JP3764627B2 - Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method - Google Patents

Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method Download PDF

Info

Publication number
JP3764627B2
JP3764627B2 JP2000116603A JP2000116603A JP3764627B2 JP 3764627 B2 JP3764627 B2 JP 3764627B2 JP 2000116603 A JP2000116603 A JP 2000116603A JP 2000116603 A JP2000116603 A JP 2000116603A JP 3764627 B2 JP3764627 B2 JP 3764627B2
Authority
JP
Japan
Prior art keywords
less
steel
hardness
hot
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000116603A
Other languages
Japanese (ja)
Other versions
JP2001303172A (en
Inventor
達朗 越智
学 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000116603A priority Critical patent/JP3764627B2/en
Publication of JP2001303172A publication Critical patent/JP2001303172A/en
Application granted granted Critical
Publication of JP3764627B2 publication Critical patent/JP3764627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼とその製造方法に関するものである。
【0002】
【従来の技術】
歯車、シャフト、CVJ部品は、通常、例えばJIS G 4052、JISG 4104、JIS G 4105、JIS G 4106などに規定されている中炭素の機械構造用合金鋼を使用し、冷間鍛造(転造も含む)−切削により所定の形状に加工された後、浸炭焼入れを行う工程で製造されている。冷間鍛造は、製品の表面肌、寸法精度が良く、熱間鍛造に比べて製造コストが低く、歩留まりも良好であるため、従来は熱間鍛造で製造されていた部品を、冷間鍛造へ切り替える傾向が強くなっており、冷鍛−浸炭工程で製造される浸炭部品の対象は近年顕著に増加している。ここで、熱間鍛造から冷間鍛造への切り替えに際しては、鋼材の冷間変形抵抗の低減と限界圧縮率の向上が重要な課題である。これは、前者は、鍛造工具の寿命を確保するためであり、後者は冷間鍛造時の鋼材の割れを防止するためである。このような冷間鍛造に適した鋼材としてボロン鋼がある。しかしながら、ボロン鋼は浸炭時に以下に述べるような2種類の異常組織を生成するために、浸炭用としてはほとんど普及していない。ボロン鋼において浸炭時に生成する異常組織は、▲1▼粗大粒と▲2▼表面から約0.2〜0.7mmの深さに生成する不完全焼入れ組織の2種類である。粗大粒が発生した部品では、浸炭焼入れ後に熱処理歪みを発生し、例えば、歯車やシャフト部品ではこの浸炭歪みが大きければ、騒音や振動の原因となる。また、0.2〜0.7mmの深さに生成する不完全焼入れ組織は、通常黒色組織を呈するが、この不完全焼入れ組織が生成すると、強度低下の原因となる。肌焼きボロン鋼に関して、後者の不完全焼入れ組織を防止するための技術の提案例はこれまでにない。肌焼きボロン鋼の浸炭加熱時の粗大粒の発生を防止するための技術はいくつか提案されている。
【0003】
例えば、特開昭61−217553公報には、TiとNの量を0.02<Ti−3.42NとすることによってTiCを生成し、結晶粒界をピン止めすることを目的としている。しかしながら、該鋼の粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、浸炭時の粗大粒の発生を抑制できないのが現実である。また、該鋼はN量に対して多量のTiを添加するために、多量のTiCが生成し、そのために鋼材の製造時に割れやキズが発生しやすく、また素材の状態で硬くて冷間加工性が良くない等の欠点を有している。また、上記の深さ0.2〜0.7mmに生成する不完全焼入れ組織を防止するための技術については全く言及されていない。
【0004】
また、特開昭63−103052公報には、Si、Mn量を低減し、N量:0.008%以下、Nb:0.01〜0.20を含んだ冷間鍛造用肌焼鋼が示されている。しかしながら、該鋼もやはり、粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、粗大粒の発生を抑制できる場合もあればできない場合もあり、浸炭時の粗大粒の発生を確実には抑制できないのが現実である。また、該鋼はその実施例から明らかな通り、1鋼種を除いて、そのN量は0.005〜0.008の範囲であり、このレベルのN量でも後ほど述べるように結晶粒粗大化特性には悪影響を及ぼす。また、該発明の実施例の1鋼種はN量が0.002%と低Nであるが、Nbが0.05%と多量添加されており、多量のNbCが生成し、そのために素材の状態で硬くて冷間加工性が良くないものと考えられる。また、上記の深さ0.2〜0.7mmに生成する不完全焼入れ組織を防止するための技術については全く言及されていない。
【0005】
また、特開平9−78184公報には、特定量のAl、Nb、Nを含有した鋼において、熱間圧延または熱間鍛造後の素材に存在するNbの析出物またはNbとAlの複合組成からなる析出物の数が5個/10μm2以上である冷間加工性および結晶粒の粗大化特性に優れた肌焼鋼が示されている。しかしながら、該鋼もやはり、粗大粒抑制の能力は不安定であり、鋼材の製造工程によっては、浸炭時の粗大粒の発生を抑制できないのが現実である。これは、該鋼はその実施例から明らかな通り、そのN量は0.006〜0.010の範囲と高いレベルであり、後ほど述べるようにNの多量添加は、結晶粒粗大化特性には悪影響を及ぼすためと考えられる。また、熱間圧延または熱間鍛造後の素材にNbとAlの複合組成からなる析出物が存在するとしているが、これは熱間圧延または熱間鍛造の加熱時にAlの析出物が未固溶であることを意味し、このことも粗大粒抑制の能力が不安定である原因の一つと考えられる。また、上記の深さ0.2〜0.7mmに生成する不完全焼入れ組織を防止するための技術については全く言及されていない。
【0006】
【発明が解決しようとする課題】
上記のような開示された方法では、浸炭焼入れ工程において粗大粒の発生を安定的に抑制することができず、また一部については冷間加工性も不十分である。さらに、表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織を防止するための技術については全く解決されていない。本発明はこのような問題を解決して、冷間加工性に優れ、かつ浸炭時に粗大粒の発生と表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止できる肌焼鋼とその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、肌焼きボロン鋼において、浸炭時に粗大粒の発生防止および表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止する技術について鋭意調査し、次の点を明らかにした。
【0008】
(1) 表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織は一種の下部ベイナイト状組織であり、これが生成するのは次の機構によることを明らかにした。浸炭時に、表面から炭素と同時に窒素が侵入し、硬化層ではオーステナイトが微細化する。そのためBNが生成するので固溶Bが減少し、同時にオーステナイト粒が微細化するため、硬化層ではBの焼入れ性への寄与が小さくなる。最表面ではC量が約0.8%に対して、表面から0.2〜0.7mmの深さではC量が0.4〜0.6%程度であり、最表面と比較して炭素量が低い分、表面から深さ0.2〜0.7mmの位置では焼入れ性も低くなり、また冷却速度も遅い。そのため、表面から深さ0.2〜0.7mmの位置で一種の下部ベイナイト状組織である不完全焼入れ組織が生成する。この時の不完全焼入れ組織変態の変態核は、各種の酸化物またはさらにMnSとV(CN)の複合析出物である。酸化物としては、Mg系の酸化物が特に有害である。
【0009】
(2) 上記の深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止するためには、次の対策が有効であることを新規に見出した。
【0010】
▲1▼酸素、Mg、S、N、Vを低減し、不完全焼入れ組織変態の変態核となる各種の酸化物、MnSとV(CN)の複合析出物を低減する。
【0011】
▲2▼焼入れ性向上のためのBの適正添加量は、一般のボロン鋼では通常0.001%前後であるが、本発明鋼では硬化層でのBN形成にともなう固溶ボロンの減少を補うために、0.002%以上に多量添加する。さらに、侵入してくるNを固定するために、Tiを多量添加する。
【0012】
▲3▼表面から0.2〜0.7mmの深さで固溶ボロンの減少にともなう焼入れ性の低下を補償するために、酸化物を生成しにくい(上記の不完全焼入れ組織の変態核となりにくい)CrとMoを必須元素として添加する。Moは、固溶ボロン減少によるボロンの粒界偏析低減をMoの粒界偏析が代替する効果を有するために、Moの微量添加は特に有効である。
【0013】
▲4▼オーステナイト粒が細粒ほど、焼入れ性に及ぼす固溶ボロン量の減少の影響が顕著になるために、オーステナイト粒が過度に細粒にならないようにすることが重要であり、そのためには、前組織に実質的にベイナイト組織を含まないこと、フェライト組織を粒度番号で11番以下にすることが必要である。
【0014】
(3) 次に、浸炭異常組織防止のもう一つの課題である粗大粒を防止するためには、TiNではなくTiCを主体とするTiの炭窒化物、またはさらにNbCを主体とするNbの炭窒化物を浸炭時に微細析出させることが有効である。
【0015】
(4)TiCを主体とするTiの炭窒化物、またはさらにNbCを主体とするNbの炭窒化物を浸炭時に微細析出させる方法として新規に以下の方法を発見した。
【0016】
▲1▼TiCを主体とするTiの炭窒化物、またはさらにNbCを主体とするNbの炭窒化物をピン止め粒子として活用するためには、浸炭焼入れ時にこれらの析出物を多量微細分散する必要がある。そのためには、棒鋼または線材を熱間加工する場合の圧延加熱時にTiCおよびNbCの析出物を一旦溶体化する必要がある。N量が高くて、圧延加熱時にTiNが多量に残存すると、NbCおよびTiCはTiNと複合析出物を形成し、溶体化が困難となる。また、熱間圧延後の冷却過程で、粗大なTiN上にNbCおよびTiCが析出し、NbCおよびTiCの微細分散が妨げられる。そのため、N量をできるだけ低減することが必要である。また、圧延加熱時に粗大なAlNやAl23等の酸化物が存在すると、上記のTiNと同じ悪影響を及ぼす。そのため、AlNも圧延加熱時に溶体化しておく必要がある。ここで、AlNは圧延加熱時に溶体化しておけば、棒鋼、線材の熱間圧延−冷却過程でAlNの析出はほとんど起こらない。そのため、熱間加工後のAlNの析出量を規制することにより、圧延加熱時のAlNの溶体化状況の確認が可能である。
【0017】
▲2▼なお、AlNが圧延加熱時に溶体化できる条件で加熱を行えば、NbCおよびTiCの析出物を一旦溶体化することが可能である。そのため、熱間加工後のAlNの析出量を規制することにより、圧延加熱時にNbCおよびTiCの析出物を一旦溶体化できたことの確認が可能である。
【0018】
▲3▼さらに、TiCを主体とするTiの炭窒化物、またはさらにNbCを主体とするNbの炭窒化物のピン止め効果を安定して発揮させるには、熱間加工後のマトリックス中に一定量以上のTiCまたはさらにNbCを微細析出させておくことが必要である。そのためには、熱間加工時の冷却過程でオーステナイトからの拡散変態時に相界面析出させる必要がある。もし熱間加工ままの組織にベイナイトが生成すると、上記のTiC、NbCの相界面析出が困難になるために、ベイナイトを実質的に含まない組織とすることが必須であり、同時に、相界面析出により、析出硬化させて、熱間加工ままでTiまたはさらにNbの添加量に応じた所定の硬さを得ることが必須の要件である。
【0019】
4.さらに、粗大粒の発生特性は、熱間加工後の鋼材の熱間圧延方向に平行な断面で認められるフェライトバンドと呼ばれる縞状組織の程度に依存する。ここで、フェライトバンドの程度は、昭和45年社団法人日本金属学会発行「日本金属学会誌第34巻第9号第961頁」において1〜7の7段階に評点化されている(図1)。すなわち、上記の日本金属学会誌第34巻第9号の第957頁〜962頁には、標題の通り「フェライト縞状組織に及ぼすオーステナイト結晶粒度と鍛造比の影響について」が記載されており、第961頁左欄第7〜8行には「縞状組織の程度を数量的に表示するために、Photo.4の基準写真を作成した。」と記載されており、同頁の「Photo.4 Classifications of ferrite bands(×50×2/3×5/6)」には1〜7の基準写真が掲載されている。該評点では、評点の番号が小さいほどフェライトバンドが軽微であり、評点の番号が大きいほどフェライトバンドが顕著であることを示している。粗大粒を抑制するためには、熱間圧延方向に平行な断面の組織の、上記の日本金属学会誌第34巻第961頁で定義されたフェライトバンドの評点が1〜5であることが好ましい。これは、フェライトバンドの評点が6以上のように、フェライトバンドが顕著であると、パーライト組織が連続的につながるために、浸炭加熱時にフェライト・パーライト組織からオーステナイト組織に逆変態した際に混粒を生じ、粗大粒発生の原因となるためである。
【0020】
(5) 上記を実現するための方法として、次の点を明らかにした。
【0021】
▲1▼熱間加工後の鋼材の状態で、AlNの析出量を極力制限するためには、圧延加熱温度を高温にする必要がある。
【0022】
▲2▼熱間加工後の鋼材のベイナイト組織量の制限、およびフェライトバンドの程度を軽減するためには、圧延後の仕上げ温度・冷却条件を最適化する必要がある。
【0023】
▲3▼また熱間加工後の鋼材に一定量以上のTiCを主体とするTiの炭窒化物、またはさらにNbCを主体とするNbの炭窒化物をあらかじめ微細析出させるためには、圧延加熱温度を高温にしてこれらの析出物を一旦溶体化し、熱間圧延後にこれらの析出物の析出温度域を徐冷することにより、多量微細分散することができる。
【0024】
本発明は以上の新規なる知見にもとづいて完成したものである。
【0025】
すなわち、本発明の請求項1、2の発明は、質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.8%、
Cr:0.83〜1.5%、
Mo:0.005〜0.3%、
B:0.0031〜0.006%、
Al:0.015〜0.05%、
Ti:0.01〜0.1%
を含有し、
さらに必要に応じて、
Nb:0.002〜0.05%
を含有し、
P:0.025%以下(0%を含む)、
S:0.013%以下(0%を含む)、
V:0.01%以下(0%を含む)、
Mg:0.03%以下(0%を含む)、
N:0.005%以下(0%を含む)、
O:0.002%以下(0%を含む)
に各々制限し、
残部が鉄および不可避的不純物からなり、
AlNの析出量を0.01%以下に制限し、フェライト結晶粒度番号が8〜11番であり、ベイナイトの組織分率が10%以下であり、かつ硬さ指数Hを下記式で定義すると、硬さがHVでH−20〜H+30であることを特徴とする浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼を用いることである。
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%
+136.7Mo%+708Ti%+599Nb%
【0026】
本発明の請求項の発明は、上記の鋼を製造するに際して、加熱温度を1150℃以上、熱間圧延の仕上げ温度を840〜1000℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間加工することを特徴とする浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼の製造方法を用いることである。
【0027】
本発明の鋼と製造方法を用いることにより、ボロン鋼において、冷間鍛造時には冷間加工性に優れ、かつ浸炭時に粗大粒の発生と表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止できる。
【0028】
【発明の実施の形態】
以下、本発明について詳細に説明する。
【0029】
まず、成分の限定理由について説明する。
【0030】
Cは鋼に必要な強度を与えるのに有効な元素であるが、0.1%未満では必要な引張強さを確保することができず、0.3%を超えると硬くなって冷間加工性が劣化するとともに、浸炭後の芯部靭性が劣化するので、0.1〜0.3%の範囲内にする必要がある。
【0031】
Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素であるが、0.01%未満ではその効果は不十分である。一方、0.15%を超えると、硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.01〜0.15%の範囲内にする必要がある。好適範囲は0.02〜0.1%である。
【0032】
Mnは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与えるのに有効な元素であるが、0.2%未満では効果は不十分であり、0.8%を超えると硬さの上昇を招き冷間鍛造性が劣化するので、0.2%〜0.8%の範囲内にする必要がある。好適範囲は0.3〜0.6%である。
【0033】
Crは鋼に強度、焼入れ性を与えるのに有効な元素である。浸炭時に表面から酸素が侵入するため、通常、焼入れ性を確保するために添加した元素が酸化されて、焼入れ性への寄与が目減りするが、CrはMnに比較して酸化しにくいために、硬化層の深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成防止に有効である。このような焼入れ性向上の効果は、0.83%未満の添加では不十分であり、1.5%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.83〜1.5%の範囲内にする必要がある。好適範囲は0.83〜1.3%である。
【0034】
Moも鋼に強度、焼入れ性を与えるのに有効な元素である。MoもCrと同様に浸炭時に侵入してくる酸素に酸化されにくい元素であり、表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成防止に有効である。特にMoは、Bと類似して粒界偏析により焼入れ性増加を図る効果もあり、固溶ボロン減少によるボロンの粒界偏析低減をMoの粒界偏析が代替する効果を有するために、Moは極微量添加でも、深さ0.2〜0.7mmでの不完全焼入れ組織の生成防止に有効である。このような効果は、0.005%未満の添加では不十分であり、0.3%を超えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.005〜0.3%の範囲内にする必要がある。好適範囲は0.005〜0.2%である。
【0035】
Bは次の3点を狙いとして添加する。▲1▼棒鋼・線材圧延において、圧延後の冷却過程でボロン鉄炭化物を生成することにより、フェライトの成長速度を増加させ、圧延ままでの軟質化を促進する。▲2▼浸炭焼入れに際して、鋼に焼入れ性を付与する。▲3▼浸炭材の粒界強度を向上させることにより、浸炭部品としての疲労強度・衝撃強度を向上させる。ここで、▲2▼と▲3▼の効果は鋼中で固溶ボロンの形態で存在することが必須であるが、浸炭時に表面から窒素が侵入するためにオーステナイト粒が微細になり、かつBNを生成し固溶ボロンが目減りする。そのため、焼入れ性へのボロンの寄与が小さくなり、深さ0.2〜0.7mmに不完全焼入れ組織が生成しやすくなる。
【0036】
図2は、940℃×4時間浸炭材の深さ0.45mmでの不完全焼入れ組織分率に及ぼす添加B量の影響を示す。不完全焼入れ組織は0.0031%以上のB添加で0%近くまで低減される。このように、0.0031%未満の添加では、上記の効果は不十分である。一方、Bを多量添加しても上記の効果は飽和し、かえって延性の劣化等の悪影響が出てくる。特に0.006%を超えるとそのような悪影響が顕著になる。以上の理由から、その含有量を0.0031〜0.006%の範囲内にする必要がある。好適範囲は0.0031〜0.004%である。
【0037】
Alは脱酸剤として添加する。0.015%未満ではその効果は不十分である。一方、0.05%を超えると、AlNが圧延加熱時に溶体化しないで残存し、TiやNbの析出物の析出サイトとなり、これらの析出物の微細分散を阻害し、浸炭時の結晶粒の粗大化を助長する。以上の理由から、その含有量を0.015〜0.05%の範囲内にする必要がある。好適範囲は0.025〜0.04%である。
【0038】
Tiは鋼中でNと結合してTiNを生成するが、これによる固溶Nの固定によるBNの析出防止、つまり固溶Bの確保を目的として添加する。さらに、TiNを生成した残りのTiについては、鋼中で微細なTiCを生成させ、これにより浸炭時のγ粒の微細化を図るために添加する。Tiはこのような二つの目的で添加するが、しかしながら、0.01%未満ではその効果は不十分である。一方、Tiを0.1%を超えて添加すると、TiCによる析出硬化が顕著になり、冷間加工性が顕著に劣化する。以上の理由から、その含有量を0.01〜0.1%の範囲内にする必要がある。好適範囲は、0.02〜0.05%である。
【0039】
次に、本発明では必要に応じて、Nbを含有する。NbはNbC主体のNb(CN)を形成し、浸炭加熱の際に結晶粒の粗大化抑制に有効な元素である。0.002%未満ではその効果は不十分である。一方、0.05%を超えると、素材の硬さが硬くなって冷間鍛造性が劣化するとともに、棒鋼・線材圧延加熱時の溶体化が困難になる。以上の理由から、その含有量を0.002〜0.05%の範囲内にする必要がある。好適範囲は、0.005〜0.03%である。
【0040】
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる元素であるため、冷間鍛造性が劣化する。また、焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、疲労強度を劣化させるのでできるだけ低減することが望ましい。従ってその含有量を0.025%以下に制限する必要がある。好適範囲は0.015%以下である。
【0041】
Sは鋼中でMnSを形成し、浸炭時に深さ0.2〜0.7mmに生成する不完全焼入れ組織の変態核となり、この異常組織の生成を促進する。
【0042】
図3は、940℃×4時間浸炭材の深さ0.45mmでの不完全焼入れ組織分率に及ぼすS量の影響を示す。不完全焼入れ組織はS量を0.013%以下にすることにより0%近くまで低減される。つまり、上記のようなSの悪影響は、S量が0.013%を超えると特に顕著になるので、その含有量を0.013%以下にする必要がある。
【0043】
Vは鋼中でV(CN)を形成し、MnSと同様に、浸炭時に深さ0.2〜0.7mmに生成する不完全焼入れ組織の変態核となり、この異常組織の生成を促進する。
【0044】
図4は、940℃×4時間浸炭材の深さ0.45mmでの不完全焼入れ組織分率に及ぼすV量の影響を示す。不完全焼入れ組織はV量を0.01%以下にすることにより10%以下になる。これから、Vの悪影響は、V量が0.01%を超えると特に顕著になるので、その含有量を0.01%以下にする必要がある。
【0045】
Mgは鋼中で酸化物を形成し、MnSと同様に浸炭時に深さ0.2〜0.7mmに生成する不完全焼入れ組織の変態核となり、この異常組織の生成を促進する。特にMg系酸化物は、BNの析出サイトにもなるので、Mgは微量でも不完全焼入れ組織の生成を促進する。
【0046】
図5は、940℃×4時間浸炭材の深さ0.45mmでの不完全焼入れ組織分率に及ぼすMg量の影響を示す。不完全焼入れ組織はMg量を0.03%以下にすることにより10%以下になる。これから、Mgの悪影響は、Mg量が0.03%を超えると特に顕著になるので、その含有量を0.03%以下にする必要がある。好適範囲は0.01%以下である。
【0047】
Nは以下の3点の理由から極力制限することが望ましい。▲1▼Bは上記のように焼入れ性向上、粒界強化等を目的として添加するが、これらのBの効果は鋼中で固溶Bの状態で初めて効果を発現するため、N量を低減してBNの生成を抑制することが必須である。BNは深さ0.2〜0.7mmでの不完全焼入れ組織の生成を促進する悪影響もある。▲2▼Vが存在すると、鋼中でV(CN)を形成し、上記のように、浸炭時に深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を促進するが、N量が高いほどこの現象が顕著なため、この異常組織防止のためには、N量の低減が必須である。▲3▼また、Nは鋼中のTiと結びつくと粒制御にほとんど寄与しない粗大なTiNを生成し、これがTiCを主体とするTi析出物の析出サイトとなり、これらのTiの炭窒化物の浸炭時の微細析出を阻害し粗大粒の生成を促進する。
【0048】
図6は、940℃×4時間浸炭材の深さ0.45mmでの不完全焼入れ組織分率に及ぼすN量の影響を示す。不完全焼入れ組織はN量を0.005%以下にすることにより10%以下になる。このように、上記のようなNの悪影響はN量が0.005%を超えると特に顕著になる。以上の理由から、その含有量を0.005%以下にする必要がある。
【0049】
また、Oは鋼中でAl系やMg系の酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、浸炭時に深さ0.2〜0.7mmに生成する不完全焼入れ組織の変態核となり、この異常組織の生成を促進する。また、TiCの析出サイトとなり、熱間加工時に、TiCが粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。このような悪影響はO量が0.002%を超えると特に顕著になるために、O量を0.002%以下にする必要がある。好適範囲は0.0015%以下である。
【0050】
次に、本発明では、熱間加工後のAlNの析出量を0.01%以下に制限するが、このように限定した理由を以下に述べる。圧延加熱時に粗大なAlNが存在すると、TiCを主体とするTiの析出物の析出サイトとなり、熱間加工後にTiの析出物が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。そのため、圧延加熱時にAlNを溶体化することが必要である。ここで、AlNは、圧延加熱時に溶体化しておけば、棒鋼、線材の熱間圧延−冷却過程でAlNの析出はほとんど起こらない。そのため、熱間加工後のAlNの析出量を規制することにより、圧延加熱時にAlNが十分に溶体化できていることの確認が可能である。なお、Tiの析出物をピン止め粒子として活用するためには、圧延加熱時にTiCの析出物も一旦溶体化する必要がある。AlNが圧延加熱時に溶体化できる条件で加熱を行えば、TiCの析出物を一旦溶体化することが可能である。そのため、熱間加工後のAlNの析出量を規制することにより、圧延加熱時にTiCの析出物を一旦溶体化できたことの確認が可能である。NbCについてもTiCと同様に、熱間加工後のAlNの析出量を規制することにより、圧延加熱時にNbCの析出物を一旦溶体化できたことの確認が可能である。AlNの析出量が0.01%を超えると、上記の効果が不十分であり、実用的には粗大粒の発生が懸念される。以上の理由から、熱間加工後のAlNの析出量を0.01%以下に制限する。好適範囲は0.005%以下である。
【0051】
次に本発明では、熱間加工後のフェライト結晶粒度番号を8〜11番とするが、このように限定した理由を以下に述べる。熱間加工後のフェライト粒が過度に微細であると、浸炭時にオーステナイト粒が過度に微細化する。オーステナイト粒が微細なほど、焼入れ性に及ぼすBN生成による固溶ボロンの減少の影響が顕著になり、深さ0.2〜0.7mmに不完全焼入れ組織が生成しやすくなり、硬化層の焼入れ性が低くなる。フェライト結晶粒度が11番を超えると深さ0.2〜0.7mmでの不完全焼入れ組織の生成が顕著になり、浸炭材としての強度の劣化が懸念される。また、熱間加工後のフェライト結晶粒度番号を8番未満の粗粒にすると、熱間加工材の延性が劣化し、冷間鍛造性が劣化する。以上の理由から、熱間加工後のフェライト結晶粒度番号を8〜11番の範囲内にする必要がある。
【0052】
次に、本発明では、熱間加工後のベイナイトの組織分率を10%以下に制限するが、このように限定した理由を以下に述べる。熱間加工後の鋼材にベイナイト組織が混入すると、浸炭時にオーステナイト粒が過度に微細化する。上記の通りオーステナイト粒が微細なほど、焼入れ性に及ぼすBN生成による固溶ボロンの減少の影響が顕著になり、深さ0.2〜0.7mmに不完全焼入れ組織が生成しやすくなる。さらに、熱間加工後の鋼材にベイナイト組織が混入すると、浸炭加熱時の粗大粒発生の原因になる。また、ベイナイトの混入の抑制は冷間加工性改善の視点からも望ましい。これらの悪影響は、ベイナイトの組織分率が10%を超えると特に顕著になる。以上の理由から、熱間加工後のベイナイトの組織分率を10%以下に制限する必要がある。好適範囲は5%以下である。
【0053】
次に本発明では、硬さ指数Hを下記式で定義すると、熱間加工材の硬さをHVでH−20〜H+30の範囲に制限するが、このように限定した理由を以下に述べる。
【0054】
H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%+136.7Mo%+708Ti%+599Nb%
(但し、Nbを含有しない場合には、Nbの鋼は0とする。)
【0055】
本発明では、浸炭時の粗大粒を防止するために、TiC主体のTiの炭窒化物またはさらにNbC主体のNbの炭窒化物を浸炭時に微細分散させることを特徴としている。TiまたはさらにNbをこの目的で活用するためには、熱間加工後の冷却過程で、オーステナイトからフェライト変態時にこれらの析出物を相界面析出させておく必要がある。これらの析出物を相界面析出させるためには、上記のように熱間加工後の冷却過程でベイナイト変態を制限することが必須である。ベイナイトが生成しない状態で、Ti、Nbの析出物を相界面析出させると析出硬化で硬さが増加するが、上記の理由からTi、Nb量に応じて鋼材の硬さの下限値を制限することにより、浸炭時のTi、Nbの析出物の微細分散が可能になり、粗大粒の防止が可能になる。以上の技術思想から、成分系によって決まる硬さ指数を導入し、熱間加工材の硬さの下限値を規定した。硬さ指数Hは、熱間加工材の硬さに及ぼす合金成分の影響を定式化した指数であり、単位はHVである。硬さ指数Hを定義した前提条件として、熱間加工材にベイナイト組織が実質的に含まれないこと、Ti、Nbは添加した全量が析出強化に寄与することを前提としている。
【0056】
図7に、種々の製造条件で製造した熱間加工材の硬さと粗大粒発生温度との関係を示す。本鋼材の硬さ指数Hは154である。粗大粒発生温度は、圧下率50%の据え込みを行った後、各温度で5時間保定して浸炭シミュレーションを行うことにより求めた。熱間加工材の硬さがHVでH−20未満では結晶粒粗大化温度が低下する。一方、熱間加工材の硬さが硬くなると冷間加工性が劣化するが、その影響は硬さがH+30を超えると特に顕著になる。以上の理由から熱間加工材の硬さをHVでH−20〜H+30の範囲に制限した。好適範囲は、H−20〜H+20の範囲である。
【0057】
なお、本発明で規定する硬さ(HV)は、熱間加工材の表面脱炭層を除く最表層の硬さである。
【0060】
次に熱間加工条件について説明する。
【0061】
上記の本発明成分からなる鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行い、鋳造工程、必要に応じて分塊圧延工程を経て、線材または棒鋼に熱間圧延する圧延素材とする。
【0062】
次に、本発明の請求項4は、加熱温度を1150℃以上、熱間圧延の仕上げ温度を840〜1000℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件で線材または棒鋼に熱間加工する。
【0063】
まず、加熱温度を1150℃以上とするのは、次の理由による。加熱温度が1150℃未満では、加熱時にAlNおよびTiC、またはさらにNbCを一旦マトリックス中に固溶させることができず、熱間加工後に微細なTiCまたはさらにNbCの粒制御に寄与する析出物の量が減少し、浸炭時に粗大粒の発生を抑制することができない。そのため、熱間圧延に際して、1150℃以上の温度で加熱することが必要である。
【0064】
次に、熱間圧延の仕上げ温度を840〜1000℃とするのは次の理由による。仕上げ温度が840℃未満では、フェライト結晶粒度が11番以上に微細になり、またフェライトバンドが評点5を超えるほどに顕著になり、その後の浸炭時に粗大粒および深さ0.2〜0.7mmでの不完全焼入れ組織が発生しやすくなる。一方、仕上げ温度が1000℃を超えると、フェライト結晶粒が粗大になり冷間鍛造性が劣化する。以上の理由から、熱間圧延の仕上げ温度を840〜1000℃とする。好適範囲は850〜960℃である。
【0065】
次に、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷するのは次の理由による。冷却速度が1℃/sを超えると、ベイナイトの組織分率が大きくなり、熱間加工後の微細なTiC他の析出物の析出量が不足し、浸炭時に粗大粒が発生しやすくなる。さらに、ベイナイトの組織分率が大きくなると、圧延材の硬さが顕著に上昇し冷間鍛造性が劣化する。そのため、冷却速度1℃/秒以下に制限する。好適範囲は0.7℃/s以下である。なお、冷却速度を小さくする方法としては、圧延ラインの後方に保温カバーまたは熱源付き保温カバーを設置し、これにより、徐冷を行う方法が挙げられる。
【0066】
本発明では、鋳片のサイズ、凝固時の冷却速度、分塊圧延条件については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。また、本発明鋼は、圧延ままの棒鋼を冷間鍛造で部品に成形する工程だけでなく、冷間鍛造の前に焼鈍工程や温・熱間鍛造を経由する場合、冷間鍛造工程の間に焼鈍工程を含み場合、温・熱間鍛造工程で部品に成形される場合、切削工程で部品に成形される場合にも適用できる。
【0067】
【実施例】
以下に、本発明の効果を実施例により、さらに具体的に示す。
【0068】
(実施例1)
表1に示す組成を有する転炉溶製鋼を連続鋳造し、必要に応じて分塊圧延工程を経て162mm角の圧延素材とした。続いて、熱間加工により、直径34mmの棒鋼を製造した。比較鋼T、UはJISのSCr420およびSCM420である。
【0069】
【表1】

Figure 0003764627
【0070】
熱間加工後の棒鋼から、AlNの析出量を化学分析により求めた。また、圧延後の棒鋼の組織観察を行い、フェライトの結晶粒度番号、ベイナイトの組織分率を求めた。さらに、圧延後の棒鋼のビッカース硬さを測定した。また、一部の試験片について、圧延方向に平行な断面のフェライトバンドの評点を求めた。
さらに、圧延ままの棒鋼から、据え込み試験片を作成し、冷間加工性の指標として、冷間変形抵抗と限界据え込み率を求めた。冷間変形抵抗は相当歪み1.0における変形抵抗で代表させた。
【0071】
次に、直径30mmの棒鋼を削りだし、940×4時間の条件で浸炭処理を行い、硬さ分布と組織調査を行った。深さ0.45mm位置での硬さと不完全焼入れ組織の有無を求めた。不完全焼入れ組織の分率が5%以下の場合に「不完全焼入れ組織:無し」と判定した。
【0072】
また、圧延ままの棒鋼から、据え込み試験片を作成し、圧下率50%の据え込みを行った後、浸炭シミュレーションを行った。浸炭シミュレーションの条件は、910℃〜1010℃に5時間加熱−水冷である。その後、切断面に研磨−腐食を行い、旧オーステナイト粒径を観察して粗粒発生温度(結晶粒粗大化温度)を求めた。浸炭処理は通常930〜950℃の温度域で行われるため、粗粒発生温度が950℃以下のものは結晶粒粗大化防止特性に劣ると判定した。なお、旧オーステナイト粒度の測定はJIS G 0551に準じて行い、400倍で10視野程度観察し、粒度番号5番以下の粗粒が1つでも存在すれば粗粒発生と判定した。
【0073】
さらに、直径30mmの棒鋼を削りだし、直径22mmへ引き抜きを行った後、940℃×4時間の条件で浸炭焼入れを行い、γ粒度を測定した。
【0074】
これらの調査結果を熱間加工条件とあわせて表2に示す。
【0075】
【表2】
Figure 0003764627
【0076】
比較例19、20はJISのSCr420およびSCM420の特性であるが、本発明例の冷間変形抵抗は、比較例19、20に比較して顕著に小さく、また限界据え込み率も優れている。また、浸炭後の深さ0.45mm位置において、本発明例では、不完全焼入れ組織が実質的になく、同位置の硬さもHV650以上と良好である。さらに、本発明例の結晶粒粗大化温度は970℃以上であり、通常の上限の浸炭条件である950℃では、粗大粒の発生を防止できることが明らかである。
【0077】
次に、表2において、比較例10はSiの含有量が本願規定の範囲を上回った場合であり、本発明例に比較して、冷間加工性は劣る。
【0078】
比較例11はMoの含有量が本願規定の範囲を下回った場合であり、浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低い。
【0079】
比較例12はTiの含有量が本願規定の範囲を下回った場合であり、粗大粒防止特性は劣り、また、焼入れ性が低下して、浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低い。
比較例13はBの含有量が本願規定の範囲を下回った場合であり、浸炭材の焼入れ性が不足し、深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低い。
【0080】
比較例14はSの含有量が本願規定の範囲を上回った場合であり、比較例15はVの含有量が本願規定の範囲を上回った場合であり、比較例16はMgの含有量が本願規定の範囲を上回った場合であり、いずれも浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低い。
【0081】
比較例17はNの含有量が本願規定の範囲を上回った場合であり、浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低く、また、Tiの析出物が粗大になり、粗大粒防止特性も劣る。
【0082】
比較例18はNbの含有量が本願規定の範囲を上回った場合であり、粗大粒防止特性は劣るとともに、熱間加工後の硬さが高くなり、冷間加工性が本発明例に比較して劣る。
【0083】
次に、比較例21は、熱間圧延加熱温度が本願規定の範囲を下回り、圧延材のAlNの析出量が本願規定の範囲を上回り、熱間加工後の硬さが本願規定の範囲を下回った場合であり、粗大粒発生温度は低い。また、比較例22は熱間圧延時の仕上げ温度が本願規定の範囲を下回り、熱間加工後の硬さが本願規定の範囲を下回り、熱間圧延後のフェライトの結晶粒度番号が本願規定の範囲を上回った場合であり、浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低く、また粗大粒発生温度は910℃と実用上問題のあるレベルである。比較例23、24は熱間圧延に引き続く冷却速度が本願規定の範囲を上回り、ベイナイトの組織分率が本願規定の範囲を上回った場合であり、冷間加工性および粗大粒防止特性ともに顕著に劣り、浸炭後の深さ0.45mm位置において、不完全焼入れ組織が発生し、同位置の硬さも低い。
【0084】
(実施例2)
実施例1で製造した鋼水準A〜HおよびT、Uの熱間圧延棒鋼について、球状化焼鈍を行った後、実施例1と同様の方法で冷間加工性調査、940℃×4時間浸炭における深さ0.45mmでの不完全焼入れ層の有無と硬さの調査および結晶粒粗大化特性の調査を行った。これらの調査結果をまとめて表3に示す。
【0085】
【表3】
Figure 0003764627
【0086】
比較例38、39はJISのSCr420およびSCM420の球状化焼鈍材の特性であるが、本発明例の冷間加工性は、球状化焼鈍後もSCr420およびSCM420に比較して優れている。また、浸炭後の深さ0.45mm位置において、本発明例では、不完全焼入れ組織が実質的になく、同位置の硬さもHV650以上と良好である。さらに、本発明例の結晶粒粗大化温度は990℃以上であり、本発明鋼は、球状化焼鈍後も、通常の上限の浸炭条件である950℃において粗大粒の発生を防止できることが明らかである。
【0087】
なお、本発明鋼は、冷間鍛造の前にその他の焼鈍工程を経由する場合においても、優れた冷間加工性と不完全焼入れ組織防止特性、粗大粒防止特性を有する。
【0088】
【発明の効果】
本発明の冷間鍛造用肌焼きボロン鋼とその製造方法を用いれば、冷間鍛造時には冷間加工性に優れ、同時に冷間鍛造工程で製造しても、浸炭時に粗大粒の発生と表面から深さ0.2〜0.7mmに生成する不完全焼入れ組織の生成を防止することができ、これにより、必要な強度特性や寸法・形状の精度を確保することができる。そのため、これまで、粗大粒や不完全焼入れ組織の問題から冷鍛化が困難であった部品の冷鍛化が可能になり、さらに冷鍛後の焼鈍を省略することも可能になり、本発明による産業上の効果は極めて顕著なるものがある。
【図面の簡単な説明】
【図1】縞状組織の程度を数量的に表示する金属組織の写真である。
【図2】添加B量と940℃浸炭材の深さ0.45mmでの不完全焼入れ組織分率の関係について解析した一例を示す図である。
【図3】S量と940℃浸炭材の深さ0.45mmでの不完全焼入れ組織分率の関係について解析した一例を示す図である。
【図4】V量と940℃浸炭材の深さ0.45mmでの不完全焼入れ組織分率の関係について解析した一例を示す図である。
【図5】Mg量と940℃浸炭材の深さ0.45mmでの不完全焼入れ組織分率の関係について解析した一例を示す図である。
【図6】N量と940℃浸炭材の深さ0.45mmでの不完全焼入れ組織分率の関係について解析した一例を示す図である。
【図7】熱間加工後の硬さと結晶粒粗大化温度の関係について解析した一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a case-hardened boron steel for cold forging that does not generate an abnormal structure during carburizing and a method for producing the same.
[0002]
[Prior art]
Gears, shafts, and CVJ parts are usually made of medium carbon alloy steel for machine structural use as defined in JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc., and cold forging (also rolling) -It is manufactured in a process of carburizing and quenching after being processed into a predetermined shape by cutting. Cold forging has good surface texture and dimensional accuracy of the product, has a lower manufacturing cost than hot forging, and has a good yield, so parts that were conventionally manufactured by hot forging are now cold forged. The tendency to switch is increasing, and the number of carburized parts manufactured in the cold forging-carburizing process has increased significantly in recent years. Here, when switching from hot forging to cold forging, it is important to reduce the cold deformation resistance of steel and to improve the critical compression ratio. This is because the former is for ensuring the life of the forging tool, and the latter is for preventing cracking of the steel during cold forging. There is boron steel as a steel material suitable for such cold forging. However, since boron steel generates two types of abnormal structures as described below at the time of carburizing, it is rarely used for carburizing. There are two types of abnormal structures generated during carburizing in boron steel: (1) coarse grains and (2) incompletely quenched structures formed to a depth of about 0.2 to 0.7 mm from the surface. In parts where coarse particles are generated, heat treatment distortion occurs after carburizing and quenching. For example, in gears and shaft parts, if this carburizing distortion is large, noise and vibration are caused. Moreover, although the incompletely hardened structure | tissue produced | generated to the depth of 0.2-0.7 mm normally exhibits a black structure, when this incompletely hardened structure | tissue produces | generates, it will cause a strength fall. There has never been proposed a technique for preventing the latter incompletely hardened structure with respect to case-hardened boron steel. Several techniques for preventing the generation of coarse grains during carburizing heating of case-hardened boron steel have been proposed.
[0003]
For example, Japanese Patent Application Laid-Open No. Sho 61-217553 aims to produce TiC by pinning the grain boundaries by setting the amounts of Ti and N to 0.02 <Ti-3.42N. However, the ability of the steel to suppress coarse grains is unstable, and the reality is that the generation of coarse grains during carburization cannot be suppressed depending on the steel manufacturing process. Moreover, since the steel adds a large amount of Ti with respect to the N amount, a large amount of TiC is generated, and therefore, cracks and scratches are likely to occur during the manufacture of the steel material, and it is hard and cold worked in the state of the material. It has disadvantages such as poor performance. Further, there is no mention of a technique for preventing the incompletely quenched structure generated at a depth of 0.2 to 0.7 mm.
[0004]
Japanese Patent Laid-Open No. 63-103052 discloses a case-hardening steel for cold forging with a reduced amount of Si and Mn and containing N amount: 0.008% or less and Nb: 0.01-0.20. Has been. However, the steel also has an unstable ability to suppress coarse grains, and depending on the manufacturing process of the steel material, the generation of coarse grains may or may not be possible. The reality is that it cannot be suppressed. Further, as apparent from the examples, the steel has N content in the range of 0.005 to 0.008 except for one steel type. Even at this level of N content, as described later, the grain coarsening characteristics It has an adverse effect. In addition, one steel type of the embodiment of the present invention has a low N content of 0.002%, but Nb is added in a large amount of 0.05%, so that a large amount of NbC is produced, and therefore the state of the material It is hard and cold workability is not good. Further, there is no mention of a technique for preventing the incompletely quenched structure generated at a depth of 0.2 to 0.7 mm.
[0005]
Japanese Patent Laid-Open No. 9-78184 discloses that in steel containing a specific amount of Al, Nb, N, Nb precipitates present in the material after hot rolling or hot forging, or a composite composition of Nb and Al. The number of precipitates is 5 / 10μm2A case-hardened steel excellent in cold workability and coarsening characteristics of crystal grains as described above is shown. However, the steel also has an unstable ability to suppress coarse grains, and the reality is that the generation of coarse grains during carburization cannot be suppressed depending on the steel manufacturing process. As apparent from the examples, the steel has a high N content in the range of 0.006 to 0.010. As described later, a large amount of N is added to the grain coarsening characteristics. This is considered to have an adverse effect. In addition, it is said that precipitates composed of a composite composition of Nb and Al exist in the material after hot rolling or hot forging. This is because the precipitates of Al are not dissolved during heating in hot rolling or hot forging. This is considered to be one of the reasons why the ability to suppress coarse grains is unstable. Further, there is no mention of a technique for preventing the incompletely quenched structure generated at a depth of 0.2 to 0.7 mm.
[0006]
[Problems to be solved by the invention]
In the disclosed method as described above, the generation of coarse particles cannot be stably suppressed in the carburizing and quenching process, and the cold workability is partially insufficient. Furthermore, the technique for preventing the incompletely hardened structure | tissue produced to the depth of 0.2-0.7 mm from the surface is not solved at all. The present invention solves such problems and is excellent in cold workability, and can prevent generation of coarse grains during carburization and generation of an incompletely quenched structure formed to a depth of 0.2 to 0.7 mm from the surface. The present invention provides a case-hardened steel and a manufacturing method thereof.
[0007]
[Means for Solving the Problems]
In the case-hardened boron steel, the present inventors have earnestly investigated the technology for preventing the generation of coarse grains during carburizing and preventing the formation of an incompletely quenched structure formed to a depth of 0.2 to 0.7 mm from the surface. The point was clarified.
[0008]
(1) It was clarified that the incompletely quenched structure generated at a depth of 0.2 to 0.7 mm from the surface is a kind of lower bainite-like structure, which is generated by the following mechanism. During carburizing, nitrogen penetrates from the surface simultaneously with carbon, and austenite is refined in the hardened layer. Therefore, since BN is generated, the solid solution B is reduced, and at the same time, the austenite grains are refined, so that the contribution to the hardenability of B is reduced in the hardened layer. The amount of C is about 0.8% at the outermost surface, while the amount of C is about 0.4 to 0.6% at a depth of 0.2 to 0.7 mm from the surface. Since the amount is low, the hardenability is lowered at a depth of 0.2 to 0.7 mm from the surface, and the cooling rate is slow. Therefore, an incompletely hardened structure which is a kind of lower bainite-like structure is generated at a depth of 0.2 to 0.7 mm from the surface. The transformation nucleus of the incompletely quenched structure transformation at this time is various oxides or a composite precipitate of MnS and V (CN). As the oxide, Mg-based oxides are particularly harmful.
[0009]
(2) The present inventors have newly found that the following measures are effective in order to prevent the formation of an incompletely quenched structure generated at a depth of 0.2 to 0.7 mm.
[0010]
(1) Oxygen, Mg, S, N, and V are reduced, and various oxides that are transformation nuclei of incompletely quenched structure transformation, composite precipitates of MnS and V (CN) are reduced.
[0011]
(2) The appropriate addition amount of B for improving hardenability is usually around 0.001% in general boron steel, but in the steel of the present invention, it compensates for the decrease in solid solution boron accompanying BN formation in the hardened layer. Therefore, a large amount is added to 0.002% or more. Further, a large amount of Ti is added to fix the invading N.
[0012]
(3) At a depth of 0.2 to 0.7 mm from the surface, in order to compensate for the decrease in hardenability due to the decrease in solid solution boron, it is difficult to generate oxides (becomes transformation nuclei of the above incompletely quenched structure). Difficult) Add Cr and Mo as essential elements. Mo has the effect of substituting the grain boundary segregation of Mo for the reduction of the grain boundary segregation of boron due to the decrease in solid solution boron, so the addition of a small amount of Mo is particularly effective.
[0013]
(4) The finer the austenite grains, the more pronounced the effect of the decrease in the amount of dissolved boron on the hardenability. Therefore, it is important to prevent the austenite grains from becoming too fine. It is necessary that the previous structure does not substantially contain a bainite structure and that the ferrite structure has a grain size number of 11 or less.
[0014]
(3) Next, in order to prevent coarse grains, which is another problem in preventing abnormal carburizing structure, Ti carbonitrides mainly composed of TiC instead of TiN, or Nb carbon mainly composed of NbC It is effective to finely precipitate nitride during carburizing.
[0015]
(4) The following method was newly discovered as a method for finely depositing Ti carbonitride mainly composed of TiC or Nb carbonitride mainly composed of NbC during carburizing.
[0016]
(1) In order to use Ti carbonitrides mainly composed of TiC or Nb carbonitrides mainly composed of NbC as pinning particles, it is necessary to finely disperse these precipitates in a large amount during carburizing and quenching. There is. For this purpose, TiC and NbC precipitates need to be once solutionized at the time of rolling and heating when hot working a steel bar or wire. If the amount of N is high and a large amount of TiN remains during rolling and heating, NbC and TiC form a composite precipitate with TiN, making it difficult to form a solution. In the cooling process after hot rolling, NbC and TiC are deposited on coarse TiN, and fine dispersion of NbC and TiC is hindered. Therefore, it is necessary to reduce the N amount as much as possible. In addition, coarse AlN and Al during rolling and heating2OThreeThe presence of an oxide such as the same has the same adverse effect as TiN described above. Therefore, it is necessary to make AlN into solution during rolling and heating. Here, if AlN is in solution during rolling and heating, precipitation of AlN hardly occurs in the hot rolling-cooling process of steel bars and wires. Therefore, by regulating the precipitation amount of AlN after hot working, it is possible to confirm the solution state of AlN during rolling and heating.
[0017]
{Circle around (2)} If heating is performed under the condition that AlN can be dissolved during rolling and heating, it is possible to temporarily precipitate NbC and TiC precipitates. Therefore, by regulating the precipitation amount of AlN after hot working, it is possible to confirm that the precipitates of NbC and TiC were once formed into a solution during rolling and heating.
[0018]
(3) Further, in order to stably exhibit the pinning effect of Ti carbonitride mainly composed of TiC or Nb carbonitride mainly composed of NbC, it is constant in the matrix after hot working. It is necessary to finely precipitate more TiC or more NbC than the amount. For this purpose, it is necessary to precipitate the phase interface during the diffusion transformation from austenite during the cooling process during hot working. If bainite is generated in the structure as it is hot-worked, it becomes difficult to precipitate the phase interface of TiC and NbC, so it is essential to make the structure substantially free of bainite. Therefore, it is an essential requirement to obtain a predetermined hardness according to the addition amount of Ti or Nb while being hot-worked by precipitation hardening.
[0019]
  4). Furthermore, the generation characteristics of coarse grains depend on the degree of the striped structure called a ferrite band that is recognized in a cross section parallel to the hot rolling direction of the steel material after hot working. Here, the grade of the ferrite band is graded in seven stages of 1 to 7 in “Metal Society of Japan Journal Vol. 34, No. 9, page 961” published by the Japan Institute of Metals in 1970 (FIG. 1). . That is, the above-mentioned Journal of the Japan Institute of Metals, Vol. 34, No. 9, pages 957-962, as the title says, “About the effect of austenite grain size and forging ratio on ferrite stripe structure” is described, In the left column, lines 7 to 8 on page 961, “Photo. 4 standard photo was created in order to quantitatively display the degree of the striped structure” is described, and “Photo. 4 Classifications of ferrite bands (× 50 × 2/3 × 5/6) ”includes 1 to 7 reference photographs. The score indicates that the smaller the score number is, the lighter the ferrite band is, and the higher the score number is, the more prominent the ferrite band is. In order to suppress coarse grains, the score of the ferrite band defined in the above-mentioned Journal of the Japan Institute of Metals, Vol. 34, page 961, of the cross-sectional structure parallel to the hot rolling direction should be 1-5.preferable. This is because when the ferrite band is prominent, such as a ferrite band score of 6 or more, the pearlite structure is continuously connected. This is because coarse particles are generated.
[0020]
(5) As a method for realizing the above, the following points were clarified.
[0021]
(1) In order to limit the precipitation amount of AlN as much as possible in the state of the steel material after hot working, it is necessary to increase the rolling heating temperature.
[0022]
(2) It is necessary to optimize the finishing temperature and cooling conditions after rolling in order to reduce the restriction of the amount of bainite structure of the steel material after hot working and the degree of ferrite band.
[0023]
(3) In order to finely precipitate Ti carbonitride mainly composed of a certain amount or more of TiC or Nb carbonitride mainly composed of NbC in the hot-worked steel material in advance, the rolling heating temperature Can be dispersed in a large amount by heat-treating these precipitates once to form a solution, and gradually cooling the precipitation temperature range of these precipitates after hot rolling.
[0024]
The present invention has been completed based on the above new findings.
[0025]
  That is, the claims of the present invention1, 2In the invention of the present invention,
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.8%
Cr:0.83~ 1.5%,
Mo: 0.005 to 0.3%,
B:0.0031~ 0.006%,
Al: 0.015 to 0.05%,
Ti: 0.01 to 0.1%
Containing
If necessary,
Nb: 0.002 to 0.05%
Containing
P: 0.025% or less (including 0%),
S:0.013% Or less (including 0%),
V: 0.01% or less (including 0%),
Mg: 0.03% or less (including 0%),
N: 0.005% or less (including 0%),
O: 0.002% or less (including 0%)
Limit each to
The balance consists of iron and inevitable impurities,
When the precipitation amount of AlN is limited to 0.01% or less, the ferrite grain size number is 8 to 11, the structure fraction of bainite is 10% or less, and the hardness index H is defined by the following formula: Hardness is HV, H-20 to H + 30It is characterized byIt is to use case-hardened boron steel for cold forging that does not generate an abnormal structure during carburizing.
      H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr%
          + 136.7Mo% + 708Ti% + 599Nb%
[0026]
  Claims of the invention3When manufacturing the above steel, the heating temperature is 1150 ° C. or higher, the hot rolling finishing temperature is 840 to 1000 ° C., and the temperature range of 800 to 500 ° C. is 1 ° C./second or less following the hot rolling. By using a method for producing case-hardened boron steel for cold forging that does not produce an abnormal structure during carburizing, characterized by hot working on wire or steel bar under conditions of slow cooling at a cooling rate ofis there.
[0027]
By using the steel and the manufacturing method of the present invention, boron steel is excellent in cold workability during cold forging, and generates coarse grains and a depth of 0.2 to 0.7 mm from the surface during carburizing. Generation of a completely quenched structure can be prevented.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0029]
First, the reasons for limiting the components will be described.
[0030]
C is an effective element for imparting the necessary strength to the steel, but if it is less than 0.1%, the necessary tensile strength cannot be secured, and if it exceeds 0.3%, it becomes hard and cold work is performed. The core portion toughness after carburization is deteriorated as well as the property is deteriorated, so it is necessary to be within the range of 0.1 to 0.3%.
[0031]
Si is an element effective for deoxidation of steel and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. However, if it is less than 0.01%, the effect is ineffective. It is enough. On the other hand, if it exceeds 0.15%, the hardness is increased and the cold forgeability is deteriorated. For the above reasons, the content needs to be in the range of 0.01 to 0.15%. The preferred range is 0.02 to 0.1%.
[0032]
Mn is an element effective for deoxidation of steel and is an element effective for imparting necessary strength and hardenability to the steel, but if less than 0.2%, the effect is insufficient, 0.8% If it exceeds 1, the increase in hardness will be caused and the cold forgeability will deteriorate, so it is necessary to be within the range of 0.2% to 0.8%. The preferred range is 0.3-0.6%.
[0033]
  Cr is an effective element for imparting strength and hardenability to steel. Since oxygen penetrates from the surface during carburizing, the elements added to ensure hardenability are usually oxidized and the contribution to hardenability is diminished, but Cr is less likely to be oxidized compared to Mn, It is effective in preventing the formation of an incompletely quenched structure that is generated at a depth of the hardened layer of 0.2 to 0.7 mm. The effect of improving hardenability is0.83Addition of less than% is insufficient, and addition over 1.5% leads to an increase in hardness and deteriorates cold forgeability. For the above reasons, the content is0.83It must be in the range of ~ 1.5%. The preferred range is0.83~ 1.3%.
[0034]
Mo is also an effective element for imparting strength and hardenability to steel. Mo, like Cr, is an element that is not easily oxidized by oxygen that enters during carburization, and is effective in preventing the formation of an incompletely quenched structure formed to a depth of 0.2 to 0.7 mm from the surface. In particular, Mo has the effect of increasing the hardenability by grain boundary segregation, similar to B, and Mo has the effect of substituting the grain boundary segregation of boron for reducing the grain boundary segregation of boron by reducing the solid solution boron. Even a very small amount of addition is effective in preventing the formation of an incompletely quenched structure at a depth of 0.2 to 0.7 mm. For such effects, addition of less than 0.005% is insufficient, and addition over 0.3% leads to an increase in hardness and deteriorates cold forgeability. For the above reasons, the content needs to be in the range of 0.005 to 0.3%. The preferred range is 0.005 to 0.2%.
[0035]
B is added for the following three points. (1) In steel bar / wire rolling, boron iron carbide is generated in the cooling process after rolling, thereby increasing the growth rate of ferrite and promoting softening during rolling. (2) When carburizing and quenching, impart hardenability to the steel. (3) Improve the fatigue strength and impact strength of carburized parts by improving the grain boundary strength of the carburized material. Here, the effects of (2) and (3) must be present in the form of solute boron in the steel, but the austenite grains become fine because nitrogen penetrates from the surface during carburizing, and BN The solid solution boron is reduced. Therefore, the contribution of boron to the hardenability is reduced, and an incompletely hardened structure is easily generated at a depth of 0.2 to 0.7 mm.
[0036]
  FIG. 2 shows the effect of the amount of added B on the fraction of the incompletely quenched structure at 940 ° C. × 4 hours at a depth of 0.45 mm. Incompletely quenched structure0.0031With more than B additionReduced to nearly 0%. in this way,0.0031If the addition is less than%, the above effect is insufficient. On the other hand, even if a large amount of B is added, the above effect is saturated, and on the contrary, adverse effects such as deterioration of ductility appear. In particular, when it exceeds 0.006%, such an adverse effect becomes remarkable. For the above reasons, the content is0.0031It is necessary to be within the range of ˜0.006%. The preferred range is0.0031-0.004%.
[0037]
Al is added as a deoxidizer. If it is less than 0.015%, the effect is insufficient. On the other hand, if it exceeds 0.05%, AlN remains without solution during rolling and heating, and becomes a precipitation site for precipitates of Ti and Nb, which inhibits fine dispersion of these precipitates, Promotes coarsening. For the above reasons, the content needs to be in the range of 0.015 to 0.05%. The preferred range is 0.025 to 0.04%.
[0038]
Ti combines with N in the steel to produce TiN, and is added for the purpose of preventing precipitation of BN by fixing solid solution N, that is, securing solid solution B. Further, the remaining Ti that has produced TiN is added to produce fine TiC in the steel and thereby refine γ grains during carburization. Ti is added for these two purposes. However, if less than 0.01%, the effect is insufficient. On the other hand, when Ti is added in excess of 0.1%, precipitation hardening due to TiC becomes remarkable, and cold workability is remarkably deteriorated. For the above reasons, the content needs to be in the range of 0.01 to 0.1%. The preferred range is 0.02 to 0.05%.
[0039]
Next, in the present invention, Nb is contained as necessary. Nb forms NbC-based Nb (CN), and is an element effective for suppressing coarsening of crystal grains during carburizing heating. If it is less than 0.002%, the effect is insufficient. On the other hand, if it exceeds 0.05%, the hardness of the material becomes hard and the cold forgeability deteriorates, and it becomes difficult to form a solution during heating of the steel bar and wire rod. For the above reasons, the content needs to be in the range of 0.002 to 0.05%. The preferred range is 0.005 to 0.03%.
[0040]
Since P is an element that increases deformation resistance during cold forging and deteriorates toughness, cold forgeability deteriorates. Further, since the fatigue strength is deteriorated by embrittlement of the grain boundaries of the parts after quenching and tempering, it is desirable to reduce them as much as possible. Therefore, it is necessary to limit the content to 0.025% or less. The preferred range is 0.015% or less.
[0041]
S forms MnS in the steel and becomes a transformation nucleus of an incompletely quenched structure generated to a depth of 0.2 to 0.7 mm during carburizing, and promotes the formation of this abnormal structure.
[0042]
  FIG. 3 shows the influence of the amount of S on the fraction of the incompletely quenched structure at 940 ° C. × 4 hours at a depth of 0.45 mm. Incompletely hardened structure reduces the amount of S0.013% Or lessReduced to nearly 0%. In other words, the adverse effect of S as described above is that the amount of S is0.013%, It becomes particularly prominent.0.013% Or less is required.
[0043]
V forms V (CN) in the steel and, like MnS, becomes a transformation nucleus of an incompletely quenched structure generated at a depth of 0.2 to 0.7 mm during carburizing, and promotes the formation of this abnormal structure.
[0044]
FIG. 4 shows the influence of the amount of V on the incompletely quenched structure fraction at a depth of 0.45 mm of the carburized material at 940 ° C. for 4 hours. The incompletely hardened structure becomes 10% or less when the V amount is 0.01% or less. From this, the adverse effect of V becomes particularly prominent when the V content exceeds 0.01%, so the content needs to be 0.01% or less.
[0045]
Mg forms an oxide in steel and, like MnS, becomes a transformation nucleus of an incompletely quenched structure that is formed at a depth of 0.2 to 0.7 mm during carburizing, and promotes the formation of this abnormal structure. In particular, Mg-based oxides also serve as BN precipitation sites, so Mg promotes the formation of an incompletely quenched structure even in a small amount.
[0046]
FIG. 5 shows the influence of the amount of Mg on the fraction of the incompletely quenched structure at 940 ° C. × 4 hours at a depth of 0.45 mm. The incompletely hardened structure becomes 10% or less when the Mg content is 0.03% or less. From this, the adverse effect of Mg becomes particularly significant when the Mg content exceeds 0.03%, so the content needs to be 0.03% or less. The preferred range is 0.01% or less.
[0047]
It is desirable to limit N as much as possible for the following three reasons. (1) B is added for the purpose of improving hardenability and strengthening grain boundaries as described above. However, since the effect of these B is manifested only in the state of solid solution B in steel, the amount of N is reduced. Therefore, it is essential to suppress the generation of BN. BN also has an adverse effect of promoting the formation of an incompletely quenched structure at a depth of 0.2 to 0.7 mm. (2) When V is present, V (CN) is formed in the steel, and as described above, the formation of an incompletely quenched structure that is generated at a depth of 0.2 to 0.7 mm during carburization is promoted. Since this phenomenon becomes more conspicuous as the amount is higher, it is essential to reduce the amount of N in order to prevent this abnormal tissue. (3) N, when combined with Ti in the steel, produces coarse TiN that hardly contributes to grain control, which becomes the precipitation site of Ti precipitates mainly composed of TiC, and the carburization of these Ti carbonitrides. Inhibits fine precipitation at the time and promotes the formation of coarse particles.
[0048]
FIG. 6 shows the influence of the amount of N on the fraction of the incompletely quenched structure at 940 ° C. × 4 hours at a depth of 0.45 mm. The incompletely hardened structure becomes 10% or less by making the N amount 0.005% or less. As described above, the adverse effect of N as described above becomes particularly remarkable when the amount of N exceeds 0.005%. For the above reasons, the content needs to be 0.005% or less.
[0049]
O forms Al-based or Mg-based oxide inclusions in the steel. When a large amount of oxide inclusions are present in the steel, it becomes a transformation nucleus of an incompletely quenched structure generated to a depth of 0.2 to 0.7 mm during carburizing, and promotes the formation of this abnormal structure. Moreover, it becomes a TiC precipitation site, and TiC precipitates coarsely during hot working, and the coarsening of crystal grains cannot be suppressed during carburizing. Such an adverse effect is particularly noticeable when the amount of O exceeds 0.002%, so the amount of O needs to be 0.002% or less. The preferred range is 0.0015% or less.
[0050]
Next, in the present invention, the precipitation amount of AlN after hot working is limited to 0.01% or less. The reason for this limitation will be described below. When coarse AlN is present during rolling and heating, it becomes a precipitation site for Ti precipitates mainly composed of TiC, and the Ti precipitates are coarsely deposited after hot working, making it impossible to suppress the coarsening of crystal grains during carburizing. Therefore, it is necessary to solutionize AlN during rolling and heating. Here, if AlN is in solution at the time of rolling and heating, precipitation of AlN hardly occurs in the hot rolling-cooling process of steel bars and wires. Therefore, it is possible to confirm that AlN has been sufficiently formed into a solution during rolling and heating by regulating the precipitation amount of AlN after hot working. In order to utilize Ti precipitates as pinning particles, TiC precipitates need to be once in solution during rolling and heating. If heating is performed under conditions that allow AlN to form a solution during rolling and heating, the TiC precipitate can be once formed into a solution. Therefore, by regulating the precipitation amount of AlN after hot working, it is possible to confirm that the TiC precipitates were once in solution during rolling and heating. Similarly to TiC, it is possible to confirm that NbC precipitates were once formed into solution during rolling and heating by regulating the precipitation amount of AlN after hot working. When the precipitation amount of AlN exceeds 0.01%, the above effect is insufficient, and there is a concern about the generation of coarse particles practically. For the above reasons, the precipitation amount of AlN after hot working is limited to 0.01% or less. The preferred range is 0.005% or less.
[0051]
Next, in the present invention, the ferrite crystal grain size number after hot working is set to 8 to 11, and the reason for this limitation will be described below. If the ferrite grains after hot working are excessively fine, the austenite grains are excessively refined during carburizing. The finer the austenite grain, the more pronounced the effect of the decrease in solid solution boron due to BN formation on the hardenability, and the incompletely hardened structure is more likely to be formed at a depth of 0.2 to 0.7 mm, and the hardened layer is quenched Low. If the ferrite crystal grain size exceeds 11, generation of an incompletely hardened structure at a depth of 0.2 to 0.7 mm becomes remarkable, and there is a concern about deterioration of strength as a carburized material. In addition, when the ferrite crystal grain size number after hot working is coarser than less than 8, the ductility of the hot worked material is deteriorated and the cold forgeability is deteriorated. For the above reasons, the ferrite crystal grain size number after hot working needs to be in the range of 8-11.
[0052]
Next, in the present invention, the structure fraction of bainite after hot working is limited to 10% or less. The reason for this limitation will be described below. When a bainite structure is mixed in the steel material after hot working, austenite grains are excessively refined during carburizing. As described above, as the austenite grains are finer, the effect of the decrease in solid solution boron due to the generation of BN on the hardenability becomes more prominent, and an incompletely hardened structure is easily generated at a depth of 0.2 to 0.7 mm. Furthermore, when a bainite structure is mixed in the steel material after hot working, it causes coarse grains during carburizing heating. In addition, suppression of bainite contamination is also desirable from the viewpoint of improving cold workability. These adverse effects become particularly significant when the bainite structural fraction exceeds 10%. For the above reasons, it is necessary to limit the structural fraction of bainite after hot working to 10% or less. The preferred range is 5% or less.
[0053]
Next, in the present invention, when the hardness index H is defined by the following formula, the hardness of the hot-worked material is limited to the range of H-20 to H + 30 in HV. The reason for this limitation will be described below.
[0054]
H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr% + 136.7Mo% + 708Ti% + 599Nb%
(However, when Nb is not contained, Nb steel is 0.)
[0055]
The present invention is characterized in that TiC-based Ti carbonitride or further NbC-based Nb carbonitride is finely dispersed during carburizing in order to prevent coarse grains during carburizing. In order to utilize Ti or Nb for this purpose, it is necessary to precipitate these precipitates at the phase interface during the ferrite transformation from austenite in the cooling process after hot working. In order to deposit these precipitates at the phase interface, it is essential to limit the bainite transformation in the cooling process after hot working as described above. In the state where bainite is not formed, if Ti and Nb precipitates are precipitated at the phase interface, the hardness increases due to precipitation hardening, but for the above reasons, the lower limit value of the hardness of the steel material is limited according to the amount of Ti and Nb. This makes it possible to finely disperse Ti and Nb precipitates at the time of carburizing and to prevent coarse grains. From the above technical idea, the hardness index determined by the component system was introduced to define the lower limit of the hardness of the hot-worked material. The hardness index H is an index that formulates the influence of the alloy component on the hardness of the hot-worked material, and its unit is HV. As preconditions for defining the hardness index H, it is assumed that the hot-worked material does not substantially contain a bainite structure, and that Ti and Nb are all added to contribute to precipitation strengthening.
[0056]
FIG. 7 shows the relationship between the hardness of the hot-worked material manufactured under various manufacturing conditions and the coarse grain generation temperature. The hardness index H of this steel material is 154. The coarse grain generation temperature was determined by carrying out a carburization simulation by holding at a reduction rate of 50% and holding at each temperature for 5 hours. When the hardness of the hot-worked material is HV and less than H-20, the crystal grain coarsening temperature is lowered. On the other hand, when the hardness of the hot-worked material is increased, the cold workability is deteriorated, but the influence becomes particularly remarkable when the hardness exceeds H + 30. For the above reasons, the hardness of the hot-worked material is limited to the range of H-20 to H + 30 by HV. A preferable range is a range of H-20 to H + 20.
[0057]
In addition, the hardness (HV) prescribed | regulated by this invention is the hardness of the outermost layer except the surface decarburization layer of a hot work material.
[0060]
Next, hot working conditions will be described.
[0061]
The steel composed of the above-described components of the present invention is melted by a usual method such as a converter, an electric furnace, etc., and the components are adjusted. A rolling material to be rolled is used.
[0062]
Next, claim 4 of the present invention is such that the heating temperature is 1150 ° C. or higher, the finishing temperature of hot rolling is 840 to 1000 ° C., and the temperature range of 800 to 500 ° C. is 1 ° C./second or less following hot rolling. Hot working on wire or bar under conditions of slow cooling at the cooling rate.
[0063]
First, the heating temperature is set to 1150 ° C. or higher for the following reason. When the heating temperature is less than 1150 ° C., AlN and TiC or further NbC cannot be once dissolved in the matrix during heating, and the amount of precipitates contributing to fine TiC or further NbC grain control after hot working And the generation of coarse grains during carburization cannot be suppressed. Therefore, it is necessary to heat at a temperature of 1150 ° C. or higher during hot rolling.
[0064]
Next, the finishing temperature of hot rolling is set to 840 to 1000 ° C. for the following reason. When the finishing temperature is less than 840 ° C., the ferrite grain size becomes as fine as 11 or more, and the ferrite band becomes more prominent as the rating exceeds 5. The coarse grains and the depth of 0.2 to 0.7 mm are formed during the subsequent carburizing. Incompletely hardened structure tends to occur. On the other hand, if the finishing temperature exceeds 1000 ° C., the ferrite crystal grains become coarse and the cold forgeability deteriorates. For these reasons, the hot rolling finishing temperature is set to 840 to 1000 ° C. The preferred range is 850-960 ° C.
[0065]
Next, following the hot rolling, the temperature range of 800 to 500 ° C. is gradually cooled at a cooling rate of 1 ° C./second or less for the following reason. When the cooling rate exceeds 1 ° C./s, the structure fraction of bainite increases, the precipitation amount of fine TiC and other precipitates after hot working becomes insufficient, and coarse grains tend to be generated during carburizing. Furthermore, when the structure fraction of bainite is increased, the hardness of the rolled material is significantly increased and the cold forgeability is deteriorated. Therefore, the cooling rate is limited to 1 ° C./second or less. The preferred range is 0.7 ° C./s or less. In addition, as a method of reducing the cooling rate, a method of installing a heat insulating cover or a heat insulating cover with a heat source behind the rolling line and thereby performing slow cooling can be mentioned.
[0066]
In the present invention, the size of the slab, the cooling rate during solidification, and the ingot rolling conditions are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied. In addition, the steel of the present invention is not only used in the process of forming as-rolled steel bars into parts by cold forging, but also during the cold forging process when passing through an annealing process or warm / hot forging before cold forging. In the case of including an annealing process, it can also be applied to a case where the part is formed in a warm / hot forging process and a part is formed in a cutting process.
[0067]
【Example】
Hereinafter, the effects of the present invention will be described more specifically by way of examples.
[0068]
Example 1
Converter molten steel having the composition shown in Table 1 was continuously cast, and a rolling raw material of 162 mm square was obtained through a batch rolling process as necessary. Subsequently, a steel bar having a diameter of 34 mm was manufactured by hot working. The comparative steels T and U are JIS SCr420 and SCM420.
[0069]
[Table 1]
Figure 0003764627
[0070]
From the steel bar after hot working, the precipitation amount of AlN was determined by chemical analysis. Moreover, the structure of the steel bar after rolling was observed, and the grain size number of ferrite and the structure fraction of bainite were obtained. Furthermore, the Vickers hardness of the steel bar after rolling was measured. Moreover, the score of the ferrite band of the cross section parallel to a rolling direction was calculated | required about some test pieces.
Furthermore, an upsetting test piece was prepared from the rolled steel bar, and the cold deformation resistance and the limit upsetting rate were obtained as indicators of cold workability. The cold deformation resistance was represented by the deformation resistance at an equivalent strain of 1.0.
[0071]
Next, a steel bar having a diameter of 30 mm was cut out, carburized under conditions of 940 × 4 hours, and the hardness distribution and the structure were examined. The hardness at a depth of 0.45 mm and the presence or absence of an incompletely quenched structure were determined. When the fraction of the incompletely quenched structure was 5% or less, it was determined that “incompletely quenched structure: none”.
[0072]
In addition, an upsetting test piece was prepared from the rolled steel bar, and after upsetting at a reduction rate of 50%, carburization simulation was performed. The conditions for the carburizing simulation are heating to 910 ° C. to 1010 ° C. for 5 hours and water cooling. Thereafter, the cut surface was polished and corroded, and the prior austenite grain size was observed to determine the coarse grain generation temperature (crystal grain coarsening temperature). Since the carburizing process is normally performed in a temperature range of 930 to 950 ° C., it was determined that a coarse grain generation temperature of 950 ° C. or lower is inferior in crystal grain coarsening prevention characteristics. The prior austenite particle size was measured in accordance with JIS G 0551, observed at 400 times for about 10 fields of view, and if there was at least one coarse particle having a particle size number of 5 or less, it was determined that coarse particles were generated.
[0073]
Further, a steel bar having a diameter of 30 mm was cut out and drawn to a diameter of 22 mm, followed by carburizing and quenching under conditions of 940 ° C. × 4 hours, and the γ particle size was measured.
[0074]
These investigation results are shown in Table 2 together with hot working conditions.
[0075]
[Table 2]
Figure 0003764627
[0076]
Comparative Examples 19 and 20 are the characteristics of JIS SCr420 and SCM420, but the cold deformation resistance of the inventive example is significantly smaller than that of Comparative Examples 19 and 20, and the limit upsetting rate is also excellent. Moreover, in the depth 0.45 mm position after carburizing, in the example of the present invention, there is substantially no incompletely quenched structure, and the hardness at the same position is also good at HV650 or more. Furthermore, the crystal grain coarsening temperature of the present invention example is 970 ° C. or higher, and it is clear that the generation of coarse grains can be prevented at 950 ° C., which is a normal upper limit carburizing condition.
[0077]
Next, in Table 2, Comparative Example 10 is a case where the Si content exceeds the range specified in the present application, and the cold workability is inferior compared to the inventive example.
[0078]
In Comparative Example 11, the Mo content falls below the range specified in the present application, and an incompletely hardened structure is generated at a depth of 0.45 mm after carburization, and the hardness at the same position is also low.
[0079]
Comparative Example 12 is a case where the Ti content falls below the range specified in the present application, the coarse grain prevention characteristics are inferior, and the hardenability is lowered, and incomplete quenching at a depth of 0.45 mm after carburizing. A tissue is generated and the hardness at the same position is low.
Comparative Example 13 is a case where the content of B is below the range specified in the present application, the hardenability of the carburized material is insufficient, an incompletely hardened structure is generated at a depth of 0.45 mm, and the hardness at the same position is also Low.
[0080]
Comparative Example 14 is the case where the S content exceeds the range specified in the present application, Comparative Example 15 is the case where the V content exceeds the range specified in the present application, and Comparative Example 16 has the Mg content of the present application. It is a case where it exceeds the specified range, and in any case, an incompletely quenched structure is generated at a depth of 0.45 mm after carburization, and the hardness at the same position is low.
[0081]
Comparative Example 17 is a case where the N content exceeds the range specified in the present application. At a depth of 0.45 mm after carburization, an incompletely quenched structure is generated, the hardness at the same position is low, and Ti Precipitates become coarse and coarse grain prevention properties are also poor.
[0082]
Comparative Example 18 is a case where the Nb content exceeds the range specified in the present application, and the coarse grain prevention characteristics are inferior, the hardness after hot working is increased, and the cold workability is compared with the inventive example. Inferior.
[0083]
  Next, in Comparative Example 21, the hot rolling heating temperature falls below the range specified in the present application, the precipitation amount of AlN in the rolled material exceeds the range specified in the present application, and the hardness after hot working falls below the range specified in the present application. In this case, the coarse particle generation temperature is low. Further, in Comparative Example 22, the finishing temperature at the time of hot rolling is lower than the range specified in the present application, the hardness after hot working is lower than the range specified in the present application,The grain size number of ferrite after hot rolling isThis is a case that exceeds the range specified in this application. At a depth of 0.45 mm after carburization, an incompletely quenched structure is generated, the hardness at the same position is low, and the coarse grain generation temperature is 910 ° C., which is a practical problem. It is a certain level. Comparative Examples 23 and 24 are cases in which the cooling rate following hot rolling exceeds the range specified in the present application, and the bainite structural fraction exceeds the range specified in the present application, and both the cold workability and the coarse grain prevention characteristics are remarkable. Inferior, an incompletely quenched structure occurs at a depth of 0.45 mm after carburization, and the hardness at that position is also low.
[0084]
(Example 2)
About hot-rolled steel bars of steel levels A to H, T, and U manufactured in Example 1, after spheroidizing annealing, a cold workability investigation and 940 ° C. × 4 hours carburizing in the same manner as in Example 1 The presence or absence of an incompletely hardened layer at a depth of 0.45 mm and the hardness and the grain coarsening characteristics were investigated. These survey results are summarized in Table 3.
[0085]
[Table 3]
Figure 0003764627
[0086]
Comparative Examples 38 and 39 are characteristics of spheroidized annealing materials of JIS SCr420 and SCM420, but the cold workability of the inventive example is superior to SCr420 and SCM420 even after spheroidizing annealing. Moreover, in the depth 0.45 mm position after carburizing, in the example of the present invention, there is substantially no incompletely quenched structure, and the hardness at the same position is also good at HV650 or more. Furthermore, the crystal grain coarsening temperature of the present invention example is 990 ° C. or higher, and it is clear that the steel of the present invention can prevent the generation of coarse grains at 950 ° C., which is the normal upper limit carburizing condition, even after spheroidizing annealing. is there.
[0087]
The steel of the present invention has excellent cold workability, incomplete quenching structure preventing properties, and coarse grain preventing properties even when passing through other annealing steps before cold forging.
[0088]
【The invention's effect】
If the case-hardened boron steel for cold forging of the present invention and its manufacturing method are used, it is excellent in cold workability at the time of cold forging. Generation of an incompletely hardened structure generated at a depth of 0.2 to 0.7 mm can be prevented, and thereby necessary strength characteristics and accuracy of dimensions and shapes can be ensured. Therefore, it becomes possible to cold forge parts that have been difficult to cold forge due to the problem of coarse grains and incompletely quenched structure, and further, it is possible to omit annealing after cold forging, the present invention The industrial effect of is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is a photograph of a metal structure that quantitatively displays the extent of a striped structure.
FIG. 2 is a diagram showing an example of analyzing the relationship between the amount of added B and the incompletely quenched structure fraction at a depth of 940 ° C. carburized material of 0.45 mm.
FIG. 3 is a diagram showing an example of analyzing the relationship between the amount of S and the incompletely quenched structure fraction at a depth of 940 ° C. carburized material of 0.45 mm.
FIG. 4 is a diagram showing an example of analyzing the relationship between the amount of V and the incompletely quenched structure fraction at a depth of 940 ° C. carburized material of 0.45 mm.
FIG. 5 is a diagram showing an example of analyzing the relationship between the amount of Mg and the fraction of incompletely quenched structure at a depth of 940 ° C. carburized material of 0.45 mm.
FIG. 6 is a diagram showing an example of analyzing the relationship between the amount of N and the incompletely quenched structure fraction at a depth of 940 ° C. carburized material of 0.45 mm.
FIG. 7 is a diagram showing an example in which the relationship between the hardness after hot working and the crystal grain coarsening temperature is analyzed.

Claims (3)

質量%で、
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.8%、
Cr:0.83〜1.5%、
Mo:0.005〜0.3%、
B:0.0031〜0.006%、
Al:0.015〜0.05%、
Ti:0.01〜0.1%
を含有し、
P:0.025%以下(0%を含む)、
S:0.013%以下(0%を含む)、
V:0.01%以下(0%を含む)、
Mg:0.03%以下(0%を含む)、
N:0.005%以下(0%を含む)、
O:0.002%以下(0%を含む)
に各々制限し、
残部が鉄および不可避的不純物からなり、
AlNの析出量を0.01%以下に制限し、フェライト結晶粒度番号が8〜11番であり、ベイナイトの組織分率が10%以下であり、硬さ(HV)が下記式(1)を満足することを特徴とする浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼。
H−20≦HV≦H+30 ・ ・ ・(1)
但し、H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%
+136.7Mo%+708Ti%
% By mass
C: 0.1 to 0.3%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.8%
Cr: 0.83 to 1.5%,
Mo: 0.005 to 0.3%,
B: 0.0031 to 0.006%,
Al: 0.015 to 0.05%,
Ti: 0.01 to 0.1%
Containing
P: 0.025% or less (including 0%),
S: 0.013 % or less (including 0%),
V: 0.01% or less (including 0%),
Mg: 0.03% or less (including 0%),
N: 0.005% or less (including 0%),
O: 0.002% or less (including 0%)
Limit each to
The balance consists of iron and inevitable impurities,
The precipitation amount of AlN is limited to 0.01% or less, the ferrite grain size number is 8 to 11, the bainite structure fraction is 10% or less, and the hardness (HV) is expressed by the following formula (1). A case hardening boron steel for cold forging that does not produce an abnormal structure during carburizing, which is characterized by satisfaction.
H-20 ≦ HV ≦ H + 30 (1)
However, H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr%
+ 136.7Mo% + 708Ti%
質量%で
C:0.1〜0.3%、
Si:0.01〜0.15%、
Mn:0.2〜0.8%、
Cr:0.83〜1.5%、
Mo:0.005〜0.3%、
B:0.0031〜0.006%、
Al:0.015〜0.05%、
Ti:0.01〜0.1%
Nb:0.002〜0.05%
を含有し、
P:0.025%以下(0%を含む)、
S:0.013%以下(0%を含む)、
V:0.01%以下(0%を含む)、
Mg:0.03%以下(0%を含む)、
N:0.005%以下(0%を含む)、
O:0.002%以下(0%を含む)
に各々制限し、
残部が鉄および不可避的不純物からなり、
AlNの析出量を0.01%以下に制限し、フェライト結晶粒度番号が8〜11番であり、ベイナイトの組織分率が10%以下であり、硬さ(HV)が下記式(1)を満足することを特徴とする浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼。
H−20≦HV≦H+30 ・ ・ ・(1)
但し、H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%
+136.7Mo%+708Ti%+599Nb%
C: 0.1 to 0.3% by mass%
Si: 0.01 to 0.15%,
Mn: 0.2 to 0.8%
Cr: 0.83 to 1.5%,
Mo: 0.005 to 0.3%,
B: 0.0031 to 0.006%,
Al: 0.015 to 0.05%,
Ti: 0.01 to 0.1%
Nb: 0.002 to 0.05%
Containing
P: 0.025% or less (including 0%),
S: 0.013 % or less (including 0%),
V: 0.01% or less (including 0%),
Mg: 0.03% or less (including 0%),
N: 0.005% or less (including 0%),
O: 0.002% or less (including 0%)
Limit each to
The balance consists of iron and inevitable impurities,
The precipitation amount of AlN is limited to 0.01% or less, the ferrite grain size number is 8 to 11, the bainite structure fraction is 10% or less, and the hardness (HV) is expressed by the following formula (1). A case hardening boron steel for cold forging that does not produce an abnormal structure during carburizing, which is characterized by satisfaction.
H-20 ≦ HV ≦ H + 30 (1)
However, H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr%
+ 136.7Mo% + 708Ti% + 599Nb%
請求項1または請求項2に記載の成分からなる鋼を、加熱温度を1150℃以上、熱間圧延の仕上げ温度を840〜1000℃、熱間圧延に引き続いて800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する条件により線材または棒鋼に熱間加工し、熱間加工後のAlNの析出量を0.01%以下に制限し、フェライト結晶粒度番号が8〜11番であり、ベイナイトの組織分率が10%以下であり、硬さ(HV)が下記式(1)を満足するようにすることを特徴とする浸炭時に異常組織を生成しない冷間鍛造用肌焼ボロン鋼の製造方法。
H−20≦HV≦H+30 ・ ・ ・(1)
但し、H=273.5C%+39.1Si%+54.7Mn%+30.4Cr%
+136.7Mo%+708Ti%+599Nb%
The steel comprising the component according to claim 1 or 2 is heated at a temperature of 1150 ° C. or higher, a hot rolling finishing temperature of 840 to 1000 ° C., followed by hot rolling at a temperature range of 800 to 500 ° C. The wire or bar steel is hot worked under the condition of slow cooling at a cooling rate of ℃ / second or less, the precipitation amount of AlN after hot working is limited to 0.01% or less, and the ferrite crystal grain size number is 8 to 11 The bainite structure fraction is 10% or less, and the hardness (HV) satisfies the following formula (1): Case hardening for cold forging that does not generate an abnormal structure during carburizing Boron steel manufacturing method.
H-20 ≦ HV ≦ H + 30 (1)
However, H = 273.5C% + 39.1Si% + 54.7Mn% + 30.4Cr%
+ 136.7Mo% + 708Ti% + 599Nb%
JP2000116603A 2000-04-18 2000-04-18 Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method Expired - Fee Related JP3764627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116603A JP3764627B2 (en) 2000-04-18 2000-04-18 Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116603A JP3764627B2 (en) 2000-04-18 2000-04-18 Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2001303172A JP2001303172A (en) 2001-10-31
JP3764627B2 true JP3764627B2 (en) 2006-04-12

Family

ID=18628045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116603A Expired - Fee Related JP3764627B2 (en) 2000-04-18 2000-04-18 Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3764627B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768117B2 (en) * 2000-12-21 2011-09-07 株式会社神戸製鋼所 Steel and machine parts with excellent machinability and cold workability
JP5200634B2 (en) 2007-04-11 2013-06-05 新日鐵住金株式会社 Hot rolled steel bar for forging and carburizing
US8034199B2 (en) 2007-09-27 2011-10-11 Nippon Steel Corporation Case-hardening steel excellent in cold forgeability and low carburization distortion property
CN104099535A (en) * 2007-09-28 2014-10-15 新日铁住金株式会社 Surface carburizing steel with excellent cold forging performance and low-carburizing deformation characteristic
JP5262740B2 (en) * 2009-01-16 2013-08-14 新日鐵住金株式会社 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
WO2010106748A1 (en) * 2009-03-16 2010-09-23 新日本製鐵株式会社 Boron-containing steel sheet with excellent hardenability and method of manufacturing same
WO2012108460A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same
US9796158B2 (en) 2011-02-10 2017-10-24 Nippon Steel & Sumitomo Metal Corporation Steel for carburizing, carburized steel component, and method of producing the same
JP5486634B2 (en) * 2012-04-24 2014-05-07 株式会社神戸製鋼所 Steel for machine structure for cold working and method for producing the same
CN111020147B (en) * 2019-12-12 2021-11-16 舞阳钢铁有限责任公司 Rolling production method of electric slag finished steel plate for nuclear power flywheel
CN112981236B (en) * 2021-01-27 2022-10-25 江阴兴澄特种钢铁有限公司 Steel for inner raceway of constant velocity universal joint and production method thereof

Also Published As

Publication number Publication date
JP2001303172A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4448456B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP3764586B2 (en) Manufacturing method of case-hardened steel with excellent cold workability and low carburizing strain characteristics
JP3954772B2 (en) Shaped material for high-temperature carburized parts with excellent grain coarsening prevention characteristics and manufacturing method thereof
JP4808828B2 (en) Induction hardening steel and method of manufacturing induction hardening steel parts
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP2002226939A (en) Non-refining steel for soft-nitriding
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP4594150B2 (en) Method for producing high-strength screws with excellent toughness and cold workability
JP5262740B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP6798557B2 (en) steel
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH05214484A (en) High strength spring steel and its production
JP4291941B2 (en) Soft nitriding steel with excellent bending fatigue strength
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP3842888B2 (en) Method of manufacturing steel for induction hardening that combines cold workability and high strength properties
JP3804041B2 (en) High temperature carburizing steel with excellent high temperature carburizing properties and hot forged parts for high temperature carburizing
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JPH11181542A (en) Steel product for induction hardening, excellent in cold workability and induction hardenability, and its production
JP4213855B2 (en) Case-hardening steel and case-hardening parts with excellent torsional fatigue properties
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP2002146480A (en) Wire rod/steel bar having excellent cold workability, and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R151 Written notification of patent or utility model registration

Ref document number: 3764627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees