JP4291941B2 - Soft nitriding steel with excellent bending fatigue strength - Google Patents

Soft nitriding steel with excellent bending fatigue strength Download PDF

Info

Publication number
JP4291941B2
JP4291941B2 JP2000259634A JP2000259634A JP4291941B2 JP 4291941 B2 JP4291941 B2 JP 4291941B2 JP 2000259634 A JP2000259634 A JP 2000259634A JP 2000259634 A JP2000259634 A JP 2000259634A JP 4291941 B2 JP4291941 B2 JP 4291941B2
Authority
JP
Japan
Prior art keywords
steel
fatigue strength
pearlite
less
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000259634A
Other languages
Japanese (ja)
Other versions
JP2002069572A (en
Inventor
誠司 伊藤
秀雄 蟹澤
譲児 田村
正雄 石田
康高 大須賀
敦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2000259634A priority Critical patent/JP4291941B2/en
Publication of JP2002069572A publication Critical patent/JP2002069572A/en
Application granted granted Critical
Publication of JP4291941B2 publication Critical patent/JP4291941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軟窒化後に浸炭材と同等以上の曲げ疲労強度を発揮できる軟窒化用鋼に関するものである。本軟窒化用鋼は例えば歯車やクランクシャフト、コンロッド等の熱処理歪みの発生を嫌う高強度構造用部品に好適に利用される。
【0002】
【従来の技術】
近年、自動車の高出力化および軽量化に伴い、構造用部品の高強度化が要望されている。そこで、歯車、シャフト等のように疲労強度や耐摩耗性が要求される部品に対しては、従来より浸炭等の表面硬化処理が行われてきたが、浸炭処理を行うと、浸炭処理後の焼入れ時に大きな歪みが発生するという問題がある。熱処理歪みの小さい表面硬化処理としては軟窒化処理があるが、この方法では、充分な曲げ疲労特性が得られない問題があり、更に軟窒化処理は500〜600℃の温度範囲で数時間処理されることから、内部硬さが低下するため、JISに規格化されているSACM645等の比較的炭素含有量の多い鋼が用いられ、切削加工等の加工性に問題があった。
【0003】
また、軟窒化時に析出硬化を目的とし、特開平5−59488号公報、特開平7−138701号公報、特開平10−306343号公報があり、これらは軟窒化時に金属間化合物やCuの析出により疲労強度の向上を図るものである。
【0004】
しかしながら、従来はCuの析出効果による曲げ疲労強度の向上および加工性との両立が必ずしも十分とはいえなかった。
【0005】
【発明が解決しようとする課題】
本発明はこのような事情に着目してなされたものであって、その目的は従来の軟窒化鋼以上の優れた疲労強度特性を発揮することができる軟窒化用鋼を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは軟窒化処理後には優れた曲げ疲労特性を得るためには、フェライト中にCuを析出させることにより優れた析出硬化が得られ、高い疲労強度が得られる。その効果を得るための鋼材組織はマルテンサイト組織やベイナイト組織、パーライト組織よりもフェライト組織を主体とした組織の方が効果が高いことを見出した。また、マトリックスをフェライト組織とした場合のパーライト組織やセメンタイトはあたかもフェライト粒界に存在する形態となり、特にセメンタイトは粒界にフィルム状に生成するため、疲労強度低下させる原因となることを見出し、それを解決する手段としてはC量の低減が望ましいが、C量の低減は素材の硬さが低下するため、Ti、V、Nbの炭化物により、できるだけ粒状微細な炭化物とし、またその析出硬化により内部硬さを高めることができ、疲労強度の向上を図ることができることを見出した。
【0007】
本発明の軟窒化用鋼は、C:0.01%〜0.15%、Si:0.01%〜1.5%、Mn:0.15%〜2%、Cu:0.5%〜2%、Al:0.018〜0.5%を含有し、N:0.005%未満に制限し、Ti:0.01%〜0.5%、V:0.05%〜0.5%、Nb:0.005%〜0.5%の中から1種以上を含有し、且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とするものである。上記を基本とするものであるが、必要に応じて、Ni:0.5%〜2%を含有することにより、鋼の熱間延性を改善することができる。更にCr:0.1%〜2%の中から1種以上を含有することにより軟窒化特性を高めることができ、更に、S:0.03%〜0.1%、Pb:0.005%〜0.3%の中から1種以上を含有することも有効であり、これらの元素の添加は被削性改善に効果がある。
【0008】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0009】
C:0.01%〜0.15%
通常、鋼の強度を得る上でCは必要である。そのため、下限を0.01%とした。しかし、パーライト組織をできるだけ抑制し、20μm以下の粒状に保つために上限を0.15%とした。
【0010】
Si:0.01%〜1.5%
Siは溶製時の脱酸剤として有用な元素であり、鋼の強度の向上に効果があり、0.01%以上とした。しかし、多すぎると加工性を劣化させるため、1.5%以下とした。
【0011】
Mn:0.15%〜2%
Mnは溶製時の脱酸剤として有用な元素であり、鋼の強度の向上に効果があり、0.15%以上とした。しかし多すぎると鋼の焼入れ性が高くなり、マルテンサイトやベイナイト組織が生成しやすくなるため、その上限を2%とした。
【0012】
Cu:0.5%〜2%
Cuは軟窒化時における芯部硬さの時効硬化に寄与する元素であり、高い疲労強度を得るために本鋼においては必須である。その効果を得るためには0.5%以上が必要である。但し、多すぎると熱間脆性を生じて製造過程で割れが発生するため、2%以下とした。
【0013】
N:0.005%未満
NはTi、Nb、Vと結びついて窒化物を生成する。N濃度が高くなると窒化物とするために必要なTi、Nb、V添加量が多く必要になり、またTiN等は窒素量が高いと粗大になり、疲労強度の低下の原因となるため、窒素濃度は極力低いことが望ましいが、0.005%未満までは許容されるので、上限を0.005%未満とした。
【0014】
Ti:0.01%〜0.5%
Tiは炭化物を生成し、疲労強度の劣化原因となるフィルム状セメンタイトの抑制に効果がある。
【0015】
TiC炭化物は熱間圧延または熱間鍛造での析出硬化に効果があり、鋼材の強度を向上させることができる。また、その添加量は鋼のC量と密接な関係があり、フィルム状セメンタイトを抑制するための炭化物を生成させるために必要である。それらの効果はVやNbとの複合添加によっても可能であるため、その下限を0.01%以上とした。また、Tiは軟窒化時に浸入するNと結合して窒化物を生成し、表面硬さを向上させる効果がある。0.5%以上を超えて添加しても効果が飽和するため、0.5%以下とした。
【0016】
V:0.05〜0.5%
VはTiと同様に炭化物を生成し、フィルム状セメンタイトの抑制に効果がある。また、Vは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。それらの効果を得るためには0.05%以上必要であるが、0.5%を超えて添加しても効果が飽和するため、0.5%以下とした。
【0017】
Nb:0.005%〜0.5%
NbもTi、Vと同様に炭化物を生成し、フィルム状セメンタイトの抑制に効果がある。また、Nbは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。その効果を得るためには0.005%以上必要であるが、0.5%を超えて添加しても効果が飽和するため、0.5%以下とした。
【0018】
軟窒化処理前のフェライトの面積率が90%以上であり、残りが炭化物、または炭化物およびパーライト組織であり、パーライトの平均サイズが20μm以下:
本発明にとって鋼材の組織と疲労強度に対して重要な役割を果たす。軟窒化処理前の組織としてはフェライト組織が望ましく、下限として90%とした。残りの組織としての炭化物はセメンタイトが極力少なく、Ti、Nb、V等の微細炭化物であることが望ましい。また、パーライト組織が生成したとしてもそのサイズが小さいことが望ましい。パーライトの平均サイズが20μm以下であれば、疲労強度の低下が小さいことを見出し、平均サイズを20μm以下とした。
【0019】
フェライト面積率は、例えば組織を光学顕微鏡を用いて組織観察を行い、画像解析により、視野内におけるフェライト部分の占有面積率を求めた。後述の実施例では光学顕微鏡により400倍で任意に10視野の組織観察を行い、その平均値をフェライトの占有面積率とした。
【0020】
本発明のパーライトのサイズとは、例えば後述の実施例では光学顕微鏡を用いてランダムに10視野を400倍で組織観察を行い、その視野に存在する全てのパーライトの長径を測定し、その平均値を平均サイズとした。
【0021】
C+N≦Ti/4.0+Nb/7.7+V/4.3:
上述したように鋼の組織としてはフェライトを90%以上とし、パーライトの平均サイズを20μ以下としなければならない。そのためにはTi、Nb、Vの微細炭化物とし、各元素の添加量を上記式の関係を満たすことが必要である。
【0022】
Ni:0.5%〜2%
NiはCuによる熱間脆性を抑制する効果がある。その効果を得るためには0.5%以上が必要であり、2%を超えると効果が飽和するため上限とした。
【0023】
Cr:0.1%〜2%
Crは軟窒化での表面硬さを得るために必要な元素である。その効果を得るためには0.1%以上が必要である。しかし、2%以上としても効果が小さく、また鋼の焼入れ性が高くなり、マルテンサイトやベイナイト組織が生成しやすくなるため2%を上限とした。
【0024】
Al:0.018%〜0.5%
Alは軟窒化時に浸入する窒素と結合して窒化物を生成し、表面硬さを高めることができる元素である。その効果を得るためには0.018%以上必要であるが、0.5%を超えて添加しても効果が飽和するため上限とした。好ましくは、0.05〜0.5%である。
【0025】
S:0.03%〜0.1%
Sは被削性を改善する元素であり、必要に応じて添加されるが、0.03%未満では効果が小さく、0.1%を超えると強度が劣化するため、上限とした。
【0026】
Pb:0.005%〜0.3%
Pbは鋼の被削性を改善する元素であり、必要に応じて添加されるが、0.005%未満では効果が小さく、また0.3%を超えると強度が劣化するため、上限を0.3%とした。
【0027】
【実施例】
以下に実施例を挙げて本発明を説明する。表1に示す化学成分の組成を150kg真空溶解炉で溶製後、熱間圧延により直径40φの丸棒を製造した。この丸棒を1200℃に加熱し20φに熱間鍛造で鍛伸し、その後空冷しこの材料を素材とした。またこのときの冷却速度は1.0℃/秒であり、この冷却過程でCuを固溶させておく必要があり、そのためには0.2℃/秒以上の冷却速度で冷却すすればよい。
【0028】
その後、平行部10mmφの小野式回転曲げ試験片を作成した。この試験片を580℃で120分でガス軟窒化処理を行った。軟窒化処理はRXガス:NH3=1:1のガス雰囲気で行った。
【0029】
比較例22に用いたJIS−SCM415鋼は930℃で4時間の浸炭処理を施し、その後油焼入れを行った後180度で2時間の焼き戻し処理を行った。このように処理された試験片の表面より50μm内部および内部の硬さを測定すると供に、小野式回転曲げ試験片を実施した。
【0030】
表2に本発明例および比較例の鋼の素材の硬さおよび軟窒化処理後の表面硬さ、組織のフェライト面積率、炭化物およびパーライトの平均サイズ、小野式回転曲げ疲労試験における疲労限強度を示した。
【0031】
表2において本発明例1〜4、6〜15は本発明の請求項1〜4に該当する鋼組成、組織となっており、高い疲労強度となっている。
【0032】
それに対して比較例16はC量が多く、組織のフェライト面積率が90%未満となり、疲労強度が低下した。比較例17はC+N≦Ti/4.0+Nb/7.7+V/4.3の関係が満足せず、パーライトサイズが大きくなり疲労強度が低下した。比較例18はCu添加量が不足し、疲労強度の向上効果が得られなかった。比較例19はMn添加量が高く、組織のフェライト面積率が不足し、疲労強度が低下した。比較例20はCr添加量が高く、組織のフェライト面積率が不足し、疲労強度が低下した。比較例21はN含有量が高く、そのため粗大なTiNが生成し、疲労強度が低下した。以上述べたように本発明例によれば優れた疲労強度が得られることがわかる。
【0033】
【表1】

Figure 0004291941
【0034】
【表2】
Figure 0004291941
【0035】
【発明の効果】
以上のように本発明によれば、疲労特性に優れた軟窒化用鋼であって、高負荷のかかるクランクシャフトや歯車等の部品に適用した場合であっても、充分な疲労強度を発揮し、高強度の軟窒化用鋼が提供できる。なお、本鋼は熱間圧延や熱間鍛造後、または更に焼きならし処理などのを行った状態でも素材の硬さが低いため、冷間鍛造部材にも好適に適用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel for soft nitriding that can exhibit a bending fatigue strength equal to or higher than that of a carburized material after soft nitriding. The steel for soft nitriding is suitably used for high-strength structural components that dislike the occurrence of heat treatment distortion such as gears, crankshafts, and connecting rods.
[0002]
[Prior art]
In recent years, with increasing output and weight of automobiles, there has been a demand for increasing the strength of structural parts. Therefore, for parts that require fatigue strength and wear resistance such as gears and shafts, surface hardening treatment such as carburizing has been performed conventionally, but when carburizing treatment is performed, There is a problem that large distortion occurs during quenching. There is soft nitriding as a surface hardening treatment with small heat treatment strain, but this method has a problem that sufficient bending fatigue characteristics cannot be obtained, and the soft nitriding treatment is performed for several hours in a temperature range of 500 to 600 ° C. Therefore, since the internal hardness is reduced, steel having a relatively high carbon content such as SACM645 standardized by JIS is used, and there is a problem in workability such as cutting.
[0003]
Further, for the purpose of precipitation hardening during soft nitriding, there are JP-A-5-59488 , JP-A-7-138701 , and JP-A-10-306343 , which are caused by precipitation of intermetallic compounds and Cu during soft nitriding. It is intended to improve fatigue strength.
[0004]
However, conventionally, it has not always been sufficient to achieve both improvement in bending fatigue strength and workability due to the Cu precipitation effect.
[0005]
[Problems to be solved by the invention]
The present invention has been made paying attention to such circumstances, and an object of the present invention is to provide a steel for nitrocarburizing that can exhibit excellent fatigue strength characteristics over conventional nitrocarburized steel.
[0006]
[Means for Solving the Problems]
In order to obtain excellent bending fatigue characteristics after the soft nitriding treatment, the present inventors obtain excellent precipitation hardening by precipitating Cu in ferrite, and high fatigue strength is obtained. It has been found that a steel material structure for obtaining the effect is more effective in a structure mainly composed of a ferrite structure than in a martensite structure, a bainite structure, or a pearlite structure. In addition, the pearlite structure and cementite when the matrix is a ferrite structure are in a form that exists at the ferrite grain boundary, and in particular, cementite is generated in the form of a film at the grain boundary, and thus it is found that it causes a decrease in fatigue strength. As a means to solve this, it is desirable to reduce the amount of C. However, since the reduction of the amount of C lowers the hardness of the material, the carbide of Ti, V, and Nb is used to make the carbide as fine as possible, and by precipitation hardening. It has been found that the internal hardness can be increased and the fatigue strength can be improved.
[0007]
The steel for soft nitriding of the present invention includes C: 0.01% to 0.15%, Si: 0.01% to 1.5%, Mn: 0.15% to 2%, Cu: 0.5% to 2% , Al: 0.018 to 0.5%, N: limited to less than 0.005%, Ti: 0.01% to 0.5%, V: 0.05% to 0.5% %, Nb: at least one of 0.005% to 0.5% and C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3, with the balance being Fe and inevitable impurities It consists of elements, the area ratio of ferrite is 90% or more, the remainder is made of carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less. Although it is based on the above, the hot ductility of steel can be improved by containing Ni: 0.5%-2% as needed. Furthermore , the soft nitriding characteristic can be enhanced by containing one or more of Cr: 0.1% to 2%, and S: 0.03% to 0.1%, Pb: 0.005. It is also effective to contain one or more elements from% to 0.3%, and the addition of these elements is effective in improving machinability.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0009]
C: 0.01% to 0.15%
Usually, C is necessary to obtain the strength of steel. Therefore, the lower limit was made 0.01%. However, the upper limit was made 0.15% in order to suppress the pearlite structure as much as possible and keep it in a granular form of 20 μm or less.
[0010]
Si: 0.01% to 1.5%
Si is an element useful as a deoxidizer at the time of melting, and is effective in improving the strength of steel. However, if the amount is too large, the workability deteriorates, so the content was made 1.5% or less.
[0011]
Mn: 0.15% to 2%
Mn is an element useful as a deoxidizer at the time of melting, and is effective in improving the strength of steel, and is set to 0.15% or more. However, if the amount is too large, the hardenability of the steel becomes high and martensite and bainite structures tend to be generated, so the upper limit was made 2%.
[0012]
Cu: 0.5% to 2%
Cu is an element that contributes to age hardening of the core hardness during soft nitriding, and is essential in this steel in order to obtain high fatigue strength. In order to obtain the effect, 0.5% or more is necessary. However, if the amount is too large, hot brittleness occurs and cracks occur in the manufacturing process, so the content was made 2% or less.
[0013]
N: Less than 0.005% N combines with Ti, Nb, and V to form a nitride. When the N concentration increases, a large amount of Ti, Nb, and V necessary for forming a nitride is required, and TiN and the like become coarse when the amount of nitrogen is high, which causes a decrease in fatigue strength. Although the concentration is desirably as low as possible, it is allowed to be less than 0.005%, so the upper limit was made less than 0.005%.
[0014]
Ti: 0.01% to 0.5%
Ti produces carbides and is effective in suppressing film-like cementite which causes deterioration of fatigue strength.
[0015]
TiC carbide is effective for precipitation hardening in hot rolling or hot forging, and can improve the strength of the steel material. Further, the amount of addition is closely related to the amount of C in steel, and is necessary for generating carbide for suppressing film-like cementite. Since these effects can be achieved by combined addition with V or Nb, the lower limit was made 0.01% or more. Further, Ti combines with N that penetrates during soft nitriding to produce nitride, and has the effect of improving the surface hardness. Even if added over 0.5% or more, the effect is saturated, so the content was made 0.5% or less.
[0016]
V: 0.05-0.5%
V produces carbides like Ti, and is effective in suppressing film-like cementite. V is an element that can combine with nitrogen entering during soft nitriding to form nitrides and increase the surface hardness. In order to obtain these effects, 0.05% or more is necessary, but even if added over 0.5%, the effect is saturated, so 0.5% or less was set.
[0017]
Nb: 0.005% to 0.5%
Nb also produces carbides like Ti and V, and is effective in suppressing film-like cementite. Nb is an element that can combine with nitrogen that enters during soft nitriding to form nitrides and increase the surface hardness. In order to obtain the effect, 0.005% or more is necessary, but even if added over 0.5%, the effect is saturated, so 0.5% or less.
[0018]
The area ratio of ferrite before nitrocarburizing is 90% or more, the remainder is carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less:
For the present invention, it plays an important role for the structure and fatigue strength of steel. As the structure before soft nitriding, a ferrite structure is desirable, and the lower limit is 90%. The carbide as the remaining structure has as little cementite as possible, and is desirably fine carbide such as Ti, Nb, and V. Further, even if a pearlite structure is generated, it is desirable that the size is small. When the average size of pearlite was 20 μm or less, it was found that the decrease in fatigue strength was small, and the average size was set to 20 μm or less.
[0019]
For the ferrite area ratio, for example, the structure was observed using an optical microscope, and the occupied area ratio of the ferrite portion in the field of view was determined by image analysis. In the examples described later, the structure of 10 visual fields was arbitrarily observed with an optical microscope at 400 times, and the average value was defined as the area occupied by ferrite.
[0020]
The size of the pearlite of the present invention is, for example, in the examples described later, by using an optical microscope, ten visual fields are randomly observed at 400 times, the major axis of all pearlite existing in the visual field is measured, and the average value thereof Was the average size.
[0021]
C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3:
As described above, the steel structure must be 90% or more of ferrite and the average size of pearlite must be 20 μ or less. For this purpose, it is necessary to use fine carbides of Ti, Nb, and V, and the addition amount of each element must satisfy the relationship of the above formula.
[0022]
Ni: 0.5% to 2%
Ni has an effect of suppressing hot brittleness caused by Cu. In order to obtain the effect, 0.5% or more is necessary, and if it exceeds 2%, the effect is saturated, so the upper limit is set.
[0023]
Cr: 0.1% to 2%
Cr is an element necessary for obtaining surface hardness by soft nitriding. In order to obtain the effect, 0.1% or more is necessary. However, even if it is 2% or more, the effect is small, the hardenability of the steel is increased, and martensite and bainite structure are easily generated, so 2% was made the upper limit.
[0024]
Al: 0.018 % to 0.5%
Al is an element that can combine with nitrogen that enters during soft nitriding to form nitrides and increase the surface hardness. In order to obtain the effect, 0.018% or more is necessary, but even if added over 0.5%, the effect is saturated, so the upper limit was set. Preferably, it is 0.05 to 0.5%.
[0025]
S: 0.03% to 0.1%
S is an element that improves machinability, and is added as necessary. However, if it is less than 0.03%, the effect is small, and if it exceeds 0.1%, the strength deteriorates.
[0026]
Pb: 0.005% to 0.3%
Pb is an element that improves the machinability of steel and is added as necessary. However, if it is less than 0.005%, the effect is small, and if it exceeds 0.3%, the strength deteriorates, so the upper limit is 0. .3%.
[0027]
【Example】
Hereinafter, the present invention will be described with reference to examples. After the composition of the chemical components shown in Table 1 was melted in a 150 kg vacuum melting furnace, a round bar having a diameter of 40φ was manufactured by hot rolling. This round bar was heated to 1200 ° C., forged to 20φ by hot forging, and then air-cooled to use this material as a raw material. Further, the cooling rate at this time is 1.0 ° C./second, and it is necessary to dissolve Cu in this cooling process. For that purpose, cooling should be performed at a cooling rate of 0.2 ° C./second or more. .
[0028]
Thereafter, an Ono type rotary bending test piece having a parallel portion of 10 mmφ was prepared. This test piece was subjected to gas soft nitriding at 580 ° C. for 120 minutes. Soft nitriding was performed in a gas atmosphere of RX gas: NH 3 = 1: 1.
[0029]
The JIS-SCM415 steel used in Comparative Example 22 was carburized at 930 ° C. for 4 hours, then oil-quenched and then tempered at 180 degrees for 2 hours. In addition to measuring the internal and internal hardness of 50 μm from the surface of the test piece thus treated, an Ono type rotary bending test piece was carried out.
[0030]
Table 2 shows the hardness of the steel material of the present invention and the comparative example, the surface hardness after soft nitriding, the ferrite area ratio of the structure, the average size of carbide and pearlite, and the fatigue limit strength in the Ono type rotating bending fatigue test. Indicated.
[0031]
In Table 2, Examples 1-4 and 6-15 of the present invention have steel compositions and structures corresponding to claims 1 to 4 of the present invention, and have high fatigue strength.
[0032]
On the other hand, in Comparative Example 16, the amount of C was large, the ferrite area ratio of the structure was less than 90%, and the fatigue strength was reduced. In Comparative Example 17, the relationship of C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3 was not satisfied, the pearlite size was increased, and the fatigue strength was reduced. In Comparative Example 18, the amount of Cu added was insufficient, and the effect of improving fatigue strength was not obtained. In Comparative Example 19, the amount of Mn added was high, the ferrite area ratio of the structure was insufficient, and the fatigue strength was reduced. In Comparative Example 20, the amount of Cr added was high, the ferrite area ratio of the structure was insufficient, and the fatigue strength was reduced. Comparative Example 21 had a high N content, so that coarse TiN was generated and the fatigue strength was reduced. As described above, it can be seen that excellent fatigue strength can be obtained according to the examples of the present invention.
[0033]
[Table 1]
Figure 0004291941
[0034]
[Table 2]
Figure 0004291941
[0035]
【The invention's effect】
As described above, according to the present invention, a soft nitriding steel having excellent fatigue characteristics, which exhibits sufficient fatigue strength even when applied to components such as crankshafts and gears that are subjected to high loads. High strength steel for soft nitriding can be provided. In addition, since this steel has low material hardness even after hot rolling or hot forging, or in a state of further normalizing, it can be suitably applied to cold forged members.

Claims (4)

質量%で、
C:0.01%〜0.15%、
Si:0.01%〜1.5%、
Mn:0.15%〜2%、
Cu:0.5%〜2%
Al:0.018〜0.5%
を含有し、
N:0.005%未満
に制限し、
Ti:0.01%〜0.5%、
Nb:0.005%〜0.5%、
V:0.05%〜0.5%
の中から1種以上を含有し、
且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、
残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。
% By mass
C: 0.01% to 0.15%,
Si: 0.01% to 1.5%,
Mn: 0.15% to 2%,
Cu: 0.5% ~2%,
Al: 0.018 to 0.5%
Containing
N: limited to less than 0.005%,
Ti: 0.01% to 0.5%,
Nb: 0.005% to 0.5%,
V: 0.05% to 0.5%
Containing one or more of
And C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3,
Bending fatigue, characterized in that the balance is Fe and inevitable impurity elements, the area ratio of ferrite is 90% or more, the balance is carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less Soft nitriding steel with excellent strength.
質量%で、
C:0.01%〜0.15%、
Si:0.01%〜1.5%、
Mn:0.15%〜2%、
Cu:0.5%〜2%
Al:0.018〜0.5%
を含有し、
N:0.005%未満
に制限し、
Ti:0.01%〜0.5%、
Nb:0.005%〜0.5%、
V:0.05%〜0.5%
の中から1種以上含有し、更に、
Ni:0.5%〜2%
を含有し、且つC+N≦Ti/4.0+Nb/7.7+V/4.3であり、残部がFeおよび不可避的な不純物元素からなり、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。
% By mass
C: 0.01% to 0.15%,
Si: 0.01% to 1.5%,
Mn: 0.15% to 2%,
Cu: 0.5% ~2%,
Al: 0.018 to 0.5%
Containing
N: limited to less than 0.005%,
Ti: 0.01% to 0.5%,
Nb: 0.005% to 0.5%,
V: 0.05% to 0.5%
Containing one or more of
Ni: 0.5% to 2%
And C + N ≦ Ti / 4.0 + Nb / 7.7 + V / 4.3, the balance being made of Fe and inevitable impurity elements, the area ratio of ferrite being 90% or more, and the remainder being carbide, or A nitrocarburizing steel excellent in bending fatigue strength, characterized by comprising a carbide and a pearlite structure and having an average pearlite size of 20 μm or less.
請求項1または2記載の鋼成分に、更に質量%で、
Cr:0.1%〜2%
含有し、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。
The steel component according to claim 1 or 2, further in mass%,
Cr: 0.1% to 2%
Containing, in area ratio of ferrite is 90% or more, from the rest carbides or carbides and pearlite, soft-nitriding steel for the average size of pearlite and excellent bending fatigue strength, characterized in that at 20μm or less .
請求項1乃至3記載の鋼成分に、更に質量%で、
S:0.03%〜0.1%、
Pb:0.005%〜0.3%
の中から1種以上を含有し、フェライトの面積率が90%以上で、残りが炭化物、または炭化物およびパーライト組織からなり、パーライトの平均サイズが20μm以下であることを特徴とする曲げ疲労強度に優れた軟窒化用鋼。
The steel component according to claims 1 to 3, further in mass%,
S: 0.03% to 0.1%
Pb: 0.005% to 0.3%
The bending fatigue strength is characterized in that it contains at least one of the above, the ferrite area ratio is 90% or more, the remainder consists of carbide, or carbide and pearlite structure, and the average size of pearlite is 20 μm or less. Excellent nitrocarburizing steel.
JP2000259634A 2000-08-29 2000-08-29 Soft nitriding steel with excellent bending fatigue strength Expired - Lifetime JP4291941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259634A JP4291941B2 (en) 2000-08-29 2000-08-29 Soft nitriding steel with excellent bending fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259634A JP4291941B2 (en) 2000-08-29 2000-08-29 Soft nitriding steel with excellent bending fatigue strength

Publications (2)

Publication Number Publication Date
JP2002069572A JP2002069572A (en) 2002-03-08
JP4291941B2 true JP4291941B2 (en) 2009-07-08

Family

ID=18747781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259634A Expired - Lifetime JP4291941B2 (en) 2000-08-29 2000-08-29 Soft nitriding steel with excellent bending fatigue strength

Country Status (1)

Country Link
JP (1) JP4291941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114775A1 (en) 2010-03-16 2011-09-22 新日本製鐵株式会社 Steel for nitrocarburization, nitrocarburized components, and production method for same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578288B2 (en) 2012-01-31 2014-08-27 Jfeスチール株式会社 Hot-rolled steel sheet for generator rim and manufacturing method thereof
WO2013121794A1 (en) 2012-02-15 2013-08-22 Jfe条鋼株式会社 Soft-nitriding steel and soft-nitrided component using steel as material
WO2014002288A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Steel sheet for soft nitriding and process for producing same
KR101726251B1 (en) 2012-07-26 2017-04-12 제이에프이 스틸 가부시키가이샤 Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
TWI539011B (en) 2014-06-13 2016-06-21 Nippon Steel & Sumitomo Metal Corp Steel plate for soft nitriding and its manufacturing method and soft nitriding steel
CN107406942B (en) 2015-03-24 2019-10-18 杰富意钢铁株式会社 Tufftride steel and component and its manufacturing method
JP6610808B2 (en) 2016-11-30 2019-11-27 Jfeスチール株式会社 Soft nitriding steel and parts
KR101917454B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent high-strength and high-toughness and method for manufacturing same
US20200131609A1 (en) * 2017-06-23 2020-04-30 Nippon Steel Corporation High-strength steel member
WO2020090739A1 (en) 2018-10-31 2020-05-07 Jfeスチール株式会社 Soft-nitriding steel, soft-nitrided component, and methods for manufacturing same
CN115605629A (en) 2020-05-15 2023-01-13 杰富意钢铁株式会社(Jp) Steel and steel component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114775A1 (en) 2010-03-16 2011-09-22 新日本製鐵株式会社 Steel for nitrocarburization, nitrocarburized components, and production method for same
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
US10196720B2 (en) 2010-03-16 2019-02-05 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part

Also Published As

Publication number Publication date
JP2002069572A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
JP4956146B2 (en) Case-hardened steel excellent in forgeability and prevention of grain coarsening, its manufacturing method, and carburized parts
EP2530178B1 (en) Case-hardened steel and carburized material
WO2012073485A1 (en) Carburizing steel having excellent cold forgeability, and production method thereof
JP4050829B2 (en) Carburized material with excellent rolling fatigue characteristics
JP4291941B2 (en) Soft nitriding steel with excellent bending fatigue strength
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
JP4347763B2 (en) High temperature carburizing steel and method for producing the same
JP3764627B2 (en) Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP5707938B2 (en) Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength
JP2006291335A (en) Steel for case hardening having excellent high temperature carburizing characteristic and workability
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP2894184B2 (en) Steel for soft nitriding
JPH0559488A (en) Precipitation hardening type high strength steel for soft-nitriding excellent in machinability
JPH0617224A (en) Carburized bearing parts excellent in high temperature rolling fatigue property
JP3538900B2 (en) Rolling member
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
JP4536327B2 (en) Nb-containing case-hardened steel with excellent carburizing properties in a short time
JP4450217B2 (en) Non-tempered steel for soft nitriding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350