JPH1143737A - Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production - Google Patents

Cold forging steel excellent in grain coarsening preventing property and cold forgeability, and its production

Info

Publication number
JPH1143737A
JPH1143737A JP21125097A JP21125097A JPH1143737A JP H1143737 A JPH1143737 A JP H1143737A JP 21125097 A JP21125097 A JP 21125097A JP 21125097 A JP21125097 A JP 21125097A JP H1143737 A JPH1143737 A JP H1143737A
Authority
JP
Japan
Prior art keywords
steel
less
tic
cold
grain coarsening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21125097A
Other languages
Japanese (ja)
Other versions
JP3443285B2 (en
Inventor
Manabu Kubota
学 久保田
Tatsuro Ochi
達朗 越智
Hideo Kanisawa
秀雄 蟹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21125097A priority Critical patent/JP3443285B2/en
Publication of JPH1143737A publication Critical patent/JPH1143737A/en
Application granted granted Critical
Publication of JP3443285B2 publication Critical patent/JP3443285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold forging steel excellent in grain coarsening preventing property and cold forgeability and its production. SOLUTION: This steel has a composition consisting of 0.10-0.60% C, <=0.50% Si, 0.30-2.00% Mn, <=0.025% P, <=0.025% S, <=0.25% Cr, 0.0003-0.0050% B, <=0.0050% N, 0.020-0.100% Ti, and the balance Fe with inevitable impurities and also has a structure where TiC or Ti(CN) of <=0.2 μm diameter exists by >=20 pieces/100 μm<2> in a steel matrix. The steel having the above composition is heated to >=1050 deg.C, hot-rolled into a wire rod or steel rod, and then cooled down to <=600 deg.C. At the time of this cooling, slow cooling is performed at >=2 deg.C/s cooling rate. By this method, the steel, where TiC or Ti(CN) of <=0.2 μm diameter is dispersed by >=20 pieces/μm<2> in the matrix, can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶粒粗大化防止
特性と冷間鍛造性に優れた冷間鍛造用鋼とその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for cold forging, which is excellent in crystal grain coarsening prevention properties and cold forgeability, and a method for producing the same.

【0002】[0002]

【従来の技術】冷間鍛造(転造も含む)は製品の表面
肌、寸法精度が良く、熱間鍛造に比べて製造コストが低
く、歩留まりも良好であるためボルト、ギア部品、シャ
フトをはじめとする多くの分野に適用されている。冷間
鍛造は、例えばJIS G 4051、JIS G 4
052、JIS G 4104、JIS G 410
5、JIS G 4106などに規定されている中炭素
の機械構造用炭素鋼、合金鋼を使用し、例えば熱間圧延
−焼鈍−冷間鍛造−焼入れ−焼戻しのように冷間鍛造前
に焼鈍、あるいは球状化焼鈍工程を付加する工程が一般
的である。これは上記のような中炭素の炭素鋼、合金鋼
は圧延ままの硬度が高く、冷間鍛造の工具の消耗が著し
くコスト高となること、素材の延性が不足しているため
冷間鍛造時に割れを生じること等の製造上の問題がある
ためである。
2. Description of the Related Art Cold forging (including rolling) has good surface texture and dimensional accuracy of products, has lower manufacturing costs than hot forging, and has a good yield. And has been applied to many fields. Cold forging is performed, for example, according to JIS G 4051, JIS G 4
052, JIS G 4104, JIS G 410
5, using medium-strength carbon steel and alloy steel for mechanical structure of medium carbon stipulated in JIS G 4106 and the like, for example, annealing before cold forging such as hot rolling-annealing-cold forging-quenching-tempering; Alternatively, a step of adding a spheroidizing annealing step is general. This is because medium-carbon carbon steel and alloy steel as described above have high hardness as rolled, and the consumption of tools for cold forging becomes remarkably expensive. This is because there are manufacturing problems such as cracks.

【0003】しかし、焼鈍にはエネルギー費、人件費、
設備費など多大なコストがかかるため、この工程を省略
しうる鋼材が求められてきた。そこで鋼材のC量、合金
元素量を低減することによって熱間圧延ままの硬度を低
減し、延性を向上して焼鈍工程を省略し、Cr、Mo等
の合金元素量の低減による焼入れ性の低下を微量のBを
添加することによって補う、いわゆるボロン鋼が、例え
ば特開平5−339676、特公平5−63524、特
開昭61−253347のように数多く提案されてい
る。Bは微量の添加で焼入れ性を向上できるが、鋼中に
固溶Nが存在するとBNが生成し、Bの持つ焼入れ性向
上効果は失われてしまうため、Tiを添加して鋼中Nを
TiNの形で固定し、BNの生成を抑制することが一般
に行われている。
[0003] However, annealing requires energy cost, labor cost,
Since a large cost such as an equipment cost is required, a steel material which can omit this step has been demanded. Therefore, by reducing the amount of C and alloying elements in the steel material, the hardness during hot rolling is reduced, the ductility is improved, the annealing step is omitted, and the hardenability is reduced by reducing the amount of alloying elements such as Cr and Mo. The so-called boron steel, which is supplemented by adding a small amount of B, has been proposed, for example, in Japanese Patent Application Laid-Open Nos. 5-339676, 5-63524, and 61-253347. B can improve the hardenability by adding a small amount, but if solid solution N is present in the steel, BN is generated and the hardenability improving effect of B is lost. It is common to fix in the form of TiN to suppress the generation of BN.

【0004】しかし上記のようなボロン鋼は焼鈍材に比
べて焼入れ加熱、あるいは浸炭加熱時に特定のオーステ
ナイト結晶粒が異常に粗大化しやすくなる、いわゆる粗
大粒の発生という問題を常に伴う。結晶粒の粗大化が発
生した部品は、焼入れ歪みによる寸法精度の劣化、衝撃
値、疲労寿命の低下、遅れ破壊特性の低下を招くため、
その改善が実用上の大きな課題である。このような結晶
粒の粗大化を抑制するには結晶粒界の移動をピン止めす
る粒子を多量、微細に分散させることが有効である。
[0004] However, the above-mentioned boron steel is always accompanied by a problem of generation of so-called coarse grains, in which specific austenite crystal grains tend to become abnormally large during quenching heating or carburizing heating as compared with the annealed material. Components with coarsened crystal grains cause deterioration of dimensional accuracy due to quenching strain, impact value, decrease in fatigue life, and decrease in delayed fracture characteristics.
The improvement is a major practical issue. In order to suppress such coarsening of crystal grains, it is effective to disperse a large amount and fine particles for pinning the movement of crystal grain boundaries.

【0005】ボロン鋼に結晶粒の粗大化が起きやすいの
は、Tiによって大部分の鋼中Nが固定されるため、合
金鋼、炭素鋼においてピン止め粒子として有効に作用す
る微細なAINが生成せず、一方、TiNはAINに比
べて粗大であり、多量、微細に分散させることができ
ず、結晶粒成長のピン止め効果が低下するからである。
[0005] Boron steel is susceptible to coarsening of crystal grains because most of N in steel is fixed by Ti, and fine AIN which effectively acts as pinning particles in alloy steel and carbon steel is generated. On the other hand, TiN is coarser than AIN, cannot be dispersed in a large amount and finely, and the pinning effect of crystal grain growth decreases.

【0006】上記のようなボロン鋼の結晶粒粗大化を防
止するための技術が提案されている。例えば、特開昭6
1−217553はTiとNの量を0.02<Ti−
3.42NとすることによってTiCを生成し、結晶粒
界をピン止めすることを目的としている。しかし、成分
を規定しただけではTiCを微細に分散させることはで
きず、結晶粒の粗大化を防止できない。また例えば、特
公昭63−64495は0.0035%以下の極低Nと
し、Ti量をN量に対して過剰とした成分を低温加熱圧
延を行うことによって結晶粒粗大化を防止することを目
的としている。
Techniques for preventing the above-described coarsening of the crystal grain of boron steel have been proposed. For example, JP
1-217553 indicates that the content of Ti and N is 0.02 <Ti−
The purpose is to generate TiC by setting it to 3.42 N and to pin the crystal grain boundaries. However, only by defining the components, TiC cannot be finely dispersed, and coarsening of crystal grains cannot be prevented. For example, Japanese Patent Publication No. 63-64495 has an object to prevent the crystal grain from becoming coarse by performing low-temperature heat rolling of a component having an extremely low N of 0.0035% or less and an excessive amount of Ti relative to the amount of N. And

【0007】しかし、極低N成分としたとしても低温加
熱では必然的に多量の溶け残りTi(CN)を生じ、一
部の固溶したTiCが圧延後の冷却時、または焼入れ加
熱時に溶け残りTi(CN)を核として成長するため微
細に分散させることができず、結晶粒の粗大化を防止で
きない。仮に高温加熱圧延を行ったとしても圧延後のT
iC、Ti(CN)の析出状態、あるいは圧延後の冷却
条件を最適化しない限り結晶粒の粗大化を防止できな
い。
[0007] However, even if the N component is extremely low, a large amount of undissolved Ti (CN) is inevitably generated at low temperature heating, and some solid solution TiC remains undissolved during cooling after rolling or during quenching heating. Since it grows with Ti (CN) as a nucleus, it cannot be finely dispersed and cannot prevent crystal grains from becoming coarse. Even if high-temperature heat rolling is performed, the T
Unless the precipitation state of iC and Ti (CN) or the cooling conditions after rolling is optimized, coarsening of crystal grains cannot be prevented.

【0008】また例えば、特開昭52−114515は
圧延加熱時にTiCを固溶させ、焼入れ加熱時に初めて
TiCを微細析出させることを目的としている。しかし
焼入れ加熱時にピン止め粒子を析出させる場合、TiC
の析出量は焼入れ加熱、または浸炭加熱時の加熱速度の
影響を受けるためピン止め効果の発現が不安定であり、
同じ素材を用いても適用部品や熱処理炉を変えただけで
粗大化防止特性が劣化する可能性が高いため、実工程で
の品質の安定性の点で課題を残している。
For example, Japanese Patent Application Laid-Open No. Sho 52-114515 aims to form a solid solution of TiC at the time of rolling and heating and to precipitate TiC finely at the time of quenching and heating. However, when pinning particles are precipitated during quenching and heating, TiC
The amount of precipitation is affected by the heating rate during quenching heating or carburizing heating, so the expression of the pinning effect is unstable,
Even if the same material is used, there is a high possibility that the coarsening prevention characteristic is deteriorated only by changing the applied parts and the heat treatment furnace, so that there remains a problem in terms of quality stability in actual processes.

【0009】[0009]

【発明が解決しようとする課題】上記に開示された方法
では、冷間鍛造前の焼鈍、あるいは球状化焼鈍工程を省
略し、かつ結晶粒の粗大化を防止することはできない。
本発明はこのような問題を解決して、結晶粒粗大化防止
特性と冷間鍛造性に優れた冷間鍛造用鋼とその製造方法
を提供するものである。
In the method disclosed above, the annealing before the cold forging or the spheroidizing annealing step is omitted, and the coarsening of the crystal grains cannot be prevented.
The present invention solves such a problem and provides a steel for cold forging having excellent crystal grain coarsening prevention characteristics and excellent cold forgeability, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために結晶粒の粗大化の支配因子について鋭
意調査し、(1) 結晶粒の粗大化を防止するにはピン
止め粒子として微細TiC、Ti(CN)が有効であ
り、結晶粒粗大化特性とTiCまたはTi(CN)のサ
イズおよび分散状態(析出粒子数)には極めて密接な関
係があること、(2) TiCまたはTi(CN)のピ
ン止め効果を安定して発揮させるには、焼入れまたは浸
炭加熱前に一定量以上のTiCまたはTi(CN)をあ
らかじめ微細析出させておくことが必要なこと、(3)
TiCまたはTi(CN)をマトリックス中に多量、
微細に分散させるためには、圧延加熱温度および圧延後
の冷却条件を最適化すれば良いこと、すなわち圧延加熱
温度を高温にすることによってTiCまたはTi(C
N)を一旦マトリックス中に固溶させ、熱間圧延後にT
iCまたはTi(CN)の析出温度域を徐冷することに
よってTiCまたはTi(CN)が多量、微細分散する
こと、(4) 微細なTiCまたはTi(CN)を増や
すためには、Tiをある最適範囲で添加し、N量をでき
るだけ低減することが必要なことを見出し、本発明に至
った。
Means for Solving the Problems To achieve the above object, the present inventors have intensively investigated the controlling factors for the coarsening of crystal grains, and (1) pinning to prevent the coarsening of the crystal grains. Fine TiC and Ti (CN) are effective as particles, and there is a very close relationship between the crystal grain coarsening characteristics and the size and dispersion state (the number of precipitated particles) of TiC or Ti (CN); (2) TiC Alternatively, in order to stably exhibit the pinning effect of Ti (CN), it is necessary to previously finely precipitate a certain amount or more of TiC or Ti (CN) before quenching or carburizing heating, (3)
A large amount of TiC or Ti (CN) in the matrix,
In order to disperse finely, it is only necessary to optimize the rolling heating temperature and the cooling conditions after rolling, that is, by increasing the rolling heating temperature to TiC or Ti (C
N) is once dissolved in the matrix, and after hot rolling, T
TiC or Ti (CN) is dispersed in a large amount and finely by gradually cooling the precipitation temperature range of iC or Ti (CN). (4) In order to increase fine TiC or Ti (CN), Ti is required. The inventors have found that it is necessary to add N in an optimum range and to reduce the amount of N as much as possible, leading to the present invention.

【0011】本発明の特徴は、C:0.10〜0.60
%、Si:0.50%以下、Mn:0.30〜2.00
%、Cr:0.25%以下にすることにより焼入れ、焼
戻し後の部品の強度を確保し、P:0.025%以下
(0%を含む)、S:0.025%以下(0%を含む)
にすることによって冷間鍛造時の延性、および焼入れ、
焼戻し後の部品の靱性を確保し、B:0.0003〜
0.0050%にすることによって焼入れ性を確保し、
さらにN:0.0050%以下(0%を含む)、Ti:
0.020〜0.100%にすることによってTiCま
たはTi(CN)を生成し、結晶粒の粗大化を防止する
ためのピン止め粒子として利用することができ、TiC
またはTi(CN)のサイズを直径0.2μm以下と
し、20個/100μm2 以上の密度を有することによ
ってピン止め効果を最大限に発揮させ、結晶粒の粗大化
を防止することができる鋼である。
The characteristics of the present invention are as follows: C: 0.10 to 0.60
%, Si: 0.50% or less, Mn: 0.30 to 2.00
%, Cr: 0.25% or less ensures the strength of the part after quenching and tempering, P: 0.025% or less (including 0%), S: 0.025% or less (0% Including)
The ductility during cold forging, and quenching,
Ensuring the toughness of the tempered part, B: 0.0003-
0.0050% to ensure hardenability,
Further, N: 0.0050% or less (including 0%), Ti:
By making the content 0.020 to 0.100%, TiC or Ti (CN) is produced, and can be used as pinning particles for preventing crystal grains from becoming coarse.
Alternatively, a steel capable of exhibiting a pinning effect to the maximum by making the size of Ti (CN) 0.2 μm or less in diameter and having a density of 20 pieces / 100 μm 2 or more, and preventing crystal grains from becoming coarse. is there.

【0012】また、本発明の他の特徴は、上記の成分よ
りなる鋼を1050℃以上に加熱してTiCまたはTi
(CN)を一旦溶体化し、線材または棒鋼に熱間圧延し
た後、600℃以下の温度まで冷却するに際して2℃/
s以下の冷却速度で徐冷して軟質化するとともに、マト
リックス中に直径0.2μm以下のTiCまたはTi
(CN)が20個/100μm2 以上分散した鋼とする
製造方法である。
Another feature of the present invention is that a steel comprising the above-described components is heated to 1050 ° C. or more to form TiC or TiC.
(CN) is once solution-heated, hot-rolled into a wire or a steel bar, and then cooled to a temperature of 600 ° C. or less by 2 ° C. /
s or less, and softens by slow cooling at a cooling rate of not more than 0.2 s.
This is a method for producing steel in which (CN) is dispersed in 20 pieces / 100 μm 2 or more.

【0013】[0013]

【発明の実施の形態】以下、本発明について詳細に説明
する。まず、成分の限定理由について説明する。Cは鋼
に必要な強度を与えるのに有効な元素であるが、0.1
0%未満では必要な引張強さを確保することができず、
0.60%を越えると延性、靱性が劣化し、また遅れ破
壊特性も劣化するので、0.10〜0.60%の範囲内
にする必要がある。好適範囲は0.15〜0.40%で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components will be described. C is an element effective in giving the necessary strength to steel, but 0.1
If it is less than 0%, the required tensile strength cannot be secured,
If it exceeds 0.60%, ductility and toughness are deteriorated, and delayed fracture characteristics are also deteriorated. Therefore, the content needs to be in the range of 0.10 to 0.60%. The preferred range is 0.15 to 0.40%.

【0014】Siは鋼の脱酸に有効な元素であるととも
に、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗
を向上するのに有効な元素であるが、0.50%を超え
ると靱性、延性が劣化し、硬さの上昇を招き冷間鍛造性
が劣化するので、0.50%以下の範囲内にする必要が
ある。好適範囲は0.30%以下である。
[0014] Si is an element effective for deoxidizing steel, and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. The toughness and ductility are deteriorated, the hardness is increased, and the cold forgeability is deteriorated. A preferred range is 0.30% or less.

【0015】Mnは鋼の脱酸に有効な元素であるととも
に、鋼に必要な強度、焼入れ性を与えるのに有効な元素
であるが、0.30%未満では効果は不十分であり、
2.00%を越えるとその効果は飽和するのみならず、
硬さの上昇を招き冷間鍛造性が劣化するので、0.30
%〜2.00%の範囲内にする必要がある。好適範囲は
0.50〜1.20%である。
Mn is an element effective for deoxidizing steel and is an element effective for imparting necessary strength and hardenability to steel. However, if it is less than 0.30%, the effect is insufficient.
If it exceeds 2.00%, the effect is not only saturated, but also
Since the hardness is increased and the cold forgeability is degraded, 0.30
% To 2.00%. The preferred range is 0.50 to 1.20%.

【0016】Pは冷間鍛造時の変形抵抗を高め、靱性を
劣化させる元素であるため、冷間鍛造性が劣化する。ま
た、焼入れ、焼戻し後の部品の結晶粒界を脆化させるこ
とによって靱性、捩り強度、遅れ破壊特性を劣化させる
のでできるだけ低減することが望ましい。したがって、
その含有量を0.025%以下に制限する必要がある。
好適範囲は0.015%以下である。
Since P is an element that increases the deformation resistance during cold forging and deteriorates toughness, the cold forgeability deteriorates. Further, the toughness, torsional strength and delayed fracture characteristics are deteriorated by embrittlement of the crystal grain boundaries of the quenched and tempered parts. Therefore,
It is necessary to limit the content to 0.025% or less.
A preferred range is 0.015% or less.

【0017】Sは冷間鍛造時に割れを生じやすくする元
素であるため、冷間鍛造性が劣化する。また、Pと同様
に焼入れ、焼戻し後の部品の結晶粒界を脆化させること
によって靱性、捩り強度、遅れ破壊特性を劣化させるの
でできるだけ低減することが望ましい。したがって、そ
の含有量を0.025%以下に制限する必要がある。好
適範囲は0.015%以下である。
Since S is an element that easily causes cracking during cold forging, the cold forgeability deteriorates. Further, similarly to P, the toughness, torsional strength and delayed fracture characteristics are deteriorated by embrittlement of the crystal grain boundaries of the parts after quenching and tempering, so that it is desirable to reduce them as much as possible. Therefore, it is necessary to limit the content to 0.025% or less. A preferred range is 0.015% or less.

【0018】Crは鋼に強度、焼入れ性を与え、焼戻し
軟化抵抗を向上するのに有効な元素であるが、0.25
%を越えて添加すると硬さの上昇を招き冷間鍛造性が劣
化するので、0.25%以下の範囲内にする必要があ
る。好適範囲は0.10〜0.20%である。
Cr is an element effective for imparting strength and hardenability to steel and improving temper softening resistance.
%, The hardness increases and the cold forgeability deteriorates. Therefore, the content needs to be within the range of 0.25% or less. The preferred range is 0.10 to 0.20%.

【0019】Bは微量の添加で鋼に焼入れ性を与えるの
に有効な元素であるが、0.0003%未満ではその効
果は不十分であり、0.0050%を超えると効果は飽
和するので、0.0003〜0.0050%の範囲内に
する必要がある。好適範囲は0.0010〜0.003
0%である。
B is an effective element for imparting hardenability to steel with a small amount of addition, but if its content is less than 0.0003%, its effect is insufficient, and if it exceeds 0.0050%, its effect is saturated. , 0.0003 to 0.0050%. The preferred range is 0.0010 to 0.003
0%.

【0020】NはBと結び付いてBNを生成し、Bの持
つ焼入れ性向上効果を低下させるため本発明のようなB
添加鋼では有害である。また、鋼中のTiと結び付くと
ピン止めにほとんど寄与しない粗大なTiNを生成し、
TiCまたはTi(CN)となりうるTi量を減じるこ
とによって微細なTiCまたはTi(CN)の量を減ら
すため、できるだけ低減することが望ましい。また、T
iCまたはTi(CN)をマトリックス中に多量、微細
に分散させるためには圧延加熱温度を高温にすることに
よってTiCまたはTi(CN)を一旦マトリックス中
に固溶させることが必要であるが、N量が増えることに
よってTi(CN)が高温まで安定になり、固溶しにく
くなるという問題がある。したがって、その含有量を
0.0050%以下に制限する必要がある。好適範囲は
0.0040%以下である。
N combines with B to form BN, which reduces the effect of B on improving the hardenability.
Harmful with added steel. Also, when combined with Ti in steel, it produces coarse TiN that hardly contributes to pinning,
In order to reduce the amount of fine TiC or Ti (CN) by reducing the amount of Ti that can become TiC or Ti (CN), it is desirable to reduce as much as possible. Also, T
In order to disperse iC or Ti (CN) in a large amount and finely in the matrix, it is necessary to raise the rolling heating temperature so that TiC or Ti (CN) is once dissolved in the matrix. As the amount increases, there is a problem that Ti (CN) becomes stable up to a high temperature and hardly forms a solid solution. Therefore, it is necessary to limit the content to 0.0050% or less. A preferred range is 0.0040% or less.

【0021】Tiは鋼中のC、Nと結び付いてTiC、
TiNを形成し、結晶粒の微細化、および結晶粒の粗大
化抑制に有効な元素である。また、Bとともに添加した
場合、鋼中の固溶NをTiNの形で固定することによっ
てBNの生成を抑制し、Bによる焼入れ性向上効果を得
るのに有効な元素であるが、0.020%未満では効果
は不十分であり、0.100%を超えるとその効果は飽
和するのみならず硬さの上昇を招き冷間鍛造性が劣化す
るので、0.020〜0.100%の範囲内にする必要
がある。好適範囲は0.025〜0.050%である。
Ti combines with C and N in steel to form TiC,
It is an element that forms TiN and is effective in miniaturizing crystal grains and suppressing coarsening of crystal grains. Further, when added together with B, it is an element effective for fixing the solute N in the steel in the form of TiN to suppress the generation of BN and obtaining the effect of improving the hardenability by B. %, The effect is insufficient. If it exceeds 0.100%, the effect is not only saturated, but also increases the hardness and deteriorates the cold forgeability, so the range is 0.020 to 0.100%. Need to be inside. A preferred range is from 0.025 to 0.050%.

【0022】なお、本発明はAl添加量を規定していな
いが、鋼の脱酸に有効な元素であるため、通常脱酸に使
用されるAl量を含有することができる。通常のAl含
有量は0.010〜0.050%程度である。但し、A
lに代わる元素(Si、Mn、Ti等)を脱酸剤として
用いる場合は必ずしもAlを添加しなくとも良い。
Although the present invention does not specify the amount of Al added, it is an element effective for deoxidizing steel, and therefore can contain the amount of Al usually used for deoxidation. The usual Al content is about 0.010 to 0.050%. Where A
When using an element (Si, Mn, Ti, etc.) in place of 1 as a deoxidizing agent, it is not always necessary to add Al.

【0023】次にマトリックス中のTiCまたはTi
(CN)の分散状態について説明する。結晶粒の粗大化
を抑制するには結晶粒界をピン止めする粒子を多量、微
細に分散させることが有効であり、粒子の直径が小さい
ほど、また量が多いほどピン止め粒子の数が増加するた
め好ましい。微細TiCまたはTi(CN)と結晶粒粗
大化温度との関係を図1に示す。図1から明らかなよう
に、結晶粒粗大化特性と微細な析出粒子数には極めて密
接な関連があり、マトリックス中に直径0.2μm以下
のTiCまたはTi(CN)を20個/100μm2
上分散させると実用上の焼入れ加熱、あるいは浸炭加熱
温度域において結晶粒の粗大化が生じず、優れた結晶粒
粗大化防止特性が得られるため、マトリックス中に直径
0.2μm以下のTiCまたはTi(CN)が20個/
100μm2 以上分散していることが必要である。
Next, TiC or Ti in the matrix
The dispersion state of (CN) will be described. In order to suppress the coarsening of the crystal grains, it is effective to disperse a large amount and finely of the particles that pin the crystal grain boundaries, and the number of the pinned particles increases as the diameter of the particles decreases or the amount increases. Is preferred. FIG. 1 shows the relationship between fine TiC or Ti (CN) and the grain coarsening temperature. As is evident from FIG. 1, there is a very close relationship between the coarsening characteristics of the crystal grains and the number of fine precipitate particles, and 20/100 μm 2 or more of TiC or Ti (CN) having a diameter of 0.2 μm or less in the matrix. When dispersed, crystal grains are not coarsened in a practical quenching heating or carburizing heating temperature range, and excellent crystal grain coarsening prevention properties are obtained. Therefore, TiC or Ti (dia. CN) 20 /
It is necessary that the particles are dispersed at 100 μm 2 or more.

【0024】次に製造条件について説明する。上記の本
発明成分からなる鋼を、転炉、電気炉等の通常の方法に
よって溶製し、成分調整を行い、鍛造工程、必要に応じ
て分塊圧延工程を経て圧延素材とする。次に、圧延素材
を1050℃以上の温度で加熱する。加熱条件は、10
50℃未満ではTiCまたはTi(CN)を一旦マトリ
ックス中に固溶させることができず、熱間圧延後にTi
CまたはTi(CN)を微細析出した鋼とすることがで
きないため、できるだけ高温にすることが望ましい。好
適範囲は1150℃以上である。
Next, the manufacturing conditions will be described. The steel comprising the above-mentioned component of the present invention is melted by a usual method such as a converter or an electric furnace, the components are adjusted, and the material is subjected to a forging process and, if necessary, a slab rolling process to obtain a rolled material. Next, the rolled material is heated at a temperature of 1050 ° C. or higher. Heating condition is 10
If the temperature is lower than 50 ° C., TiC or Ti (CN) cannot be once dissolved in the matrix, and after hot rolling, TiC or Ti (CN) cannot be dissolved.
Since it is not possible to use steel in which C or Ti (CN) is finely precipitated, it is desirable that the temperature be as high as possible. A preferred range is 1150 ° C or higher.

【0025】次に、1050℃以上に加熱した圧延素材
を線材または棒鋼形状に熱間圧延した後、600℃以下
の温度まで冷却するに際して2℃/s以下の冷却速度で
徐冷する。冷却条件は、2℃/sを超えるとTiCまた
はTi(CN)の析出温度域を短時間しか通過させるこ
とができず、析出量が不十分となり、ピン止め粒子とし
て有効なTiCまたはTi(CN)を多量・微細析出し
た鋼とすることができない。また、冷却速度が大きいと
圧延材の硬さが上昇し、冷間鍛造性が劣化するため、冷
間速度はできるだけ小さくするのが望ましい。好適範囲
は1℃/s以下である。なお、熱間圧延後にさらに低い
温度域(500℃以下)まで2℃/sの冷却速度で徐冷
するのが好ましい。低い温度域まで徐冷すると圧延材が
さらに軟質化し、冷間鍛造性が向上する。
Next, after the rolled material heated to 1050 ° C. or more is hot-rolled into a wire or a steel bar, the material is gradually cooled at a cooling rate of 2 ° C./s or less when cooled to a temperature of 600 ° C. or less. If the cooling condition is more than 2 ° C./s, it can only pass through the precipitation temperature range of TiC or Ti (CN) for a short time, the amount of precipitation becomes insufficient, and TiC or Ti (CN ) Cannot be a steel with a large amount and fine precipitation. Further, if the cooling rate is high, the hardness of the rolled material increases, and the cold forgeability deteriorates. Therefore, it is desirable to reduce the cold rate as much as possible. A preferred range is 1 ° C./s or less. In addition, it is preferable to gradually cool at a cooling rate of 2 ° C./s to a lower temperature range (500 ° C. or less) after hot rolling. When gradually cooled to a low temperature range, the rolled material is further softened, and the cold forgeability is improved.

【0026】[0026]

【実施例】以下に、実施例により本発明をさらに説明す
る。表1、表2に示す組織を有する転炉溶製鋼を連続鍛
造し、必要に応じて分塊圧延工程を経て162mm角の
圧延素材とした。続いて圧延素材を1050℃以上の温
度で加熱し、直径5〜50mmの棒鋼、線材に熱間圧延
した。一部は比較のために加熱温度を1050℃以下と
した。次に、圧延ラインの後方に設けた保温カバーを使
用し、徐冷を行った。一部は比較のために徐冷を行わな
かった。
The present invention will be further described below with reference to examples. Converter steel smelting having the structures shown in Tables 1 and 2 was continuously forged and, if necessary, passed through a slab rolling process to obtain a 162 mm square rolled material. Subsequently, the rolled material was heated at a temperature of 1050 ° C. or higher, and was hot-rolled into a steel bar or a wire having a diameter of 5 to 50 mm. For some, the heating temperature was set to 1050 ° C. or lower for comparison. Next, slow cooling was performed using a heat retaining cover provided behind the rolling line. Some did not cool slowly for comparison.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】圧延後の棒鋼、線材のビッカース硬さを測
定し、冷鍛性の指標とした。ボルト、ギア部品等に適用
されるものと、高周波焼入れシャフト等に適用されるも
のとでは要求される強度や冷間鍛造性が異なるため、C
量の範囲によって分けて評価を行った。すなわち、表1
に示す0.1〜0.4%Cの鋼種(主にボルト、ギア部
品などに適用、鋼番号1〜11)は圧延後の硬さがHV
190を越えるものは冷間鍛造性が劣ると判定した。表
2に示す0.4〜0.6%Cの鋼種(高周波焼入れシャ
フトなどに適用、鋼番号12〜18)は圧延後の硬さが
HV300を越えるものは冷鍛性が劣ると判定した。
The Vickers hardness of the rolled bar and wire was measured and used as an index of cold forgeability. The required strength and cold forgeability differ between those applied to bolts and gear parts and those applied to induction hardened shafts.
The evaluation was divided according to the range of the amount. That is, Table 1
The steel types of 0.1 to 0.4% C shown in Table 1 (mainly applied to bolts and gear parts, steel numbers 1 to 11) have a hardness of HV after rolling.
Those exceeding 190 were judged to have poor cold forgeability. As for the steel types of 0.4 to 0.6% C shown in Table 2 (applied to induction hardened shafts, steel numbers 12 to 18), those whose hardness after rolling exceeded HV300 were judged to have poor cold forgeability.

【0030】ピン止め粒子として有効なTiCまたはT
i(CN)分散状態を調べるため、棒鋼、線材のマトリ
ックス中に存在する析出物を抽出レプリカ法によって採
取し、透過型電子顕微鏡で観察した。観察方法は150
00倍で20視野程度観察し、1視野中の直径0.2μ
m以下のTiCまたはTi(CN)の数を数え、100
μm2 あたりの数に換算した。
TiC or T effective as pinning particles
In order to examine the dispersion state of i (CN), precipitates present in the matrix of the steel bar and the wire were collected by the extraction replica method and observed with a transmission electron microscope. Observation method is 150
Observe about 20 fields at 00x, 0.2μ diameter in one field
m and count the number of TiC or Ti (CN)
It was converted to the number per μm 2 .

【0031】上記の工程で製造した線材または棒鋼に減
面率70%の冷間引き抜き加工を行った後、鋼番号1〜
11については840〜1200℃に30分間加熱−水
焼入れし、また鋼番号12〜18については周波数8k
Hzの高周波で900〜1250℃に2秒間加熱−水焼
入れした。その後、切断面に研磨−腐食を行い、旧オー
ステナイト粒径を観察して粗粒発生温度(結晶粒粗大化
温度)を求めた。
After the wire or bar manufactured in the above process is subjected to cold drawing with a reduction in area of 70%,
For No. 11, heat-water quenching at 840-1200 ° C. for 30 minutes, and for steel Nos. 12-18, frequency 8 k
Heating-water quenching at 900 to 1250 ° C for 2 seconds at a high frequency of Hz. Thereafter, the cut surface was polished and corroded, and the old austenite grain size was observed to determine the coarse grain generation temperature (crystal grain coarsening temperature).

【0032】ボルト等の実部品の焼入れ工程ではAc3
900℃の温度域で行われることが多いため、鋼番号1
〜11については粗粒発生温度が900℃未満のものは
結晶粒粗大化特性に劣ると判定した。また、高周波焼入
れシャフトは、最高加熱温度900〜1000℃の温度
域で行われることが多いため、鋼番号12〜18につい
ては粗粒発生温度が1000℃未満のものは結晶粒粗大
化特性に劣ると判定した。なお、旧オーステナイト粒度
の測定はJIS G 0551に準じて行い、400倍
で10視野程度観察し、粒度番号5番以下の粗粒が1つ
でも存在すれば粗粒発生と判定した。
In the quenching process of actual parts such as bolts, A c3
Since it is often performed in the temperature range of 900 ° C, steel number 1
As for Nos. 11 to 11, those having a coarse grain generation temperature of less than 900 ° C were judged to be inferior in crystal grain coarsening characteristics. In addition, since induction hardening shafts are often performed in a temperature range of a maximum heating temperature of 900 to 1000 ° C., steel numbers 12 to 18 having a coarse grain generation temperature of less than 1000 ° C. are inferior in crystal grain coarsening characteristics. It was determined. The measurement of the prior austenite grain size was carried out in accordance with JIS G 0551. Observation was performed at about 400 times at about 10 visual fields. If at least one coarse grain having a grain size number of 5 or less was present, it was determined that coarse grains were generated.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】これらの各種試験結果を表3、表4に示
す。表3のH、Iおよび表4のS、TはTiまたはN量
が本発明の範囲から外れているため、微細TiCまたは
Ti(CN)の析出数が不足し、結晶粒粗大化特性が劣
化している。表3中のL、Mおよび表4のVは圧延加熱
温度が低いためTiCまたはTi(CN)を一旦マトリ
ックス中に固溶させることができず、熱間圧延後にTi
CまたはTi(CN)を微細析出した鋼とすることがで
きないため、結晶粒粗大化特性が劣化している。
Tables 3 and 4 show the results of these various tests. Since H and I in Table 3 and S and T in Table 4 are out of the range of the present invention in Ti or N content, the number of fine TiC or Ti (CN) deposited is insufficient, and the grain coarsening property is deteriorated. doing. L and M in Table 3 and V in Table 4 are such that TiC or Ti (CN) cannot be dissolved in the matrix once because the rolling heating temperature is low.
Since it is not possible to use steel in which C or Ti (CN) is finely precipitated, crystal grain coarsening characteristics are deteriorated.

【0036】また、表3のNおよび表4のW、Xは圧延
後の冷却速度が大きすぎるため、TiCまたはTi(C
N)の析出量が不十分となり、粗大化特性が劣化してい
る。また、圧延後の硬さも高く、冷鍛性も劣る。また、
表3のJ、Kおよび表4のUはC、Si、Mn、Cr量
が本発明の範囲から外れているため、圧延後の硬さが高
く、冷鍛性が劣る。これらの表から明らかなように、本
発明で規定する条件を全て満たすものは、比較例に比べ
て結晶粒粗大化防止特性および冷間鍛造性ともに優れた
特性を示している。
In addition, N in Table 3 and W and X in Table 4 show that TiC or Ti (C
The precipitation amount of N) is insufficient, and the coarsening characteristics are deteriorated. Further, the hardness after rolling is high and the cold forgeability is inferior. Also,
J, K in Table 3 and U in Table 4 have C, Si, Mn, and Cr amounts out of the range of the present invention, and thus have high hardness after rolling and poor cold forgeability. As is clear from these tables, those satisfying all of the conditions specified in the present invention show excellent properties in both the crystal grain coarsening prevention property and the cold forgeability as compared with the comparative examples.

【0037】[0037]

【発明の効果】本発明の冷間鍛造用鋼およびその製造方
法を用いれば、結晶粒の粗大化による焼入れ歪みによる
寸法精度の劣化、衝撃値、疲労寿命の低下、遅れ破壊特
性の低下が従来よりも極めて少なく、しかも冷間鍛造前
の素材硬さが低く、低コストで冷間鍛造可能な優れた特
定を持つボルト、ギア部品、シャフト等の素材を提供す
ることが可能となる。
According to the steel for cold forging of the present invention and the method for producing the same, deterioration of dimensional accuracy due to quenching strain due to coarsening of crystal grains, reduction of impact value, fatigue life, and deterioration of delayed fracture characteristics are conventionally achieved. It is possible to provide bolts, gear parts, shafts, and other materials that have extremely low hardness and are low in hardness before cold forging, and that can be cold forged at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱間圧延後の鋼のマトリックス中の微細TiC
またはTi(CN)の析出個数と結晶粒粗大化温度の関
係について解析した一例を示す図である。
FIG. 1: Fine TiC in matrix of steel after hot rolling
FIG. 3 is a diagram showing an example of analyzing a relationship between the number of precipitated Ti (CN) and the crystal grain coarsening temperature.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C :0.10〜0.60%、 Si:0.50%以下、 Mn:0.30〜2.00%、 P :0.025%以下(0%を含む)、 S :0.025%以下(0%を含む)、 Cr:0.25%以下、 B :0.0003〜0.0050%、 N :0.0050%以下(0%を含む)、 Ti:0.020〜0.100% を含み、残部はFe、および不可避的不純物よりなり、
かつ鋼のマトリックス中に直径0.2μm以下のTiC
またはTi(CN)を20個/100μm2 以上を有す
ることを特徴とする結晶粒粗大化防止特性と冷間鍛造性
に優れた冷間鍛造用鋼。
1. C: 0.10 to 0.60%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.025% or less (including 0%), S : 0.025% or less (including 0%), Cr: 0.25% or less, B: 0.0003 to 0.0050%, N: 0.0050% or less (including 0%), Ti: 0. 0.20 to 0.100%, with the balance being Fe and unavoidable impurities,
TiC having a diameter of 0.2 μm or less
Or a cold forging steel excellent in crystal grain coarsening prevention characteristics and cold forgeability, characterized in that it has at least 20 Ti (CN) / 100 μm 2 .
【請求項2】C :0.10〜0.60%、 Si:0.50%以下、 Mn:0.30〜2.00%、 P :0.025%以下(0%を含む)、 S :0.025%以下(0%を含む)、 Cr:0.25%以下、 B :0.0003〜0.0050%、 N :0.0050%以下(0%を含む)、 Ti:0.020〜0.100% を含み、残部はFe、および不可避的不純物よりなる鋼
を1050℃以上に加熱して線材または棒鋼に熱間圧延
した後、600℃以下の温度まで冷却するに際して2℃
/s以下の冷却速度で徐冷し、マトリックス中に直径
0.2μm以下のTiCまたはTi(CN)が20個/
100μm2 以上分散した鋼とすることを特徴とする結
晶粒粗大化防止特性と冷間鍛造性に優れた冷間鍛造用鋼
の製造方法。
2. C: 0.10 to 0.60%, Si: 0.50% or less, Mn: 0.30 to 2.00%, P: 0.025% or less (including 0%), S : 0.025% or less (including 0%), Cr: 0.25% or less, B: 0.0003 to 0.0050%, N: 0.0050% or less (including 0%), Ti: 0. After the steel containing Fe and unavoidable impurities is heated to 1050 ° C. or more and hot-rolled into a wire or a steel bar, the steel is cooled to a temperature of 600 ° C. or less by 2 ° C.
/ S slowly cooled at a cooling rate of not more than 20/20 TiC or Ti (CN) having a diameter of not more than 0.2 μm in the matrix.
A method for producing a steel for cold forging having excellent crystal grain coarsening prevention characteristics and cold forgeability, characterized in that the steel is dispersed in 100 μm 2 or more.
JP21125097A 1997-07-23 1997-07-23 Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same Expired - Fee Related JP3443285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21125097A JP3443285B2 (en) 1997-07-23 1997-07-23 Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21125097A JP3443285B2 (en) 1997-07-23 1997-07-23 Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1143737A true JPH1143737A (en) 1999-02-16
JP3443285B2 JP3443285B2 (en) 2003-09-02

Family

ID=16602801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21125097A Expired - Fee Related JP3443285B2 (en) 1997-07-23 1997-07-23 Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3443285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242916A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Wire steel or bar steel in which spheroidizing is omissible
WO2012011469A1 (en) * 2010-07-20 2012-01-26 住友金属工業株式会社 Rolled steel bar or wire for hot forging
WO2015083599A1 (en) 2013-12-02 2015-06-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and production method therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI589706B (en) 2014-11-18 2017-07-01 新日鐵住金股份有限公司 Bar-shaped or wire-rod-shaped rolled steel for cold-forged parts
EP3222743B1 (en) 2014-11-18 2019-09-25 Nippon Steel Corporation Rolled steel bar or rolled wire material for cold-forged component
EP3483293A4 (en) 2016-07-05 2019-12-04 Nippon Steel Corporation Rolled wire rod
JP6798557B2 (en) 2016-09-28 2020-12-09 日本製鉄株式会社 steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242916A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Wire steel or bar steel in which spheroidizing is omissible
WO2012011469A1 (en) * 2010-07-20 2012-01-26 住友金属工業株式会社 Rolled steel bar or wire for hot forging
JP2012025972A (en) * 2010-07-20 2012-02-09 Sumitomo Metal Ind Ltd Rolled steel bar or wire rod for hot forging
CN103003462A (en) * 2010-07-20 2013-03-27 新日铁住金株式会社 Rolled steel bar or wire for hot forging
WO2015083599A1 (en) 2013-12-02 2015-06-11 株式会社神戸製鋼所 Steel wire for bolt, bolt, and production method therefor
KR20160088372A (en) 2013-12-02 2016-07-25 가부시키가이샤 고베 세이코쇼 Steel wire for bolt, bolt, and production method therefor

Also Published As

Publication number Publication date
JP3443285B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4448456B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
KR100264363B1 (en) Method of manufacturing steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post hardening /tempering fatigue resistance
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
JP2004137542A (en) Method for manufacturing hot-forged member of microalloyed steel
JP6798557B2 (en) steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2009256771A (en) High strength spring steel having excellent delayed fracture resistance, and method for producing the same
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP3490293B2 (en) Cold forging steel excellent in crystal grain coarsening prevention property and delayed fracture resistance, and its manufacturing method
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP3725666B2 (en) Manufacturing method of carburized shaft parts
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method
JP3419333B2 (en) Cold work steel excellent in induction hardenability, component for machine structure, and method of manufacturing the same
JP2004003009A (en) Bar steel for cold forging, cold-forged product, and manufacturing method therefor
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP3499425B2 (en) Manufacturing method of cold tool steel
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP3236756B2 (en) B-containing steel excellent in workability and strength and method for producing forged part made of the B-containing steel
JP3238452B2 (en) Forged steel rolls for rolling metal

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees