, and its specific configuration is as follows.

まず、本発明の鋼材の化学成分組成について説明する。   First, the chemical component composition of the steel material of the present invention will be described.

C:0.8〜1.1%
Cは、焼入硬さを増大させ、室温、高温における強度を維持して耐磨耗性を付与するための必須の元素である。こうした効果を発揮させるためには、Cは少なくとも、0.8%以上含有させる必要がある。しかしながら、C含有量が1.1%を超えて過剰になると、軸受の芯部に巨大炭化物が生成し易くなり、転動疲労特性に悪影響を及ぼすようになる。C含有量の好ましい下限は0.85%以上、より好ましくは0.90%以上であり、好ましい上限は1.05%以下、より好ましくは1.0%以下である。
C: 0.8 to 1.1%
C is an essential element for increasing the quenching hardness and maintaining the strength at room temperature and high temperature to impart wear resistance. In order to exert such effects, it is necessary to contain C at least 0.8% or more. However, if the C content exceeds 1.1% and becomes excessive, giant carbides are easily generated in the core of the bearing, which adversely affects rolling fatigue characteristics. The preferable lower limit of the C content is 0.85% or more, more preferably 0.90% or more, and the preferable upper limit is 1.05% or less, more preferably 1.0% or less.

Si:0.15〜0.8%
Siは、脱酸元素として有効に作用する他、焼入れ・焼戻し軟化抵抗を高めて硬さを高める作用を有している。こうした効果を有効に発揮させるためには、Si含有量は、0.15%以上とする必要がある。しかしながら、Si含有量が過剰になって0.8%を超えると、鍛造時に金型寿命が低下するばかりか、コスト増加を招くことになる。Si含有量の好ましい下限は0.20%以上、より好ましくは0.25%以上であり、好ましい上限は0.7%以下、より好ましくは0.6%以下である。
Si: 0.15-0.8%
In addition to effectively acting as a deoxidizing element, Si has an effect of increasing hardness by increasing resistance to quenching and tempering. In order to effectively exhibit these effects, the Si content needs to be 0.15% or more. However, if the Si content is excessive and exceeds 0.8%, not only the die life is reduced during forging, but also the cost is increased. The preferable lower limit of the Si content is 0.20% or more, more preferably 0.25% or more, and the preferable upper limit is 0.7% or less, more preferably 0.6% or less.

Mn:0.10〜1%
Mnは、鋼材マトリックスの固溶強化および焼入れ性を向上させる元素である。Mn含有量が0.10%を下回るとその効果が発揮されず、1%を上回ると低級酸化物であるMnO含有量が増加し、転動疲労特性を悪化させる他、切削加工性が著しく低下する。Mn含有量の好ましい下限は0.2%以上、より好ましくは0.3%以上であり、好ましい上限は0.8%以下、より好ましくは0.6%以下である。
Mn: 0.10 to 1%
Mn is an element that improves the solid solution strengthening and hardenability of the steel matrix. When the Mn content is less than 0.10%, the effect is not exhibited. When the Mn content is more than 1%, the content of MnO, which is a lower oxide, is increased, the rolling fatigue characteristics are deteriorated, and the machinability is remarkably lowered. To do. The minimum with preferable Mn content is 0.2% or more, More preferably, it is 0.3% or more, and a preferable upper limit is 0.8% or less, More preferably, it is 0.6% or less.

P:0.05%以下(0%を含まない)
Pは、結晶粒界に偏析して転動疲労特性に悪影響を及ぼす不純物元素である。特に、P含有量が0.05%を超えると、転動疲労特性の低下が著しくなる。したがって、P含有量は0.05%以下に抑制する必要がある。好ましくは0.03%以下、より好ましくは0.02%以下とするのがよい。なお、Pは鋼材に不可避的に含まれる不純物であり、その量を0%にすることは、工業生産上、困難である。
P: 0.05% or less (excluding 0%)
P is an impurity element that segregates at the grain boundaries and adversely affects the rolling fatigue characteristics. In particular, when the P content exceeds 0.05%, the rolling fatigue characteristics are significantly deteriorated. Therefore, it is necessary to suppress the P content to 0.05% or less. Preferably it is 0.03% or less, more preferably 0.02% or less. In addition, P is an impurity inevitably contained in the steel material, and it is difficult to make the amount 0% in industrial production.

S:0.005〜0.015%
Sは、硫化物系介在物(MnS)を形成する元素であり、切削加工性改善に有効な元素である。このような効果を得るためには、Sは0.005%以上含有させる必要がある。しかしながら、S含有量が過剰になって0.015%を超えると、粗大な硫化物が鋼材中に残存して、転動疲労特性が低下する。したがって、Sの含有量は0.015%以下に抑制する必要がある。S含有量の好ましい下限は0.006%以上、より好ましくは0.007%以上であり、好ましい上限は0.013%以下、より好ましくは0.011%以下である。
S: 0.005 to 0.015%
S is an element that forms sulfide inclusions (MnS), and is an effective element for improving the machinability. In order to acquire such an effect, it is necessary to contain S 0.005% or more. However, when the S content becomes excessive and exceeds 0.015%, coarse sulfides remain in the steel material, and the rolling fatigue characteristics deteriorate. Therefore, the S content must be suppressed to 0.015% or less. The preferable lower limit of the S content is 0.006% or more, more preferably 0.007% or more, and the preferable upper limit is 0.013% or less, more preferably 0.011% or less.

Cr:1.3〜1.8%
Crは、鋼材の焼入性を向上させると共に炭化物の硬度を高めて、部品の耐摩耗性向上に有効な元素である。このような効果を得るためには、Crは1.3%以上含有させる必要がある。しかしながら、Cr含有量が過剰になると粗大な炭化物が生成し、転動疲労特性や切削加工性を低下させる。そのため、Cr含有量は1.8%以下に抑制する必要がある。Cr含有量の好ましい下限は1.35%以上であり、より好ましくは1.4%以上であり、好ましい上限は1.7%以下であり、より好ましくは1.6%以下である。
Cr: 1.3-1.8%
Cr is an element that improves the hardenability of the steel material and increases the hardness of the carbide, and is effective in improving the wear resistance of the part. In order to acquire such an effect, it is necessary to contain 1.3% or more of Cr. However, when the Cr content is excessive, coarse carbides are generated, which deteriorates rolling fatigue characteristics and machinability. Therefore, the Cr content needs to be suppressed to 1.8% or less. The minimum with preferable Cr content is 1.35% or more, More preferably, it is 1.4% or more, A preferable upper limit is 1.7% or less, More preferably, it is 1.6% or less.

Al:0.0002〜0.005%
Alは、好ましくない元素であり、本発明の鋼材においては、Alは極力少なくする必要がある。したがって、酸化精錬後のAl添加による脱酸処理は行わない。Al含有量が多くなり、特に0.005%を超えてしまうと、Al23を主体とする硬質な酸化物の生成量が多くなり、しかも圧下した後も粗大な酸化物として鋼材中に残存するので、転動疲労特性が劣化する。したがって、Al含有量は0.005%以下、好ましくは0.002%以下、より好ましくは0.0015%以下である。但し、Al含有量を0.0002%未満にすると、酸化物中のAl23含有量が少なくなり過ぎ、SiO2を多く含む結晶相が生成する。また、Al含有量を0.0002%未満に制御するためには、Alの混入を抑制するために、鋼中成分のみならず、フラックス中のAl含有量も少なくする必要があるが、高炭素鋼である軸受鋼においてAl含有量の少ないフラックスは非常に高価であり、経済的でない。したがって、Al含有量の下限は0.0002%以上、好ましくは0.0005%以上である。
Al: 0.0002 to 0.005%
Al is an undesirable element, and in the steel material of the present invention, it is necessary to reduce Al as much as possible. Therefore, deoxidation treatment by addition of Al after oxidative refining is not performed. When the Al content increases, especially when it exceeds 0.005%, the amount of hard oxides mainly composed of Al 2 O 3 increases, and even after the rolling down, the oxides become coarse oxides in the steel. Since it remains, the rolling fatigue characteristics deteriorate. Therefore, the Al content is 0.005% or less, preferably 0.002% or less, more preferably 0.0015% or less. However, if the Al content is less than 0.0002%, the Al 2 O 3 content in the oxide becomes too small, and a crystal phase containing a large amount of SiO 2 is generated. Moreover, in order to control the Al content to less than 0.0002%, it is necessary to reduce not only the components in steel but also the Al content in the flux in order to suppress the mixing of Al. In bearing steel, which is a steel, a flux with a low Al content is very expensive and not economical. Therefore, the lower limit of the Al content is 0.0002% or more, preferably 0.0005% or more.

Ti:0.0005〜0.010%
Tiは、本発明において特に重要な役割を果たす元素である。所定量のTiを添加し、酸化物中のTiO2含有量を適切に制御することにより、これまで解決が困難であった問題を解決することができ、転動疲労特性が一層向上する。すなわち、解決困難な問題であったSi脱酸鋼で得られるSiO2含有酸化物系介在物の熱間加工時における結晶化、母相の鋼と酸化物系介在物の界面に発生する空洞、多結晶体である酸化物系介在物内部に発生する空洞を抑制できる。更に所定量のTiは、アスペクト比の低減化にも有効に作用し、これにより、転動疲労特性が更に向上する。このような効果を得るためには、Ti含有量は0.0005%以上とする必要がある。ただし、Tiの含有量が多くなり、0.010%を超えると、TiO2系酸化物が結晶相として単独で生成してしまう。したがって、Ti含有量は0.010%以下とした。Ti含有量の好ましい下限は0.0008%以上、より好ましくは0.0011%以上であり、好ましい上限は0.0050%以下、より好ましくは0.0030%以下である。
Ti: 0.0005 to 0.010%
Ti is an element that plays a particularly important role in the present invention. By adding a predetermined amount of Ti and appropriately controlling the TiO 2 content in the oxide, problems that have been difficult to solve can be solved, and rolling fatigue characteristics are further improved. That is, crystallization during hot working of SiO 2 -containing oxide inclusions obtained in Si deoxidized steel, which was a difficult problem to solve, cavities generated at the interface between the parent phase steel and oxide inclusions, It is possible to suppress cavities generated in the oxide inclusions that are polycrystalline. Furthermore, the predetermined amount of Ti effectively works to reduce the aspect ratio, and thereby rolling fatigue characteristics are further improved. In order to obtain such an effect, the Ti content needs to be 0.0005% or more. However, if the Ti content increases and exceeds 0.010%, a TiO 2 -based oxide is generated alone as a crystal phase. Therefore, the Ti content is set to 0.010% or less. The preferable lower limit of the Ti content is 0.0008% or more, more preferably 0.0011% or more, and the preferable upper limit is 0.0050% or less, more preferably 0.0030% or less.

N:0.010%以下(0%を含まない)
Nは、TiNを生成し、転動疲労特性を悪化させるため、できる限り低減することが推奨される。したがってN含有量の上限は、0.010%以下、好ましくは0.008%以下、より好ましくは0.006%以下である。
N: 0.010% or less (excluding 0%)
It is recommended that N be reduced as much as possible in order to generate TiN and deteriorate rolling fatigue characteristics. Therefore, the upper limit of the N content is 0.010% or less, preferably 0.008% or less, more preferably 0.006% or less.

Ca:0.0002〜0.002%
Caは、酸化物中のCaO含有量を制御し、酸化物系介在物を軟化させ、転動疲労特性を改善するのに有効である。このような効果を発揮させるため、Ca含有量は0.0002%以上とする。しかしながら、Ca含有量が過剰になって0.002%を超えると、酸化物組成におけるCaOの割合が高くなり過ぎて、酸化物が硬質化し、転動疲労特性に悪影響を与える。したがって、Ca含有量は0.002%以下とした。好ましいCa含有量の下限は0.0003%以上、より好ましくは0.0005%以上であり、好ましい上限は0.001%以下、より好ましくは0.0008%以下である。
Ca: 0.0002 to 0.002%
Ca is effective in controlling the CaO content in the oxide, softening oxide inclusions, and improving rolling fatigue characteristics. In order to exert such effects, the Ca content is set to 0.0002% or more. However, if the Ca content becomes excessive and exceeds 0.002%, the proportion of CaO in the oxide composition becomes too high, the oxide becomes hard, and adversely affects the rolling fatigue characteristics. Therefore, the Ca content is set to 0.002% or less. The lower limit of the preferable Ca content is 0.0003% or more, more preferably 0.0005% or more, and the preferable upper limit is 0.001% or less, more preferably 0.0008% or less.

O:0.0030%以下(0%を含まない)
Oは、好ましくない不純物元素である。Oの含有量が多くなって、特に0.0030%を超えると、粗大な酸化物が生成し易くなり、圧延後においても粗大な酸化物として残存し、転動疲労特性に悪影響を及ぼす。したがってO含有量の上限は、0.0030%以下とする。好ましい上限は0.0025%以下、より好ましくは0.0020%以下である。
O: 0.0030% or less (excluding 0%)
O is an undesirable impurity element. When the content of O increases, particularly exceeding 0.0030%, a coarse oxide is likely to be formed, and remains as a coarse oxide even after rolling, which adversely affects rolling fatigue characteristics. Therefore, the upper limit of the O content is 0.0030% or less. A preferable upper limit is 0.0025% or less, more preferably 0.0020% or less.

本発明で規定する含有元素は上記のとおりであって、残部は鉄、および不可避不純物である。該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えばAs、H、N)の混入が許容され得る。なお、本発明では上記以外の不可避不純物は本発明の上記特性に影響を与えない範囲で含まれていてもよい。不可避不純物は例えば0.10%までは許容する趣旨である。   The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities. As the inevitable impurities, mixing of elements (for example, As, H, and N) that are brought in depending on the situation of raw materials, materials, manufacturing facilities, and the like can be allowed. In the present invention, inevitable impurities other than those described above may be included in a range that does not affect the above-described characteristics of the present invention. Inevitable impurities are allowed to be, for example, up to 0.10%.

なお、本発明では、転動疲労特性を高めるため、下記選択元素(Cu、Ni、Mo)を規定範囲内で積極的に含有させることも可能である。   In the present invention, the following selective elements (Cu, Ni, Mo) can be positively contained within a specified range in order to improve rolling fatigue characteristics.

Cu:0.5%以下(0%を含まない)、Ni:0.5%以下(0%を含まない)、およびMo:0.5%以下(0%を含まない)よりなる群から選択される少なくとも一種
これら元素は単独、或いは2種類以上を添加してもよい。
Selected from the group consisting of Cu: 0.5% or less (not including 0%), Ni: 0.5% or less (not including 0%), and Mo: 0.5% or less (not including 0%) These elements may be used alone or in combination of two or more.

Cu:0.5%以下(0%を含まない)
Cuは、耐食性の向上に有効に作用する元素である。こうした効果を得るには、Cu量は好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Cuが過剰になると、熱間圧延性を低下させ、製造時に割れが発生し易くなる。そのためCu量は好ましくは0.5%以下、より好ましくは0.4%以下、より好ましくは0.3%以下である。
Cu: 0.5% or less (excluding 0%)
Cu is an element that effectively acts to improve corrosion resistance. In order to obtain such an effect, the amount of Cu is preferably 0.15% or more, more preferably 0.2% or more. On the other hand, when Cu is excessive, the hot rollability is lowered, and cracks are likely to occur during production. Therefore, the amount of Cu is preferably 0.5% or less, more preferably 0.4% or less, and more preferably 0.3% or less.

Ni:0.5%以下(0%を含まない)
Niは、Cuと耐食性の点で同効元素であり、また靭性を高めて、衝撃特性の向上に有効な元素である。こうした効果を得るには、Ni量は好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Niは高価であり、コスト面から低減することが望ましい。またNiが過剰になると切削加工性を低下させる。そのためNi量は、好ましくは0.5%以下、より好ましくは0.4%以下、より好ましくは0.3%以下である。
Ni: 0.5% or less (excluding 0%)
Ni is an element having the same effect as Cu in terms of corrosion resistance, and is an element effective for improving impact properties by increasing toughness. In order to obtain such an effect, the amount of Ni is preferably 0.15% or more, more preferably 0.2% or more. On the other hand, Ni is expensive, and it is desirable to reduce it from the viewpoint of cost. Moreover, when Ni becomes excess, cutting workability will fall. Therefore, the amount of Ni is preferably 0.5% or less, more preferably 0.4% or less, and more preferably 0.3% or less.

Mo:0.5%以下(0%を含まない)
Moは、Niと靭性の点で同効元素であり、靭性を向上させるのに有効な元素である。こうした効果を得るには、Mo量は好ましくは0.15%以上、より好ましくは0.2%以上である。一方、Moは高価であり、コスト面から低減することが望ましい。そのためMo量は、好ましくは0.5%以下、より好ましくは0.45%以下である。
Mo: 0.5% or less (excluding 0%)
Mo is an effective element in terms of toughness with Ni, and is an effective element for improving toughness. In order to obtain such an effect, the Mo amount is preferably 0.15% or more, more preferably 0.2% or more. On the other hand, Mo is expensive and it is desirable to reduce it from a cost viewpoint. Therefore, the Mo amount is preferably 0.5% or less, more preferably 0.45% or less.

次に、鋼材中に存在する酸化物系介在物について説明する。前述したように本発明では、鋼中に含まれる酸化物について、酸化物の平均組成が、全酸化物(100%)に対する比率(質量%)で、CaO:20〜50%、Al23:15〜50%、SiO2:20〜62%、TiO2:3〜10%を含有し、残部はその他の酸化物からなるところに特徴がある。 Next, oxide inclusions present in the steel material will be described. As described above, in the present invention, with respect to the oxide contained in the steel, the average composition of the oxide is a ratio (mass%) to the total oxide (100%), CaO: 20 to 50%, Al 2 O 3. 15 to 50%, SiO 2 : 20 to 62%, TiO 2 : 3 to 10%, and the remainder is characterized by being made of other oxides.

CaO:20〜50%
CaOは塩基性酸化物であり、酸性酸化物であるSiO2と共に含まれると、酸化物の液相線温度が下がり、酸化物の結晶化を抑制する効果がある。このような効果は、酸化物の平均組成におけるCaO含有量を20%以上に制御することによって得られる。しかしながら、CaO含有量が高すぎると、酸化物が結晶化してしまうため、50%以下とする必要がある。酸化物中におけるCaO含有量の好ましい下限は22%以上、より好ましくは25%以上であり、好ましい上限は43%以下、より好ましくは41%以下である。
CaO: 20-50%
CaO is a basic oxide, and when it is contained together with SiO 2 that is an acidic oxide, the liquidus temperature of the oxide is lowered, and there is an effect of suppressing crystallization of the oxide. Such an effect is obtained by controlling the CaO content in the average composition of the oxide to 20% or more. However, if the CaO content is too high, the oxide will crystallize, so it is necessary to make it 50% or less. The minimum with preferable CaO content in an oxide is 22% or more, More preferably, it is 25% or more, A preferable upper limit is 43% or less, More preferably, it is 41% or less.

Al23:15〜50%
酸化物の平均組成における含有量が50%を超えると、圧延温度域でAl23(コランダム)相が晶出したり、MgOとともにMgO・Al23(スピネル)相が晶出したりする。これらの固相は、硬質で圧延・冷間加工時に分断しにくく、粗大な介在物として存在するため、転動疲労特性を悪化させる。こうした観点から、酸化物の平均組成におけるAl23含有量は50%以下とする。好ましくは43%以下、更に好ましくは41%以下である。一方、酸化物系介在物中のAl23含有量が低すぎると、CaO、SiO2が主体の硬質な介在物となり、転動疲労特性を悪化させる。そのため、Al23の含有量は15%以上とした。好ましい下限は17%以上、更に好ましくは20%以上である。
Al 2 O 3 : 15-50%
When the content of the oxide in the average composition exceeds 50%, the Al 2 O 3 (corundum) phase is crystallized in the rolling temperature range, or the MgO · Al 2 O 3 (spinel) phase is crystallized together with MgO. These solid phases are hard and difficult to break during rolling and cold working, and are present as coarse inclusions, and therefore deteriorate the rolling fatigue characteristics. From such a viewpoint, the Al 2 O 3 content in the average composition of the oxide is set to 50% or less. Preferably it is 43% or less, More preferably, it is 41% or less. On the other hand, if the Al 2 O 3 content in the oxide inclusions is too low, CaO and SiO 2 become hard inclusions mainly, and the rolling fatigue characteristics are deteriorated. Therefore, the content of Al 2 O 3 is set to 15% or more. A preferable lower limit is 17% or more, and more preferably 20% or more.

SiO2:20〜62%
SiO2は酸性酸化物であり、酸化物系介在物を軟質化させ、転動疲労寿命を向上させるために不可欠の成分である。このような効果を有効に発揮させるためには、酸化物中にSiO2を20%以上含有させる必要がある。しかしながら、SiO2含有量が62%を超えると、SiO2を多く含む結晶相が生成し空洞が形成されるため、転動疲労特性が悪化する。酸化物中におけるSiO2含有量の好ましい下限は25%以上、より好ましくは30%以上であり、好ましい上限は50%以下、より好ましくは45%以下である。
SiO 2 : 20 to 62%
SiO 2 is an acidic oxide and is an essential component for softening oxide inclusions and improving the rolling fatigue life. In order to exhibit such an effect effectively, it is necessary to contain 20% or more of SiO 2 in the oxide. However, if the SiO 2 content exceeds 62%, a crystal phase containing a large amount of SiO 2 is generated and cavities are formed, so that the rolling fatigue characteristics are deteriorated. The preferable lower limit of the SiO 2 content in the oxide is 25% or more, more preferably 30% or more, and the preferable upper limit is 50% or less, more preferably 45% or less.

TiO2:3〜10%
TiO2は、本発明を特徴付ける酸化物成分であり、酸性酸化物であるSiO2と共に含まれると、TiO2濃化相(A相)とSiO2濃化相(B相)の2相に分離でき、両相とも硬質化を抑制する効果を有する。その結果、Si脱酸鋼で得られるSiO2含有酸化物系介在物の熱間加工時の結晶化の抑制、母相の鋼と酸化物系介在物との界面に発生する空洞の抑制、多結晶体である酸化物系介在物内部にも発生する空洞の抑制を実現でき、転動疲労特性が一層を向上する。また、介在物の軟質化により切削工具の摩耗も低減し切削加工性も向上する。このような効果は、酸化物の平均組成におけるTiO2含有量を3%以上に制御することによって得られる。しかしながら、TiO2含有量が高すぎると、TiO2系酸化物が結晶相として単独で生成し、空洞が形成され、転動疲労特性が低下するため、10%以下とする。酸化物中におけるTiO2含有量の好ましい下限は4%以上、より好ましくは5%以上、であり、好ましい上限は8%以下、より好ましくは7%以下である。
TiO 2 : 3 to 10%
TiO 2 is an oxide component that characterizes the present invention. When it is contained together with SiO 2 that is an acidic oxide, TiO 2 is separated into two phases of TiO 2 concentrated phase (A phase) and SiO 2 concentrated phase (B phase). Both phases have the effect of suppressing hardening. As a result, suppression of crystallization during hot working of SiO 2 -containing oxide inclusions obtained from Si deoxidized steel, suppression of cavities generated at the interface between the parent phase steel and oxide inclusions, It is possible to suppress the cavities generated in the oxide inclusions that are the crystalline bodies, and the rolling fatigue characteristics are further improved. In addition, the softening of the inclusions reduces the wear of the cutting tool and improves the cutting workability. Such an effect can be obtained by controlling the TiO 2 content in the average composition of the oxide to 3% or more. However, if the TiO 2 content is too high, a TiO 2 -based oxide is generated alone as a crystal phase, a cavity is formed, and the rolling fatigue characteristics deteriorate, so the content is made 10% or less. The preferable lower limit of the TiO 2 content in the oxide is 4% or more, more preferably 5% or more, and the preferable upper limit is 8% or less, more preferably 7% or less.

このように本発明鋼材に含まれる酸化物は、基本的にCaO、Al23、SiO2、およびTiO2で構成されているが、その他の酸化物を含有してもよい趣旨である。その他の酸化物は、上記酸化物系介在物の効果に悪影響を及ぼさず、所望の特性が得られる限度において含まれ得る。その他の酸化物の合計量(質量%)は、全酸化物に対する比率で好ましくは20%以下、より好ましくは15%以下、更に好ましくは10%以下、最も好ましくは5%以下に制御されていることが好ましい。 As described above, the oxide contained in the steel material of the present invention is basically composed of CaO, Al 2 O 3 , SiO 2 , and TiO 2 , but it is intended that other oxides may be contained. Other oxides may be included as long as desired characteristics are obtained without adversely affecting the effect of the oxide inclusions. The total amount (mass%) of the other oxides is preferably controlled to 20% or less, more preferably 15% or less, still more preferably 10% or less, and most preferably 5% or less as a ratio to the total oxides. It is preferable.

最大の硫化物系介在物の投影面積の平方根(√area max)の予測値(硫化物系介在物の√area maxの予測値):50〜150μm
硫化物系介在物は転動疲労特性と切削加工性の両特性に影響する非金属系介在物である。硫化物系介在物による切削加工性向上効果を得るには、硫化物系介在物(√area max)の予測値は50μm以上とする必要がある。硫化物系介在物(√area max)の予測値が50μm以上であっても、硫化物系介在物は酸化物系介在物と比べて軟質であり、酸化物系介在物の組成が上記のように適切に制御されていれば、転動疲労破壊を抑制できる。しかしながら硫化物系介在物(√area max)の予測値が150μmを超えて粗大化すると、製造過程(圧延)で延伸されて該硫化物系介在物の周囲に応力が集中して転動疲労特性が低下する。そのため、硫化物系介在物(√area max)の予測値は150μm以下にする必要がある。硫化物系介在物(√area max)の予測値は好ましくは60μm以上、より好ましくは70μm以上であって、好ましくは130μm以下、より好ましくは100μm以下である。
Predicted value of square root (√area max) of projected area of maximum sulfide inclusion (predicted value of √area max of sulfide inclusion): 50 to 150 μm
Sulfide inclusions are non-metallic inclusions that affect both rolling fatigue characteristics and machinability. In order to obtain the effect of improving the machinability by sulfide inclusions, the predicted value of sulfide inclusions (√area max) needs to be 50 μm or more. Even if the predicted value of sulfide inclusions (√area max) is 50 μm or more, sulfide inclusions are softer than oxide inclusions, and the composition of oxide inclusions is as described above. If properly controlled, rolling fatigue failure can be suppressed. However, if the predicted value of sulfide inclusions (√area max) becomes larger than 150 μm, it is stretched in the manufacturing process (rolling) and stress concentrates around the sulfide inclusions to cause rolling fatigue characteristics. Decreases. Therefore, the predicted value of sulfide inclusions (√area max) needs to be 150 μm or less. The predicted value of sulfide inclusions (√area max) is preferably 60 μm or more, more preferably 70 μm or more, preferably 130 μm or less, more preferably 100 μm or less.

次に本発明に係る上記軸受用鋼材の製造方法について説明する。   Next, a method for producing the bearing steel material according to the present invention will be described.

本発明の軸受用鋼材は、従来公知の製造工程に基づいて製造できる。すなわち、鋼を溶製し(溶製工程)、常法に従って鋳片を鋳造する(鋳造工程)。得られた鋳片に均熱処理(溶体化処理に相当)を施した後に熱間鍛造し、室温まで冷却する(分塊圧延工程)。その後、再加熱して熱間加工(例えば熱間圧延)することによって(棒鋼圧延工程)、軸受用鋼材が得られる。   The steel material for bearings of the present invention can be manufactured based on a conventionally known manufacturing process. That is, steel is melted (melting process), and a slab is cast according to a conventional method (casting process). The obtained slab is subjected to soaking (corresponding to a solution treatment), then hot forged, and cooled to room temperature (block rolling process). Then, the steel material for bearings is obtained by reheating and hot working (for example, hot rolling) (bar rolling process).

上記従来の製造工程において、本発明では特に酸化物系介在物の平均組成、及び硫化物系介在物(√area max)の予測値を制御する観点から、特に溶製工程、及び鋳造工程に留意して製造すればよく、それ以外の工程は、軸受用鋼材の製造に通常用いられる方法を適宜選択して用いることができる。   In the above conventional manufacturing process, in the present invention, in particular, from the viewpoint of controlling the average composition of oxide inclusions and the predicted value of sulfide inclusions (√area max), pay attention to the melting and casting processes. In other steps, a method usually used for producing bearing steel can be appropriately selected and used.

溶製工程:
まず鋼を溶製する際に、通常実施されるAl添加での脱酸処理を行なわずに、Si添加による脱酸を実施する。この溶製時には、CaO、およびAl23の各含有量を制御するために、鋼中に含まれるAl含有量を上記のとおり、0.0002〜0.005%、Ca含有量を上記のとおり0.0002〜0.002%に夫々制御する。
Melting process:
First, when steel is melted, deoxidation by Si addition is performed without performing the deoxidation treatment by Al addition that is usually performed. At the time of melting, in order to control the respective contents of CaO and Al 2 O 3 , the Al content contained in the steel is 0.0002 to 0.005% as described above, and the Ca content is It controls to 0.0002 to 0.002% respectively.

また、TiO2の制御方法としては特に限定されず、当該技術分野で通常用いられる方法に基づき、溶製時に、鋼中に含まれるTi含有量が上記のとおり、0.0005〜0.010%の範囲内に制御されるようにTiを添加すればよい。Tiの添加方法は特に限定されず、例えば、Tiを含有する鉄系合金を添加して調整してもよいし、あるいは、スラグ組成の制御によって溶鋼中のTi濃度を制御してもかまわない。 Further, no particular limitation is imposed on the method of controlling the TiO 2, according to the method commonly used in the art, in the step of melting, as the Ti content contained in the steel described above, 0.0005 to 0.010% Ti may be added so as to be controlled within the range. The method of adding Ti is not particularly limited, and for example, it may be adjusted by adding an iron-based alloy containing Ti, or the Ti concentration in the molten steel may be controlled by controlling the slag composition.

なお、SiO2は、他の酸化物を上記のようにコントロールすることによって得られるものである。 SiO 2 is obtained by controlling other oxides as described above.

更に本発明では、この溶製時には、硫化物系介在物の生成を制御するために、鋼中に含まれるS含有量を上記のとおり、0.005〜0.015%に制御する。また所望の鋼材の化学成分組成となるように、溶製時に適宜、添加元素等を調整すればよい。   Furthermore, in the present invention, at the time of melting, in order to control the formation of sulfide inclusions, the S content contained in the steel is controlled to 0.005 to 0.015% as described above. Moreover, what is necessary is just to adjust an additive element etc. suitably at the time of melting so that it may become a chemical component composition of a desired steel material.

鋳造工程:
鋼を溶製して化学成分組成を調整した後、鋳片を作製する。本発明では溶鋼の凝固開始温度(液相線温度)から凝固終了温度(固相線温度)までの平均冷却速度(以下、「鋳造時の平均冷却速度」という)を適切に制御することにより、硫化物系介在物(√area max)の予測値を上記所望の範囲に制御できる。鋳造時の平均冷却速度が速すぎるとMnSが微細化し、以下の工程を経て得られる軸受用鋼材中の硫化物系介在物(√area max)の予測値が50μm未満になりやすい。一方、平均冷却速度が遅すぎると粗大な硫化物系介在物が凝固組織の樹枝間に晶出しやすくなり、後記圧延工程で硫化物系介在物が延伸され、軸受用鋼材中の硫化物系介在物(√area max)の予測値が150μmを超えるようになる。したがって軸受用鋼材中の硫化物系介在物(√area max)の予測値を上記所定の範囲内とするには、鋳造時の平均冷却速度を好ましくは200℃/時間以上、より好ましくは250℃/時間以上、更に好ましくは300℃/時間以上であって、好ましくは700℃/時間以下、より好ましくは650℃/時間以下、更に好ましくは600℃/時間以下に制御することが推奨される。冷却速度の調整方法は特に限定されず、公知の方法でよく、例えば冷却水量や冷却時間を調整すればよい。
Casting process:
After smelting steel and adjusting a chemical component composition, a slab is produced. In the present invention, by appropriately controlling the average cooling rate from the solidification start temperature (liquidus temperature) to the solidification end temperature (solidus temperature) of the molten steel (hereinafter referred to as “average cooling rate during casting”), The predicted value of sulfide inclusions (√area max) can be controlled within the desired range. If the average cooling rate at the time of casting is too high, MnS becomes finer, and the predicted value of sulfide inclusions (√area max) in the steel for bearings obtained through the following steps tends to be less than 50 μm. On the other hand, if the average cooling rate is too slow, coarse sulfide inclusions are likely to crystallize between the branches of the solidified structure, and the sulfide inclusions are stretched in the rolling process described later. The predicted value of the object (√area max) exceeds 150 μm. Therefore, in order to keep the predicted value of sulfide inclusions (√area max) in the steel for bearings within the predetermined range, the average cooling rate during casting is preferably 200 ° C./hour or more, more preferably 250 ° C. / Hour or more, more preferably 300 ° C./hour or more, preferably 700 ° C./hour or less, more preferably 650 ° C./hour or less, further preferably 600 ° C./hour or less. The method for adjusting the cooling rate is not particularly limited, and may be a known method. For example, the amount of cooling water or the cooling time may be adjusted.

分塊圧延工程:
続いて鋳片に均熱処理を施してから熱間鍛造する。均熱温度は特に限定されず、例えば鋳片を1100〜1300℃程度に加熱し、該温度域で30〜10時間程度保持した後、熱間鍛造し、空冷などにより室温まで冷却すればよい。
Split rolling process:
Subsequently, the slab is subjected to soaking treatment and then hot forging. The soaking temperature is not particularly limited. For example, the slab may be heated to about 1100 to 1300 ° C., held in the temperature range for about 30 to 10 hours, hot forged, and cooled to room temperature by air cooling or the like.

棒鋼圧延工程:
上記熱間鍛造後の鋼片(ビレット)は、再加熱して熱間加工(例えば、棒鋼圧延などの熱間圧延)することによって本発明の軸受用鋼材が得られる。本発明では、この再加熱時の温度は特に限定されない。例えば900℃〜1100℃程度に加熱して熱間圧延を行えばよい。
Bar rolling process:
The steel slab (billet) after hot forging is reheated and hot processed (for example, hot rolling such as bar rolling) to obtain the steel for bearing of the present invention. In the present invention, the temperature at the time of reheating is not particularly limited. For example, hot rolling may be performed by heating to about 900 ° C to 1100 ° C.

熱間加工後の軸受用鋼材の形状も特に限定されず、所望の形状(例えば線材、棒鋼)とすればよい。   The shape of the steel material for bearings after hot working is not particularly limited, and may be a desired shape (for example, wire rod or steel bar).

軸受用鋼材は、上記本発明で規定する要件、すなわち化学成分組成、酸化物系平均組成、および硫化物系介在物(√area max)の予測値も制御されており、転動疲労特性と切削加工性に優れた効果を奏する。   The steel material for bearings is controlled in the requirements specified in the present invention, that is, the predicted values of chemical composition, oxide-based average composition, and sulfide-based inclusion (√area max). There is an effect excellent in workability.

このようにして得られた本発明の軸受用鋼材は、球状化焼鈍を行って、該鋼材を軟化させた後、冷間加工(例えば、冷間鍛造)や切削加工、研磨加工を施して所定の部品形状にする。その後、焼入れ・焼戻しを行って所望の硬度にした後、仕上げ研磨などを必要に応じて施すことで軸受部品が得られる。   The steel material for bearings of the present invention thus obtained is subjected to spheroidizing annealing to soften the steel material, and then subjected to cold working (for example, cold forging), cutting work, polishing work, and the like. To the part shape. Thereafter, quenching and tempering are performed to obtain a desired hardness, and then finish polishing or the like is performed as necessary to obtain a bearing component.

鋼材段階の形状については、こうした製造に適用できるような線状・棒状のいずれも含むものであり、そのサイズも、最終製品に応じて適宜決めることができる。   The shape of the steel material stage includes both a linear shape and a rod shape applicable to such production, and the size can be appropriately determined according to the final product.

また軸受部品を製造する際の条件は特に限定されず、公知の条件で行えばよい。例えば球状化焼鈍は一般的な徐冷法、すなわち、720〜790℃程度の温度域で3〜10時間保持した後、10〜15℃/分の平均冷却速度で冷却すれよい。また焼入れ処処理は、例えば800〜850℃に加熱した後、油冷すればよい。その後の焼戻し処理は、例えば140〜200℃に加熱後、放冷すればよい。   Moreover, the conditions at the time of manufacturing a bearing component are not specifically limited, What is necessary is just to carry out on well-known conditions. For example, the spheroidizing annealing may be performed by a general slow cooling method, that is, after holding in a temperature range of about 720 to 790 ° C. for 3 to 10 hours, and then cooling at an average cooling rate of 10 to 15 ° C./min. Moreover, what is necessary is just to cool an oil treatment, for example, after heating to 800-850 degreeC. The subsequent tempering process should just cool after heating to 140-200 degreeC, for example.

上記軸受部品としては、例えば、コロ、ニードル、玉、レース等が挙げられる。こうして得られた軸受部品は、従来よりも優れた転動疲労特性、及び切削加工性を有するものである。   Examples of the bearing parts include rollers, needles, balls, and races. The bearing parts thus obtained have rolling fatigue characteristics and cutting workability that are superior to those of the conventional bearing parts.

以下、実施例を挙げて本発明をより具体的に説明する。本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能である。それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the purpose described above and below. They are all included in the technical scope of the present invention.

試験片の作製
小型溶解炉を用い、下記表1に示す各種化学成分組成の供試材(残部は鉄および不可避不純物)を溶製し、鋳片(サイズ:直径230mm)を作製した。溶製に当たっては、通常実施されるAl脱酸処理は行わず、Si脱酸処理を行った。この際、表2記載の平均冷却速度で溶鋼の凝固開始温度(液相線温度)から凝固終了温度(固相線温度)まで冷却した(表中、「鋳造時の平均冷却速度」)。
Preparation of Test Pieces Using a small melting furnace, test materials having various chemical composition compositions shown in Table 1 below (the balance is iron and inevitable impurities) were melted to prepare cast pieces (size: 230 mm in diameter). In melting, Si deoxidation treatment was performed without performing the Al deoxidation treatment that is usually performed. At this time, the molten steel was cooled from the solidification start temperature (liquidus temperature) to the solidification end temperature (solidus temperature) at the average cooling rate shown in Table 2 (in the table, “average cooling rate during casting”).

得られた鋳片を1250℃に加熱して該温度で1時間保持した後、1200℃で熱間鍛造し、室温まで冷却した。次いで1000℃まで再加熱して熱間圧延(900〜1000℃)することによって丸棒鋼(軸受用鋼材:試験片)を製造した。この試験片を用いて酸化物系介在物の平均組成、硫化物系介在物(√area max)の予測値を測定した。   The obtained slab was heated to 1250 ° C. and held at that temperature for 1 hour, then hot forged at 1200 ° C. and cooled to room temperature. Subsequently, it was reheated to 1000 ° C. and hot-rolled (900 to 1000 ° C.) to produce a round steel bar (bearing steel: test piece). Using this test piece, the average composition of oxide inclusions and the predicted value of sulfide inclusions (√area max) were measured.

また上記丸棒鋼を切断し、球状化焼鈍(770℃で6時間保持した後、680度まで−10℃/hrの平均冷却速度で冷却し、その後、放冷)を施して鋼材を軟化させた後、円盤状のスラスト型転動疲労試験用のテストピース(直径60mm、厚さ:5mm)に加工した。このテストピースを840℃で30分加熱後に油焼入れを実施し、160℃で120分間焼戻しを行った。最後に仕上げ研磨(表面粗さ:Ra0.1μm)を施してスラスト型転動疲労試験片を作製して、転動疲労寿命を評価した。   Further, the above round bar steel was cut and spheroidized annealed (held at 770 ° C. for 6 hours, then cooled to 680 ° C. at an average cooling rate of −10 ° C./hr and then allowed to cool) to soften the steel material. Then, it processed into the test piece (diameter 60mm, thickness: 5mm) for a disk-shaped thrust type | mold rolling fatigue test. The test piece was heated at 840 ° C. for 30 minutes and then oil-quenched, and tempered at 160 ° C. for 120 minutes. Finally, finish polishing (surface roughness: Ra 0.1 μm) was performed to produce a thrust type rolling fatigue test piece, and the rolling fatigue life was evaluated.

また上記丸棒鋼(直径65mmの軸受用鋼材:試験片)を切断し、上記条件で球状化焼鈍を施して鋼材を軟化させた後、外周部を片側1.5mmずつ切削して切削加工試験片(直径62mm:長さ250mm)を作製して、切削工具寿命を評価した。   Further, after cutting the above round bar steel (65 mm diameter bearing steel: test piece) and softening the steel by spheroidizing annealing under the above conditions, the outer peripheral portion is cut by 1.5 mm on one side and a cutting test piece (Diameter 62 mm: Length 250 mm) was prepared and the cutting tool life was evaluated.

(酸化物系介在物の平均組成の測定方法)
酸化物系介在物の組成(平均組成)の測定に当たっては、以下の試験片を用いた。まず、上記のようにして得られた丸棒鋼(軸受用鋼材)の表面からD/2位置(Dは直径)で圧延方向断面が観察できるように試験片(サイズ:20×20×10mm)を切り出し、ミクロ試料(組織観察用試料)を1個切り出し、断面を研磨した。酸化物系介在物の平均組成は、日本電子データム製の電子線マイクロプローブX線分析計(Electron Probe X−ray Micro Analyzer:EPMA、商品名「JXA−8500F」)を用いて観察し、短径が1μm以上の酸化物系介在物について成分組成を定量分析した。このとき、観察面積を100mm2(研磨面)とし、介在物の中央部での成分組成を特性X線の波長分散分光により定量分析した。分析対象元素は、Ca、Al、Si、Ti、Mn、Mg、Na、Cr、Zr、O(酸素)とし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする上記介在物から得られたX線強度と上記検量線から各試料に含まれる元素量を定量し、その結果を算術平均することで平均の介在物組成を求めた。
(Method for measuring the average composition of oxide inclusions)
In measuring the composition (average composition) of oxide inclusions, the following test pieces were used. First, test specimens (size: 20 × 20 × 10 mm) were prepared so that a cross section in the rolling direction could be observed at the D / 2 position (D is a diameter) from the surface of the round bar steel (bearing steel) obtained as described above. Cut out, one micro sample (structure observation sample) was cut out, and the cross section was polished. The average composition of oxide inclusions was observed using an electron probe microprobe X-ray analyzer (EPMA, trade name “JXA-8500F”) manufactured by JEOL Datum. The component composition was quantitatively analyzed for oxide inclusions having a thickness of 1 μm or more. At this time, the observation area was set to 100 mm 2 (polished surface), and the component composition at the center of the inclusion was quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays. The analysis target elements are Ca, Al, Si, Ti, Mn, Mg, Na, Cr, Zr, and O (oxygen), and the relationship between the X-ray intensity and the element concentration of each element using a known substance as a calibration curve in advance. The average inclusion composition was determined by quantifying the amount of elements contained in each sample from the X-ray intensity obtained from the inclusions to be analyzed and the calibration curve, and arithmetically averaging the results. .

(硫化物系介在物(√area max)の予測値の測定方法)
上記丸棒鋼の試験片(サイズ:20×20×10mm)を切り出したミクロ試料を用いて硫化物系介在物の最大サイズは極値統計法を用いて算出した。硫化物系介在物の最大サイズは極値分布(ここではワイブル分布)に従うと仮定し、極値統計法(Extreme Value Statistics Method)を用いて算出した。まず、ミクロ試料の表面を光学顕微鏡(倍率100倍×20視野:1視野当たり15mm2、合計視野面積300mm2)を用いて観察する。各視野において最大の硫化物系介在物の投影面積の平方根(√area max)を測定する。測定した20視野の最大硫化物系介在物の√area maxの値を用い、極値確率紙を用いて、基準化変数:Y=8.11となるとき(予測面積:100万mm2に相当)の値を予測される最大サイズとした。なお、上記測定方法は公知であり、上記以外の測定条件については、常法に従って設定すればよい。測定方法に関して例えば「JIS点算法の問題点と極値統計法による介在物評価とその応用、鉄と鋼Vol.79(1993)No.12」も参照文献である。本実施例において硫化物系介在物(√area max)の予測値は、50〜150μmを合格と評価した。
(Measurement method of predicted value of sulfide inclusion (√area max))
The maximum size of the sulfide inclusions was calculated using an extreme value statistical method using a micro sample cut out from the round bar steel test piece (size: 20 × 20 × 10 mm). The maximum size of the sulfide inclusions was assumed to follow an extreme value distribution (here, Weibull distribution), and was calculated using an extreme value statistics method (Extreme Value Statistics Method). First, the surface of the micro sample is observed using an optical microscope (magnification 100 × 20 fields: 15 mm 2 per field, total field area 300 mm 2 ). In each field of view, the square root (√area max) of the projected area of the largest sulfide inclusion is measured. Using the measured value of √area max of the maximum sulfide inclusions of 20 fields of view and using the extreme probability paper, the standardized variable is Y = 8.11 (predicted area: equivalent to 1 million mm 2) ) As the predicted maximum size. In addition, the said measuring method is well-known, What is necessary is just to set in accordance with a conventional method about measuring conditions other than the above. Regarding the measurement method, for example, “Problem of JIS point calculation method and inclusion evaluation by extreme value statistical method and its application, Iron and Steel Vol. 79 (1993) No. 12” are also references. In this example, the predicted value of sulfide inclusions (√area max) was evaluated as 50 to 150 μm as acceptable.

(転動疲労特性)
スラスト転動疲労試験片の転動疲労寿命を測定し、転動疲労特性を評価した。スラスト型転動疲労試験機にて、繰り返し速度:1500rpm、面圧:5.3GPa、中止回数:2×108回の条件にて、各試験片につき転動疲労試験を各16回ずつ実施し、転動疲労寿命(L10寿命:ワイプル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数)を測定した。転動疲労寿命(L10寿命)が15×百万回(cycle)を超えた場合に、転動疲労特性に優れる(合格)と評価した。また転動疲労寿命が20×百万回以上の場合を転動疲労特性により優れると評価した。
(Rolling fatigue characteristics)
The rolling fatigue life of the thrust rolling fatigue specimen was measured to evaluate the rolling fatigue characteristics. Using a thrust type rolling fatigue tester, the rolling fatigue test was performed 16 times for each test piece under the conditions of repetition rate: 1500 rpm, surface pressure: 5.3 GPa, number of cancellations: 2 × 10 8 times. The rolling fatigue life (L 10 life: the number of stress repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting on the wiper probability paper) was measured. When the rolling fatigue life (L 10 life) exceeded 15 × million cycles (cycle), it was evaluated that the rolling fatigue characteristics were excellent (accepted). In addition, the case where the rolling fatigue life was 20 × 1 million times or more was evaluated as being superior in rolling fatigue characteristics.

(切削加工性)
切削加工性の評価は、超硬工具(P10種:JIS B 4053 1998年)を用いて、切削加工試験片の旋削加工を実施し、工具磨耗量を測定した。切削条件は、切削速度:100m/min、送り:0.3mm/rev、切込み:1.5mm、切削油なし(乾式)とした。
(Machinability)
For the evaluation of cutting workability, a cutting tool was turned using a cemented carbide tool (P10 type: JIS B 4053 1998), and the amount of tool wear was measured. Cutting conditions were cutting speed: 100 m / min, feed: 0.3 mm / rev, cutting depth: 1.5 mm, and no cutting oil (dry type).

上記試験片に対して、一定時間切削を行い、工具の逃げ面摩耗量が0.2mmとなる時間(分)で切削性を評価した。切削工具寿命が15分を超える場合に、切削加工性に優れる(合格)と評価した。また切削工具寿命が20分以上の場合を切削加工性により優れると評価した。   The test piece was cut for a certain period of time, and the machinability was evaluated at the time (minutes) when the flank wear amount of the tool was 0.2 mm. When the cutting tool life exceeded 15 minutes, it was evaluated that the cutting workability was excellent (accepted). Moreover, it evaluated that the case where a cutting tool lifetime was 20 minutes or more was more excellent in cutting workability.

Figure 2014189854
Figure 2014189854

Figure 2014189854
Figure 2014189854

これらの結果から次のように考察できる。   These results can be considered as follows.

まず、試験No.1〜14は、いずれも本発明で規定する鋼材の化学成分組成を満足し、且つ酸化物系介在物の平均組成、および硫化物系介在物(√area max)の予測値も適切に制御されている例である。これらはいずれも転動疲労特性、および切削加工性に優れていることがわかる。   First, test no. 1 to 14 all satisfy the chemical composition of the steel material defined in the present invention, and the average composition of oxide inclusions and the predicted value of sulfide inclusions (√area max) are also appropriately controlled. This is an example. It can be seen that these are all excellent in rolling fatigue characteristics and cutting workability.

これに対し以下の試験No.15〜25は、本発明のいずれかの要件を満足しないため、転動疲労特性、および/または切削加工性が低下した。   On the other hand, the following test No. Since Nos. 15 to 25 do not satisfy any of the requirements of the present invention, the rolling fatigue characteristics and / or the machinability deteriorated.

試験No.15、16は、いずれも本発明で推奨する鍛造時の平均冷却速度を上回った例である。そのため、硫化物系介在物(√area max)の予測値が低くなり過ぎて、切削加工性が低かった。   Test No. 15 and 16 are examples in which both exceed the average cooling rate during forging recommended in the present invention. Therefore, the predicted value of sulfide inclusions (√area max) is too low, and the machinability is low.

試験No.17は、本発明で推奨する鍛造時の平均冷却速度を下回った例である。そのため、硫化物系介在物(√area max)の予測値が大きくなりすぎて、転動疲労特性が低かった。   Test No. 17 is an example in which the average cooling rate during forging recommended in the present invention was lower. Therefore, the predicted value of sulfide inclusions (√area max) is too large, and the rolling fatigue characteristics are low.

試験No.18は、Sが本発明の規定を下回る例である。この例ではS量が少なすぎたため、硫化物系介在物(√area max)の予測値が小さくなりすぎて、切削加工性が低かった。   Test No. 18 is an example where S falls below the definition of the present invention. In this example, since the amount of S was too small, the predicted value of sulfide inclusions (√area max) was too small and the machinability was low.

試験No.19は、Sが本発明の規定を上回る例である。この例ではS量が多すぎたため、硫化物系介在物(√area max)の予測値が大きくなりすぎて、転動疲労特性が低かった。   Test No. 19 is an example in which S exceeds the definition of the present invention. In this example, since the amount of S was too large, the predicted value of sulfide inclusions (√area max) was too large, and the rolling fatigue characteristics were low.

試験No.20は、Alが本発明の規定を下回る例である。この例ではAl量が少なすぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物は硬質なSiO2が主体の組成となり、転動疲労特性が低かった。 Test No. No. 20 is an example in which Al falls below the definition of the present invention. In this example, the amount of Al was too small to properly control the average composition of oxide inclusions. Therefore, the oxide inclusions have a composition mainly composed of hard SiO 2 and have low rolling fatigue characteristics.

試験No.21は、Alが本発明の規定を上回る例である。この例ではAl量が多すぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物は、SiO2が少なくて十分に軟質化できず、またAl23が多すぎて、かえって硬質化した。その結果、転動疲労特性が低かった。 Test No. 21 is an example in which Al exceeds the definition of the present invention. In this example, the amount of Al was too large, and the average composition of oxide inclusions could not be controlled appropriately. Therefore, the oxide inclusions cannot be sufficiently softened due to a small amount of SiO 2, and are too hard because Al 2 O 3 is too large. As a result, the rolling fatigue characteristics were low.

試験No.22は、Tiが本発明の規定を下回る例である。この例ではTi量が少なすぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物はTiO2が少なすぎて、硬質化を抑制できず、転動疲労特性が低かった。 Test No. 22 is an example in which Ti falls below the definition of the present invention. In this example, the amount of Ti was too small, and the average composition of oxide inclusions could not be controlled appropriately. For this reason, the oxide inclusions have too little TiO 2 , cannot suppress the hardening, and have low rolling fatigue characteristics.

試験No.23は、Tiが本発明の規定を上回る例である。この例ではTi量が多すぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物はTiO2が多くなりすぎ、母相と酸化物系介在物との界面や酸化物系介在物の内部での空洞の発生を十分に抑制できず、転動疲労特性が低かった。 Test No. 23 is an example in which Ti exceeds the definition of the present invention. In this example, the amount of Ti was too large, and the average composition of oxide inclusions could not be controlled appropriately. Therefore, the oxide inclusions have too much TiO 2 , and the generation of cavities at the interface between the mother phase and the oxide inclusions and inside the oxide inclusions cannot be sufficiently suppressed. Was low.

試験No.24は、Caが本発明の規定を下回る例である。この例ではCa量が少なすぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物はCaOが少なすぎて、軟質な酸化物系介在物に制御できず、転動疲労特性が低かった。   Test No. 24 is an example in which Ca falls below the definition of the present invention. In this example, the amount of Ca was too small to properly control the average composition of oxide inclusions. Therefore, the oxide inclusions have too little CaO and cannot be controlled to be soft oxide inclusions, and the rolling fatigue characteristics are low.

試験No.25は、Caが本発明の規定を上回る例である。この例ではCa量が多すぎて、酸化物系介在物の平均組成を適切に制御できなかった。そのため、酸化物系介在物はCaOが少なすぎて、酸化物が硬質化し、転動疲労特性が低かった。   Test No. 25 is an example in which Ca exceeds the definition of the present invention. In this example, the amount of Ca was too large, and the average composition of oxide inclusions could not be controlled appropriately. Therefore, the oxide inclusions contained too little CaO, the oxides were hardened, and the rolling fatigue characteristics were low.

Claims (3)

C :0.8〜1.1%(%は「質量%」の意味、化学成分組成について以下同じ)、
Si:0.15〜0.8%、
Mn:0.10〜1%、
P :0.05%以下(0%を含まない)、
S :0.005〜0.015%、
Cr:1.3〜1.8%、
Al:0.0002〜0.005%、
Ti:0.0005〜0.010%、
N :0.010%以下(0%を含まない)、
Ca:0.0002〜0.002%、および
O :0.0030%以下(0%を含まない)
を含有し、残部が鉄および不可避不純物からなり、
鋼中に含まれる酸化物系介在物の平均組成が質量%で、
CaO:20〜50%、
Al23:15〜50%、
SiO2:20〜62%、および
TiO2:3〜10%を含有し、且つ、
最大の硫化物系介在物の投影面積の平方根(√area max)の予測値が50〜150μmであることを特徴とする転動疲労特性と切削加工性に優れた軸受用鋼材。
C: 0.8 to 1.1% (% means “mass%”, the same applies to the chemical composition)
Si: 0.15 to 0.8%,
Mn: 0.10 to 1%,
P: 0.05% or less (excluding 0%),
S: 0.005 to 0.015%,
Cr: 1.3-1.8%,
Al: 0.0002 to 0.005%,
Ti: 0.0005 to 0.010%,
N: 0.010% or less (excluding 0%),
Ca: 0.0002 to 0.002%, and O: 0.0030% or less (excluding 0%)
The balance consists of iron and inevitable impurities,
The average composition of oxide inclusions contained in the steel is mass%,
CaO: 20 to 50%,
Al 2 O 3 : 15-50%,
SiO 2: 20~62%, and TiO 2: containing 3-10%, and,
A steel material for bearings having excellent rolling fatigue characteristics and excellent machinability, wherein the predicted value of the square root (√area max) of the projected area of the largest sulfide inclusion is 50 to 150 μm.
更に、
Cu:0.5%以下(0%を含まない)、
Ni:0.5%以下(0%を含まない)、および
Mo:0.5%以下(0%を含まない)
よりなる群から選択される少なくとも一種を含有するものである請求項1に記載の軸受用鋼材。
Furthermore,
Cu: 0.5% or less (excluding 0%),
Ni: 0.5% or less (not including 0%), and Mo: 0.5% or less (not including 0%)
The bearing steel material according to claim 1, comprising at least one selected from the group consisting of:
請求項1または2に記載の軸受用鋼材からなる軸受部品。   A bearing component comprising the steel for bearing according to claim 1.
JP2013067442A 2013-03-27 2013-03-27 Steel for bearings and bearing parts with excellent rolling fatigue characteristics and machinability Active JP5976584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067442A JP5976584B2 (en) 2013-03-27 2013-03-27 Steel for bearings and bearing parts with excellent rolling fatigue characteristics and machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067442A JP5976584B2 (en) 2013-03-27 2013-03-27 Steel for bearings and bearing parts with excellent rolling fatigue characteristics and machinability

Publications (2)

Publication Number Publication Date
JP2014189854A true JP2014189854A (en) 2014-10-06
JP5976584B2 JP5976584B2 (en) 2016-08-23

Family

ID=51836427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067442A Active JP5976584B2 (en) 2013-03-27 2013-03-27 Steel for bearings and bearing parts with excellent rolling fatigue characteristics and machinability

Country Status (1)

Country Link
JP (1) JP5976584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108599A (en) * 2014-12-04 2016-06-20 株式会社神戸製鋼所 Steel material for bearing excellent in rolling fatigue property and bearing component
WO2017154652A1 (en) * 2016-03-07 2017-09-14 株式会社神戸製鋼所 Steel material for bearing having excellent rolling fatigue characteristics, method for manufacturing same, and bearing component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217652A (en) * 1997-10-20 1999-08-10 Nippon Steel Corp Steel for bar, si killed steel, and their production by continuous casting
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2009174033A (en) * 2008-01-28 2009-08-06 Kobe Steel Ltd Steel for machine structure having excellent machinability
JP2010007092A (en) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd Bearing steel and method for producing the same
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217652A (en) * 1997-10-20 1999-08-10 Nippon Steel Corp Steel for bar, si killed steel, and their production by continuous casting
JP2006063402A (en) * 2004-08-27 2006-03-09 Sanyo Special Steel Co Ltd Steel used in parts for machinery superior in rolling fatigue life
JP2009174033A (en) * 2008-01-28 2009-08-06 Kobe Steel Ltd Steel for machine structure having excellent machinability
JP2010007092A (en) * 2008-06-24 2010-01-14 Sumitomo Metal Ind Ltd Bearing steel and method for producing the same
JP2012062526A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Rolling axis steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108599A (en) * 2014-12-04 2016-06-20 株式会社神戸製鋼所 Steel material for bearing excellent in rolling fatigue property and bearing component
WO2017154652A1 (en) * 2016-03-07 2017-09-14 株式会社神戸製鋼所 Steel material for bearing having excellent rolling fatigue characteristics, method for manufacturing same, and bearing component

Also Published As

Publication number Publication date
JP5976584B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
KR101815410B1 (en) Steel wire for springs having excellent fatigue properties, and spring
JP6248026B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5035137B2 (en) Bearing steel and manufacturing method thereof
TWI544083B (en) Bearing steel excellent in rolling contact fatigue properties and bearing parts
JP5833984B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP5976584B2 (en) Steel for bearings and bearing parts with excellent rolling fatigue characteristics and machinability
JP6462376B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
WO2018212196A1 (en) Steel and component
JP2018165403A (en) Steel for carburizing having excellent low cycle fatigue strength and machinability, and carburized component
JP5323369B2 (en) Case-hardened steel with excellent machinability and grain coarsening prevention properties
JP5873405B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP6073200B2 (en) Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP6683073B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
JP6085210B2 (en) Case-hardened steel with excellent rolling fatigue characteristics and method for producing the same
JP2016172916A (en) Bearing steel material excellent in rolling contact fatigue characteristics and cold forgeability, and bearing component
JP6683072B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
WO2017154652A1 (en) Steel material for bearing having excellent rolling fatigue characteristics, method for manufacturing same, and bearing component
JP5867324B2 (en) Bearing steel
JP2009280893A (en) Steel for machine structure having excellent cold forgeability, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160720

R150 Certificate of patent or registration of utility model

Ref document number: 5976584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150