JP4291941B2 - Soft nitriding steel with excellent bending fatigue strength - Google Patents
Soft nitriding steel with excellent bending fatigue strength Download PDFInfo
- Publication number
- JP4291941B2 JP4291941B2 JP2000259634A JP2000259634A JP4291941B2 JP 4291941 B2 JP4291941 B2 JP 4291941B2 JP 2000259634 A JP2000259634 A JP 2000259634A JP 2000259634 A JP2000259634 A JP 2000259634A JP 4291941 B2 JP4291941 B2 JP 4291941B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- fatigue strength
- pearlite
- less
- carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、軟窒化後に浸炭材と同等以上の曲げ疲労強度を発揮できる軟窒化用鋼に関するものである。本軟窒化用鋼は例えば歯車やクランクシャフト、コンロッド等の熱処理歪みの発生を嫌う高強度構造用部品に好適に利用される。
【0002】
【従来の技術】
近年、自動車の高出力化および軽量化に伴い、構造用部品の高強度化が要望されている。そこで、歯車、シャフト等のように疲労強度や耐摩耗性が要求される部品に対しては、従来より浸炭等の表面硬化処理が行われてきたが、浸炭処理を行うと、浸炭処理後の焼入れ時に大きな歪みが発生するという問題がある。熱処理歪みの小さい表面硬化処理としては軟窒化処理があるが、この方法では、充分な曲げ疲労特性が得られない問題があり、更に軟窒化処理は500〜600℃の温度範囲で数時間処理されることから、内部硬さが低下するため、JISに規格化されているSACM645等の比較的炭素含有量の多い鋼が用いられ、切削加工等の加工性に問題があった。
【0003】
また、軟窒化時に析出硬化を目的とし、特開平5−59488号公報、特開平7−138701号公報、特開平10−306343号公報があり、これらは軟窒化時に金属間化合物やCuの析出により疲労強度の向上を図るものである。
【0004】
しかしながら、従来はCuの析出効果による曲げ疲労強度の向上および加工性との両立が必ずしも十分とはいえなかった。
【0005】
【発明が解決しようとする課題】
本発明はこのような事情に着目してなされたものであって、その目的は従来の軟窒化鋼以上の優れた疲労強度特性を発揮することができる軟窒化用鋼を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは軟窒化処理後には優れた曲げ疲労特性を得るためには、フェライト中にCuを析出させることにより優れた析出硬化が得られ、高い疲労強度が得られる。その効果を得るための鋼材組織はマルテンサイト組織やベイナイト組織、パーライト組織よりもフェライト組織を主体とした組織の方が効果が高いことを見出した。また、マトリックスをフェライト組織とした場合のパーライト組織やセメンタイトはあたかもフェライト粒界に存在する形態となり、特にセメンタイトは粒界にフィルム状に生成するため、疲労強度を低下させる原因となることを見出し、それを解決する手段としてはC量の低減が望ましいが、C量の低減は素材の硬さが低下するため、Ti、V、Nbの炭化物により、できるだけ粒状微細な炭化物とし、またその析出硬化により内部硬さを高めることができ、疲労強度の向上を図ることができることを見出した。
【0007】
本発明の軟窒化用鋼は、C:0.01%〜0.15%、Si:0.01%〜1.5%、Mn:0.15%〜2%、Cu:0.5%〜2%、Al:0.018〜0.5%を含有し、N:0.005%未満に制限し、Ti:0.01%〜0.5%、V:0.05%〜0.5%、Nb:0.005%〜0.5%の中から1種以上を含有し、且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とするものである。上記を基本とするものであるが、必要に応じて、Ni:0.5%〜2%を含有することにより、鋼の熱間延性を改善することができる。更に、Cr:0.1%〜2%の中から1種以上を含有することにより軟窒化特性を高めることができ、更に、S:0.03%〜0.1%、Pb:0.005%〜0.3%の中から1種以上を含有することも有効であり、これらの元素の添加は被削性改善に効果がある。
【0008】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0009】
C:0.01%〜0.15%
通常、鋼の強度を得る上でCは必要である。そのため、下限を0.01%とした。しかし、パーライト組織をできるだけ抑制し、20μm以下の粒状に保つために上限を0.15%とした。
【0010】
Si:0.01%〜1.5%
Siは溶製時の脱酸剤として有用な元素であり、鋼の強度の向上に効果があり、0.01%以上とした。しかし、多すぎると加工性を劣化させるため、1.5%以下とした。
【0011】
Mn:0.15%〜2%
Mnは溶製時の脱酸剤として有用な元素であり、鋼の強度の向上に効果があり、0.15%以上とした。しかし多すぎると鋼の焼入れ性が高くなり、マルテンサイトやベイナイト組織が生成しやすくなるため、その上限を2%とした。
【0012】
Cu:0.5%〜2%
Cuは軟窒化時における芯部硬さの時効硬化に寄与する元素であり、高い疲労強度を得るために本鋼においては必須である。その効果を得るためには0.5%以上が必要である。但し、多すぎると熱間脆性を生じて製造過程で割れが発生するため、2%以下とした。
【0013】
N:0.005%未満
NはTi、Nb、Vと結びついて窒化物を生成する。N濃度が高くなると窒化物とするために必要なTi、Nb、V添加量が多く必要になり、またTiN等は窒素量が高いと粗大になり、疲労強度の低下の原因となるため、窒素濃度は極力低いことが望ましいが、0.005%未満までは許容されるので、上限を0.005%未満とした。
【0014】
Ti:0.01%〜0.5%
Tiは炭化物を生成し、疲労強度の劣化原因となるフィルム状セメンタイトの抑制に効果がある。
【0015】
TiC炭化物は熱間圧延または熱間鍛造での析出硬化に効果があり、鋼材の強度を向上させることができる。また、その添加量は鋼のC量と密接な関係があり、フィルム状セメンタイトを抑制するための炭化物を生成させるために必要である。それらの効果はVやNbとの複合添加によっても可能であるため、その下限を0.01%以上とした。また、Tiは軟窒化時に浸入するNと結合して窒化物を生成し、表面硬さを向上させる効果がある。0.5%以上を超えて添加しても効果が飽和するため、0.5%以下とした。
【0016】
V:0.05〜0.5%
VはTiと同様に炭化物を生成し、フィルム状セメンタイトの抑制に効果がある。また、Vは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。それらの効果を得るためには0.05%以上必要であるが、0.5%を超えて添加しても効果が飽和するため、0.5%以下とした。
【0017】
Nb:0.005%〜0.5%
NbもTi、Vと同様に炭化物を生成し、フィルム状セメンタイトの抑制に効果がある。また、Nbは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。その効果を得るためには0.005%以上必要であるが、0.5%を超えて添加しても効果が飽和するため、0.5%以下とした。
【0018】
軟窒化処理前のフェライトの面積率が90%以上であり、残りが炭化物、または炭化物およびパーライト組織であり、パーライトの平均サイズが20μm以下:
本発明にとって鋼材の組織と疲労強度に対して重要な役割を果たす。軟窒化処理前の組織としてはフェライト組織が望ましく、下限として90%とした。残りの組織としての炭化物はセメンタイトが極力少なく、Ti、Nb、V等の微細炭化物であることが望ましい。また、パーライト組織が生成したとしてもそのサイズが小さいことが望ましい。パーライトの平均サイズが20μm以下であれば、疲労強度の低下が小さいことを見出し、平均サイズを20μm以下とした。
【0019】
フェライト面積率は、例えば組織を光学顕微鏡を用いて組織観察を行い、画像解析により、視野内におけるフェライト部分の占有面積率を求めた。後述の実施例では光学顕微鏡により400倍で任意に10視野の組織観察を行い、その平均値をフェライトの占有面積率とした。
【0020】
本発明のパーライトのサイズとは、例えば後述の実施例では光学顕微鏡を用いてランダムに10視野を400倍で組織観察を行い、その視野に存在する全てのパーライトの長径を測定し、その平均値を平均サイズとした。
【0021】
C+N≦Ti/4.0+Nb/7.7+V/4.3:
上述したように鋼の組織としてはフェライトを90%以上とし、パーライトの平均サイズを20μ以下としなければならない。そのためにはTi、Nb、Vの微細炭化物とし、各元素の添加量を上記式の関係を満たすことが必要である。
【0022】
Ni:0.5%〜2%
NiはCuによる熱間脆性を抑制する効果がある。その効果を得るためには0.5%以上が必要であり、2%を超えると効果が飽和するため上限とした。
【0023】
Cr:0.1%〜2%
Crは軟窒化での表面硬さを得るために必要な元素である。その効果を得るためには0.1%以上が必要である。しかし、2%以上としても効果が小さく、また鋼の焼入れ性が高くなり、マルテンサイトやベイナイト組織が生成しやすくなるため2%を上限とした。
【0024】
Al:0.018%〜0.5%
Alは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。その効果を得るためには0.018%以上必要であるが、0.5%を超えて添加しても効果が飽和するため上限とした。好ましくは、0.05〜0.5%である。
【0025】
S:0.03%〜0.1%
Sは被削性を改善する元素であり、必要に応じて添加されるが、0.03%未満では効果が小さく、0.1%を超えると強度が劣化するため、上限とした。
【0026】
Pb:0.005%〜0.3%
Pbは鋼の被削性を改善する元素であり、必要に応じて添加されるが、0.005%未満では効果が小さく、また0.3%を超えると強度が劣化するため、上限を0.3%とした。
【0027】
【実施例】
以下に実施例を挙げて本発明を説明する。表1に示す化学成分の組成を150kg真空溶解炉で溶製後、熱間圧延により直径40φの丸棒を製造した。この丸棒を1200℃に加熱し20φに熱間鍛造で鍛伸し、その後空冷しこの材料を素材とした。またこのときの冷却速度は1.0℃/秒であり、この冷却過程でCuを固溶させておく必要があり、そのためには0.2℃/秒以上の冷却速度で冷却すすればよい。
【0028】
その後、平行部10mmφの小野式回転曲げ試験片を作成した。この試験片を580℃で120分でガス軟窒化処理を行った。軟窒化処理はRXガス:NH3=1:1のガス雰囲気で行った。
【0029】
比較例22に用いたJIS−SCM415鋼は930℃で4時間の浸炭処理を施し、その後油焼入れを行った後180度で2時間の焼き戻し処理を行った。このように処理された試験片の表面より50μm内部および内部の硬さを測定すると供に、小野式回転曲げ試験片を実施した。
【0030】
表2に本発明例および比較例の鋼の素材の硬さおよび軟窒化処理後の表面硬さ、組織のフェライト面積率、炭化物およびパーライトの平均サイズ、小野式回転曲げ疲労試験における疲労限強度を示した。
【0031】
表2において本発明例1〜4、6〜15は本発明の請求項1〜4に該当する鋼組成、組織となっており、高い疲労強度となっている。
【0032】
それに対して比較例16はC量が多く、組織のフェライト面積率が90%未満となり、疲労強度が低下した。比較例17はC+N≦Ti/4.0+Nb/7.7+V/4.3の関係が満足せず、パーライトサイズが大きくなり疲労強度が低下した。比較例18はCu添加量が不足し、疲労強度の向上効果が得られなかった。比較例19はMn添加量が高く、組織のフェライト面積率が不足し、疲労強度が低下した。比較例20はCr添加量が高く、組織のフェライト面積率が不足し、疲労強度が低下した。比較例21はN含有量が高く、そのため粗大なTiNが生成し、疲労強度が低下した。以上述べたように本発明例によれば優れた疲労強度が得られることがわかる。
【0033】
【表1】
【0034】
【表2】
【0035】
【発明の効果】
以上のように本発明によれば、疲労特性に優れた軟窒化用鋼であって、高負荷のかかるクランクシャフトや歯車等の部品に適用した場合であっても、充分な疲労強度を発揮し、高強度の軟窒化用鋼が提供できる。なお、本鋼は熱間圧延や熱間鍛造後、または更に焼きならし処理などのを行った状態でも素材の硬さが低いため、冷間鍛造部材にも好適に適用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel for soft nitriding that can exhibit a bending fatigue strength equal to or higher than that of a carburized material after soft nitriding. The steel for soft nitriding is suitably used for high-strength structural components that dislike the occurrence of heat treatment distortion such as gears, crankshafts, and connecting rods.
[0002]
[Prior art]
In recent years, with increasing output and weight of automobiles, there has been a demand for increasing the strength of structural parts. Therefore, for parts that require fatigue strength and wear resistance such as gears and shafts, surface hardening treatment such as carburizing has been performed conventionally, but when carburizing treatment is performed, There is a problem that large distortion occurs during quenching. There is soft nitriding as a surface hardening treatment with small heat treatment strain, but this method has a problem that sufficient bending fatigue characteristics cannot be obtained, and the soft nitriding treatment is performed for several hours in a temperature range of 500 to 600 ° C. Therefore, since the internal hardness is reduced, steel having a relatively high carbon content such as SACM645 standardized by JIS is used, and there is a problem in workability such as cutting.
[0003]
Further, for the purpose of precipitation hardening during soft nitriding, there are JP-A-5-59488 , JP-A-7-138701 , and JP-A-10-306343 , which are caused by precipitation of intermetallic compounds and Cu during soft nitriding. It is intended to improve fatigue strength.
[0004]
However, conventionally, it has not always been sufficient to achieve both improvement in bending fatigue strength and workability due to the Cu precipitation effect.
[0005]
[Problems to be solved by the invention]
The present invention has been made paying attention to such circumstances, and an object of the present invention is to provide a steel for nitrocarburizing that can exhibit excellent fatigue strength characteristics over conventional nitrocarburized steel.
[0006]
[Means for Solving the Problems]
In order to obtain excellent bending fatigue characteristics after the soft nitriding treatment, the present inventors obtain excellent precipitation hardening by precipitating Cu in ferrite, and high fatigue strength is obtained. It has been found that a steel material structure for obtaining the effect is more effective in a structure mainly composed of a ferrite structure than in a martensite structure, a bainite structure, or a pearlite structure. In addition, the pearlite structure and cementite when the matrix is a ferrite structure are in a form that exists at the ferrite grain boundary, and in particular, cementite is generated in the form of a film at the grain boundary, and thus it is found that it causes a decrease in fatigue strength. As a means to solve this, it is desirable to reduce the amount of C. However, since the reduction of the amount of C lowers the hardness of the material, the carbide of Ti, V, and Nb is used to make the carbide as fine as possible, and by precipitation hardening. It has been found that the internal hardness can be increased and the fatigue strength can be improved.
[0007]
The steel for soft nitriding of the present invention includes C: 0.01% to 0.15%, Si: 0.01% to 1.5%, Mn: 0.15% to 2%, Cu: 0.5% to 2% , Al: 0.018 to 0.5%, N: limited to less than 0.005%, Ti: 0.01% to 0.5%, V: 0.05% to 0.5% %, Nb: at least one of 0.005% to 0.5% and C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3, with the balance being Fe and inevitable impurities It consists of elements, the area ratio of ferrite is 90% or more, the remainder is made of carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less. Although it is based on the above, the hot ductility of steel can be improved by containing Ni: 0.5%-2% as needed. Furthermore , the soft nitriding characteristic can be enhanced by containing one or more of Cr: 0.1% to 2%, and S: 0.03% to 0.1%, Pb: 0.005. It is also effective to contain one or more elements from% to 0.3%, and the addition of these elements is effective in improving machinability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0009]
C: 0.01% to 0.15%
Usually, C is necessary to obtain the strength of steel. Therefore, the lower limit was made 0.01%. However, the upper limit was made 0.15% in order to suppress the pearlite structure as much as possible and keep it in a granular form of 20 μm or less.
[0010]
Si: 0.01% to 1.5%
Si is an element useful as a deoxidizer at the time of melting, and is effective in improving the strength of steel. However, if the amount is too large, the workability deteriorates, so the content was made 1.5% or less.
[0011]
Mn: 0.15% to 2%
Mn is an element useful as a deoxidizer at the time of melting, and is effective in improving the strength of steel, and is set to 0.15% or more. However, if the amount is too large, the hardenability of the steel becomes high and martensite and bainite structures tend to be generated, so the upper limit was made 2%.
[0012]
Cu: 0.5% to 2%
Cu is an element that contributes to age hardening of the core hardness during soft nitriding, and is essential in this steel in order to obtain high fatigue strength. In order to obtain the effect, 0.5% or more is necessary. However, if the amount is too large, hot brittleness occurs and cracks occur in the manufacturing process, so the content was made 2% or less.
[0013]
N: Less than 0.005% N combines with Ti, Nb, and V to form a nitride. When the N concentration increases, a large amount of Ti, Nb, and V necessary for forming a nitride is required, and TiN and the like become coarse when the amount of nitrogen is high, which causes a decrease in fatigue strength. Although the concentration is desirably as low as possible, it is allowed to be less than 0.005%, so the upper limit was made less than 0.005%.
[0014]
Ti: 0.01% to 0.5%
Ti produces carbides and is effective in suppressing film-like cementite which causes deterioration of fatigue strength.
[0015]
TiC carbide is effective for precipitation hardening in hot rolling or hot forging, and can improve the strength of the steel material. Further, the amount of addition is closely related to the amount of C in steel, and is necessary for generating carbide for suppressing film-like cementite. Since these effects can be achieved by combined addition with V or Nb, the lower limit was made 0.01% or more. Further, Ti combines with N that penetrates during soft nitriding to produce nitride, and has the effect of improving the surface hardness. Even if added over 0.5% or more, the effect is saturated, so the content was made 0.5% or less.
[0016]
V: 0.05-0.5%
V produces carbides like Ti, and is effective in suppressing film-like cementite. V is an element that can combine with nitrogen entering during soft nitriding to form nitrides and increase the surface hardness. In order to obtain these effects, 0.05% or more is necessary, but even if added over 0.5%, the effect is saturated, so 0.5% or less was set.
[0017]
Nb: 0.005% to 0.5%
Nb also produces carbides like Ti and V, and is effective in suppressing film-like cementite. Nb is an element that can combine with nitrogen that enters during soft nitriding to form nitrides and increase the surface hardness. In order to obtain the effect, 0.005% or more is necessary, but even if added over 0.5%, the effect is saturated, so 0.5% or less.
[0018]
The area ratio of ferrite before nitrocarburizing is 90% or more, the remainder is carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less:
For the present invention, it plays an important role for the structure and fatigue strength of steel. As the structure before soft nitriding, a ferrite structure is desirable, and the lower limit is 90%. The carbide as the remaining structure has as little cementite as possible, and is desirably fine carbide such as Ti, Nb, and V. Further, even if a pearlite structure is generated, it is desirable that the size is small. When the average size of pearlite was 20 μm or less, it was found that the decrease in fatigue strength was small, and the average size was set to 20 μm or less.
[0019]
For the ferrite area ratio, for example, the structure was observed using an optical microscope, and the occupied area ratio of the ferrite portion in the field of view was determined by image analysis. In the examples described later, the structure of 10 visual fields was arbitrarily observed with an optical microscope at 400 times, and the average value was defined as the area occupied by ferrite.
[0020]
The size of the pearlite of the present invention is, for example, in the examples described later, by using an optical microscope, ten visual fields are randomly observed at 400 times, the major axis of all pearlite existing in the visual field is measured, and the average value thereof Was the average size.
[0021]
C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3:
As described above, the steel structure must be 90% or more of ferrite and the average size of pearlite must be 20 μ or less. For this purpose, it is necessary to use fine carbides of Ti, Nb, and V, and the addition amount of each element must satisfy the relationship of the above formula.
[0022]
Ni: 0.5% to 2%
Ni has an effect of suppressing hot brittleness caused by Cu. In order to obtain the effect, 0.5% or more is necessary, and if it exceeds 2%, the effect is saturated, so the upper limit is set.
[0023]
Cr: 0.1% to 2%
Cr is an element necessary for obtaining surface hardness by soft nitriding. In order to obtain the effect, 0.1% or more is necessary. However, even if it is 2% or more, the effect is small, the hardenability of the steel is increased, and martensite and bainite structure are easily generated, so 2% was made the upper limit.
[0024]
Al: 0.018 % to 0.5%
Al is an element that can combine with nitrogen that enters during soft nitriding to form nitrides and increase the surface hardness. In order to obtain the effect, 0.018% or more is necessary, but even if added over 0.5%, the effect is saturated, so the upper limit was set. Preferably, it is 0.05 to 0.5%.
[0025]
S: 0.03% to 0.1%
S is an element that improves machinability, and is added as necessary. However, if it is less than 0.03%, the effect is small, and if it exceeds 0.1%, the strength deteriorates.
[0026]
Pb: 0.005% to 0.3%
Pb is an element that improves the machinability of steel and is added as necessary. However, if it is less than 0.005%, the effect is small, and if it exceeds 0.3%, the strength deteriorates, so the upper limit is 0. .3%.
[0027]
【Example】
Hereinafter, the present invention will be described with reference to examples. After the composition of the chemical components shown in Table 1 was melted in a 150 kg vacuum melting furnace, a round bar having a diameter of 40φ was manufactured by hot rolling. This round bar was heated to 1200 ° C., forged to 20φ by hot forging, and then air-cooled to use this material as a raw material. Further, the cooling rate at this time is 1.0 ° C./second, and it is necessary to dissolve Cu in this cooling process. For that purpose, cooling should be performed at a cooling rate of 0.2 ° C./second or more. .
[0028]
Thereafter, an Ono type rotary bending test piece having a parallel portion of 10 mmφ was prepared. This test piece was subjected to gas soft nitriding at 580 ° C. for 120 minutes. Soft nitriding was performed in a gas atmosphere of RX gas: NH 3 = 1: 1.
[0029]
The JIS-SCM415 steel used in Comparative Example 22 was carburized at 930 ° C. for 4 hours, then oil-quenched and then tempered at 180 degrees for 2 hours. In addition to measuring the internal and internal hardness of 50 μm from the surface of the test piece thus treated, an Ono type rotary bending test piece was carried out.
[0030]
Table 2 shows the hardness of the steel material of the present invention and the comparative example, the surface hardness after soft nitriding, the ferrite area ratio of the structure, the average size of carbide and pearlite, and the fatigue limit strength in the Ono type rotating bending fatigue test. Indicated.
[0031]
In Table 2, Examples 1-4 and 6-15 of the present invention have steel compositions and structures corresponding to claims 1 to 4 of the present invention, and have high fatigue strength.
[0032]
On the other hand, in Comparative Example 16, the amount of C was large, the ferrite area ratio of the structure was less than 90%, and the fatigue strength was reduced. In Comparative Example 17, the relationship of C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3 was not satisfied, the pearlite size was increased, and the fatigue strength was reduced. In Comparative Example 18, the amount of Cu added was insufficient, and the effect of improving fatigue strength was not obtained. In Comparative Example 19, the amount of Mn added was high, the ferrite area ratio of the structure was insufficient, and the fatigue strength was reduced. In Comparative Example 20, the amount of Cr added was high, the ferrite area ratio of the structure was insufficient, and the fatigue strength was reduced. Comparative Example 21 had a high N content, so that coarse TiN was generated and the fatigue strength was reduced. As described above, it can be seen that excellent fatigue strength can be obtained according to the examples of the present invention.
[0033]
[Table 1]
[0034]
[Table 2]
[0035]
【The invention's effect】
As described above, according to the present invention, a soft nitriding steel having excellent fatigue characteristics, which exhibits sufficient fatigue strength even when applied to components such as crankshafts and gears that are subjected to high loads. High strength steel for soft nitriding can be provided. In addition, since this steel has low material hardness even after hot rolling or hot forging, or in a state of further normalizing, it can be suitably applied to cold forged members.
Claims (4)
C:0.01%〜0.15%、
Si:0.01%〜1.5%、
Mn:0.15%〜2%、
Cu:0.5%〜2%、
Al:0.018〜0.5%
を含有し、
N:0.005%未満
に制限し、
Ti:0.01%〜0.5%、
Nb:0.005%〜0.5%、
V:0.05%〜0.5%
の中から1種以上を含有し、
且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、
残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。% By mass
C: 0.01% to 0.15%,
Si: 0.01% to 1.5%,
Mn: 0.15% to 2%,
Cu: 0.5% ~2%,
Al: 0.018 to 0.5%
Containing
N: limited to less than 0.005%,
Ti: 0.01% to 0.5%,
Nb: 0.005% to 0.5%,
V: 0.05% to 0.5%
Containing one or more of
And C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3,
Bending fatigue, characterized in that the balance is Fe and inevitable impurity elements, the area ratio of ferrite is 90% or more, the balance is carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less Soft nitriding steel with excellent strength.
C:0.01%〜0.15%、
Si:0.01%〜1.5%、
Mn:0.15%〜2%、
Cu:0.5%〜2%、
Al:0.018〜0.5%
を含有し、
N:0.005%未満
に制限し、
Ti:0.01%〜0.5%、
Nb:0.005%〜0.5%、
V:0.05%〜0.5%
の中から1種以上含有し、更に、
Ni:0.5%〜2%
を含有し、且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。% By mass
C: 0.01% to 0.15%,
Si: 0.01% to 1.5%,
Mn: 0.15% to 2%,
Cu: 0.5% ~2%,
Al: 0.018 to 0.5%
Containing
N: limited to less than 0.005%,
Ti: 0.01% to 0.5%,
Nb: 0.005% to 0.5%,
V: 0.05% to 0.5%
Containing one or more of
Ni: 0.5% to 2%
And C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3, the balance being made of Fe and inevitable impurity elements, the area ratio of ferrite being 90% or more, and the remainder being carbide, or A nitrocarburizing steel excellent in bending fatigue strength, characterized by comprising a carbide and a pearlite structure and having an average pearlite size of 20 μm or less.
Cr:0.1%〜2%
を含有し、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。The steel component according to claim 1 or 2, further in mass%,
Cr: 0.1% to 2%
Containing, in area ratio of ferrite is 90% or more, from the rest carbides or carbides and pearlite, soft-nitriding steel for the average size of pearlite and excellent bending fatigue strength, characterized in that at 20μm or less .
S:0.03%〜0.1%、
Pb:0.005%〜0.3%
の中から1種以上を含有し、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。The steel component according to claims 1 to 3, further in mass%,
S: 0.03% to 0.1%
Pb: 0.005% to 0.3%
The bending fatigue strength is characterized in that it contains at least one of the above, the ferrite area ratio is 90% or more, the remainder consists of carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less. Excellent nitrocarburizing steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259634A JP4291941B2 (en) | 2000-08-29 | 2000-08-29 | Soft nitriding steel with excellent bending fatigue strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000259634A JP4291941B2 (en) | 2000-08-29 | 2000-08-29 | Soft nitriding steel with excellent bending fatigue strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002069572A JP2002069572A (en) | 2002-03-08 |
JP4291941B2 true JP4291941B2 (en) | 2009-07-08 |
Family
ID=18747781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000259634A Expired - Lifetime JP4291941B2 (en) | 2000-08-29 | 2000-08-29 | Soft nitriding steel with excellent bending fatigue strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4291941B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114775A1 (en) | 2010-03-16 | 2011-09-22 | 新日本製鐵株式会社 | Steel for nitrocarburization, nitrocarburized components, and production method for same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5578288B2 (en) | 2012-01-31 | 2014-08-27 | Jfeスチール株式会社 | Hot-rolled steel sheet for generator rim and manufacturing method thereof |
WO2013121794A1 (en) | 2012-02-15 | 2013-08-22 | Jfe条鋼株式会社 | Soft-nitriding steel and soft-nitrided component using steel as material |
WO2014002288A1 (en) | 2012-06-27 | 2014-01-03 | Jfeスチール株式会社 | Steel sheet for soft nitriding and process for producing same |
KR101726251B1 (en) | 2012-07-26 | 2017-04-12 | 제이에프이 스틸 가부시키가이샤 | Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component |
TWI539011B (en) | 2014-06-13 | 2016-06-21 | Nippon Steel & Sumitomo Metal Corp | Steel plate for soft nitriding and its manufacturing method and soft nitriding steel |
CN107406942B (en) | 2015-03-24 | 2019-10-18 | 杰富意钢铁株式会社 | Tufftride steel and component and its manufacturing method |
JP6610808B2 (en) | 2016-11-30 | 2019-11-27 | Jfeスチール株式会社 | Soft nitriding steel and parts |
KR101917454B1 (en) * | 2016-12-22 | 2018-11-09 | 주식회사 포스코 | Steel plate having excellent high-strength and high-toughness and method for manufacturing same |
US20200131609A1 (en) * | 2017-06-23 | 2020-04-30 | Nippon Steel Corporation | High-strength steel member |
WO2020090739A1 (en) | 2018-10-31 | 2020-05-07 | Jfeスチール株式会社 | Soft-nitriding steel, soft-nitrided component, and methods for manufacturing same |
CN115605629A (en) | 2020-05-15 | 2023-01-13 | 杰富意钢铁株式会社(Jp) | Steel and steel component |
-
2000
- 2000-08-29 JP JP2000259634A patent/JP4291941B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011114775A1 (en) | 2010-03-16 | 2011-09-22 | 新日本製鐵株式会社 | Steel for nitrocarburization, nitrocarburized components, and production method for same |
US9284632B2 (en) | 2010-03-16 | 2016-03-15 | Nippon Steel & Sumitomo Metal Corporation | Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part |
US10196720B2 (en) | 2010-03-16 | 2019-02-05 | Nippon Steel & Sumitomo Metal Corporation | Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part |
Also Published As
Publication number | Publication date |
---|---|
JP2002069572A (en) | 2002-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956146B2 (en) | Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts | |
EP2530178B1 (en) | Case-hardened steel and carburized material | |
WO2012073485A1 (en) | Carburizing steel having excellent cold forgeability, and production method thereof | |
JP4050829B2 (en) | Carburized material with excellent rolling fatigue characteristics | |
JP4291941B2 (en) | Soft nitriding steel with excellent bending fatigue strength | |
JPH11335777A (en) | Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production | |
JP3381738B2 (en) | Manufacturing method of mechanical structural parts with excellent mechanical strength | |
JP4403624B2 (en) | Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof | |
JP3738003B2 (en) | Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same | |
JPH10306343A (en) | Steel for soft-nitriding, excellent in cold forgeability and pitting resistance | |
JP4347763B2 (en) | High temperature carburizing steel and method for producing the same | |
JP3764627B2 (en) | Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method | |
JP5707938B2 (en) | Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength | |
JP2006291335A (en) | Steel for case hardening having excellent high temperature carburizing characteristic and workability | |
JP2991064B2 (en) | Non-tempered nitrided forged steel and non-tempered nitrided forged products | |
JP2894184B2 (en) | Steel for soft nitriding | |
JPH0559488A (en) | Precipitation hardening type high strength steel for soft-nitriding excellent in machinability | |
JPH0617224A (en) | Carburized bearing parts excellent in high temperature rolling fatigue property | |
JP3538900B2 (en) | Rolling member | |
JP3471576B2 (en) | Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel | |
JP6390685B2 (en) | Non-tempered steel and method for producing the same | |
JP2768062B2 (en) | Manufacturing method of high strength tough steel | |
JPH0617225A (en) | Carburized bearing parts excellent in rolling fatigue property | |
JP4536327B2 (en) | Nb-containing case-hardened steel with excellent carburizing properties in a short time | |
JP4450217B2 (en) | Non-tempered steel for soft nitriding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081029 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081219 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090324 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120410 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130410 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140410 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |