JP5262740B2 - Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method - Google Patents

Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method Download PDF

Info

Publication number
JP5262740B2
JP5262740B2 JP2009008175A JP2009008175A JP5262740B2 JP 5262740 B2 JP5262740 B2 JP 5262740B2 JP 2009008175 A JP2009008175 A JP 2009008175A JP 2009008175 A JP2009008175 A JP 2009008175A JP 5262740 B2 JP5262740 B2 JP 5262740B2
Authority
JP
Japan
Prior art keywords
steel
less
carburizing
rolling
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009008175A
Other languages
Japanese (ja)
Other versions
JP2010163666A (en
Inventor
修司 小澤
雅之 橋村
慶 宮西
学 久保田
達朗 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009008175A priority Critical patent/JP5262740B2/en
Publication of JP2010163666A publication Critical patent/JP2010163666A/en
Application granted granted Critical
Publication of JP5262740B2 publication Critical patent/JP5262740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide case hardening steel in which the generation of coarse grains can be stably suppressed in a carburizing and hardening process, the occurrence of strain and bending after the carburizing and hardening can be prevented, further, the generation of coarse grains can be prevented even in high temperature carburizing, and sufficient strength properties such as rolling fatigue strength can be obtained, and to provide a production method thereof. <P>SOLUTION: The case hardening steel is characterized in that it contains 0.05 to 0.2% Ti and the other specified components in specified ranges, the content of Al is limited to &lt;0.005% and the content of N is limited to &lt;0.0051%, the precipitation amount of AlN after hot rolling is suppressed, or further, the structural fraction of bainite after the hot rolling is limited to &le;30%, or further, the ferrite crystal grain size number after the hot rolling is controlled to No. 8 to 11 prescribed in JIS G0552, or further, in the cross-section in the longitudinal direction in the matrix after the hot rolling, the maximum diameter of Ti based precipitates by the statics of extremes measured under the following conditions is controlled to &le;40 &mu;m. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法に関するものである。   The present invention relates to a case-hardened steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburizing, and a method for producing the same.

歯車、軸受部品、転動部品、シャフト、等速ジョイント部品は、通常、例えばJIS G 4052、JIS G 4104、JIS G 4105、JIS G 4106などに規定されている中炭素の機械構造用合金鋼を使用し、冷間鍛造(転造も含む)又は熱間鍛造−切削により所定の形状に加工された後、浸炭焼入れを行う工程で製造されている。冷間鍛造は、製品の表面肌、寸法精度が良く、熱間鍛造に比べて製造コストが低く、歩留まりも良好であるため、従来は熱間鍛造で製造されていた部品を、冷間鍛造へ切り替える傾向が強くなっており、冷鍛−浸炭工程で製造される浸炭部品の適用対象や用途は近年顕著に増加している。浸炭部品の大きな課題として、熱処理歪みの低減が挙げられる。これは、浸炭部品をシャフトに適用した場合に、熱処理歪みで曲げ変形してしまえばシャフトとしての機能が損なわれるためであり、また浸炭部品を歯車や等速ジョイント部品に適用した場合には、熱処理歪みが増加した場合に騒音や振動の原因を引き起こすためである。ここで、浸炭部品に発生する熱処理歪みの最大の原因は、浸炭時に発生する粗大粒に基づくものである。この浸炭時に発生する粗大粒を抑制するために、従来において、冷間鍛造後、浸炭焼入れの前に、焼鈍が行われていた。しかしながら、特に近年において、コスト削減の視点から、焼鈍省略の傾向が強くなってきている。従って焼鈍を省略した場合においても、浸炭部品内に粗大粒を生じない鋼材が強く求められている。   Gears, bearing parts, rolling parts, shafts, constant velocity joint parts are usually made of medium carbon alloy steel for machine structure as defined in JIS G 4052, JIS G 4104, JIS G 4105, JIS G 4106, etc. It is manufactured in a process of carburizing and quenching after being processed into a predetermined shape by cold forging (including rolling) or hot forging-cutting. Cold forging has good surface texture and dimensional accuracy of the product, has a lower manufacturing cost than hot forging, and has a good yield, so parts that were conventionally manufactured by hot forging are now cold forged. The tendency to switch is becoming stronger, and the application targets and uses of carburized parts manufactured in the cold forging-carburizing process have increased significantly in recent years. A major problem with carburized parts is the reduction of heat treatment distortion. This is because when carburized parts are applied to the shaft, the function as the shaft is impaired if the carburized parts are bent and deformed due to heat treatment distortion, and when carburized parts are applied to gears and constant velocity joint parts, This is because when heat treatment distortion increases, it causes noise and vibration. Here, the largest cause of the heat treatment distortion generated in the carburized parts is based on coarse particles generated during carburizing. In order to suppress the coarse grains generated during carburizing, annealing is conventionally performed after cold forging and before carburizing and quenching. However, especially in recent years, from the viewpoint of cost reduction, the tendency to omit annealing has become stronger. Therefore, even when annealing is omitted, a steel material that does not generate coarse grains in the carburized component is strongly demanded.

一方、歯車、軸受部品、転動部品のなかで高面圧が負荷される軸受部品、転動部品においては、高深度浸炭が行われている。高深度浸炭は、通常、十数時間から数十時間の長時間を要するために、エネルギーの消費量を減らす観点から、浸炭時間の短縮が重要な課題である。浸炭時間短縮のためには、浸炭温度の高温化が有効である。通常の浸炭温度は930℃程度であるが、これに対して、990〜1090℃の温度域でいわゆる高温浸炭を行うと、粗大粒が発生し、必要な疲労特性、転動疲労特性等が得られないという問題が発生している。そのため、高温浸炭でも粗大粒が発生しない、つまり高温浸炭に適した肌焼き鋼が求められている。このような高面圧が負荷される歯車、軸受部品、転動部品は大型部品が多く、通常「棒鋼−熱間鍛造−必要により焼準等の熱処理−切削−浸炭焼入れ−必要により研磨」の工程で製造される。浸炭時の粗大粒の発生を抑制するためには、熱間鍛造後の状態で、つまり熱間鍛造部材の状態で、粗大粒を抑制するために適正な材質を造り込んでおくことが必要があるが、そのためには、棒鋼線材の素材の状態で粗大粒を抑制するために適正な材質を造り込んでおくことが必要である。   On the other hand, high-depth carburization is performed on bearing parts and rolling parts to which high surface pressure is applied among gears, bearing parts, and rolling parts. Since deep carburization usually takes a long time of several tens of hours to several tens of hours, shortening the carburizing time is an important issue from the viewpoint of reducing energy consumption. Increasing the carburizing temperature is effective for shortening the carburizing time. The normal carburizing temperature is about 930 ° C. On the other hand, when so-called high-temperature carburizing is performed in the temperature range of 990 to 1090 ° C, coarse grains are generated, and necessary fatigue characteristics, rolling fatigue characteristics, etc. are obtained. The problem of not being able to occur. Therefore, there is a demand for case-hardened steel that does not generate coarse grains even at high temperature carburization, that is, suitable for high temperature carburization. Gears, bearing parts, and rolling parts that are loaded with such high surface pressures are often large parts, and are usually "bar steel-hot forging-heat treatment such as normalization if necessary-cutting-carburizing and quenching-polishing if necessary". Manufactured in a process. In order to suppress the generation of coarse grains during carburizing, it is necessary to build in an appropriate material in order to suppress coarse grains in the state after hot forging, that is, in the state of a hot forged member. However, for that purpose, it is necessary to build in an appropriate material in order to suppress coarse grains in the state of the material of the steel bar wire.

従来における肌焼鋼の粗大粒を安定的に抑制するための技術としては、所定量のAl、Nを含有し、熱間圧延方向に平行な断面の組織のフェライトバンドの状態を適正化した粗大粒防止特性に優れた肌焼鋼が開示されている(例えば、特許文献1参照。)。しかしながら、当該特許文献1の開示技術では、球状化焼鈍−冷間鍛造工程を経て製造される部品については粗大粒抑制の能力を安定的に発揮させることができない場合があり、また高温浸炭においても粗大粒の発生を抑制できない場合があるのが現実である。   As a technique for stably suppressing the coarse grains of the case-hardened steel in the past, the coarse grains that contain a predetermined amount of Al and N and that optimize the state of the ferrite band of the cross-sectional structure parallel to the hot rolling direction A case-hardened steel excellent in grain prevention characteristics is disclosed (for example, see Patent Document 1). However, in the disclosed technique of Patent Document 1, the ability to suppress coarse grains may not be able to be stably exhibited for parts manufactured through the spheroidizing annealing-cold forging process, and also in high-temperature carburizing. The reality is that the generation of coarse particles may not be suppressed.

また、特許文献2の開示技術には、所定量のC、Si等に加えて、質量%でTi:0.10〜0.30%、N:0.01%未満を含有し、鋼片熱間圧延加熱を1250〜1400℃の温度範囲で行うとともに、製品圧延加熱Ac〜1050℃で加熱する肌焼鋼の製造方法が開示されている。また特許文献3の開示技術は、特許文献2と同様に成分からな
る肌焼鋼におけるTi炭化物を微細分散させることにより、転動疲労寿命及び回転曲げ疲労寿命を向上させる技術が開示されている。この特許文献2、3に開示されている肌焼鋼もやはり粗大粒抑制の能力を安定的に発揮させることができない場合がある。また、該鋼は上記の実施例から明らかな通り、0.0055%以上のNを含有するとともに、製品圧延加熱:Ac〜1050℃のために、TiNが粗大化する。そのため、この粗大なTiNが転動疲労やピッチング疲労の起点となるために、十分な疲労特性が得られないという欠点を有している。
The disclosed technique of Patent Document 2 contains Ti: 0.10 to 0.30% by mass% and N: less than 0.01% in addition to a predetermined amount of C, Si, etc. A method for producing case-hardening steel is disclosed in which hot rolling is performed in a temperature range of 1250 to 1400 ° C. and heating is performed at product rolling heating Ac 3 to 1050 ° C. The disclosed technique of Patent Document 3 discloses a technique for improving the rolling fatigue life and the rotating bending fatigue life by finely dispersing Ti carbide in the case-hardened steel composed of the components as in Patent Document 2. The case-hardened steel disclosed in Patent Documents 2 and 3 may not be able to stably exhibit the ability to suppress coarse grains. Further, as apparent from the above examples, the steel contains 0.0055% or more of N, and TiN coarsens due to product rolling and heating: Ac 3 to 1050 ° C. For this reason, this coarse TiN serves as a starting point for rolling fatigue and pitching fatigue, and thus has a drawback that sufficient fatigue characteristics cannot be obtained.

さらに、特許文献4には、所定量からなるCやSi等に加えて、更に質量%でTi:0.1超〜0.2%、N:0.015%以下、旧オーステナイト結晶粒度がJIS G0551でNo.11以上まで微細化したマルテンサイト組織からなる高強度肌焼鋼や、質量%でN:0.020%以下で「Ti:0.05〜0.2%、V:0.02~0.10%、
Nb:0.02~0.1%」のうち1種ないし2種以上を含有し、旧オーステナイト結晶
粒度がJIS G0551でNo.11以上まで微細化したマルテンサイト組織からなる高強度肌焼鋼が開示されている。
Further, in Patent Document 4, in addition to a predetermined amount of C, Si, or the like, Ti: more than 0.1 to 0.2%, N: 0.015% or less, and the prior austenite grain size is JIS in mass%. No. G0551 High-strength case-hardened steel having a martensite structure refined to 11 or more, or N: 0.020% or less in mass%, “Ti: 0.05 to 0.2%, V: 0.02 to 0.10 %,
Nb: 0.02 to 0.1% ”, and the former austenite grain size is JIS G0551 No. A high-strength case-hardened steel having a martensite structure refined to 11 or more is disclosed.

また、特許文献5において、質量%で、Ti:0.05〜0.2%他特定成分を特定範囲含有し、質量%でN:0.0051%未満に制限し、又はさらに質量%でNb:0.04%未満を含有し、熱間圧延後のAlNの析出量を0.01%以下に制限し、又はさらに熱間圧延後のベイナイトの組織分率を30 % 以下に制限し、又はさらに、熱間圧延後のフェライト結晶粒度番号がJIS G0552で規定されている8〜11番とし、又はさらに、熱間圧延後の鋼のマトリックス中の長手方向断面において下記条件で測定された極値統計によるTi系析出物の最大直径が40μm以下とした浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼が開示されている。   Moreover, in patent document 5, Ti: 0.05-0.2% contains a specific range other specific component in the mass%, N: It restrict | limits to less than 0.0051% by mass%, or further, Nb by mass%. : Containing less than 0.04%, limiting the precipitation amount of AlN after hot rolling to 0.01% or less, or further limiting the structure fraction of bainite after hot rolling to 30% or less, or Further, the ferrite grain size number after hot rolling is set to Nos. 8 to 11 specified in JIS G0552, or, further, extreme values measured under the following conditions in the longitudinal section in the matrix of the steel after hot rolling There is disclosed a case-hardened steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburizing, in which the maximum diameter of Ti-based precipitates is 40 μm or less according to statistics.

しかしながら、上述した特許文献1〜5に示すようなTi多量添加型の粗大粒防止鋼は、Ti多量添加により被削性が劣化してしまうという問題点があった。被削性劣化の主な原因は1)素材硬さの上昇、2)Ti系炭窒化物生成による被削性改善効果の高いMnSの減少の2つである。   However, the Ti-added coarse-grained steel as shown in Patent Documents 1 to 5 described above has a problem that machinability deteriorates due to the addition of a large amount of Ti. There are two main causes of machinability deterioration: 1) an increase in material hardness, and 2) a decrease in MnS, which has a high machinability improvement effect due to the formation of Ti-based carbonitrides.

特開平11−106866号公報JP-A-11-106866 特開平11−92863号公報JP-A-11-92863 特開平11−92824号公報JP-A-11-92824 特開2003−34843号公報JP 2003-34843 A 特開2005−240175号公報JP-A-2005-240175

上述の如き特許文献1〜5の開示技術では、浸炭焼入れ工程において粗大粒の発生を安定的に抑制することができず、歪みや曲がりの発生を安定的に防止することはできないか、又は被削性の劣化が懸念されるため、適用が難しかった。本発明はこのような問題を解決して、熱処理歪みの小さい浸炭時の浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼とその製造方法を提供するものである。   In the disclosed technologies of Patent Documents 1 to 5 as described above, the generation of coarse grains cannot be stably suppressed in the carburizing and quenching process, and the generation of distortion and bending cannot be stably prevented, or It was difficult to apply because of concern about deterioration of machinability. This invention solves such a problem, and provides the case hardening steel excellent in the coarse grain prevention characteristic at the time of carburizing at the time of carburizing with small heat processing distortion, and the fatigue characteristic, and its manufacturing method.

本発明者らは、上述した課題を解決するために、結晶粒の粗大化の支配因子と粗大化抑制のための多量Ti添加による被削性の劣化の改善方法について鋭意調査し、次の点を明らかにした。   In order to solve the above-mentioned problems, the present inventors diligently investigated the controlling factors for the coarsening of crystal grains and the method for improving the machinability deterioration due to the addition of a large amount of Ti for suppressing the coarsening. Was revealed.

(1)浸炭時に結晶粒の粗大化を防止するには、ピン止め粒子としてAlN、NbNを活用するよりも、TiC、TiCSを主体とするTi系析出物を浸炭時に微細析出させることが有効である。またはさらに 上記と併用して、NbCを主体とするNbの炭窒化物を
浸炭時に微細析出させることにより、粗大粒防止特性は一層向上する。
(1) To prevent coarsening of crystal grains during carburizing, it is effective to finely precipitate Ti-based precipitates mainly composed of TiC and TiCS during carburizing rather than using AlN or NbN as pinning particles. is there. Or, in combination with the above, the coarse grain prevention characteristics are further improved by finely precipitating Nb carbonitrides mainly composed of NbC during carburizing.

(2)上述したTi系析出物またはさらにNbの炭窒化物を浸炭時に微細析出させる方法として、新規に以下の方法を見出した。 (2) The following method was newly found as a method for finely depositing the Ti-based precipitate or the Nb carbonitride described above during carburizing.

[1]上述したTi系析出物またはさらにNbの炭窒化物を浸炭時にピン止め粒子として
活用するためには、浸炭焼入れ時にこれらの析出物を多量微細分散する必要がある。そのためには、棒鋼または線材を熱間圧延する場合の圧延加熱時に上記のTi系析出物またはさらにNbの炭窒化物を一旦溶体化する必要がある。N量が高くて、圧延加熱時にTiNが多量に残存すると、Ti系析出物はTiN主体の複合析出物となり、溶体化が困難となる。また、熱間圧延後の冷却過程で、粗大なTiN上にTiC、TiCSまたはさらにNbCが析出し、 これらの析出物の微細分散が妨げられる。そのため、N量を出来るだけ
低減することが必要である。
[1] In order to utilize the Ti-based precipitates or the Nb carbonitrides as pinning particles during carburizing, it is necessary to finely disperse these precipitates in a large amount during carburizing and quenching. For this purpose, the Ti-based precipitate or the Nb carbonitride needs to be once solutionized at the time of rolling and heating when hot rolling a steel bar or wire. If the amount of N is high and a large amount of TiN remains during rolling and heating, the Ti-based precipitate becomes a composite precipitate mainly composed of TiN, which makes it difficult to form a solution. Further, in the cooling process after hot rolling, TiC, TiCS or further NbC is deposited on coarse TiN, and the fine dispersion of these precipitates is hindered. Therefore, it is necessary to reduce the N amount as much as possible.

[2]また、圧延加熱時に粗大なAlNが存在すると、上述したTiNと同じ悪影響を及
ぼす。そのため、 AlNも圧延加熱時に溶体化しておく必要がある。ここで、 AlNを圧延加熱時に溶体化しておけば、棒鋼、線材の熱間圧延−冷却過程でAlNの析出はほとんど起こらない。そのため、Al量を制限し、熱間圧延後のAlNの析出量を規制することにより、圧延加熱時のAlNの溶体化状況の確認が可能である。
[2] If coarse AlN is present during rolling and heating, it has the same adverse effect as TiN described above. Therefore, it is necessary to make AlN into solution during rolling and heating. Here, if AlN is formed into a solution at the time of rolling and heating, precipitation of AlN hardly occurs in the hot rolling-cooling process of the steel bars and wires. Therefore, by limiting the amount of Al and regulating the amount of AlN deposited after hot rolling, it is possible to confirm the solution state of AlN during the heating by rolling.

[3]なお、AlNが圧延加熱時に溶体化できる条件で加熱を行えば、Ti系析出物また
はさらにNbCの析出物を一旦溶体化することが可能である。そのため、熱間圧延後のAlNの析出量を規制することにより、Ti系析出物またはさらにNbCの析出物を圧延加熱時に一旦溶体化できたことの確認が可能である。
[3] If heating is performed under the condition that AlN can be dissolved during rolling and heating, it is possible to temporarily form Ti-based precipitates or further NbC precipitates. Therefore, by regulating the amount of AlN deposited after hot rolling, it is possible to confirm that Ti-based precipitates or further NbC precipitates were once formed into a solution during rolling and heating.

[4]さらに、Ti系析出物またはさらにNbCの析出物のピン止め効果を安定して発揮
させるには、熱間圧延後のマトリックス中にこれらの析出物を微細析出させておくことが必要である。そのためには、熱間圧延時の冷却過程でオーステナイトからの拡散変態時に相界面析出させる必要がある。もし熱間圧延したままの組織にベイナイトが生成すると、上記の析出物の相界面析出が困難になるために、ベイナイトを実質的に含まない組織とすることが必須である。
[4] Further, in order to stably exhibit the pinning effect of Ti-based precipitates or further NbC precipitates, it is necessary to finely precipitate these precipitates in the matrix after hot rolling. is there. For this purpose, it is necessary to cause phase interface precipitation during the diffusion transformation from austenite during the cooling process during hot rolling. If bainite is generated in a structure that has been hot-rolled, it becomes difficult to precipitate the phase interface of the above-mentioned precipitates. Therefore, it is essential to make the structure substantially free of bainite.

(3)熱間圧延後の鋼材の状態で、AlNの析出量を極力制限するためには、つまり熱間圧延加熱時にTi系析出物またはさらにNbCの析出物を溶体化するためには、圧延加熱温度を高温にする必要がある。さらに、Al量を0.005%未満に制限し、AlNの析
出量を抑えた。
(3) In order to limit the precipitation amount of AlN as much as possible in the state of the steel material after hot rolling, that is, in order to solutionize Ti-based precipitates or further NbC precipitates during hot rolling heating, rolling It is necessary to increase the heating temperature. Furthermore, the amount of Al was limited to less than 0.005%, and the amount of precipitated AlN was suppressed.

(4)熱間圧延後の鋼材に、Ti系析出物またはさらにNbCの析出物をあらかじめ微細析出させるためには、圧延加熱温度及び圧延後の冷却条件を最適化すれば良い。すなわち圧延加熱温度を高温にすることによって、Ti系析出物またはさらにNbCの析出物を一旦マトリックス中に固溶させ、熱間圧延後にTi系析出物またはさらにNbCの析出物の析出温度域を徐冷することによって、これらの炭窒化物を多量、微細分散させることができる。 (4) In order to finely precipitate Ti-based precipitates or further NbC precipitates in the steel material after hot rolling, the rolling heating temperature and the cooling conditions after rolling may be optimized. That is, by increasing the rolling heating temperature, Ti-based precipitates or further NbC precipitates are once dissolved in the matrix, and after hot rolling, the precipitation temperature range of Ti-based precipitates or further NbC precipitates is gradually increased. By cooling, a large amount of these carbonitrides can be finely dispersed.

(5)さらに、熱間圧延後の鋼材のフェライト粒が過度に微細であると、浸炭加熱時に粗大粒が発生しやすくなるため、圧延仕上げ温度の適正化もポイントである。 (5) Furthermore, if the ferrite grains of the steel material after hot rolling are excessively fine, coarse grains are likely to be generated during carburizing heating, so that optimization of the rolling finishing temperature is also a point.

(6)Ti添加鋼ではTi析出物が疲労破壊の起点となるため、疲労特性、特に転動疲労特性が劣化しやすくなるが、低N化、熱間圧延温度の高温化等によりTi析出物最大サイズを小さくすることにより疲労特性の改善が可能となり、粗大粒防止特性と疲労特性の両立が可能である。 (6) In Ti-added steels, Ti precipitates are the starting point for fatigue failure, so fatigue characteristics, particularly rolling fatigue characteristics, are likely to deteriorate. However, Ti precipitates are reduced by reducing N and increasing the hot rolling temperature. By reducing the maximum size, fatigue characteristics can be improved, and both coarse grain prevention characteristics and fatigue characteristics can be achieved.

(7)さらに、酸化物組成を調整することにより、1)酸化物を低融点化し、切削加工環境下で軟質化することで被削性を向上し、2)酸化物を硫化物系介在物の晶析出核とすることにより、冷間鍛造下で割れを発生する限界圧縮歪量を低下する硫化物系介在物を微細分散させ冷間鍛造性を向上させることができる。 (7) Further, by adjusting the oxide composition, 1) the oxide has a low melting point and is softened in the cutting environment to improve machinability, and 2) the oxide is a sulfide inclusion. By using the crystal precipitation nuclei, it is possible to finely disperse sulfide inclusions that reduce the amount of limit compressive strain that generates cracks under cold forging, thereby improving cold forgeability.

本発明は以上の新規なる知見にもとづいてなされたものであり、本発明の要旨は以下の通りである。   The present invention has been made based on the above novel findings, and the gist of the present invention is as follows.

即ち、請求項1記載の発明は、化学成分が、質量%で、C:0.1〜0.6%、Si:0.02〜1.5%、Mn:0.3〜1.8%、S:0.001〜0.15%、Al:0.005%未満、Ti:0.05〜0.2%、N:0.0051%未満、P:0.025%以下、O:0.0025%以下、さらに、Cr:0.4〜2.0%、Mo:0.02〜1.5%、Ni:0.1〜3.5%、V:0.02〜0.5%、B:0.0002〜0.005%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、熱間圧延後の、ベイナイトの組織分率を30%以下に制限し、フェライト結晶粒度番号がJISG0552で規定されている8〜11番であり、鋼のマトリックス中の長手方向断面において、Ti系析出物の最大直径が40μm以下であることを特徴とする。 That is, in the invention according to claim 1, the chemical component is mass%, C: 0.1 to 0.6%, Si: 0.02 to 1.5%, Mn: 0.3 to 1.8% , S: 0.001 to 0.15%, Al: less than 0.005%, Ti: 0.05 to 0.2%, N: less than 0.0051%, P: 0.025% or less, O: 0 .0025% or less, Cr: 0.4-2.0%, Mo: 0.02-1.5%, Ni: 0.1-3.5%, V: 0.02-0.5% limiting contain one or more 0.0002 to 0.005 percent, the remainder Ri is Do iron and unavoidable impurities, after hot rolling, the structural fraction of bainite below 30%:, B In addition, the ferrite grain size number is 8 to 11 defined in JIS G0552, and the maximum diameter of the Ti-based precipitate is 4 in the longitudinal section in the steel matrix. And wherein the Der Rukoto following 0μm.

請求項2記載の発明は、請求項1記載の発明において、さらに、化学成分が質量%で、Zr:0.0003〜0.0050%、Mg:0.0003〜0.0050%の1種または2種を含むことを特徴とする。 The invention according to claim 2 is the invention according to claim 1, wherein the chemical component is mass%, and Zr is 0.0003 to 0.0050% and Mg is 0.0003 to 0.0050%. Or it contains 2 types, It is characterized by the above-mentioned.

請求項3記載の発明は、請求項1または2記載の発明において、さらに、化学成分が質量%で、Nb:0.04%未満を含有することを特徴とする。   The invention described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the chemical component is contained in mass% and contains Nb: less than 0.04%.

請求項4記載の発明は、請求項1〜3の何れか1項に記載の発明において、1150℃以上の温度で保熱時間10分以上加熱して線材または棒鋼に熱間圧延し、熱間圧延の仕上げ温度を840〜1000℃とし、フェライト結晶粒度番号がJISG0552で規定されている8〜11番である鋼となるようにし、熱間圧延後に800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷し、熱間圧延後のベイナイトの組織分率が30%以下の鋼となるようにすることを特徴とする。 The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the heat holding time is 10 minutes or more at a temperature of 1150 ° C. or higher and hot-rolled to a wire rod or steel bar. The finishing temperature of rolling is set to 840 to 1000 ° C., the steel has a ferrite grain size number of 8 to 11 specified in JIS G0552, and the temperature range of 800 to 500 ° C. is 1 ° C./second after hot rolling. Slow cooling is performed at the following cooling rate so that the steel has a bainite structure fraction of 30% or less after hot rolling.

請求項記載の発明は、請求項1〜のうち何れか1項に記載の肌焼鋼を用い、部品形状に加工されてなる浸炭部品である。 The invention according to claim 5 is a carburized part that is processed into a part shape using the case-hardened steel according to any one of claims 1 to 3 .

本発明の浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼及びその製造方法を用いれば、冷鍛工程で部品を製造しても、浸炭時の結晶粒の粗大化が抑制されるために、疲労強度特性を向上させることができるとともに、焼入れ歪みによる寸法精度の劣化を従来と比較して極めて少なくすることが可能となる。このため、これまで、粗大粒の問題から冷鍛化が困難であった部品の冷鍛化が可能になり、さらに冷鍛後の焼鈍を省略することも可能になる。また、熱間鍛造工程で製造される部品に本鋼材を適用しても高温浸炭においても粗大粒の発生を防止し、転動疲労特性等の十分な強度特性を得ることができる。また、従来から粗大粒防止鋼の問題点の1つであった切削加工性についても本発明を適用した肌焼鋼によれば良好な被削性を発揮させることが可能となるため、良好な切削加工性を得ることが可能となる。以上のように、本発明による産業上の効果は極めて顕著なるものがある。   By using the case-hardened steel excellent in the coarse grain prevention characteristics and fatigue characteristics during carburizing and the manufacturing method thereof according to the present invention, even when parts are manufactured in the cold forging process, the coarsening of crystal grains during carburizing is suppressed. Therefore, the fatigue strength characteristics can be improved, and the deterioration of dimensional accuracy due to quenching distortion can be extremely reduced as compared with the conventional case. For this reason, it becomes possible to cold forge parts that have been difficult to cold forge due to the problem of coarse grains, and it is also possible to omit annealing after cold forging. Moreover, even if this steel material is applied to a part manufactured in the hot forging process, generation of coarse grains can be prevented even in high-temperature carburization, and sufficient strength characteristics such as rolling fatigue characteristics can be obtained. Moreover, according to the case-hardened steel to which the present invention is applied, the machinability, which has been one of the problems of the coarse grain-preventing steel, can be exhibited excellent machinability. Cutting workability can be obtained. As described above, the industrial effects of the present invention are extremely remarkable.

シャルピー衝撃試験片を示す図である。It is a figure which shows a Charpy impact test piece.

以下、本発明を実施するための形態として、浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼について詳細に説明する。   Hereinafter, as a form for carrying out the present invention, case hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburizing will be described in detail.

まず、本発明を適用した肌焼鋼における化学成分の限定理由について説明する。以下、組成における質量%は、単に%と記載する。   First, the reasons for limiting chemical components in case-hardened steel to which the present invention is applied will be described. Hereinafter, the mass% in the composition is simply described as%.

C:0.1〜0.6%
Cは鋼に必要な強度を与えるのに有効な元素であるが、0.1%未満では必要な引張強さを確保することができず、0.6%を越えると硬くなって冷間加工性が劣化するとともに、浸炭後の芯部靭性が劣化するので、C量を0.1〜0.6%の範囲内にする必要がある。
C: 0.1 to 0.6%
C is an element effective for giving steel the necessary strength, but if it is less than 0.1%, the required tensile strength cannot be secured, and if it exceeds 0.6%, it becomes hard and cold work is performed. In addition to the deterioration of the properties, the core toughness after carburizing deteriorates, so the C content needs to be in the range of 0.1 to 0.6%.

Si:0.02〜1.5%
Siは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与え、焼戻し軟化抵抗を向上するのに有効な元素であるが、0.02%未満ではその効果は不十分である。一方、1.5%を越えると、硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.02〜1.5%の範囲内にする必要がある。冷間加工を受ける鋼材の好適範囲は0.02〜0.3%である。特に冷鍛性を重視する場合は、0.02〜0.15%の範囲にするのが望ましい。一方、Siは粒界強度の増加に有効な元素であり、さらに軸受部品、転動部品においては、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。そのため、高強度化を指向する場合には、0.2〜1.5%の範囲が好適である。特に転動疲労強度の高いレベルを得るためには、0.4〜1.5%の範囲にするのが望ましい。 なお、Si添加による軸受部品、転動部品の転動疲労
過程での組織変化、材質劣化の抑制の効果は、浸炭後の組織中の残留オーステナイト量(通称、残留γ量)が30〜40%の時に特に大きい。残留γ量をこの範囲で制御するには、いわゆる浸炭浸窒処理を行うことが有効である。浸炭浸窒処理は、浸炭後の拡散処理の過程で浸窒を行う処理である。表面の窒素濃度が0.2〜0.6%の範囲になるような条件が適切である。なお、この場合の浸炭時の炭素ポテンシャルは0.9〜1.3%の範囲
とするのが望ましい。
Si: 0.02 to 1.5%
Si is an element effective for deoxidation of steel, and is an element effective for imparting necessary strength and hardenability to steel and improving temper softening resistance. However, if it is less than 0.02%, the effect is ineffective. It is enough. On the other hand, if it exceeds 1.5%, the hardness is increased and the cold forgeability is deteriorated. For the above reasons, the content needs to be in the range of 0.02 to 1.5%. The suitable range of steel materials that undergo cold working is 0.02 to 0.3%. In particular, when emphasizing cold forgeability, it is desirable to make the range 0.02 to 0.15%. On the other hand, Si is an element effective for increasing the grain boundary strength. Further, in bearing parts and rolling parts, it is an element effective for extending the life by suppressing structural changes and material deterioration during the rolling fatigue process. Therefore, when aiming at high intensity | strength, the range of 0.2 to 1.5% is suitable. In particular, in order to obtain a high level of rolling fatigue strength, it is desirable to be in the range of 0.4 to 1.5%. In addition, the effect of suppressing the structural change and material deterioration in rolling fatigue process of bearing parts and rolling parts due to the addition of Si is 30 to 40% of the retained austenite amount (common name, residual γ amount) in the structure after carburizing. Especially at times. In order to control the residual γ amount within this range, it is effective to perform a so-called carburizing and nitriding treatment. The carburizing and nitriding process is a process of performing nitriding in the process of diffusion after carburizing. Conditions under which the surface nitrogen concentration is in the range of 0.2 to 0.6% are appropriate. In this case, it is desirable that the carbon potential at the time of carburizing is in the range of 0.9 to 1.3%.

Mn:0.3〜1.8%
Mnは鋼の脱酸に有効な元素であるとともに、鋼に必要な強度、焼入れ性を与えるのに有効な元素であるが、0.3%未満では効果は不十分であり、1.8%を越えるとその効果は飽和するのみならず、硬さの上昇を招き冷間鍛造性が劣化するので、0.3%〜1.8%の範囲内にする必要がある。好適範囲は0.5〜1.2%である。なお、冷鍛性を重視する場合は、0.5〜0.75%の範囲にするのが望ましい。
Mn: 0.3 to 1.8%
Mn is an element effective for deoxidation of steel and is an element effective for imparting the necessary strength and hardenability to the steel, but if less than 0.3%, the effect is insufficient, 1.8% If it exceeds, the effect is not only saturated, but also the hardness is increased and the cold forgeability is deteriorated, so it is necessary to be within the range of 0.3% to 1.8%. The preferred range is 0.5-1.2%. In addition, when importance is attached to cold forgeability, it is desirable to set it as 0.5 to 0.75% of range.

S:0.001〜0.15%
Sは鋼中でMnSを形成し、これによる被削性の向上を目的として添加するが、0.001%未満ではその効果は不十分である。一方、0.15%を超えるとその効果は飽和し、むしろ粒界偏析を起こし粒界脆化を招く。以上の理由から、Sの含有量を0.001〜0.15%の範囲内にする必要がある。なお、軸受部品、転動部品においては、MnSが転動疲労寿命を劣化させるために、Sを極力低減する必要があり、0.001〜0.01%の範囲にするのが望ましい。
S: 0.001 to 0.15%
S forms MnS in the steel and is added for the purpose of improving the machinability. However, if it is less than 0.001%, its effect is insufficient. On the other hand, if it exceeds 0.15%, the effect is saturated, and rather, grain boundary segregation occurs, leading to grain boundary embrittlement. For these reasons, the S content needs to be in the range of 0.001 to 0.15%. In addition, in bearing parts and rolling parts, since MnS deteriorates the rolling fatigue life, it is necessary to reduce S as much as possible, and it is desirable to make it in the range of 0.001 to 0.01%.

Alは脱酸剤として添加しても良いが、残存するAl量を0.005%未満とする。0.005%を越えると、鋼中に存在するAl系酸化物が被削性を阻害するためである。Al量を0.005%未満にしなければ、硬質介在物アルミナ(いわゆるコランダム)を生成し、鋼中に残留する。この硬質介在物は切削工具に対してアブレッシブ摩耗を促進し、被削性を低下させるとともに、鋼中MnSの制御にはきわめて不利である。通常、MnSに代表
される介在物はMnSの晶出時の核となりやすいことが知られているが、アルミナはこの効果が少なく、単独で存在することが多い。一方、酸化物の軟質化の観点で他の酸化物生成元素Zrなどと複合添加しても0.005%以上の添加ではきわめて安定なアルミナ系複合酸化物を生成し、硬質なままである。
Al may be added as a deoxidizer, but the remaining amount of Al is less than 0.005%. If over 0.005%, the Al-based oxide present in the steel hinders machinability. Unless the Al content is less than 0.005%, hard inclusion alumina (so-called corundum) is produced and remains in the steel. This hard inclusion promotes abrasive wear on the cutting tool, lowers the machinability, and is extremely disadvantageous for controlling MnS in steel. In general, it is known that inclusions represented by MnS are likely to become nuclei at the time of crystallization of MnS, but alumina is less effective and often exists alone. On the other hand, produces a very stable alumina composite oxide or the like and combined addition of 0.005% or more be added other oxide formation elemental Z r in terms of softening oxides remain rigid is there.

このことは製鋼上の製造性にも大きく影響する。すなわちアルミナ系酸化物は連続鋳造に用いるノズルへの付着や詰まりを生じやすいとされている。そのため連続鋳造による大量生産に適さず安定材質の作りこみには適さなかった。   This greatly affects manufacturability on steelmaking. That is, it is said that the alumina-based oxide is likely to adhere to or clog the nozzle used for continuous casting. Therefore, it was not suitable for mass production by continuous casting and was not suitable for making stable materials.

このようにAl量の制限は被削性、製鋼製造性、硫化物制御の点からの高品質化と品質安定性の観点から重要である。   Thus, the limitation of the amount of Al is important from the viewpoint of high quality and quality stability in terms of machinability, steelmaking manufacturability, and sulfide control.

Alは好ましくは0.003%以下、さらに好ましくは0.001%以下に抑制することが好ましく、それによって鋼中酸化物はより難質なSi−Mn系酸化物やCa,Zr,Mg等の他の酸化物生成元素との複合酸化物を生成し、より軟質あるいはよりMnSの制御に適する酸化物を生成しやすくなる。   Al is preferably suppressed to 0.003% or less, more preferably 0.001% or less, whereby the oxides in steel are more difficult Si-Mn oxides, Ca, Zr, Mg, etc. Complex oxides with other oxide-generating elements are generated, and it becomes easier to generate softer or more suitable oxides for controlling MnS.

Ti:0.05〜0.2%
Tiは鋼中で微細なTiC、TiCSを生成させ、これにより浸炭時のγ粒の微細化を図るために添加する。 しかしながら、0.05%未満ではその効果は不十分である。一
方、Tiを0.2%を超えて添加すると、TiCによる析出硬化が顕著になり、冷間加工性が顕著に劣化するとともに、TiN主体の析出物が顕著となり転動疲労特性が劣化する。以上の理由から、その含有量を0.05〜0.2%の範囲内にする必要がある。好適範囲は、0.05〜0.1%未満である。なお、本願発明の鋼および熱間鍛造部材は、浸炭加熱時に侵入してくる炭素および窒素と固溶Tiが反応して、浸炭層に微細なTi(CN)が多量に析出する。そのために、軸受部品、転動部品においては、これらのTi(CN)が転動疲労寿命の向上に寄与する。したがって、軸受部品、転動部品において、特に高
いレベルの転動疲労寿命を指向する場合には、浸炭時の炭素ポテンシャルを0.9〜1.3%の範囲で高めに設定すること、あるいは、いわゆる浸炭浸窒処理を行うことが有効である。浸炭浸窒処理は、上記のように浸炭後の拡散処理の過程で浸窒を行う処理であるが、表面の窒素濃度が0.2〜0.6%の範囲になるような条件が適切である。
Ti: 0.05 to 0.2%
Ti is added in order to produce fine TiC and TiCS in the steel and thereby to refine the γ grains during carburization. However, if it is less than 0.05%, the effect is insufficient. On the other hand, when Ti is added in excess of 0.2%, precipitation hardening due to TiC becomes remarkable, cold workability is remarkably deteriorated, and precipitates mainly composed of TiN become remarkable, and rolling fatigue characteristics deteriorate. For the above reasons, the content needs to be in the range of 0.05 to 0.2%. The preferred range is 0.05 to less than 0.1%. In the steel and hot forged member of the present invention, carbon and nitrogen that enter during carburizing heating react with solute Ti, and a large amount of fine Ti (CN) precipitates in the carburized layer. Therefore, in bearing parts and rolling parts, these Ti (CN) contributes to the improvement of rolling fatigue life. Therefore, in bearing parts and rolling parts, in the case of directing a particularly high level of rolling fatigue life, the carbon potential at the time of carburizing should be set higher in the range of 0.9 to 1.3%, or It is effective to perform so-called carburizing and nitriding treatment. The carburizing and nitriding treatment is a treatment in which nitriding is performed in the course of the diffusion treatment after carburizing as described above, but the conditions that the surface nitrogen concentration is in the range of 0.2 to 0.6% are appropriate. is there.

本発明者はTiを0.05〜0.2%の範囲内とすると、TiCSが生成することを通じて、MnSが微細かつ少なくなり、それによって衝撃値が向上することを知見した。   The present inventor has found that when Ti is in the range of 0.05 to 0.2%, MnS is fine and reduced through the formation of TiCS, thereby improving the impact value.

N:0.0051%未満
Nは鋼中のTiと結びつくと粒制御にほとんど寄与しない粗大なTiNを生成し、これがTiC、TiCS主体のTi系析出物、NbC、NbC主体のNb(CN)の析出サイトとなり、これらのTi系析出物、Nbの炭窒化物の微細析出を阻害し粗大粒の生成を促進する。上記の悪影響はN量が0.0051%以上の場合特に顕著である。以上の理由から、その含有量を0.0051%未満にする必要がある。
N: Less than 0.0051% When N is combined with Ti in steel, it produces coarse TiN that hardly contributes to grain control. This is TiC, TiCS-based Ti-based precipitates, NbC, NbC-based Nb (CN). It becomes a precipitation site, inhibits fine precipitation of these Ti-based precipitates and Nb carbonitrides, and promotes the formation of coarse particles. The above adverse effect is particularly remarkable when the N amount is 0.0051% or more. For the above reasons, the content needs to be less than 0.0051%.

P:0.025%以下
Pは冷間鍛造時の変形抵抗を高め、靭性を劣化させる元素であるため、冷間鍛造性が劣化する。また、焼入れ、焼戻し後の部品の結晶粒界を脆化させることによって、疲労強度を劣化させるので、できるだけ低減することが望ましい。従ってその含有量を0.025%以下に制限する必要がある。好適範囲は0.015%以下である。
P: 0.025% or less P is an element that increases deformation resistance during cold forging and deteriorates toughness, so that cold forgeability deteriorates. Further, since the fatigue strength is deteriorated by embrittlement of the grain boundaries of the parts after quenching and tempering, it is desirable to reduce them as much as possible. Therefore, it is necessary to limit the content to 0.025% or less. The preferred range is 0.015% or less.

O:0.0025%以下
本発明のような高Ti鋼においては、Oは鋼中でTi系の酸化物系介在物を形成する。酸化物系介在物が鋼中に多量に存在すると、TiCの析出サイトとなり、熱間圧延時にTiCが粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。そのため、O量はできるだけ低減することが望ましい。以上の理由から、その含有量を0.0025%以下に制限する必要がある。好適範囲は0.0020%以下である。なお、軸受部品、転動部品においては、酸化物系介在物が転動疲労破壊の起点となるので、O含有量が低いほど転動寿命は向上する。そのため、軸受部品、転動部品においては、O含有量を0.0012%以下に制限するのが望ましい。
O: 0.0025% or less In the high Ti steel as in the present invention, O forms Ti-based oxide inclusions in the steel. When a large amount of oxide inclusions are present in the steel, TiC precipitates, and TiC precipitates coarsely during hot rolling, making it impossible to suppress grain coarsening during carburizing. Therefore, it is desirable to reduce the amount of O as much as possible. For the above reasons, the content needs to be limited to 0.0025% or less. The preferred range is 0.0020% or less. In bearing parts and rolling parts, oxide inclusions are the starting point of rolling fatigue failure, so the rolling life is improved as the O content is lower. Therefore, it is desirable to limit the O content to 0.0012% or less in bearing parts and rolling parts.

また、本願発明は、下記の成分範囲で規定されるCr、Mo、Ni、V、Bの1種又は2種以上を含有する。   Moreover, this invention contains 1 type (s) or 2 or more types of Cr, Mo, Ni, V, and B prescribed | regulated by the following component range.

Cr:0.4〜2.0%
Crは鋼に強度、焼入れ性を与えるのに有効な元素であり、さらに軸受部品、転動部品においては、浸炭後の残留γ量を増大させるとともに、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。0.4%未満ではその効果は不十分であり、2.0%を越えて添加すると硬さの上昇を招き冷間鍛造性が劣化する。以上の理由から、その含有量を0.4〜2.0%の範囲内にする必要がある。好適範囲は0.7〜1.6%である。なお、Cr添加による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化の抑制の効果は、浸炭後の組織中の残留γ量が30〜40%の時に特に大きい。残留γ量をこの範囲で制御するには、いわゆる浸炭浸窒処理を行い、表面の窒素濃度が0.2〜0.6%の範囲になるようにすることが有効である。
Cr: 0.4-2.0%
Cr is an element effective for imparting strength and hardenability to steel. Further, in bearing parts and rolling parts, the amount of residual γ after carburizing is increased, and the structure changes and material deterioration occurs during rolling fatigue. It is an element that is effective in extending the life by suppressing the above. If it is less than 0.4%, the effect is insufficient, and if it exceeds 2.0%, the hardness is increased and the cold forgeability deteriorates. For the above reasons, the content needs to be in the range of 0.4 to 2.0%. A preferable range is 0.7 to 1.6%. The effect of suppressing the structural change and material deterioration in the rolling fatigue process of bearing parts and rolling parts due to the addition of Cr is particularly great when the amount of residual γ in the structure after carburizing is 30 to 40%. In order to control the amount of residual γ within this range, it is effective to perform a so-called carburizing and nitriding treatment so that the surface nitrogen concentration is in the range of 0.2 to 0.6%.

Mo:0.02〜1.5%
Moは添加することによって焼入れ性を与える効果があり、その効果を得るためには0.02%以上が必要である。さらに軸受部品、転動部品においては、浸炭後の残留γ量を増大させるとともに、転動疲労過程での組織変化、材質劣化の抑制による高寿命化に有効な元素である。但し、1.5%を越えて添加すると硬さの上昇を招き切削性、冷間鍛造性
が劣化する。以上の理由から、その含有量を1.5%以下の範囲内にする必要がある。好適範囲は0.5%以下である。Mo添加による軸受部品、転動部品の転動疲労過程での組織変化、材質劣化の抑制の効果についても、Crと同様に、いわゆる浸炭浸窒処理を行い、浸炭後の組織中の残留γ量が30〜40%の時に特に大きい。
Mo: 0.02 to 1.5%
Mo has an effect of imparting hardenability by adding, and 0.02% or more is necessary to obtain the effect. Further, in bearing parts and rolling parts, it is an element effective in increasing the residual γ amount after carburizing and extending the life by suppressing the structural change and material deterioration in the rolling fatigue process. However, if added over 1.5%, the hardness increases, and the machinability and cold forgeability deteriorate. For the above reasons, the content needs to be in the range of 1.5% or less. The preferred range is 0.5% or less. As with Cr, the effect of suppressing the structure change and material deterioration during rolling fatigue of bearing parts and rolling parts due to the addition of Mo is the so-called carburizing and nitriding treatment, and the amount of residual γ in the structure after carburizing. Is particularly large at 30-40%.

Ni:0.1〜3.5%
Niは添加することによって焼入れ性を与える効果があり、その効果を得るためには0.1%以上が必要である。3.5%を越えて添加すると硬さの上昇を招き切削性、冷間鍛造性が劣化する。以上の理由から、その含有量を3.5%以下の範囲内にする必要がある。好適範囲は2.0%以下である。
Ni: 0.1 to 3.5%
Ni has an effect of imparting hardenability by adding, and 0.1% or more is necessary to obtain the effect. If added over 3.5%, the hardness is increased, and the machinability and cold forgeability deteriorate. For the above reasons, the content needs to be in the range of 3.5% or less. The preferred range is 2.0% or less.

V:0.02〜0.5%
Vは添加することによって焼入れ性を与える効果があり、その効果を得るためには0.02%以上が必要である。0.5%を越えて添加すると硬さの上昇を招き切削性、冷間鍛造性が劣化する。以上の理由から、その含有量を0.5%以下の範囲内にする必要がある。好適範囲は0.2%以下である。
V: 0.02-0.5%
V has the effect of imparting hardenability when added, and 0.02% or more is necessary to obtain the effect. If added over 0.5%, the hardness is increased, and the machinability and cold forgeability deteriorate. For the above reasons, the content needs to be in the range of 0.5% or less. The preferred range is 0.2% or less.

B:0.0002〜0.005%
Bは添加することによって焼入れ性を与える効果があり、その効果を得るためには0.0002%以上が必要である。さらにBには、1)棒鋼・線材圧延において、圧延後の冷却過程でボロン鉄炭化物を生成することにより、フェライトの成長速度を増加させ、圧延したままで軟質化を促進する効果、2)浸炭材の粒界強度を向上させることにより、浸炭部品としての疲労強度・衝撃強度を向上させる効果も有している。しかしながら、0.005%を超えてBを添加するとその効果は飽和し、かえって衝撃強度劣化等の悪影響が懸念されるので、その含有量を0.005%以下の範囲内にする必要がある。好適範囲は0.003%以下である。
B: 0.0002 to 0.005%
B has the effect of imparting hardenability when added, and 0.0002% or more is necessary to obtain the effect. Furthermore, in B, 1) the effect of increasing the growth rate of ferrite by forming boron iron carbide in the cooling process after rolling in steel bar / wire rolling, and promoting softening while being rolled, 2) carburizing By improving the grain boundary strength of the material, it also has the effect of improving fatigue strength and impact strength as carburized parts. However, when B is added over 0.005%, the effect is saturated, and adverse effects such as deterioration of impact strength are concerned. Therefore, the content needs to be within the range of 0.005% or less. The preferred range is 0.003% or less.

更に本願発明では、下記の成分範囲で規定されるZr、Mg、Nbを含有することができる。 Further in the present invention may contain a Z r, Mg, Nb that will be defined by the components within the following range.

Zr:0.0003〜0.0050%
Zrは脱酸元素であり、酸化物を生成するが、硫化物も生成することでMnSとの相互関
係を有する元素である。Zr系酸化物はMnSの晶出/析出の核になりやすい。そのためMnSの分散制御に有効である。またAl量が0.0005%と少ない環境下ではZr系酸化
物が増加することでこの効果が強調され、疲労強度を劣化させるMnSの弊害を抑制することができる。
Zr: 0.0003 to 0.0050%
Zr is a deoxidizing element and generates an oxide, but also has an interrelationship with MnS by generating sulfides. Zr-based oxides tend to become nuclei for crystallization / precipitation of MnS. Therefore, it is effective for distributed control of MnS. Further, in an environment where the amount of Al is as low as 0.0005%, this effect is emphasized by the increase of the Zr-based oxide, and the adverse effect of MnS that degrades fatigue strength can be suppressed.

Zr添加量として、MnSの球状化を狙うためには0.003%を超えた添加が好ましいが、微細分散させるためには逆に0.0003〜0.0050%の添加が好ましい。製品としては後者のほうが、製造上、品質安定性(成分歩留まり等)の観点から後者、すなわちMnSを微細分散させる0.0003〜0.0050%の方が現実的に好ましい。0.0002%以下ではZr添加効果はほとんど認められない。 The amount of Zr added is preferably more than 0.003% in order to aim at spheroidization of MnS. However, in order to finely disperse, addition of 0.0003 to 0.0050% is preferable. As the product, the latter is practically preferable from the viewpoint of production in terms of quality stability (component yield and the like), that is, 0.0003 to 0.0050% in which MnS is finely dispersed. If it is 0.0002% or less, the effect of adding Zr is hardly observed.

Mg:0.0003〜0.0050%
Mgは脱酸元素であり、酸化物を生成するが、硫化物も生成することでMnSとの相互関係を有する元素である。Mg系酸化物はMnSの晶出/析出の核になりやすい。また硫
化物がMnとMgの複合硫化物となることで、その変形を抑制し、球状化する。そのためMnSの分散制御に有効である。この効果はAl量が0.0005%と少ない環境下であることが好ましく、Mg系酸化物が増加することでこの効果が強調され、疲労強度を劣化させるMnSの弊害を抑制することができる。これらの効果を発現させるためには、少なくともMgを0.0003%添加させる必要があるが、Mg量が0.0050%を超えるとかかる効果が飽和してしまう。
Mg: 0.0003 to 0.0050%
Mg is a deoxidizing element and generates an oxide, but also has an interrelationship with MnS by generating sulfides. Mg-based oxides tend to become nuclei for crystallization / precipitation of MnS. Moreover, since the sulfide becomes a composite sulfide of Mn and Mg, the deformation is suppressed and spheroidized. Therefore, it is effective for dispersion control of MnS. This effect is preferably in an environment where the amount of Al is as low as 0.0005%, and this effect is emphasized by increasing the amount of Mg-based oxide, and the adverse effect of MnS that degrades fatigue strength can be suppressed. In order to express these effects, it is necessary to add at least 0.0003% of Mg. However, when the amount of Mg exceeds 0.0050%, such effects are saturated.

Nb:0.04%未満
次に、本発明の請求項3では、請求項1〜2に加えてNb:0.04%未満を含有する
が、このように限定した理由を以下に述べる。Nbは浸炭加熱の際に鋼中のC、Nと結びついてNb(CN)を形成し、結晶粒の粗大化抑制に有効な元素である。Nb添加により「Ti系析出物による粗大粒防止」効果が一層有効になる。これは、Ti系析出物にNbが固溶し、Ti系析出物の粗大化を抑制するためである。そのため、本願発明の添加量の範囲内では、Nbの添加量に依存して効果は増大するものの、0.03%未満、あるいは0.02%未満、さらには0.01%未満といった微量添加においても、Nbを添加しない場合に比較して、粗大粒防止特性は顕著に向上する。但し、Nb添加は切削性や冷間鍛造性の劣化、浸炭特性の劣化を引き起す。特に、Nbの添加量がNb:0.04%以上であると、素材の硬さが硬くなって切削性、冷間鍛造性が劣化するとともに、棒鋼・線材圧延加熱時の溶体化が困難になる。以上の理由から、その含有量を0.04%未満の範囲内にする必要がある。切削性、冷間鍛造性等の加工性を重視する場合の好適範囲は、0.03%未満である。また、加工性に加えて、浸炭性を重視する場合の好適範囲は0.02%未満である。さらに、特別に浸炭性を重視する場合の好適範囲は0.01%未満である。また、粗大粒防止特性と加工性との両立を図るために、Nbの添加量は、Tiの添加量に応じて、調整することが推奨される。例えば、Ti+Nbの好適範囲は、0.07〜0.17%未満である。特に高温浸炭や、冷鍛部品において、望ましい範囲は0.091%超〜0.17%未満である。
Nb: less than 0.04% Next, claim 3 of the present invention contains Nb: less than 0.04% in addition to claims 1 and 2, and the reason for this limitation will be described below. Nb combines with C and N in steel during carburizing heating to form Nb (CN), and is an element effective for suppressing coarsening of crystal grains. By adding Nb, the effect of “preventing coarse grains due to Ti-based precipitates” becomes more effective. This is because Nb dissolves in the Ti-based precipitate and suppresses the coarsening of the Ti-based precipitate. Therefore, within the range of the addition amount of the present invention, the effect increases depending on the addition amount of Nb, but in a small amount addition such as less than 0.03%, less than 0.02%, and even less than 0.01%. However, compared with the case where Nb is not added, the coarse grain prevention characteristic is remarkably improved. However, Nb addition causes deterioration of machinability, cold forgeability, and carburization characteristics. In particular, when the amount of Nb added is Nb: 0.04% or more, the hardness of the material becomes hard and the machinability and cold forgeability deteriorate, and it is difficult to form a solution during heating of the steel bar and wire rod. Become. For the above reasons, the content needs to be within a range of less than 0.04%. The preferred range when workability such as machinability and cold forgeability is important is less than 0.03%. In addition to workability, the preferred range when carburization is important is less than 0.02%. Furthermore, the preferable range in the case where carburizability is particularly emphasized is less than 0.01%. In order to achieve both the coarse grain prevention characteristics and the workability, it is recommended that the amount of Nb added be adjusted according to the amount of Ti added. For example, the preferable range of Ti + Nb is 0.07 to less than 0.17%. Particularly in high-temperature carburizing and cold forged parts, the desirable range is more than 0.091% and less than 0.17%.

圧延加熱時に粗大なAlNが存在すると、Ti系析出物、Nbの析出物の析出サイトとなり、熱間圧延後にTi系析出物、Nbの析出物が粗大に析出し、浸炭時に結晶粒の粗大化を抑制できなくなる。 そのため、圧延加熱時にAlNを溶体化することが必要である
。ここで、AlNは、圧延加熱時に溶体化しておけば、棒鋼、線材の熱間圧延−冷却過程でAlNの析出はほとんど起こらない。なお、Ti系析出物、Nbの析出物をピン止め粒子として活用するためには、圧延加熱時にこれらの析出物も一旦溶体化する必要がある。AlNが圧延加熱時に溶体化できる条件で加熱を行えば、上記の析出物を一旦溶体化することが可能である。そのため、熱間圧延後のAlNの析出量を規制することにより、圧延加熱時にTi系析出物、Nbの析出物を一旦溶体化できたことの確認が可能である。
When coarse AlN is present during rolling and heating, it becomes a precipitation site for Ti-based precipitates and Nb precipitates, and after hot rolling, Ti-based precipitates and Nb precipitates are coarsely precipitated, and the grains become coarse during carburizing. Can not be suppressed. Therefore, it is necessary to solutionize AlN during rolling and heating. Here, if AlN is in solution at the time of rolling and heating, precipitation of AlN hardly occurs in the hot rolling-cooling process of steel bars and wires. In order to utilize Ti-based precipitates and Nb precipitates as pinning particles, these precipitates also need to be dissolved once during rolling and heating. If heating is performed under conditions that allow AlN to form a solution during rolling and heating, the above precipitate can be once formed into a solution. Therefore, by regulating the precipitation amount of AlN after hot rolling, it is possible to confirm that the Ti-based precipitates and Nb precipitates were once in solution during rolling and heating.

次に、本発明の請求項1、4では、熱間圧延後のベイナイトの組織分率を30%以下に制限するが、このように限定した理由を以下に述べる。熱間圧延後の鋼材にベイナイト組織が混入すると、浸炭加熱時の粗大粒発生の原因になる。また、ベイナイトの混入の抑制は冷間加工性改善の視点からも望ましい。これらの悪影響は、ベイナイトの組織分率が30%を超えると特に顕著になる。以上の理由から、熱間圧延後のベイナイトの組織分率を30%以下に制限する必要がある。高温浸炭等で粗大粒防止に対して浸炭条件が厳しい場合の好適範囲は20%以下である。冷鍛経由等でさらに粗大粒防止に対して浸炭条件が厳しい場合の好適範囲は10%以下である。 Next, in claims 1 and 4 of the present invention, the structure fraction of bainite after hot rolling is limited to 30% or less. The reason for this limitation will be described below. If a bainite structure is mixed in the steel after hot rolling, coarse grains are generated during carburizing heating. In addition, suppression of bainite contamination is also desirable from the viewpoint of improving cold workability. These adverse effects become particularly prominent when the bainite structural fraction exceeds 30%. For the above reasons, it is necessary to limit the structure fraction of bainite after hot rolling to 30% or less. The preferred range when the carburizing conditions are severe for preventing coarse grains due to high-temperature carburizing or the like is 20% or less. The preferred range is 10% or less when the carburizing conditions are severe for preventing coarse grains via cold forging.

次に本発明における請求項1、4では、熱間圧延後のフェライト結晶粒度番号をJIS G0552で規定されている8〜11番とするが、このように限定した理由を以下に述べる。熱間圧延後のフェライト粒が過度に微細であると、浸炭時にオーステナイト粒が過度に微細化する。オーステナイト粒が過度に微細になると、粗大粒が生成しやすくなり、特にフェライト結晶粒度が11番を超えるとその傾向が顕著になる。また、オーステナイト粒がJIS G0551で規定されている11番を超えるような過度に微細になると、特許文献4に記載の鋼材と同様に、焼入れ性の劣化による強度不足等の弊害を生じる。一方、熱間圧延後のフェライト結晶粒度番号をJIS G0552で規定されている8番未満の粗粒にすると、熱間圧延材の延性が劣化し、冷間鍛造性が劣化する。以上の理由から、熱間圧延後のフェライト結晶粒度番号をJIS G0552で規定されている8〜11番の範囲内にする必要がある。 Next, in claims 1 and 4 of the present invention, the ferrite grain size number after hot rolling is set to Nos. 8 to 11 defined in JIS G0552. The reason for such limitation will be described below. If the ferrite grains after hot rolling are excessively fine, the austenite grains are excessively refined during carburizing. If the austenite grains become excessively fine, coarse grains are likely to be formed, and the tendency becomes prominent particularly when the ferrite crystal grain size exceeds # 11. Further, when the austenite grains become excessively fine so as to exceed No. 11 defined in JIS G0551, similar to the steel material described in Patent Document 4, problems such as insufficient strength due to deterioration of hardenability occur. On the other hand, when the ferrite crystal grain size number after hot rolling is coarser than the number 8 specified in JIS G0552, the ductility of the hot rolled material deteriorates and the cold forgeability deteriorates. For the above reasons, it is necessary to set the ferrite crystal grain size number after hot rolling within the range of 8 to 11 defined by JIS G0552.

本発明の請求項1では、熱間圧延後の鋼のマトリックス中の長手方向断面において、検査基準面積:100mm2、検査回数16視野、予測を行なう面積:30000mm2の条件で測定された極値統計によるTi系析出物の最大直径が40μm以下とするが、このように限定した理由を以下に述べる。本願発明で対象とする浸炭部品の要求特性の一つに転動疲労特性や面疲労強度のような接触疲労強度がある。粗大なTi系析出物が鋼中に存在すると接触疲労破壊の起点となり、疲労特性が劣化する。極値統計により、検査基準面積:100mm2、検査回数16視野、予測を行なう面積:30000mm2の条件で測定した時のTi系析出物の最大直径が40μmを超えると、特に接触疲労特性に及ぼすTi系析出物の悪影響が顕著になる。以上の理由から、極値統計によるTi系析出物の最大直径を40μm以下とする必要がある。極値統計による析出物の最大直径の測定、予測方法は、例えば、村上敬宜“金属疲労 微小欠陥と介在物の影響”養賢堂pp233〜239(1993年)に記載の方法による。なお、本願発明で用いているのは、二次元的検査により一定面積内(予測を行なう面積:30000mm2)で観察される最大析出物を推定するという二次元的検査方法である。詳細な測定手順は、下記の実施例欄で詳述する。 In the first aspect of the present invention, in longitudinal section in the matrix of the steel after hot rolling, the inspection reference area: 100 mm 2, the number of inspections 16 viewing area make predictions: 30,000 mm measured pole in two conditions The maximum diameter of the Ti-based precipitate by value statistics is 40 μm or less. The reason for this limitation will be described below. One of the required characteristics of the carburized parts targeted by the present invention is contact fatigue strength such as rolling fatigue characteristics and surface fatigue strength. If coarse Ti-based precipitates are present in the steel, it becomes a starting point for contact fatigue failure, and the fatigue characteristics deteriorate. The extreme value statistics, inspection reference area: 100 mm 2, the number of inspections 16 viewing area make predictions: the maximum diameter of Ti-based precipitates when measured under the conditions of 30,000 mm 2 is more than 40 [mu] m, on the particular contact fatigue properties The adverse effect of Ti-based precipitates becomes significant. For the above reasons, the maximum diameter of Ti-based precipitates according to extreme value statistics needs to be 40 μm or less. The method for measuring and predicting the maximum diameter of precipitates by extreme value statistics is, for example, the method described in Takayoshi Murakami “Effects of Metal Fatigue Microdefects and Inclusions” Yokendo pp 233-239 (1993). The present invention uses a two-dimensional inspection method that estimates the maximum precipitate observed within a certain area (predicted area: 30000 mm 2 ) by two-dimensional inspection. Detailed measurement procedures are described in detail in the Examples section below.

次に本発明を適用した肌焼鋼の製造方法における熱間圧延条件について説明する。   Next, hot rolling conditions in the method for producing the case hardening steel to which the present invention is applied will be described.

上述した化学成分からなる本発明鋼を、転炉、電気炉等の通常の方法によって溶製し、成分調整を行い、鋳造工程、必要に応じて分塊圧延工程を経て、線材または棒鋼に熱間圧延して圧延素材を製造する。   The steel of the present invention composed of the above-described chemical components is melted by a usual method such as a converter or an electric furnace, the components are adjusted, and the wire or bar steel is heated through a casting process and, if necessary, a block rolling process. The rolled material is manufactured by rolling.

次に、本発明の請求項4は、この製造した圧延素材を1150℃以上の温度で保熱時間10分以上加熱の温度で加熱する。加熱条件が、1150℃未満であるか、あるいは加熱温度が1150℃以上でも保熱時間が10分未満では、Ti系析出物、Nbの析出物およびAlNを一旦マトリックス中に固溶させることができない。そのため、熱間圧延後の鋼材に、一定量以上のTi系析出物、Nbの析出物をあらかじめ微細析出させることができず、熱間圧延後に粗大なTi系析出物、Nbの析出物が存在し、浸炭時に粗大粒の発生を抑制することができない。そのため、熱間圧延に際して、1150℃以上の温度で保熱時間10分以上加熱することが必要である。好適範囲は1180℃以上の熱間圧延温度で保熱時間10分以上である。 Next, Claim 4 of this invention heats this manufactured rolling raw material at the temperature of 1150 degreeC or more and the heat retention time for 10 minutes or more. If the heating condition is less than 1150 ° C. or the heat retention time is less than 10 minutes even if the heating temperature is 1150 ° C. or higher, Ti-based precipitates, Nb precipitates and AlN cannot be once dissolved in the matrix. . Therefore, a certain amount or more of Ti-based precipitates and Nb precipitates cannot be finely precipitated in advance on the steel material after hot rolling, and coarse Ti-based precipitates and Nb precipitates exist after hot rolling. In addition, the generation of coarse grains cannot be suppressed during carburizing. Therefore, in hot rolling, it is necessary to heat at a temperature of 1150 ° C. or higher for a heat retention time of 10 minutes or longer. The preferred range is a hot rolling temperature of 1180 ° C. or higher and a heat retention time of 10 minutes or longer.

次に、本発明の請求項4は、熱間圧延後に800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷する。冷却条件は、1℃/秒を超えるとTi系析出物の析出温度域を短時間しか通過させることができず、熱間圧延後の微細なTiC系析出物の析出量が不十分となり、さらにまた、ベイナイトの組織分率が大きくなる。そのため、浸炭時に粗大粒の発生を抑制することができなくなる。また、冷却速度が大きいと圧延材の硬さが上昇し、冷間鍛造性が劣化するため、冷却速度はできるだけ小さくするのが望ましい。好適範囲は0.7℃/秒以下である。なお、冷却速度を小さくする方法としては、圧延ラインの後方に保温カバーまたは熱源付き保温カバーを設置し、これにより、徐冷を行う方法が挙げられる。 Next, Claim 4 of this invention anneals the temperature range of 800-500 degreeC with the cooling rate of 1 degrees C / sec or less after hot rolling. When the cooling condition exceeds 1 ° C./second, the precipitation temperature range of the Ti-based precipitate can be passed only for a short time, and the amount of fine TiC-based precipitate after hot rolling becomes insufficient, Moreover, the structure fraction of bainite increases. Therefore, it becomes impossible to suppress the generation of coarse particles during carburizing. Further, if the cooling rate is high, the hardness of the rolled material increases and the cold forgeability deteriorates. Therefore, it is desirable to make the cooling rate as small as possible. The preferred range is 0.7 ° C./second or less. In addition, as a method of reducing the cooling rate, a method of installing a heat insulating cover or a heat insulating cover with a heat source behind the rolling line and thereby performing slow cooling can be mentioned.

次に、本発明の請求項4は、熱間圧延の仕上げ温度を840〜1000℃とする。仕上げ温度が840℃未満では、フェライト結晶粒度が過度に微細になりすぎて、その後の浸炭時に粗大粒が発生しやすくなる。一方、仕上げ温度が1000℃を超えると、圧延材の硬さが硬くなって冷間鍛造性が劣化する。以上の理由から、熱間圧延の仕上げ温度を840〜1000℃とする。冷間鍛造用途で、焼鈍なしで使用する場合は、840〜920℃の範囲が、それ以外では920〜1000℃の範囲が望ましい。 Next, claim 4 of the present invention sets the finishing temperature of hot rolling to 840 to 1000 ° C. If the finishing temperature is less than 840 ° C., the ferrite crystal grain size becomes excessively fine, and coarse grains are likely to be generated during the subsequent carburizing. On the other hand, when the finishing temperature exceeds 1000 ° C., the hardness of the rolled material becomes hard and the cold forgeability deteriorates. For these reasons, the hot rolling finishing temperature is set to 840 to 1000 ° C. When used for cold forging without annealing, a range of 840 to 920 ° C is desirable, and a range of 920 to 1000 ° C is desirable otherwise.

本発明では、鋳片のサイズ、凝固時の冷却速度、分塊圧延条件については特に限定するものではなく、本発明の要件を満足すればいずれの条件でも良い。   In the present invention, the size of the slab, the cooling rate during solidification, and the ingot rolling conditions are not particularly limited, and any conditions may be used as long as the requirements of the present invention are satisfied.

本発明は、冷間鍛造工程で製造される部品、熱間鍛造で製造される部品いずれにも適用可能である。熱間鍛造工程の例としては、「棒鋼−熱間鍛造−必要により焼準等の熱処理−切削−浸炭焼入れ−必要により研磨」の工程があげられる。本願発明の鋼材を用いて、例えば1150℃以上の加熱温度で熱間鍛造を行い、その後必要に応じて焼準処理を行なうことにより、950℃〜1090℃の温度域での浸炭のような厳しい条件での浸炭焼入れ熱処理においても、粗大粒の発生の抑制が可能となり、優れた材質特性が得られる。例えば、軸受部品、転動部品の場合であると、高温浸炭を行っても、優れた転動疲労特性が得られる。   The present invention can be applied to both parts manufactured by the cold forging process and parts manufactured by hot forging. As an example of the hot forging process, there is a process of “bar steel-hot forging-heat treatment such as normalization if necessary-cutting-carburizing and quenching-polishing if necessary". By using the steel material of the present invention, for example, hot forging at a heating temperature of 1150 ° C. or higher, and then performing a normalization treatment as necessary, such as severe carburization in a temperature range of 950 ° C. to 1090 ° C. Even in carburizing and quenching heat treatment under conditions, the generation of coarse grains can be suppressed, and excellent material properties can be obtained. For example, in the case of bearing parts and rolling parts, excellent rolling fatigue characteristics can be obtained even when high-temperature carburizing is performed.

本発明では、浸炭条件を特に限定するものではない。軸受部品、転動部品において、特に高いレベルの転動疲労寿命を指向する場合には、上記のように、浸炭時の炭素ポテンシャルを0.9〜1.3%の範囲で高めに設定すること、あるいは、いわゆる浸炭浸窒処理を行うことが有効である。浸炭浸窒処理は、浸炭後の拡散処理の過程で浸窒を行う処理であるが、表面の窒素濃度が0.2〜0.6%の範囲になるような条件が適切である。これらの条件を選択することにより、浸炭層に微細なTi(CN)が多量に析出し、また残留γが30〜40%導入されることが、転動寿命の向上に寄与する。   In the present invention, carburizing conditions are not particularly limited. In bearing parts and rolling parts, when aiming at a particularly high level of rolling fatigue life, as described above, the carbon potential during carburizing should be set higher within the range of 0.9 to 1.3%. Alternatively, it is effective to perform a so-called carburizing and nitriding treatment. The carburizing and nitriding treatment is a treatment in which nitriding is performed in the course of the diffusion treatment after carburizing, and conditions under which the surface nitrogen concentration is in the range of 0.2 to 0.6% are appropriate. By selecting these conditions, a large amount of fine Ti (CN) precipitates in the carburized layer, and the introduction of 30 to 40% of residual γ contributes to the improvement of the rolling life.

なお本発明では、上述した構成からなる肌焼鋼を用い、部品形状に加工されてなる浸炭部品も含まれることは勿論である。   In the present invention, it is needless to say that carburized parts formed using the case-hardened steel having the above-described configuration and processed into a part shape are also included.

以下、本発明の実施例について説明をする。   Examples of the present invention will be described below.

表1に示す組成を有する転炉溶製鋼を連続鋳造し、必要に応じて分塊圧延工程を経て162mm角の圧延素材とした。続いて、熱間圧延により、直径24〜30mmの棒鋼を製造した。   Converter molten steel having the composition shown in Table 1 was continuously cast, and a rolling raw material of 162 mm square was obtained through a batch rolling process as necessary. Subsequently, steel bars having a diameter of 24 to 30 mm were manufactured by hot rolling.

Figure 0005262740
Figure 0005262740

熱間圧延後の棒鋼について、ミクロ観察を行い、ベイナイト分率の測定、JIS G 0552の規定に従ってフェライト結晶粒度の測定を行なった。さらに、ビッカース硬さ
を測定し、冷間加工性の指標とした。
About the steel bar after hot rolling, micro observation was performed and the ferrite grain size was measured according to the measurement of the bainite fraction and the provisions of JIS G 0552. Furthermore, the Vickers hardness was measured and used as an index of cold workability.

上記の工程で製造した棒鋼について、球状化焼鈍を行った後、据え込み試験片を作成し、圧下率50%の据え込みを行った後、浸炭シミュレーションを行った。浸炭シミュレーションの条件は、910℃〜1010℃に5時間加熱−水冷である。その後、切断面に研磨−腐食を行い、旧オーステナイト粒径を観察して粗粒発生温度(結晶粒粗大化温度)を求めた。浸炭処理は通常930〜950℃の温度域で行われるため、粗粒発生温度が950℃以下のものは結晶粒粗大化特性に劣ると判定した。なお、旧オーステナイト粒度の測定はJIS G 0551に準じて行い、400倍で10視野程度観察し、粒度番号5番以下の粗粒が1つでも存在すれば粗粒発生と判定した。また、極値統計法によるTi系析出物の最大直径の予測は次の方法で行なった。析出物がTi系であるか否かは、光学顕微鏡におけるコントラストの違いからを判別した。コントラストの違いによる判別法の妥当性は、あらかじめエネルギー分散型X線分光分析装置付き走査型電子顕微鏡にて確認した。試験片長手方向断面において検査基準面積100mm(10mm×10mmの領域)の領域をあ
らかじめ16視野分準備した。そして各検査基準面積100mmにおけるTi系の最大析出
物を検出し、これを光学顕微鏡にて1000倍で写真撮影した。これを各々の各検査基準面積100mmの16視野について、16回繰り返し行なった(つまり検査回数16視野)。得られ
た写真から各検査基準面積における最大析出物の直径を計測した。楕円形の場合は長径と短径の相乗平均を求めその析出物の直径とした。得られた最大析出物直径の16個のデータを、村上敬宜“金属疲労 微小欠陥と介在物の影響”養賢堂pp233〜239(1993年)に記載の方法により、極値確率用紙にプロットし、最大析出物分布直線(最大析出物直径と極値統計基準化変数の一次関数)を求め、最大析出物分布直線を外挿することにより、予測を行なう面積:30000mmにおける最大析出物の直径を予測した。さらに、
熱間圧延後の直径24〜30mmの棒鋼に焼準+調整冷却の熱処理を施し、全数フェライト-パーライト組織とした後、直径22〜28mmで高さ21mmの円柱試験片を切出し
フライス仕上を施したものをドリル切削用試験片とした。ドリル切削用試験片に対し、表2に示す切削条件でドリル穿孔試験を行い、本発明例及び比較例の各鋼材の被削性を評価した。その際、評価指標としては、ドリル穿孔試験では累積穴深さ1000mmまで切削可能な最大切削速度VL1000を採用した。
The steel bar manufactured in the above process was subjected to spheroidizing annealing, then an upsetting test piece was prepared, and upsetting was performed at a reduction rate of 50%, and then a carburizing simulation was performed. The conditions for the carburizing simulation are heating to 910 ° C. to 1010 ° C. for 5 hours and water cooling. Thereafter, the cut surface was polished and corroded, and the prior austenite grain size was observed to determine the coarse grain generation temperature (crystal grain coarsening temperature). Since the carburizing process is normally performed in a temperature range of 930 to 950 ° C., it was determined that the coarse grain generation temperature was 950 ° C. or lower and the crystal grain coarsening characteristics were inferior. The prior austenite particle size was measured in accordance with JIS G 0551, observed at 400 times for about 10 fields of view, and if there was at least one coarse particle having a particle size number of 5 or less, it was determined that coarse particles were generated. Moreover, the maximum diameter of Ti-based precipitates was estimated by the following method using the extreme value statistical method. Whether or not the precipitate is Ti-based was determined from the difference in contrast in the optical microscope. The validity of the discrimination method based on the difference in contrast was confirmed in advance with a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. A region having an inspection reference area of 100 mm 2 (10 mm × 10 mm region) in the longitudinal section of the test piece was prepared in advance for 16 fields of view. Then, a Ti-based maximum precipitate in each inspection reference area 100 mm 2 was detected, and this was photographed 1000 times with an optical microscope. This was repeated 16 times for 16 visual fields of each inspection reference area 100 mm 2 (that is, 16 visual fields were inspected). The diameter of the largest deposit in each inspection reference area was measured from the obtained photograph. In the case of an ellipse, the geometric mean of the major axis and minor axis was determined and used as the diameter of the precipitate. 16 data of the maximum precipitate diameter obtained were plotted on the extreme probability sheet by the method described in Takayoshi Murakami “Effects of Metal Fatigue and Micro Defects and Inclusions” Yokendo pp 233-239 (1993). The maximum precipitation distribution line (maximum precipitate diameter and linear function of the extreme value statistical normalization variable) is obtained, and the maximum precipitation distribution line is extrapolated to obtain the prediction area: 30000 mm 2 The diameter was predicted. further,
After the hot rolling, the steel bar having a diameter of 24 to 30 mm was subjected to a heat treatment of normalizing and adjusting cooling to form a total ferrite-pearlite structure, and then a cylindrical test piece having a diameter of 22 to 28 mm and a height of 21 mm was cut and milled. The thing was used as the test piece for drill cutting. A drill drilling test was performed on the test piece for drill cutting under the cutting conditions shown in Table 2, and the machinability of each steel material of the present invention example and the comparative example was evaluated. At that time, as an evaluation index, a maximum cutting speed VL1000 capable of cutting to a cumulative hole depth of 1000 mm was adopted in the drill drilling test.

Figure 0005262740
(NACHI通常ドリルとは株式会社不二越製の型番SD3.0のドリルを示す。)
Figure 0005262740
(NACHI normal drill means a drill with model number SD3.0 manufactured by Fujikoshi Co., Ltd.)

次に、圧下率50%で冷間鍛造を行なった各鋼材から、直径12.2mmの円柱状の転動疲労試験片を作成し、950℃×5時間、炭素ポテンシャル0.8%の条件で浸炭を行
なった。焼入れ油の温度は130℃、焼戻しは180℃×2時間である。これらの浸炭焼入れ材について、浸炭層のγ粒度を調査した。さらに、点接触型転動疲労試験機(ヘルツ最大接触応力5884MPa)を用いて転動疲労特性を評価した。疲労寿命の尺度として、「試験結果をワイブル確率紙にプロットして得られる累積破損確率10%における疲労破壊までの応力繰り返し数」として定義されるL10寿命を用いた。
Next, a cylindrical rolling fatigue test piece having a diameter of 12.2 mm was prepared from each steel material that had been cold forged at a reduction rate of 50%, under the conditions of 950 ° C. × 5 hours and carbon potential of 0.8%. Carburized. The temperature of the quenching oil is 130 ° C., and the tempering is 180 ° C. × 2 hours. For these carburized and quenched materials, the γ grain size of the carburized layer was investigated. Furthermore, the rolling fatigue characteristics were evaluated using a point contact type rolling fatigue tester (Hertz maximum contact stress 5884 MPa). As a measure of fatigue life, L 10 life defined as “the number of stress repetitions until fatigue failure at a cumulative failure probability of 10% obtained by plotting test results on Weibull probability paper” was used.

これらの調査結果をまとめて、表3に示す。転動疲労寿命は比較例12のL10寿命を1とした時の各材料のL10寿命の相対値を示した。 These survey results are summarized in Table 3. The rolling fatigue life indicates the relative value of the L 10 life of each material when the L 10 life of Comparative Example 12 is 1.

Figure 0005262740
Figure 0005262740

本発明例の結晶粒粗大化温度は990℃以上であり、950℃浸炭材のγ粒も細整粒であり、転動疲労特性もすぐれていることが明らかである。また、被削性の指標であるVL1000で評価した被削性も本発明例では全て36m/分以上で良好であり、被削性にすぐれていることが明らかである。   It is clear that the crystal grain coarsening temperature of the example of the present invention is 990 ° C. or higher, the γ grains of the 950 ° C. carburized material are finely sized, and have excellent rolling fatigue characteristics. Also, the machinability evaluated by VL1000, which is an index of machinability, is all good at 36 m / min or more in the examples of the present invention, and it is clear that the machinability is excellent.

一方、比較例19はJISのSCr420の特性であるが粗大粒発生温度は低く、950℃浸炭材のγ粒が粗大化している。また、比較例29はNの含有量が本願規定の範囲を上回りさらに
Ti系析出物の最大直径が本願規定の範囲を上回った場合であり、粗大粒の生成が顕著に見られるとともに、転動疲労特性も良くない。比較例21はAl含有量が本願規定の範囲を上回った場合であり、被削性に劣っていた。比較例22はTi含有量が本願規定の範囲を下回った場合であり、Tiのピン止め効果が小さいため、粗大粒の抑制に効果を表していない。比較例23はCa含有量が本願規定の範囲を上回った場合であり、被削性に劣っていた。比較例24は成分は本願規定の範囲内であるが、熱間圧延後の冷却速度が本願発明の範囲を上回り、熱間圧延後のベイナイト組織分率が本願規定の範囲を越えており、これも粗大粒が生成する。比較例25は仕上げ温度が本願発明の範囲を下回り、圧延後のフェライト結晶粒度が本願発明の範囲より微細となった場合であり、粗大粒防止特性は劣っていた。比較例26は圧延加熱温度が本願発明の範囲を下回り、熱間圧延後のAlNの析出量が本願規定の範囲を上回った場合であり、粗大粒防止特性は劣り、転動疲労特性も良好でなかった。
On the other hand, Comparative Example 19 has the characteristics of JIS SCr420, but the coarse grain generation temperature is low, and the γ grains of the 950 ° C. carburized material are coarse. Comparative Example 29 is a case where the N content exceeds the range specified in the present application, and the maximum diameter of the Ti-based precipitate exceeds the range specified in the present application. Fatigue properties are not good. In Comparative Example 21, the Al content exceeded the range specified in the present application, and the machinability was inferior. Comparative Example 22 is a case where the Ti content falls below the range specified in the present application, and since the Ti pinning effect is small, it does not represent an effect for suppressing coarse grains. In Comparative Example 23, the Ca content exceeded the range specified in the present application, and the machinability was inferior. In Comparative Example 24, the components are within the range specified in the present application, but the cooling rate after hot rolling exceeds the range of the present invention, and the bainite structure fraction after hot rolling exceeds the range specified in the present application. Coarse grains are also produced. In Comparative Example 25, the finishing temperature was lower than the range of the present invention, and the ferrite crystal grain size after rolling became finer than the range of the present invention, and the coarse grain prevention characteristics were inferior. Comparative Example 26 is a case where the rolling heating temperature is below the range of the present invention, and the precipitation amount of AlN after hot rolling exceeds the range specified in the present application, the coarse grain prevention characteristics are inferior, and the rolling fatigue characteristics are also good. There wasn't.

表1に示す組成を有する転炉溶製鋼を連続鋳造し、必要に応じて分塊圧延工程を経て162mm角の圧延素材とした。続いて、熱間圧延により、直径70mmの棒鋼を製造した。この棒鋼を素材として、熱間鍛造を行い直径40mmの熱間鍛造部材に仕上げた。熱間鍛造の加熱温度は1100℃〜1290℃である。   Converter molten steel having the composition shown in Table 1 was continuously cast, and a rolling raw material of 162 mm square was obtained through a batch rolling process as necessary. Subsequently, a steel bar having a diameter of 70 mm was manufactured by hot rolling. Using this steel bar as a raw material, hot forging was performed to finish a hot forged member having a diameter of 40 mm. The heating temperature of hot forging is 1100 ° C to 1290 ° C.

上述した工程で製造した熱間鍛造部材について、900℃×1時間加熱空冷の条件で焼準処理を行った。その後、加熱時間5時間の条件で浸炭シミュレーションを行い、実施例
1と同様に、粗大粒発生温度を求めた。また、上記の熱間鍛造部材を焼準した後、直径12.2mmの円柱状の転動疲労試験片と図1に示す10Rノッチ付きシャルピー衝撃試験片を作成し、1050℃×1時間、炭素ポテンシャル1.0%の条件で浸炭焼入れを行った。焼入れ油の温度は130℃、焼戻しは180℃×2時間の条件である。転動疲労寿命試験については実施例1と同様の条件で行った。シャルピー衝撃試験については室温にて実施し、吸収エネルギーで整理した。これらの調査結果をまとめて、表3に示す。転動疲労寿命は比較例12のL10寿命を1とした時の各材料のL10寿命の相対値を示した。
About the hot forging member manufactured at the process mentioned above, the normalization process was performed on the conditions of 900 degreeC x 1 hour heating and air cooling. Thereafter, a carburization simulation was performed under the condition of a heating time of 5 hours, and the coarse grain generation temperature was determined in the same manner as in Example 1. Further, after normalizing the hot forged member, a cylindrical rolling fatigue test piece having a diameter of 12.2 mm and a Charpy impact test piece with a 10R notch shown in FIG. Carburizing and quenching was performed at a potential of 1.0%. The temperature of the quenching oil is 130 ° C., and the tempering is 180 ° C. × 2 hours. The rolling fatigue life test was performed under the same conditions as in Example 1. The Charpy impact test was conducted at room temperature and organized by absorbed energy. These survey results are summarized in Table 3. The rolling fatigue life indicates the relative value of the L 10 life of each material when the L 10 life of Comparative Example 12 is 1.

また表4に示した通り、本発明例では、結晶粒粗大化温度は1070℃超である。また、1050℃浸炭材のγ粒は8番以上の細粒であり、転動疲労寿命も比較例に比べて2倍以上と極めて良好である。   Moreover, as shown in Table 4, in the example of the present invention, the crystal grain coarsening temperature is over 1070 ° C. Further, the γ grains of the 1050 ° C. carburized material are fine grains of No. 8 or more, and the rolling fatigue life is extremely good, that is, twice or more as compared with the comparative example.

一方、比較例は、実施例1と同様に本願発明の要件の範囲から逸脱しており、粗大粒防
止特性は劣り、転動疲労特性本発明例と比較して低下していた。
On the other hand, the comparative example deviated from the range of the requirements of the present invention as in Example 1, and the coarse grain prevention characteristics were inferior, and the rolling fatigue characteristics were lower than those of the present invention example.

Figure 0005262740
Figure 0005262740

Claims (5)

化学成分が、質量%で、
C:0.1〜0.6%、
Si:0.02〜1.5%、
Mn:0.3〜1.8%、
S:0.001〜0.15%、
Al:0.005%未満、
Ti:0.05〜0.2%、
N:0.0051%未満、
P:0.025%以下、
O:0.0025%以下、
さらに、Cr:0.4〜2.0%、Mo:0.02〜1.5%、Ni:0.1〜3.5%、V:0.02〜0.5%、B:0.0002〜0.005%の1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、
熱間圧延後の、ベイナイトの組織分率を30%以下に制限し、フェライト結晶粒度番号がJISG0552で規定されている8〜11番であり、鋼のマトリックス中の長手方向断面において、Ti系析出物の最大直径が40μm以下であることを特徴とする浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼。
Chemical composition is mass%,
C: 0.1-0.6%
Si: 0.02 to 1.5%,
Mn: 0.3 to 1.8%
S: 0.001 to 0.15%,
Al: less than 0.005%,
Ti: 0.05 to 0.2%,
N: less than 0.0051%,
P: 0.025% or less,
O: 0.0025% or less,
Furthermore, Cr: 0.4-2.0%, Mo: 0.02-1.5%, Ni: 0.1-3.5%, V: 0.02-0.5%, B: 0.0. contain one or two or more from 0002 to 0.005%, Ri Do the balance iron and unavoidable impurities,
After hot rolling, the structure fraction of bainite is limited to 30% or less, and the ferrite grain size number is No. 8-11 as defined in JIS G0552. In the longitudinal section in the steel matrix, Ti-based precipitation excellent hardening steel in preventing coarse grains characteristics and fatigue characteristics at carburizing the maximum diameter of the object is characterized in der Rukoto below 40 [mu] m.
さらに、化学成分が質量%で
r:0.0003〜0.0050%、Mg:0.0003〜0.0050%の1種または2種を含むことを特徴とする請求項1記載の浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼。
Furthermore, the chemical composition is mass% ,
Z r: 0.0003~0.0050%, Mg: 0.0003~0.0050% of one or preventing coarse grains characteristics and fatigue characteristics when carburizing according to claim 1, characterized in that it comprises two Excellent case hardening steel.
さらに、化学成分が質量%で、Nb:0.04%未満を含有することを特徴とする請求項1または2記載の浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼。   Furthermore, a chemical component is mass%, and contains Nb: less than 0.04%, The case hardening steel excellent in the coarse grain prevention characteristic and fatigue characteristic at the time of carburizing of Claim 1 or 2 characterized by the above-mentioned. 1150℃以上の温度で保熱時間10分以上加熱して線材または棒鋼に熱間圧延し、熱間圧延の仕上げ温度を840〜1000℃とし、フェライト結晶粒度番号がJISG0552で規定されている8〜11番である鋼となるようにし、熱間圧延後に800〜500℃の温度範囲を1℃/秒以下の冷却速度で徐冷し、熱間圧延後のベイナイトの組織分率が30%以下の鋼となるようにすることを特徴とする請求項1〜3のいずれか1項に記載の浸炭時の粗大粒防止特性と疲労特性に優れた肌焼鋼の製造方法。 Heating is carried out at a temperature of 1150 ° C. or higher for a heat retention time of 10 minutes or more and hot-rolled to a wire or a steel bar, the hot rolling finishing temperature is set to 840 to 1000 ° C., and the ferrite grain size number is specified in JIS G0552 The steel was No. 11, and after the hot rolling, the temperature range of 800 to 500 ° C. was gradually cooled at a cooling rate of 1 ° C./second or less, and the structure fraction of bainite after hot rolling was 30% or less. The method for producing a case hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburizing according to any one of claims 1 to 3, wherein the steel is made of steel. 請求項1〜のうち何れか1項に記載の肌焼鋼を用い、部品形状に加工されてなることを特徴とする浸炭部品。 A carburized part obtained by processing the case-hardened steel according to any one of claims 1 to 3 into a part shape.
JP2009008175A 2009-01-16 2009-01-16 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method Expired - Fee Related JP5262740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008175A JP5262740B2 (en) 2009-01-16 2009-01-16 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008175A JP5262740B2 (en) 2009-01-16 2009-01-16 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2010163666A JP2010163666A (en) 2010-07-29
JP5262740B2 true JP5262740B2 (en) 2013-08-14

Family

ID=42580056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008175A Expired - Fee Related JP5262740B2 (en) 2009-01-16 2009-01-16 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5262740B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406943A (en) * 2015-03-31 2017-11-28 新日铁住金株式会社 Surface hardened layer steel part

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5558887B2 (en) * 2010-03-30 2014-07-23 山陽特殊製鋼株式会社 Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
WO2012108461A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Steel for carburizing, carburized steel component, and method for producing same
KR101482473B1 (en) * 2011-02-10 2015-01-13 신닛테츠스미킨 카부시키카이샤 Steel for carburizing, carburized steel component, and method for producing same
KR101412440B1 (en) 2012-03-29 2014-06-25 현대제철 주식회사 Bar steel for shaft and method of manufacturing the same
JP5859384B2 (en) * 2012-06-06 2016-02-10 株式会社神戸製鋼所 Large high strength forged steel
JP7168003B2 (en) * 2019-01-11 2022-11-09 日本製鉄株式会社 steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725666B2 (en) * 1997-08-05 2005-12-14 新日本製鐵株式会社 Manufacturing method of carburized shaft parts
JP3764627B2 (en) * 2000-04-18 2006-04-12 新日本製鐵株式会社 Case-hardened boron steel for cold forging that does not generate abnormal structure during carburizing and its manufacturing method
JP4448456B2 (en) * 2004-01-29 2010-04-07 新日本製鐵株式会社 Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP4486881B2 (en) * 2004-12-27 2010-06-23 新日本製鐵株式会社 Gears with excellent tooth surface fatigue strength
JP4451808B2 (en) * 2005-04-15 2010-04-14 株式会社神戸製鋼所 Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2007289979A (en) * 2006-04-23 2007-11-08 Sanyo Special Steel Co Ltd Method for producing cast slab or steel ingot made of titanium-added case hardening steel and the cast slab or steel ingot, and case hardening steel made of the cast slab or steel ingot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406943A (en) * 2015-03-31 2017-11-28 新日铁住金株式会社 Surface hardened layer steel part
CN107406943B (en) * 2015-03-31 2019-06-07 新日铁住金株式会社 Surface hardened layer steel part

Also Published As

Publication number Publication date
JP2010163666A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
JP4709944B2 (en) Case-hardened steel, carburized parts, and method for producing case-hardened steel
JP4448456B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
WO2010116555A1 (en) Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
JP5114689B2 (en) Case-hardened steel and method for producing the same
KR101965520B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP5262740B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP6631640B2 (en) Case hardened steel, carburized parts and method of manufacturing case hardened steel
CA2967283C (en) Rolled steel bar or rolled wire rod for cold-forged component
WO2016059763A1 (en) Low alloy steel pipe for oil wells
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP6766362B2 (en) Skin-baked steel with excellent coarse grain prevention characteristics, fatigue characteristics, and machinability during carburizing and its manufacturing method
CN109790602B (en) Steel
JP6679935B2 (en) Steel for cold work parts
JP4528363B1 (en) Case-hardened steel with excellent cold workability, machinability, and fatigue characteristics after carburizing and quenching, and method for producing the same
JP2012237052A (en) Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
JP4280923B2 (en) Steel materials for carburized parts or carbonitrided parts
JP6459704B2 (en) Steel for cold forging parts
JP6705344B2 (en) Case-hardening steel excellent in coarse grain prevention characteristics and fatigue characteristics during carburization and its manufacturing method
JP2013213245A (en) Gear excellent in peeling resistance and impact fatigue resistance
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP2005307257A5 (en)
JP5937852B2 (en) Case-hardening steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5262740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees