JP2005307257A5 - - Google Patents

Download PDF

Info

Publication number
JP2005307257A5
JP2005307257A5 JP2004124356A JP2004124356A JP2005307257A5 JP 2005307257 A5 JP2005307257 A5 JP 2005307257A5 JP 2004124356 A JP2004124356 A JP 2004124356A JP 2004124356 A JP2004124356 A JP 2004124356A JP 2005307257 A5 JP2005307257 A5 JP 2005307257A5
Authority
JP
Japan
Prior art keywords
steel
less
content
inclusion
pitching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004124356A
Other languages
Japanese (ja)
Other versions
JP4280923B2 (en
JP2005307257A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004124356A priority Critical patent/JP4280923B2/en
Priority claimed from JP2004124356A external-priority patent/JP4280923B2/en
Publication of JP2005307257A publication Critical patent/JP2005307257A/en
Publication of JP2005307257A5 publication Critical patent/JP2005307257A5/ja
Application granted granted Critical
Publication of JP4280923B2 publication Critical patent/JP4280923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

浸炭部品又は浸炭窒化部品用の鋼材Steel material for carburized parts or carbonitrided parts
本発明は、浸炭部品又は浸炭窒化部品の素材として好適な鋼材に関する。より詳しくは、大きい面疲労強度を有する歯車、プーリー、シャフトなどの浸炭部品又は浸炭窒化部品の素材として好適な鋼材に関する。 The present invention relates to a suitable steel material as a material for carburized parts or carbonitrided parts. More particularly, it relates gears, pulleys, a suitable steel material as a material for carburized parts or carbonitrided parts such as a shaft having a large surface fatigue strength.
従来、自動車や各種産業機械の歯車、プーリー、シャフトなどの部品は、JIS規格のSCr420、SCM420及びSNCM420などの機械構造用合金鋼を素材として成形し、これに浸炭処理又は浸炭窒化処理を施した後焼入れし、次いで、200℃以下の温度で焼戻しを行い、更に、必要に応じてショットピーニング処理を施すことによって、それぞれの部品に応じた面疲労強度、曲げ疲労強度及び耐摩耗性など所要の特性が確保されていた。   Conventionally, parts such as gears, pulleys, and shafts of automobiles and various industrial machines have been formed from JIS standard SCr420, SCM420, SNCM420 and other alloy steels for machine structures, and subjected to carburizing or carbonitriding. Post-quenching, then tempering at a temperature of 200 ° C. or less, and by performing shot peening treatment as necessary, surface fatigue strength, bending fatigue strength, wear resistance and the like required for each part The characteristics were secured.
近年、上記の各種浸炭部品や浸炭窒化部品には、例えば自動車の燃費向上やエンジンの高出力化が求められるに伴って、これに対応するための軽量化、小型化及び高応力負荷化の要望が極めて大きくなっている。   In recent years, the various carburized parts and carbonitrided parts mentioned above, for example, have been demanded to reduce the weight, reduce the size, and increase the stress load in order to meet the demand for improving the fuel efficiency of automobiles and increasing the output of engines. Is extremely large.
なお、部品の軽量化及び小型化、また、エンジンの高出力化が進むと、部品表面に繰り返しかかる応力が飛躍的に大きくなる。このため、上記の各種浸炭部品や浸炭窒化部品は、特に、大きな面疲労強度を有することが必要になる。更に、自動車や産業機械の歯車、プーリー、シャフトなどの部品が破損すると大事故につながるので、上記の各種部品は、安定して優れた特性を有することが強く望まれている。   It should be noted that as the parts become lighter and smaller and the engine output increases, the stress repeatedly applied to the parts surface increases dramatically. For this reason, the above-mentioned various carburized parts and carbonitrided parts are required to have particularly high surface fatigue strength. Furthermore, damages to parts such as gears, pulleys, and shafts of automobiles and industrial machines lead to major accidents. Therefore, it is strongly desired that the various parts described above have stable and excellent characteristics.
従来、浸炭焼入れ材又は浸炭窒化焼入れ材の表層部に、マルテンサイト組織に比べて軟質なパーライト組織やベイナイト組織が生成すると、面疲労強度が大きく低下することが知られている。そして、上記のパーライト組織やベイナイト組織は、表層部に生成した粒界酸化層の近傍に生成することが多く、この原因は焼入れ性を高めるSi、MnやCrといった元素がFeよりも酸化されやすいために、浸炭処理又は浸炭窒化処理中に優先的に酸化されて、粒界酸化層の近傍にSi、Mn及びCrの欠乏層ができるためと考えられている。   Conventionally, it has been known that when a pearlite structure or a bainite structure that is softer than a martensite structure is generated in the surface layer portion of a carburized and quenched carbonitrided material, the surface fatigue strength is greatly reduced. The pearlite structure and the bainite structure are often generated in the vicinity of the grain boundary oxide layer generated in the surface layer part, and this is because the elements such as Si, Mn, and Cr that improve hardenability are more easily oxidized than Fe. For this reason, it is considered that a deficient layer of Si, Mn and Cr is formed in the vicinity of the grain boundary oxide layer by being preferentially oxidized during the carburizing process or the carbonitriding process.
そこで、特許文献1に、SiとVを複合添加することにより、曲げ疲労強度に加えて、耐摩耗性と面疲労強度に優れた歯車を得るのに好適な浸炭歯車用鋼が提案されている。   Therefore, in Patent Document 1, a steel for carburized gears suitable for obtaining a gear excellent in wear resistance and surface fatigue strength in addition to bending fatigue strength by adding Si and V in combination has been proposed. .
また、特許文献2に、熱間圧延後のNb(CN)とAlNの析出量、ベイナイトの組織分率及び熱間圧延方向に平行な断面の組織のフェライトバンドなどを規定した、「高温浸炭特性に優れた高温浸炭用鋼ならびに高温浸炭用熱間鍛造部材」が提案されている。この特許文献2で提案された技術は、浸炭部品の最表層領域における硬度低下が面疲労強度の低下を招くため、フェライトバンドの評点を指標としたミクロ偏析の低減並びに窒化物及び炭窒化物の析出量を規定することなどによって最表層領域における硬度低下を抑止し、これによって良好な面疲労強度を確保しようとするものである。   Patent Document 2 defines the precipitation amount of Nb (CN) and AlN after hot rolling, the structure fraction of bainite, and the ferrite band of the structure having a cross section parallel to the hot rolling direction. High temperature carburizing steel and hot forging member for high temperature carburizing ”have been proposed. In the technique proposed in Patent Document 2, since the hardness reduction in the outermost layer region of the carburized part leads to a reduction in surface fatigue strength, the microsegregation is reduced by using the ferrite band score as an index, and nitride and carbonitride By limiting the amount of precipitation, etc., a decrease in hardness in the outermost layer region is suppressed, thereby ensuring good surface fatigue strength.
特開平7−126803号公報JP-A-7-126803 特開2001−279383号公報JP 2001-279383 A
本発明の目的は、量産において安定して優れた面疲労強度を有する歯車、プーリー、シャフトなどの浸炭部品又は浸炭窒化部品の素材として好適な鋼材を提供することである。 An object of the present invention is to provide a suitable steel material as a stable gear having excellent surface fatigue strength, pulleys, carburizing parts or carbonitrided parts such as the shaft material in a mass-production.
前述の特許文献1及び特許文献2で開示された技術によれば、優れた曲げ疲労強度と耐摩耗性は得られるが、大きな面疲労強度は必ずしもを確保できるというわけではない。   According to the techniques disclosed in Patent Document 1 and Patent Document 2 described above, excellent bending fatigue strength and wear resistance can be obtained, but large surface fatigue strength cannot always be ensured.
すなわち、特許文献1で提案された技術は、偏析に対する考慮がなされていないので、大規模な量産の場合、面疲労強度が不安定になってしまう。また、酸素の含有量を0.0015%以下にして非金属系介在物を低減する配慮がなされているものの、介在物の大きさと形態については考慮されておらず、このため、量産品の面疲労強度は不安定である。   That is, since the technique proposed in Patent Document 1 does not consider segregation, the surface fatigue strength becomes unstable in large-scale mass production. Although consideration has been given to reduce the non-metallic inclusions by reducing the oxygen content to 0.0015% or less, the size and form of the inclusions are not taken into consideration. Fatigue strength is unstable.
特許文献2で提案された技術は、微小な領域であっても最表層部に硬度の低い部分があると面疲労強度が低下するということについて十分に考慮されたものではないため、大規模な量産の場合、面疲労強度が不安定になってしまう。また、酸素とTiの含有量をそれぞれ、0.0025%以下及び0.01%以下にすることなど、非金属系介在物を低減する配慮がなされているものの、介在物の大きさと形態については考慮されておらず、このため、前記特許文献1の場合と同様に、量産品の面疲労強度は不安定である。
本発明者らは、上述のような問題点を解決するために、表層部におけるパーライト組織及びベイナイト組織の生成を安定して抑制することが可能な条件について、なかでも化学成分と偏析状況に関する条件について、種々調査・研究を重ねた。その結果、下記(a)〜(d)の知見を得た。
The technique proposed in Patent Document 2 is not sufficiently considered that the surface fatigue strength is reduced if there is a portion having a low hardness in the outermost surface layer even in a minute region. In mass production, the surface fatigue strength becomes unstable. In addition, although consideration has been given to reduce non-metallic inclusions, such as oxygen and Ti contents of 0.0025% or less and 0.01% or less, respectively, the size and form of inclusions Thus, as in the case of Patent Document 1, the surface fatigue strength of the mass-produced product is unstable.
In order to solve the above-mentioned problems, the present inventors have established conditions that can stably suppress the formation of pearlite structure and bainite structure in the surface layer part, and in particular, conditions related to chemical components and segregation status. Various investigations and researches were conducted. As a result, the following findings (a) to (d) were obtained.
(a)マルテンサイト組織中に存在するパーライト組織やベイナイト組織の大きさが、たとえ直径10μm程度な微小なものであっても、面疲労強度は大きく低下する。   (A) Even if the size of the pearlite structure or bainite structure present in the martensite structure is a minute one having a diameter of about 10 μm, the surface fatigue strength is greatly reduced.
(b)粒界酸化層を低減するにはSi、Mn及びCrの含有量を低減すればよい。しかしながら、Si、Mn及びCrの含有量を低減しても、粒界酸化層を完全になくすことはできず、また、Si、Mn及びCr含有量の低減による焼入れ性の低下とも相俟って、パーライト組織及びベイナイト組織が生成することも完全には抑制することはできない。   (B) In order to reduce the grain boundary oxide layer, the contents of Si, Mn and Cr may be reduced. However, even if the content of Si, Mn and Cr is reduced, the grain boundary oxide layer cannot be completely eliminated, and in combination with the decrease in hardenability due to the reduction of the content of Si, Mn and Cr. Further, the formation of a pearlite structure and a bainite structure cannot be completely suppressed.
(c)パーライト組織及びベイナイト組織は粒界酸化層近傍の全ての部分に生じているのではなく、その一部分に生成している。そして、粒界酸化層の近傍でパーライト組織及びベイナイト組織が生成した部分は、粒界酸化層の近傍でマルテンサイト組織が生成した部分に比べて、Mn、Cr及びMoの濃度が低い。   (C) The pearlite structure and the bainite structure are not generated in all parts in the vicinity of the grain boundary oxide layer, but are formed in a part thereof. And the part which the pearlite structure | tissue and the bainite structure | tissue produced | generated in the vicinity of the grain boundary oxide layer has the density | concentration of Mn, Cr, and Mo lower than the part which the martensite structure | tissue produced | generated in the vicinity of the grain boundary oxide layer.
(d)したがって、表層部におけるパーライト組織及びベイナイト組織の生成を安定且つ確実に抑制するためには、焼入れ性向上元素であるSi、Mn、Cr及びMoの素材における平均含有量を管理するだけでは不十分で、負偏析部で、且つ粒界酸化層によってSi、Mn及びCrの含有量が減少している領域においてもマルテンサイトが生成するために十分な量のSi、Mn、Cr及びMoを含有している必要がある。   (D) Therefore, in order to stably and reliably suppress the formation of the pearlite structure and the bainite structure in the surface layer part, it is only necessary to manage the average content in the materials of Si, Mn, Cr and Mo that are hardenability improving elements. Insufficient amount of Si, Mn, Cr and Mo to form martensite even in a region where the content of Si, Mn and Cr is reduced by the grain boundary oxide layer in the negative segregation part. It must be contained.
また、本発明者らは表層部のパーライト組織及びベイナイト組織の生成を抑制した場合においても、面疲労強度が低い場合があったため、破壊した試験片を用いて調査・研究を重ねた。その結果、更に、下記(e)及び(f)の知見を得た。   In addition, even when the formation of the pearlite structure and the bainite structure in the surface layer portion is suppressed, the present inventors have investigated and studied repeatedly using the test pieces that have been broken because the surface fatigue strength may be low. As a result, the following findings (e) and (f) were obtained.
(e)硬質の介在物である酸化物系介在物及びTiNは破壊の起点となる。このため、破壊の起点部には硬質の介在物である酸化物系介在物及びTiNが存在している場合が多い。一方、介在物としては硫化物も存在するが、これは軟質であるために破壊の起点とはならない。   (E) Oxide inclusions and TiN, which are hard inclusions, are the starting points for destruction. For this reason, oxide inclusions and TiN, which are hard inclusions, are often present at the fracture starting point. On the other hand, there are sulfides as inclusions, but this is not a starting point of destruction because it is soft.
(f)破壊の起点部で観察される介在物は、その長径が5〜30μmと様々な大きさのものである。しかし、破壊の起点部で観察される介在物の近傍には別の介在物が存在している場合が多く、たとえ個々の介在物が微細であっても、それらが群集することで破壊の起点になり得る。このため、個々の介在物を微細化するだけでは不十分で、介在物を群集させないことも必要である。 (F) Inclusions observed at the fracture starting point have various sizes of 5 to 30 μm in major axis. However, in many cases, there are other inclusions in the vicinity of the inclusions observed at the starting point of the destruction, and even if the individual inclusions are fine, they are gathered together to cause the starting point of the destruction. Can be. Thus, not enough to refine the individual inclusions, Ru necessary der not inclusions was crowd.
発明は、上記の知見に基づいて完成されたものである。 The present invention has been completed based on the above findings.
本発明の要旨は、下記(1)及び(2)に示す鋼材にある。 Gist of the present invention is a steel material shown in the following (1) and (2).
(1)浸炭部品又は浸炭窒化部品用の鋼材であって、質量%で、C:0.1〜0.3%、Si:0.3〜1.5%、Mn:0.2〜1.5%、S:0.003〜0.05%、Cr:0.5〜2.0%、Mo:0.1〜0.8%、Al:0.01〜0.05%及びN:0.008〜0.025%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、O(酸素)は0.002%以下、Pは0.025%以下で、且つ、鋼材断面において、下記(1)式で表されるAの値の最小値が13以上で、しかも、断面積1500mm2中での硫化物を除く介在物群の最大長さが30μm以下であることを特徴とする鋼材。 (1) It is a steel material for carburized parts or carbonitrided parts, and in mass%, C: 0.1 to 0.3%, Si: 0.3 to 1.5%, Mn: 0.2 to 1. 5%, S: 0.003-0.05%, Cr: 0.5-2.0%, Mo: 0.1-0.8%, Al: 0.01-0.05% and N: 0 0.008-0.025%, the balance is Fe and impurities, Ti in the impurities is 0.005% or less, O (oxygen) is 0.002% or less, P is 0.025% or less, And in the steel material cross section, the minimum value of the value A represented by the following formula (1) is 13 or more, and the maximum length of the inclusion group excluding sulfide in a cross-sectional area of 1500 mm 2 is 30 μm or less. A steel material characterized by being.
A=(1+0.681Si)(1+3.066Mn+0.329Mn2)(1+2.007Cr)(1+3.14Mo)・・・・・・・(1)、
ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。また、介在物群とは、介在物同士の間隔が5μm以下である介在物を1つの群とみなしたものをいう。
A = (1 + 0.681Si) (1 + 3.066Mn + 0.329Mn 2 ) (1 + 2.007Cr) (1 + 3.14Mo) (1),
Here, the element symbol in the formula (1) represents the content in mass% of the element. In addition, the inclusion group refers to an inclusion in which the interval between the inclusions is 5 μm or less as one group.
(2)浸炭部品又は浸炭窒化部品用の鋼材であって、質量%で、C:0.1〜0.3%、Si:0.3〜1.5%、Mn:0.2〜1.5%、S:0.003〜0.05%、Cr:0.5〜2.0%、Mo:0.1〜0.8%、Al:0.01〜0.05%及びN:0.008〜0.025%に加えて、更に、Nb:0.01〜0.08%及びV:0.02〜0.15%の1種以上を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、O(酸素)は0.002%以下、Pは0.025%以下で、且つ、鋼材断面において、下記(1)式で表されるAの値の最小値が15以上で、しかも、断面積1500mm2中での硫化物を除く介在物群の最大長さが30μm以下であることを特徴とする鋼材。 (2) Steel material for carburized parts or carbonitrided parts, and in mass%, C: 0.1 to 0.3%, Si: 0.3 to 1.5%, Mn: 0.2 to 1. 5%, S: 0.003-0.05%, Cr: 0.5-2.0%, Mo: 0.1-0.8%, Al: 0.01-0.05% and N: 0 In addition to 0.008-0.025%, further contains one or more of Nb: 0.01-0.08% and V: 0.02-0.15%, and the balance consists of Fe and impurities, Ti in the impurity is 0.005% or less, O (oxygen) is 0.002% or less, P is 0.025% or less, and in the cross section of the steel material, the value of A represented by the following formula (1) A steel material having a minimum value of 15 or more and a maximum length of inclusions excluding sulfide in a cross-sectional area of 1500 mm 2 is 30 μm or less.
A=(1+0.681Si)(1+3.066Mn+0.329Mn2)(1+2.007Cr)(1+3.14Mo)・・・・・・・(1)、
ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。また、介在物群とは、介在物同士の間隔が5μm以下である介在物を1つの群とみなしたものをいう。
A = (1 + 0.681Si) (1 + 3.066Mn + 0.329Mn 2 ) (1 + 2.007Cr) (1 + 3.14Mo) (1),
Here, the element symbol in the formula (1) represents the content in mass% of the element. Also, the inclusion group will have what distance inclusions each other was regarded as one group of the inclusions is 5μm or less.
た、鋼材とは棒鋼・線材等の素材、更には、必要に応じ鍛造・切削等を施して部品形状に加工されたものを指す。 Also, steel and steel bars and wire rods, etc. the material is further refers to those processed in the part shape by performing as required forging, cutting or the like.
以下、上記 (1)及び(2)の鋼材に係る発明を、それぞれ、「本発明(1)」及び「本発明(2)」という。また、総称して「本発明」ということがある。 Hereinafter, the inventions according to the steel of the above (1) and (2), respectively, as "the present invention (1)" and "present invention (2)". Also, it may be collectively referred to as “the present invention”.
本発明(1)及び(2)の鋼材に浸炭処理又は浸炭窒化処理を施した後急冷した部品、或いは前記急冷後更に必要に応じて焼戻しを施した部品は、安定且つ良好な面疲労強度(以下、ピッチング強度という。)を有するので、自動車や産業機械の部品である歯車、プーリー、シャフトなどに用いることができる。 Parts subjected to carburizing treatment or carbonitriding treatment to the steel materials of the present invention (1) and (2), or parts subjected to further tempering after the quenching, if necessary, have stable and good surface fatigue strength ( hereinafter, because it has a called pitting strength.), the gear is a component for automobiles and industrial machinery, pulleys, Ru can be used, such as the shaft.
以下、本発明の各要件について詳しく説明する。なお、化学成分の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of the chemical component means “mass%”.
(A)鋼材の化学組成
C:0.1〜0.3%
Cは、浸炭処理又は浸炭窒化処理後に急冷を行った部品の芯部強度を確保するために必須の元素である。しかし、Cの含有量が0.1%未満では前記の効果が不十分である。一方、Cの含有量が0.3%を超えると、鋼材の切削加工性が大きく低下する。したがって、Cの含有量を0.1〜0.3%とした。
(A) Chemical composition of steel material C: 0.1 to 0.3%
C is an essential element for securing the core strength of the parts that have been rapidly cooled after carburizing or carbonitriding. However, if the C content is less than 0.1%, the above effects are insufficient. On the other hand, when the content of C exceeds 0.3%, the machinability of the steel material is greatly deteriorated. Therefore, the content of C is set to 0.1 to 0.3%.
Si:0.3〜1.5%
Siは、焼入れ性及び焼戻し軟化抵抗を高める効果が、粒界酸化層の増加に及ぼす悪影響よりも大きいため、ピッチング強度を高めるのに有効な元素である。しかし、その含有量が0.3%未満では前記の効果が不十分である。一方、Siの含有量が1.5%を超えると、ピッチング強度を高める効果が飽和するだけでなく、鋼材の切削加工性が大きく低下する。したがって、Siの含有量を0.3〜1.5%とした。なお、Siの含有量が0.5%以上になると、ピッチング強度の向上が顕著になる。このため、Siの含有量は、0.5〜1.5%とすることが望ましい。
Si: 0.3 to 1.5%
Si is an effective element for increasing the pitching strength because the effect of increasing the hardenability and the temper softening resistance is greater than the adverse effect on the increase of the grain boundary oxide layer. However, if the content is less than 0.3%, the above effect is insufficient. On the other hand, when the Si content exceeds 1.5%, not only the effect of increasing the pitching strength is saturated, but also the machinability of the steel material is greatly reduced. Therefore, the Si content is set to 0.3 to 1.5%. When the Si content is 0.5% or more, the improvement of the pitching strength becomes remarkable. For this reason, the Si content is desirably 0.5 to 1.5%.
Mn:0.2〜1.5%
Mnは、焼入れ性及び焼戻し軟化抵抗を高める効果が、粒界酸化層の増加に及ぼす悪影響よりも大きいため、ピッチング強度を高めるのに有効な元素である。しかし、その含有量が0.2%未満では前記の効果が不十分である。一方、Mnの含有量が1.5%を超えると、ピッチング強度を高める効果が飽和するだけでなく、鋼材の切削加工性が大きく低下する。したがって、Mnの含有量を0.2〜1.5%とした。なお、Mnの含有量が0.4%以上になると、ピッチング強度の向上が顕著になる。このため、Mnの含有量は、0.4〜1.5%とすることが望ましい。
Mn: 0.2 to 1.5%
Mn is an element effective for increasing the pitching strength because the effect of increasing the hardenability and temper softening resistance is greater than the adverse effect on the increase in the grain boundary oxide layer. However, if the content is less than 0.2%, the above effect is insufficient. On the other hand, when the Mn content exceeds 1.5%, not only the effect of increasing the pitching strength is saturated, but also the machinability of the steel material is greatly reduced. Therefore, the Mn content is set to 0.2 to 1.5%. In addition, when the Mn content is 0.4% or more, the improvement of the pitching strength becomes remarkable. For this reason, it is desirable that the Mn content be 0.4 to 1.5%.
S:0.003〜0.05%
Sは、Mnと結合してMnSを形成し、切削加工性を高める作用を有する。しかし、その含有量が0.003%未満では、前記の効果が得難い。一方、Sの含有量が多くなると、粗大なMnSを生成しやすくなってピッチング強度を低下させる傾向があり、特に、その含有量が0.05%を超えると、他の要件を満たしていても所望のピッチング強度(後述の実施例における2730MPa以上のピッチング強度)が得られない。したがって、Sの含有量を0.003〜0.05%とした。なお、Sの含有量は0.01〜0.03%とすることが好ましい。
S: 0.003-0.05%
S combines with Mn to form MnS and has an effect of improving the machinability. However, if the content is less than 0.003%, it is difficult to obtain the above effect. On the other hand, when the content of S increases, coarse MnS tends to be generated and the pitching strength tends to decrease. In particular, when the content exceeds 0.05%, other requirements may be satisfied. A desired pitching strength (pitching strength of 2730 MPa or more in Examples described later) cannot be obtained. Therefore, the content of S is set to 0.003 to 0.05%. In addition, it is preferable that content of S shall be 0.01-0.03%.
Cr:0.5〜2.0%
Crは、焼入れ性及び焼戻し軟化抵抗を高める効果が、粒界酸化層の増加に及ぼす悪影響よりも大きいため、ピッチング強度を高めるのに有効な元素である。しかし、その含有量が0.5%未満では前記の効果が不十分である。一方、Crの含有量が2.0%を超えると、ピッチング強度を高める効果が飽和するだけでなく、鋼材の切削加工性が著しく低下する。したがって、Crの含有量を0.5〜2.0%とした。なお、Crの含有量が1.2%以上になると、ピッチング強度の向上が顕著になる。このため、Crの含有量は、1.2〜2.0%とすることが望ましい。
Cr: 0.5 to 2.0%
Cr is an element effective in increasing the pitching strength because the effect of increasing the hardenability and the temper softening resistance is greater than the adverse effect on the increase in the grain boundary oxide layer. However, if the content is less than 0.5%, the above effect is insufficient. On the other hand, when the content of Cr exceeds 2.0%, not only the effect of increasing the pitching strength is saturated, but also the machinability of the steel material is significantly lowered. Therefore, the Cr content is set to 0.5 to 2.0%. Note that when the Cr content is 1.2% or more, the improvement of the pitching strength becomes remarkable. For this reason, the Cr content is desirably 1.2 to 2.0%.
Mo:0.1〜0.8%
Moは、焼入れ性及び焼戻し軟化抵抗を高める効果を有し、ピッチング強度を高めるのに有効な元素である。しかし、その含有量が0.1%未満では前記の効果が不十分である。一方、Moの含有量が0.8%を超えると、ピッチング強度を高める効果が飽和するだけでなく、鋼材の切削加工性が著しく低下する。したがって、Moの含有量を0.1〜0.8%とした。なお、Moの含有量は0.1〜0.4%とすることが好ましい。
Mo: 0.1 to 0.8%
Mo has an effect of increasing hardenability and tempering softening resistance, and is an element effective for increasing pitching strength. However, if the content is less than 0.1%, the above effect is insufficient. On the other hand, if the Mo content exceeds 0.8%, not only the effect of increasing the pitching strength is saturated, but also the machinability of the steel material is significantly reduced. Therefore, the Mo content is set to 0.1 to 0.8%. The Mo content is preferably 0.1 to 0.4%.
Al:0.01〜0.05%
Alは、脱酸作用を有する元素である。また、Alは、Nと結合してAlNを形成しやすい元素である。そして、AlNは結晶粒微細化に有効で、ピッチング強度を高める効果がある。しかし、Alの含有量が0.01%未満では前記した効果は得難い。一方、Alは硬質な酸化物系介在物を形成しやすく、Al含有量が0.05%を超えると、後述する介在物群の最大長さを観察面積1500mm2中で30μm以下にすることが困難になって、ピッチング強度の低下が著しくなり、他の要件を満たしていても所望のピッチング強度(後述の実施例における2730MPa以上のピッチング強度)が得られなくなる。したがって、Alの含有量を0.01〜0.05%とした。なお、Alの含有量は0.02〜0.04%とすることが好ましい。
Al: 0.01 to 0.05%
Al is an element having a deoxidizing action. Further, Al is an element that is easily bonded to N to form AlN. AlN is effective for refining crystal grains and has the effect of increasing the pitching strength. However, when the Al content is less than 0.01%, it is difficult to obtain the effects described above. On the other hand, Al tends to form hard oxide inclusions, and when the Al content exceeds 0.05%, the maximum length of the inclusion group described later may be 30 μm or less in an observation area of 1500 mm 2. It becomes difficult and the pitching strength is remarkably lowered, and even if other requirements are satisfied, a desired pitching strength (pitching strength of 2730 MPa or more in the examples described later) cannot be obtained. Therefore, the Al content is set to 0.01 to 0.05%. The Al content is preferably 0.02 to 0.04%.
N:0.008〜0.025%
Nは、Al、Nb、V及びTiと結合してAlN、NbN、VN及びTiNを形成しやすく、このなかで、AlN、NbN及びVNは結晶粒微細化に有効で、ピッチング強度を高める効果がある。しかし、Nの含有量が0.008%未満では前記の効果は得難い。一方、Nの含有量が0.025%を超えると、後述する介在物群の最大長さを観察面積1500mm2中で30μm以下にすることが困難になって、ピッチング強度の低下が著しくなり、他の要件を満たしていても所望のピッチング強度(後述の実施例における2730MPa以上のピッチング強度)が得られなくなる。したがって、Nの含有量を0.008〜0.025%とした。なお、Nの含有量は0.011〜0.018%とすることが好ましい。
N: 0.008 to 0.025%
N is easily bonded to Al, Nb, V and Ti to form AlN, NbN, VN and TiN. Among them, AlN, NbN and VN are effective for refining crystal grains and have an effect of increasing the pitching strength. is there. However, when the N content is less than 0.008%, it is difficult to obtain the above effect. On the other hand, if the content of N exceeds 0.025%, it becomes difficult to make the maximum length of the inclusion group, which will be described later, 30 μm or less in an observation area of 1500 mm 2 , and the pitching strength is significantly reduced. Even if other requirements are satisfied, a desired pitching strength (pitching strength of 2730 MPa or more in Examples described later) cannot be obtained. Therefore, the N content is set to 0.008 to 0.025%. The N content is preferably 0.011 to 0.018%.
本発明においては、不純物元素としてのTi、O(酸素)及びPの含有量を下記のとおりに制限する。   In the present invention, the contents of Ti, O (oxygen) and P as impurity elements are limited as follows.
Ti:0.005%以下
Tiは、Nと結合してTiNを形成し、ピッチング強度を低下させてしまう。特に、Tiの含有量が0.005%を超えると、後述する介在物群の最大長さを観察面積1500mm2中で30μm以下にすることが困難になって、ピッチング強度の低下が著しくなり、他の要件を満たしていても所望のピッチング強度(後述の実施例における2730MPa以上のピッチング強度)が得られなくなる。したがって、Tiの含有量を0.005%以下とした。なお、不純物元素としてのTiの含有量はできるだけ少なくすることが望ましく、原料および製鋼でのコストを考慮すると0.002%以下にすることが一層好ましい。
Ti: 0.005% or less Ti combines with N to form TiN and lowers the pitching strength. In particular, when the Ti content exceeds 0.005%, it becomes difficult to make the maximum length of the inclusion group, which will be described later, 30 μm or less in the observation area of 1500 mm 2 , and the pitching strength is significantly reduced. Even if other requirements are satisfied, a desired pitching strength (pitching strength of 2730 MPa or more in Examples described later) cannot be obtained. Therefore, the Ti content is set to 0.005% or less. Note that the content of Ti as an impurity element is desirably as small as possible, and is more preferably 0.002% or less in consideration of costs for raw materials and steelmaking.
O(酸素):0.002%以下
Oは、Alと結合して硬質な酸化物系介在物を形成しやすく、ピッチング強度を低下させてしまう。特に、Oの含有量が0.002%を超えると、後述する介在物群の最大長さを観察面積1500mm2中で30μm以下にすることが困難になって、ピッチング強度の低下が著しくなり、他の要件を満たしていても所望のピッチング強度(後述の実施例における2730MPa以上のピッチング強度)が得られなくなる。なお、不純物元素としてのOの含有量はできる限り少なくすることが望ましく、製鋼でのコストを考慮すると、0.001%以下にすることが一層好ましい。
O (oxygen): 0.002% or less O is liable to form a hard oxide inclusion by bonding with Al, and lowers the pitching strength. In particular, when the content of O exceeds 0.002%, it becomes difficult to make the maximum length of the inclusion group described later to be 30 μm or less in the observation area of 1500 mm 2 , and the pitching strength is significantly reduced. Even if other requirements are satisfied, a desired pitching strength (pitching strength of 2730 MPa or more in Examples described later) cannot be obtained. In addition, it is desirable to reduce the content of O as an impurity element as much as possible, and considering the cost in steelmaking, it is more preferable to make it 0.001% or less.
P:0.025%以下
Pは粒界に偏析して粒界を脆化させやすく、特に、その含有量が0.025%を超えると、粒界脆化が著しくなってピッチング強度の低下を招く。したがって、Pの含有量を0.025%以下とした。なお、Pの含有量は0.020%以下とすることが好ましい。
P: 0.025% or less P tends to segregate at the grain boundaries and embrittle the grain boundaries. In particular, when the content exceeds 0.025%, the grain boundary embrittlement becomes significant and the pitching strength is reduced. Invite. Therefore, the content of P is set to 0.025% or less. The P content is preferably 0.020% or less.
したがって、本発明(1)に係る鋼材の化学組成について、上述した範囲のCからNまでの元素を含み、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、Oは0.002%以下でPは0.025%以下であることと規定した。   Therefore, regarding the chemical composition of the steel material according to the present invention (1), it contains elements from C to N in the above-mentioned range, the balance consists of Fe and impurities, Ti in the impurities is 0.005% or less, and O is 0 It was specified that P was 0.025% or less at 0.002% or less.
なお、本発明に係る鋼材には、上記の成分に加え、必要に応じて、Nb:0.01〜0.08%及びV:0.02〜0.15%の1種以上を任意添加元素として添加し、含有させてもよい。   In addition to the above components, the steel material according to the present invention may optionally include one or more elements of Nb: 0.01 to 0.08% and V: 0.02 to 0.15% as necessary. May be added and contained.
以下、上記任意添加元素としてのNb及びVに関して説明する。   Hereinafter, Nb and V as the optional additive elements will be described.
Nb:0.01〜0.08%
Nbは、C又は/及びNと結合してNbC、NbN及びNb(C、N)を形成しやすい元素である。そして、NbC、NbN及びNb(C、N)は、前述したAlNによる結晶粒微細化を補完するのに有効で、ピッチング強度を高める効果がある。この効果を確実に得るには、Nbは0.01%以上の含有量とすることが好ましい。しかし、Nbの含有量が0.08%を超えると、中心偏析部に粗大なNb(C、N)が生成しやすくなり、却ってピッチング強度が低下する。したがって、添加する場合のNbの含有量を0.01〜0.08%とした。なお、添加する場合の一層好ましいNbの含有量の範囲は0.02〜0.05%である。
Nb: 0.01 to 0.08%
Nb is an element that easily forms NbC, NbN, and Nb (C, N) by combining with C or / and N. NbC, NbN, and Nb (C, N) are effective in complementing the above-described crystal grain refinement by AlN and have an effect of increasing the pitching strength. In order to reliably obtain this effect, the Nb content is preferably 0.01% or more. However, if the Nb content exceeds 0.08%, coarse Nb (C, N) is likely to be generated in the central segregation portion, and the pitching strength is decreased. Therefore, the content of Nb when added is set to 0.01 to 0.08%. In addition, the range of more preferable Nb content in the case of adding is 0.02 to 0.05%.
V:0.02〜0.15%
Vは、C及びNと結合してVC及びVNを形成しやすい元素である。上記のうちで、VNは、前述したAlNによる結晶粒微細化を補完するのに有効で、ピッチング強度を高める効果がある。また、浸炭窒化時にVNが析出すると、ピッチング強度をより高める効果がある。これらの効果を確実に得るには、Vは0.02%以上の含有量とすることが好ましい。しかし、Vの含有量が0.15%を超えると、鋼材の切削加工性が大きく低下する。したがって、添加する場合のVの含有量を0.02〜0.15%とした。なお、添加する場合の一層好ましいVの含有量の範囲は0.04〜0.10%である。
V: 0.02-0.15%
V is an element that is easily bonded to C and N to form VC and VN. Among the above, VN is effective in complementing the above-described crystal grain refinement by AlN and has an effect of increasing the pitching strength. Further, when VN is precipitated during carbonitriding, there is an effect of further increasing the pitching strength. In order to reliably obtain these effects, it is preferable that V is a content of 0.02% or more. However, when the content of V exceeds 0.15%, the machinability of the steel material is greatly deteriorated. Therefore, when V is added, the content of V is set to 0.02 to 0.15%. In addition, the range of more preferable content of V in the case of adding is 0.04 to 0.10%.
上記の理由から、本発明(2)に係る鋼材の化学組成について、本発明(1)における鋼材の化学組成に、更に、Nb:0.01〜0.08%及びV:0.02〜0.15%の1種以上を含有することと規定した。   For the above reasons, the chemical composition of the steel material according to the present invention (2) is further added to the chemical composition of the steel material according to the present invention (1), with Nb: 0.01 to 0.08% and V: 0.02 to 0. It was defined as containing 15% or more.
(B)断面における合金元素
本発明(1)及び本発明(2)に係る鋼材は、鋼材断面において、前記(1)式で表されるAの値の最小値をそれぞれ、13以上及び15以上とする必要がある。
(B) Alloy elements in cross section The steel materials according to the present invention (1) and the present invention (2) have a minimum value of A represented by the above formula (1) of 13 or more and 15 or more, respectively, in the steel material cross section. It is necessary to.
上記の規定は、本発明者らが行った次の実験結果に基づくものである。   The above rules are based on the following experimental results conducted by the present inventors.
すなわち、本発明者らは、表1に示す鋼A〜Dを150kg真空溶解炉で溶解した後、鋳型に鋳鉄を用いてインゴットに鋳造した。なお、溶解の際、不純物元素が十分低減するように原料の選定に十分注意を払った。   That is, the present inventors melted steels A to D shown in Table 1 in a 150 kg vacuum melting furnace, and then cast them into ingots using cast iron as a mold. At the time of dissolution, careful attention was paid to the selection of raw materials so that the impurity elements were sufficiently reduced.
次いで、上記の各インゴットを1150℃で30分加熱した後、仕上げ温度が950℃以上となるように熱間鍛造して、直径35mmの棒鋼を作製した。   Next, each of the above ingots was heated at 1150 ° C. for 30 minutes, and then hot forged so that the finishing temperature would be 950 ° C. or higher to produce a steel bar having a diameter of 35 mm.
このようにして得た各棒鋼を、5個ずつに分割し、表2に示す条件で熱処理を行って室温まで放冷した。その後更に、925℃×1時間の加熱保持を行い、次いで、室温まで放冷した。   Each steel bar thus obtained was divided into five pieces, heat-treated under the conditions shown in Table 2, and allowed to cool to room temperature. Thereafter, the mixture was further heated and held at 925 ° C. for 1 hour, and then allowed to cool to room temperature.
上記の熱処理を行った直径35mmの各供試材から切り出した試験片について、鍛錬軸に平行に中心線をとおって切断した断面を鏡面研磨し、図1に示す位置で、鍛錬軸に垂直な方向に、Si、Mn、Cr及びMoの各元素についてEPMAを用いて線分析を行った。なお、Cも偏析しやすい元素として知られているが、オーステナイト域に加熱すると容易且つ均一に拡散するため、Cの測定は行わなかった。なお、EPMAによる線分析は、ビーム直径を1μm、走査速度を200μm/分とした。   About the test piece cut out from each specimen having a diameter of 35 mm subjected to the above heat treatment, the cross section cut through the center line parallel to the forging axis is mirror-polished, and at the position shown in FIG. In the direction, line analysis was performed for each element of Si, Mn, Cr and Mo using EPMA. In addition, although C is also known as an element that easily segregates, C was not measured because it easily and uniformly diffuses when heated in the austenite region. In the line analysis by EPMA, the beam diameter was 1 μm, and the scanning speed was 200 μm / min.
EPMAでの測定結果から、Si、Mn、Cr及びMoのそれぞれの含有量が最も低かった位置について、Si、Mn、Cr及びMoの含有量を数値化した。ここで、Si、Mn、Cr及びMoの偏析傾向は同じであるため、Si、Mn、Cr及びMoのそれぞれの含有量が最も低かった位置についてSi、Mn、Cr及びMoの含有量を数値化しておけば、前記(1)式で表されるAの最小値として評価することができる。   From the measurement results with EPMA, the contents of Si, Mn, Cr and Mo were quantified at the positions where the respective contents of Si, Mn, Cr and Mo were the lowest. Here, since the segregation tendency of Si, Mn, Cr, and Mo is the same, the contents of Si, Mn, Cr, and Mo are quantified at positions where the respective contents of Si, Mn, Cr, and Mo are the lowest. If so, it can be evaluated as the minimum value of A represented by the formula (1).
なお、焼入れ性は、例えば、井上毅の第131・132回西山記念講座「鉄鋼材料の材質予測・制御技術の現状と将来」、第215〜217ページ(日本鉄鋼協会編、平成元年9月25日発行)に示されるように、C及びその他の合金元素の含有量並びにオーステナイト結晶粒度から見積もることができる。なお、本発明の目指すピッチング強度の向上のためには、浸炭処理又は浸炭窒化処理した表層部の焼入れ性が重要な意味を持つ。そして、浸炭処理又は浸炭窒化処理した場合、表層部の一般的なC含有量は0.8%程度であることが多く、また、そのオーステナイト結晶粒度は、NbとVのいずれをも含有しない場合には粒度番号9程度、Nb及びVの1種以上を含有する場合には粒度番号11程度であることが多いので、Nb及びVを含まない鋼と、NbとVの1種以上を含む鋼とを区別すれば、Si、Mn、Cr及びMoの含有量から焼入れ性を評価することができる。そこで、前記井上の「鉄鋼材料の材質予測・制御技術の現状と将来」に基づいて、焼入れ性の評価基準として、本発明者らは、前記(1)式の値、つまりAの値を採用した。   In addition, hardenability is, for example, in Inoue Kei's 131st and 132rd Nishiyama Memorial Lecture "Present and Future of Material Prediction and Control Technology of Steel Materials", pages 215 to 217 (Japan Steel Association, September 1989). As is shown on the 25th, it can be estimated from the contents of C and other alloy elements and the austenite grain size. In order to improve the pitching strength aimed by the present invention, the hardenability of the surface layer portion subjected to carburizing treatment or carbonitriding treatment is important. And when carburizing or carbonitriding, the general C content of the surface layer is often about 0.8%, and the austenite crystal grain size contains neither Nb nor V In the case of containing a particle size number of about 9, and in the case of containing one or more of Nb and V, it is often about a particle size number of about 11, so steel not containing Nb and V and steel containing one or more of Nb and V And hardenability can be evaluated from the contents of Si, Mn, Cr and Mo. Therefore, based on Inoue's “Present and Future of Material Prediction / Control Technology of Steel Materials”, the present inventors adopt the value of the above equation (1), that is, the value of A as the hardenability evaluation standard. did.
表3に、各試験片について、前記(1)式で表されるAの最小値並びに、その値に対応するSi、Mn、Cr及びMoの含有量を示す。   Table 3 shows the minimum value of A represented by the formula (1) and the contents of Si, Mn, Cr, and Mo corresponding to the value for each test piece.
また、表2に示す条件で熱処理した直径35mmの各供試材から、図2に示すようにして直径が26mmで厚さが15mmの試験片を採取し、図3(a)に示す条件でガス浸炭処理することも行った。なお、図3(a)における「CP」はカーボンポテンシャルを意味する。   Further, from each specimen having a diameter of 35 mm heat-treated under the conditions shown in Table 2, a test piece having a diameter of 26 mm and a thickness of 15 mm was taken as shown in FIG. 2, and the conditions shown in FIG. Gas carburizing treatment was also performed. In addition, “CP” in FIG. 3A means a carbon potential.
上記のガス浸炭処理を行った各試験片について、鍛錬軸に平行な中心線をとおって切断した断面を鏡面研磨した後ナイタールで腐食し、次いで、図4に示すように、表層から200μmの領域をSEM(走査型電子顕微鏡)を用いて観察し、ベイナイト組織とパーライト組織の存在の有無を調査した。   About each test piece subjected to the above gas carburizing treatment, the section cut through the center line parallel to the forging axis is mirror-polished and then corroded with nital. Then, as shown in FIG. Were observed using an SEM (scanning electron microscope), and the presence or absence of a bainite structure and a pearlite structure was investigated.
表3に、上記のベイナイト組織とパーライト組織の存在に関する調査結果を示す。また、図5に、上記の調査結果を前記(1)式で表されるAの最小値で整理して示す。ここで、表3の「熱処理の条件No.」欄における数字は表2に対応するものである。また、「パーライト組織、ベイナイト組織」欄における「無し」及び「有り」は、それぞれ、「ベイナイト組織とパーライト組織の双方が存在しないこと」及び「ベイナイト組織とパーライト組織のいずれか一方または双方が存在すること」を意味する。更に、図5における「○:パーライト、ベイナイト無し」及び「×:パーライト、ベイナイト無し」も、それぞれ、「ベイナイト組織とパーライト組織の双方が存在しないこと」及び「ベイナイト組織とパーライト組織のいずれか一方または双方が存在すること」を意味する。なお、図5においては、Nb及びVを含まない場合を「Nb、V無し」と表記し、また、NbとVの1種以上を含む場合を「Nb、V有り」と表記した。なお、前記(1)式で表されるAの最小値は、表3においては、「(1)式で表されるAの値」と表記し、また、図5においては単に「A値」と表記した。   Table 3 shows the results of a survey on the presence of the bainite structure and the pearlite structure. FIG. 5 shows the results of the above investigation organized by the minimum value of A expressed by the above equation (1). Here, the numbers in the column “No. of heat treatment” in Table 3 correspond to those in Table 2. In addition, “None” and “Yes” in the “Perlite structure, bainite structure” column indicate that “Baynite structure and pearlite structure do not exist” and “Bainite structure and pearlite structure, respectively, or both exist, respectively. Means "to do". Furthermore, “◯: no pearlite, no bainite” and “×: no pearlite, no bainite” in FIG. 5 are respectively “no both bainite structure and pearlite structure” and “one of bainite structure and pearlite structure”. Or both exist. " In FIG. 5, a case where Nb and V are not included is expressed as “Nb and V are absent”, and a case where one or more of Nb and V are included is expressed as “Nb and V is present”. The minimum value of A represented by the above equation (1) is represented as “value of A represented by equation (1)” in Table 3, and is simply “A value” in FIG. It was written.
上記の表3及び図5から、Nb及びVを含まない場合、前記(1)式で表されるAの値の最小値が13以上であればベイナイト組織とパーライト組織の双方が存在せず、一方、Nb及びVの1種以上を含む場合、前記(1)式で表されるAの値の最小値が15以上であればベイナイト組織とパーライト組織の双方が存在しないことが明らかである。   From the above Table 3 and FIG. 5, when Nb and V are not included, if the minimum value of A represented by the above formula (1) is 13 or more, both bainite structure and pearlite structure do not exist, On the other hand, when one or more of Nb and V are included, it is clear that both the bainite structure and the pearlite structure do not exist if the minimum value of A represented by the formula (1) is 15 or more.
したがって、本発明(1)及び本発明(2)に係る鋼材は、鋼材断面において、前記(1)式で表されるAの値の最小値をそれぞれ、13以上及び15以上と規定した。   Therefore, in the steel materials according to the present invention (1) and the present invention (2), the minimum value of the value A represented by the above formula (1) is defined as 13 or more and 15 or more, respectively, in the steel material cross section.
ここで、鋼材断面とは、棒鋼、線材の場合、望ましくは圧延方向又は鍛錬軸に平行に中心線をとおって切断した断面であり、鋼材が部品形状の場合は、表層部分〜表層から15mmの範囲の断面が望ましい。   Here, in the case of steel bars and wire rods, the steel material cross section is preferably a cross section cut through a center line parallel to the rolling direction or the forging axis, and when the steel material is a part shape, the surface layer portion to the surface layer is 15 mm. A range of cross-sections is desirable.
なお、鋼材断面における前記(1)式で表されるAの値には、鋼の平均組成、凝固速度及び凝固形態などが影響する。また、製鋼の設備によっても影響を受ける。   In addition, the average composition of steel, a solidification rate, a solidification form, etc. influence the value of A represented by said Formula (1) in a steel material cross section. It is also affected by steelmaking facilities.
このため、鋼材断面における前記(1)式で表されるAの値の最小値を13以上又は15以上にするためには、次のような方法を採用すればよい。   For this reason, in order to make the minimum value of the value A represented by the above formula (1) in the steel material cross section 13 or more or 15 or more, the following method may be adopted.
すなわち、鋼材断面におけるA値の最小値を13以上にするためには、例えば、連続鋳造で400mm×300mm角という大断面のブルームを製造する場合、先ず、鋼の平均組成を前記(1)式で表されるAの値が20以上となるように溶製する。そして、溶鋼の電磁攪拌を十分に行ってから連続鋳造し、更に、ブルームに1200〜1280℃で8時間以上の均質化熱処理を行い、そのブルームを一辺が200mm以下のビレットにした後、ビレットを1200〜1280℃で2時間以上加熱してから圧延仕上げ温度が850〜1000℃になるように熱間圧延すればよい。   That is, in order to set the minimum value of the A value in the steel material cross section to 13 or more, for example, when producing a large cross section of 400 mm × 300 mm square by continuous casting, first, the average composition of the steel is expressed by the above formula (1). It melts so that the value of A represented by 20 becomes 20 or more. Then, after sufficiently performing electromagnetic stirring of the molten steel, continuous casting is performed, and further, homogenization heat treatment is performed on the bloom at 1200 to 1280 ° C. for 8 hours or more, and the billet is billet having a side of 200 mm or less. What is necessary is just to hot-roll so that a rolling finishing temperature may be 850-1000 degreeC after heating at 1200-1280 degreeC for 2 hours or more.
また、鋼材断面におけるA値の最小値を15以上にするためには、例えば、連続鋳造で400mm×300mm角という大断面のブルームを製造する場合、先ず、鋼の平均組成を前記(1)式で表されるAの値が23以上となるように溶製する。そして、溶鋼の電磁攪拌を十分に行ってから連続鋳造し、更に、ブルームに1200〜1280℃で8時間以上の均質化熱処理を行い、そのブルームを一辺が200mm以下のビレットにした後、ビレットを1200〜1280℃で2時間以上加熱してから圧延仕上げ温度が850〜1000℃になるように熱間圧延すればよい。   Moreover, in order to make the minimum value of the A value in the steel material cross section 15 or more, for example, when producing a large cross-sectional bloom of 400 mm × 300 mm square by continuous casting, first, the average composition of the steel is expressed by the formula (1). It melts so that the value of A represented by can be 23 or more. Then, after sufficiently performing electromagnetic stirring of the molten steel, continuous casting is performed, and further, homogenization heat treatment is performed on the bloom at 1200 to 1280 ° C. for 8 hours or more, and the billet is billet having a side of 200 mm or less. What is necessary is just to hot-roll so that a rolling finishing temperature may be 850-1000 degreeC after heating at 1200-1280 degreeC for 2 hours or more.
(C)介在物群の最大長さ
本発明(1)及び本発明(2)に係る鋼材は、鋼材断面において、断面積1500mm2中での硫化物を除く介在物群の最大長さを30μm以下とする必要がある。
(C) Maximum length of inclusion group The steel materials according to the present invention (1) and the present invention (2) have a maximum length of inclusion group excluding sulfide in a cross-sectional area of 1500 mm 2 in a steel cross section of 30 μm. It is necessary to do the following.
上記の規定は、本発明者らが行った次の実験結果に基づくものである。   The above rules are based on the following experimental results conducted by the present inventors.
すなわち、本発明者らは、表4に示す鋼E〜Hを150kg真空溶解炉にて溶製し、インゴットに鋳造した。なお、鋼E〜Gについては、鋳型に鋳鉄を用い(以後、鋳鉄の鋳型を「通常鋳型」という。)、鋼Hについては、凝固速度を遅くするために、シリカ鋳型を用いた。   That is, the present inventors melted steels E to H shown in Table 4 in a 150 kg vacuum melting furnace, and cast them into ingots. For steels E to G, cast iron was used as the mold (hereinafter, the cast iron mold was referred to as “normal mold”), and for steel H, a silica mold was used to slow the solidification rate.
また、表4に示す鋼I〜Lを30kg真空溶解炉にて溶製し、通常鋳型を用いてインゴットに鋳造した。このうち鋼Lについては、鋳型に耐火物が損傷しているものを用い、意図的に耐火物が混入するようにした。   Further, steels I to L shown in Table 4 were melted in a 30 kg vacuum melting furnace and cast into an ingot using a normal mold. Among these, for steel L, a refractory was damaged in the mold, and the refractory was intentionally mixed.
更に、表4に示す鋼M及び鋼Nを、70t(トン)転炉で溶解し、連続鋳造によって400mm×300mm角のブルームを製造した。鋼Mについては、二次精錬でRH真空脱ガス処理を長時間実施し、更に、溶鋼の電磁攪拌を十分に行った。一方、鋼Nは二次精錬でVAD処理(真空アーク脱ガス処理)を実施し、更に、溶鋼の電磁攪拌を弱めて行った。   Furthermore, steel M and steel N shown in Table 4 were melted in a 70 t (ton) converter, and a 400 mm × 300 mm square bloom was produced by continuous casting. For steel M, RH vacuum degassing treatment was performed for a long time by secondary refining, and electromagnetic stirring of the molten steel was sufficiently performed. On the other hand, the steel N was subjected to VAD treatment (vacuum arc degassing treatment) by secondary refining and further weakened electromagnetic stirring of the molten steel.
鋼E〜Lについては、インゴットを1150℃で30分加熱した後、仕上げ温度が950℃以上となるように熱間鍛造して、直径35mmの棒鋼を作製した。これらの各棒鋼を1250℃で12時間保持してから室温まで放冷し、その後更に、925℃×1時間の加熱保持を行い、次いで、室温まで放冷した。   For steels E to L, the ingot was heated at 1150 ° C. for 30 minutes, and then hot forged so that the finishing temperature was 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. Each of these steel bars was held at 1250 ° C. for 12 hours and then allowed to cool to room temperature, then further heated and held at 925 ° C. × 1 hour, and then allowed to cool to room temperature.
鋼M及び鋼Nについては、400mm×300mm角のブルームを1250℃で12時間均質化熱処理を行った後、分塊圧延して180mm×180mmの角ビレットにし、このビレットを1250℃で2時間加熱した後、900〜950℃の圧延仕上げ温度で、直径が35mmの棒鋼に熱間圧延した。   For steel M and steel N, a 400 mm × 300 mm square bloom was homogenized and heat treated at 1250 ° C. for 12 hours, and then rolled into a 180 mm × 180 mm square billet, which was heated at 1250 ° C. for 2 hours. Then, it was hot-rolled into a steel bar having a diameter of 35 mm at a rolling finishing temperature of 900 to 950 ° C.
このようにして得た鋼E〜Nの直径35mmの各棒鋼から切り出した試験片について、圧延方向又は鍛錬軸に平行に中心線をとおって切断した断面を鏡面研磨し、光学顕微鏡を用いて介在物の測定を行った。   About the test piece cut out from each steel bar 35 mm in diameter of steels E to N obtained in this way, the cross section cut through the center line parallel to the rolling direction or the forging axis is mirror-polished and interposed using an optical microscope. Things were measured.
なお、上記の光学顕微鏡による観察は、10mm×10mmの範囲毎に行い、介在物群の最大長さ及び個々の介在物の最大長さを測定した。各試料についてこの測定を15視野ずつ実施し、測定面積1500mm2中での介在物群の最大長さ及び個々の介在物の最大長さを決定した。なお、介在物群とは、介在物同士の間隔が5μm以下である介在物を1つの群とみなしたものを指す。 In addition, observation with said optical microscope was performed for every range of 10 mm x 10 mm, and the maximum length of the inclusion group and the maximum length of each inclusion were measured. For each sample, 15 fields of view were measured, and the maximum length of inclusions and the maximum length of individual inclusions in a measurement area of 1500 mm 2 were determined. In addition, an inclusion group refers to what considered the inclusion whose space | interval of inclusions is 5 micrometers or less as one group.
上記の調査において、硫化物は測定の対象から除外した。その理由は、これまでの調査から、破壊の起点には硫化物が検出されていないためである。また、光学顕微鏡による観察では、介在物の最大長さが2μm以下のものは判別が難しいため、これも測定の対象から除外した。なお、硫化物は光学顕微鏡観察で灰色を呈するため、容易に他の介在物と区別することができる。   In the above survey, sulfide was excluded from the measurement. The reason is that sulfide has not been detected at the starting point of destruction from the investigations so far. In addition, since the inclusions having a maximum length of 2 μm or less are difficult to distinguish by observation with an optical microscope, they were also excluded from the measurement. In addition, since sulfide exhibits gray in optical microscope observation, it can be easily distinguished from other inclusions.
また、ローラーピッチング試験も行った。   A roller pitching test was also conducted.
すなわち、上述の方法で作製した鋼E〜Nの直径35mmの各棒鋼から、直径が26mmのローラーピッチング試験で用いる小ローラーを採取し、前記図3(a)に示す条件で浸炭焼入れを行い、次いで図3(b)に示す条件で焼戻しを行った。   That is, from each steel bar 35 mm in diameter of steels E to N produced by the method described above, a small roller used in a roller pitching test with a diameter of 26 mm is collected, and carburizing and quenching is performed under the conditions shown in FIG. Next, tempering was performed under the conditions shown in FIG.
ローラーピッチング試験に用いる大ローラーは、JIS規格のSUJ2鋼を用い、一般的な工程、すなわち通常の「球状化焼鈍→試験片加工→焼入れ→焼戻し→研磨」の工程で作製した。ここで、上記大ローラーは、直径が130mmで、クラウニングを100mmRのものとした。   The large roller used in the roller pitching test was made of JIS standard SUJ2 steel, and was produced by a general process, that is, a normal “spheroidizing annealing → test piece processing → quenching → tempering → polishing” process. Here, the large roller had a diameter of 130 mm and a crowning of 100 mmR.
上記のようにして作製した小ローラーと大ローラーを用い、表5に示す条件でローラーピッチング試験を行った。   Using the small roller and the large roller produced as described above, a roller pitching test was performed under the conditions shown in Table 5.
試験数は各7個とし、縦軸に面圧を、横軸に破壊までの繰り返し数をとったS−N線図を作成し、繰り返し数1.0×107回での面圧をピッチング強度とした。 The number of tests is 7 each, and an SN graph is created with the vertical axis representing the surface pressure and the horizontal axis representing the number of repetitions until failure, and the surface pressure at the number of repetitions of 1.0 × 10 7 is pitched. Strength.
なお、鋼Eの化学成分は、一般的に用いられるJIS規格のSCr420鋼に相当するため、鋼Eのピッチング強度である1950MPaを基準とし、これを40%以上上回ることを目標とした。   In addition, since the chemical composition of the steel E corresponds to the JIS standard SCr420 steel generally used, the pitching strength of the steel E is 1950 MPa, and the goal was to exceed this by 40% or more.
表6に、鋼E〜Nについての前記各調査の結果、すなわち、介在物群の最大長さ、個々の介在物の最大長さ及びピッチング強度を示す。なお、表6おいては、個々の介在物の最大長さを「介在物最大長さ」と表記し、介在物群の最大長さを「介在物群最大長さ」と表記した。   Table 6 shows the results of the above investigations for steels E to N, that is, the maximum length of inclusions, the maximum length of individual inclusions, and the pitching strength. In Table 6, the maximum length of each inclusion was expressed as “inclusion maximum length”, and the maximum length of the inclusion group was expressed as “inclusion group maximum length”.
図6に介在物群の最大長さ(図6中では「介在物群最大長さ」と表記)とローラーピッチング試験でのピッチング強度との関係を示す。また、図7に個々の介在物の最大長さ(図7中では「介在物最大長さ」と表記)とローラーピッチング試験でのピッチング強度との関係を示す。   FIG. 6 shows the relationship between the maximum length of the inclusion group (indicated as “inclusion group maximum length” in FIG. 6) and the pitching strength in the roller pitching test. FIG. 7 shows the relationship between the maximum length of each inclusion (indicated as “inclusion maximum length” in FIG. 7) and the pitching strength in the roller pitching test.
図6及び図7からわかるように、個々の介在物の最大長さよりも、介在物群の最大長さの方がピッチング強度との相関が強く、介在物群の最大長さが30μm以下であれば、ピッチング強度が大きく向上し、前記の目標値を満足する。   As can be seen from FIGS. 6 and 7, the maximum length of the inclusion group is more correlated with the pitching strength than the maximum length of each inclusion, and the maximum length of the inclusion group is 30 μm or less. Thus, the pitching strength is greatly improved and the target value is satisfied.
したがって、本発明(1)及び本発明(2)に係る鋼材は、鋼材断面において、断面積1500mm2中での硫化物を除く介在物群の最大長さを30μm以下と規定した。 Therefore, in the steel materials according to the present invention (1) and the present invention (2), the maximum length of the inclusion group excluding sulfide in a cross-sectional area of 1500 mm 2 is defined as 30 μm or less in the steel material cross section.
ここで、鋼材断面とは、棒鋼、線材の場合、望ましくは圧延方向又は鍛錬軸に平行に中心線をとおって切断した断面であり、鋼材が部品形状の場合は、表層部分〜表層から15mmの範囲の断面が望ましい。   Here, in the case of steel bars and wire rods, the steel material cross section is preferably a cross section cut through a center line parallel to the rolling direction or the forging axis, and when the steel material is a part shape, the surface layer portion to the surface layer is 15 mm. A range of cross-sections is desirable.
なお、介在物の大きさ及び分布には、介在物の組成、凝固速度及び凝固偏析などが影響する。また、製鋼設備によっても影響を受ける。   In addition, the composition of inclusions, the solidification rate, and solidification segregation affect the size and distribution of inclusions. It is also affected by steelmaking facilities.
このため、鋼材断面において、断面積1500mm2中での硫化物を除く介在物群の最大長さを30μm以下とするためには、次のような方法を採用すればよい。例えば、
(a)鋼中の含有量を、Alは0.05%以下、Oは0.002%以下、Tiは0.003%以下及びNは0.025%以下にすること。
For this reason, in order to make the maximum length of the inclusion group excluding sulfide in a cross section of 1500 mm 2 in the steel material cross section, the following method may be employed. For example,
(A) The content in steel shall be 0.05% or less for Al, 0.002% or less for O, 0.003% or less for Ti, and 0.025% or less for N.
(b)取鍋、タンディッシュ等の耐火物の溶損や鋳造時のスラグ及びパウダーの巻き込みを防止すること。   (B) Prevent melting of refractories such as ladle and tundish and entrainment of slag and powder during casting.
(c)鋳造をインゴットで行う場合には、小型の鋳型を用い、鋳型の材質に熱伝導のよいものを用いること。なお、実施例などに用いた30kgインゴットの場合には、上記の(a)及び(b)を満たし、且つ鋳型の材質に熱伝導のよいものを用いれば、目標とする介在物群の最大長さが得られる。   (C) When casting with an ingot, use a small mold and use a material with good thermal conductivity for the mold. In addition, in the case of a 30 kg ingot used in the examples and the like, the maximum length of the target inclusion group can be obtained by satisfying the above (a) and (b) and using a material with good thermal conductivity as the mold material. Is obtained.
(d)一方、例えば、連続鋳造で400mm×300mm角という大断面のブルームを製造し、それから棒鋼又は線材を製造する場合、先ず、鋼中の含有量をAlは0.04%以下、Oは0.001%以下、Tiは0.002%以下及びNは0.018%以下にしてから、二次精錬でRH真空脱ガス処理を長時間実施し、また、溶鋼の電磁攪拌を十分に行い、更に、総鍛錬比、つまり「ブルームの断面積/棒鋼又は線材の断面積」が40以上となるように加工すればよい。 (D) On the other hand, for example, when producing a large cross section of 400 mm × 300 mm square by continuous casting, and then producing a steel bar or wire rod, first, the content in the steel is 0.04% or less for Al and O for After 0.001% or less, Ti is 0.002% or less, and N is 0.018% or less, RH vacuum degassing treatment is performed for a long time by secondary refining, and electromagnetic stirring of the molten steel is performed sufficiently. further, the total forging ratio, i.e. "cross-sectional area of the cross-sectional area / steel bar or wire rod bloom" is not good if processed to have 40 or more.
表7に示す化学組成を有する鋼a〜pを溶解した。 Steels a to p having chemical compositions shown in Table 7 were melted.
上記の鋼のうち、鋼a〜cは150kg真空溶解炉にて溶製し、通常鋳型を用いてインゴットに鋳造した。なお、鋼cについては、鋳型に耐火物が損傷しているものを用い、意図的に耐火物が混入するようにした。   Among the above steels, steels a to c were melted in a 150 kg vacuum melting furnace and cast into an ingot using a normal mold. In addition, about steel c, the refractory was damaged in the mold, and the refractory was intentionally mixed.
また、鋼d〜nは30kg真空溶解炉にて溶製し、インゴットに鋳造した。なお、鋼d〜mについては通常鋳型を用い、鋼nについては、凝固速度を遅くするために、シリカ鋳型を用いた。   Steels dn were melted in a 30 kg vacuum melting furnace and cast into an ingot. For steels dm, a normal mold was used, and for steel n, a silica mold was used to slow the solidification rate.
更に、鋼o及び鋼pは、70t(トン)転炉で溶解し、連続鋳造によって400mm×300mm角のブルームを製造した。鋼oについては、二次精錬でRH真空脱ガス処理を長時間実施し、更に、溶鋼の電磁攪拌を十分に行った。一方、鋼pは二次精錬でVAD処理(真空アーク脱ガス処理)を実施し、更に、溶鋼の電磁攪拌を弱めて行った。   Furthermore, steel o and steel p were melted in a 70 t (ton) converter, and a 400 mm × 300 mm square bloom was produced by continuous casting. For steel o, RH vacuum degassing treatment was performed for a long time by secondary refining, and electromagnetic stirring of the molten steel was sufficiently performed. On the other hand, the steel p was subjected to VAD treatment (vacuum arc degassing treatment) by secondary refining and further weakened electromagnetic stirring of the molten steel.
上記のようにして得たインゴットとブルームについて次に示す処理を行った。   The following process was performed on the ingot and bloom obtained as described above.
先ず、鋼a〜cのインゴットは、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように熱間鍛造して、直径35mmの棒鋼を作製した。これらの各棒鋼を、5個ずつに分割し、前記表2に示す条件(No.1〜5)で熱処理を行って室温まで放冷した。その後更に、925℃×1時間の加熱保持を行い、次いで、室温まで放冷した。   First, the ingots of steels a to c were heated at 1150 ° C. for 30 minutes, and then hot forged so that the finishing temperature was 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. Each of these bar steels was divided into five pieces, heat-treated under the conditions shown in Table 2 (Nos. 1 to 5), and allowed to cool to room temperature. Thereafter, the mixture was further heated and held at 925 ° C. for 1 hour, and then allowed to cool to room temperature.
また、鋼d〜nのインゴットは、1150℃で30分加熱した後、仕上げ温度が950℃以上となるように熱間鍛造して、直径35mmの棒鋼を作製した。これらの各棒鋼に表2の条件No.2の熱処理を行って室温まで放冷した。その後更に、925℃×1時間の加熱保持を行い、次いで、室温まで放冷した。   Moreover, after heating the ingot of steel dn for 30 minutes at 1150 degreeC, it hot-forged so that finishing temperature might be 950 degreeC or more, and produced the bar steel of 35 mm in diameter. For each of these steel bars, the condition No. The heat treatment of 2 was performed and allowed to cool to room temperature. Thereafter, the mixture was further heated and held at 925 ° C. for 1 hour, and then allowed to cool to room temperature.
鋼oのブルームは、表2の条件No.2の熱処理を行って室温まで放冷した後、分塊圧延して180mm×180mmの角のビレットにした。次いで、このビレットを1250℃で2時間加熱した後、900〜950℃の圧延仕上げ温度で、直径が35mmの棒鋼に熱間圧延した。   The bloom of steel o is the condition no. After the heat treatment of No. 2 was performed and allowed to cool to room temperature, it was rolled into pieces and formed into 180 mm × 180 mm square billets. Next, the billet was heated at 1250 ° C. for 2 hours, and then hot-rolled into a steel bar having a diameter of 35 mm at a rolling finishing temperature of 900 to 950 ° C.
更に、鋼pのブルームは、表2の条件No.4の熱処理を行って室温まで放冷した後、分塊圧延して180mm×180mmの角のビレットにした。次いで、このビレットを1150℃で1時間加熱した後、900〜950℃の圧延仕上げ温度で、直径が35mmの棒鋼に熱間圧延した。   Furthermore, the bloom of steel p is the condition no. After the heat treatment of No. 4 was performed and the mixture was allowed to cool to room temperature, it was subjected to ingot rolling to form a 180 mm × 180 mm square billet. Next, this billet was heated at 1150 ° C. for 1 hour, and then hot-rolled into a steel bar having a diameter of 35 mm at a rolling finishing temperature of 900 to 950 ° C.
このようにして得た鋼a〜pの直径35mmの各棒鋼から切り出した試験片について、圧延方向又は鍛錬軸に平行に中心線をとおって切断した断面を鏡面研磨し、光学顕微鏡を用いて介在物の測定を行った。   About the test piece cut out from each steel bar 35 mm in diameter of steel a to p obtained in this way, the cross section cut through the center line parallel to the rolling direction or the forging axis is mirror-polished and interposed using an optical microscope. Things were measured.
なお、上記の光学顕微鏡による観察は、10mm×10mmの範囲毎に行い、その範囲内の介在物群の最大長さを測定した。各試料についてこの測定を15視野ずつ実施し、測定面積1500mm2中での介在物群の最大長さを決定した。なお、上記の調査において、硫化物は測定の対象から除外した。 In addition, observation with said optical microscope was performed for every range of 10 mm x 10 mm, and the maximum length of the inclusion group in the range was measured. For each sample, 15 fields of view were measured, and the maximum length of the inclusion group in the measurement area of 1500 mm 2 was determined. In the above survey, sulfides were excluded from the measurement.
また、上記の鏡面研磨した面で、Si、Mn、Cr及びMoの各元素についてEPMAを用いた線分析を行った。このEPMAによる線分析は、ビーム直径を1μm、走査速度を200μm/分として実施した。   Moreover, the line analysis using EPMA was performed about each element of Si, Mn, Cr, and Mo in the said mirror-polished surface. The line analysis by EPMA was performed with a beam diameter of 1 μm and a scanning speed of 200 μm / min.
更に、ローラーピッチング試験も行った。   Furthermore, a roller pitching test was also conducted.
すなわち、上述の方法で作製した鋼a〜pの直径35mmの各棒鋼から、直径が26mmのローラーピッチング試験で用いる小ローラーを採取し、記表8、及び図8に示す条件で浸炭処理又は浸炭窒化処理を行った後急冷し、160℃で2時間保持後、放冷する条件で焼戻しを行った。 In other words, from the steel bar with a diameter of 35mm steel a~p prepared by the above method, were taken small roller used in the roller pitting test 26mm in diameter, carburizing or under the conditions shown below Symbol Table 8, and Figure 8 After performing the carbonitriding treatment, it was rapidly cooled, kept at 160 ° C. for 2 hours, and then tempered under the condition of cooling.
ローラーピッチング試験に用いる大ローラーは、JIS規格のSUJ2鋼を用い、一般的な工程、すなわち通常の「球状化焼鈍→試験片加工→焼入れ→焼戻し→研磨」の工程で作製した。ここで、上記大ローラーは、直径が130mmで、クラウニングを100mmRのものとした。   The large roller used in the roller pitching test was made of JIS standard SUJ2 steel, and was produced by a general process, that is, a normal “spheroidizing annealing → test piece processing → quenching → tempering → polishing” process. Here, the large roller had a diameter of 130 mm and a crowning of 100 mmR.
上記のようにして作製した小ローラーと大ローラーを用い、前記表5に示した条件でローラーピッチング試験を行った。   Using the small roller and the large roller produced as described above, a roller pitching test was performed under the conditions shown in Table 5 above.
なお、試験数は各7個とし、縦軸に面圧を、横軸に破壊までの繰り返し数をとったS−N線図を作成し、繰り返し数1.0×107回での面圧をピッチング強度とした。 In addition, the number of tests was set to 7 each, and an SN diagram was prepared in which the vertical axis represents the surface pressure and the horizontal axis represents the number of repetitions until failure, and the surface pressure at the number of repetitions of 1.0 × 10 7 times. Was defined as the pitching strength.
なお、ピッチング強度の目標は、JIS規格のSCr420鋼に相当する前述の鋼Eのピッチング強度である1950MPaを40%以上上回ること、つまり、2730MPaを上回ること、とした。   The target for the pitching strength was to exceed 1950 MPa, which is the pitching strength of the steel E described above corresponding to the JIS standard SCr420 steel, by 40% or more, that is, to exceed 2730 MPa.
表9及び表10に、上記の各試験結果を示す。なお、表9及び表10の「均質化処理条件」欄における番号は表2の処理条件No.に対応するものである。また、「浸炭(窒化)処理条件」欄の番号は表の処理番号に対応するものである。なお、前記(1)式で表されるAの最小値は、表9及び表10においては、「(1)式で表されるAの値」と表記した。 Tables 9 and 10 show the results of the above tests. The numbers in the “homogenization treatment conditions” column of Tables 9 and 10 are the treatment condition numbers in Table 2. It corresponds to. The numbers in the “Carburizing (nitriding) treatment conditions” column correspond to the treatment numbers in Table 8 . The minimum value of A represented by the above formula (1) is expressed as “value of A represented by formula (1)” in Tables 9 and 10.
表9及び表10から、本発明で規定する条件から外れた試験番号の場合には、ローラーピッチング試験におけるピッチング強度は2730MPaに達しない低いものであることが明らかである。   From Tables 9 and 10, it is clear that in the case of a test number that deviates from the conditions specified in the present invention, the pitching strength in the roller pitching test is a low one that does not reach 2730 MPa.
これに対して、本発明で規定する条件を満たす試験番号の場合には、ローラーピッチング試験におけるピッチング強度は目標とする2730MPaを超える大きな値であることが明らかである。 In contrast, when the conditions are met Test No. defined in the present invention, pitting strength in the roller pitching test Ru apparent der to be a large value exceeding 2730MPa to target.
本発明(1)及び(2)の鋼材に浸炭処理又は浸炭窒化処理を施した後急冷した部品、或いは前記急冷後更に必要に応じて焼戻しを施した部品は、安定且つ良好なピッチング強度を有するので、自動車や産業機械の部品である歯車、プーリー、シャフトなどに用いることができる。 Parts that have been quenched after the carburizing or carbonitriding treatment of the steel materials of the present invention (1) and (2), or parts that have been further tempered after the quenching, have stable and good pitching strength. since the gear is a component for automobiles and industrial machinery, pulleys, Ru can be used, such as the shaft.
Si、Mn、Cr及びMoの各元素についてEPMAを用いて線分析を行った位置を示す図である。It is a figure which shows the position which performed the line analysis using EPMA about each element of Si, Mn, Cr, and Mo. 直径35mmの供試材から、直径が26mmで厚さが15mmの試験片を採取する状況を説明する図である。It is a figure explaining the condition which extract | collects the test piece whose diameter is 26 mm and thickness is 15 mm from the test material of 35 mm in diameter. (a)はガス浸炭処理とその後の冷却の条件を説明する図、また、(b)は焼戻しの条件を説明する図である。(A) is a figure explaining the conditions of a gas carburizing process and subsequent cooling, and (b) is a figure explaining the conditions of tempering. SEMを用いた表層から200μmの領域の組織調査を説明する図である。It is a figure explaining the structure | tissue investigation of the area | region of 200 micrometers from the surface layer using SEM. 前記(1)式で表されるAの最小値(図では「A値」と表記)とNb及びVの含有とが、表層から200μmの領域をSEM観察した場合のベイナイト組織とパーライト組織の存在の有無に及ぼす影響について示す図である。Presence of bainite structure and pearlite structure when SEM observation is performed on a 200 μm region from the surface layer where the minimum value of A (expressed as “A value” in the figure) represented by the above formula (1) and the content of Nb and V are 200 μm from the surface layer. It is a figure shown about the influence which it has on the presence or absence of. 介在物群の最大長さ(図では「介在物群最大長さ」と表記)とローラーピッチング試験でのピッチング強度との関係を示す図である。It is a figure which shows the relationship between the maximum length of an inclusion group (it describes with "inclusion group maximum length" in a figure), and the pitching intensity | strength in a roller pitching test. 個々の介在物の最大長さ(図では「介在物最大長さ」と表記)とローラーピッチング試験でのピッチング強度との関係を示す図である。It is a figure which shows the relationship between the maximum length of each inclusion (it describes with "inclusion maximum length" in a figure), and the pitching strength in a roller pitching test. 浸炭処理又は浸炭窒化処理とその後の急冷を2回行う方法を説明する図である。It is a figure explaining the method of performing carburizing process or carbonitriding process, and subsequent quenching twice.

Claims (2)

  1. 浸炭部品又は浸炭窒化部品用の鋼材であって、質量%で、C:0.1〜0.3%、Si:0.3〜1.5%、Mn:0.2〜1.5%、S:0.003〜0.05%、Cr:0.5〜2.0%、Mo:0.1〜0.8%、Al:0.01〜0.05%及びN:0.008〜0.025%を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、O(酸素)は0.002%以下、Pは0.025%以下で、且つ、鋼材断面において、下記(1)式で表されるAの値の最小値が13以上で、しかも、断面積1500mm2中での硫化物を除く介在物群の最大長さが30μm以下であることを特徴とする鋼材。
    A=(1+0.681Si)(1+3.066Mn+0.329Mn2)(1+2.007Cr)(1+3.14Mo)・・・・・・・(1)
    ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。また、介在物群とは、介在物同士の間隔が5μm以下である介在物を1つの群とみなしたものをいう。
    It is a steel material for carburized parts or carbonitrided parts, and in mass%, C: 0.1 to 0.3%, Si: 0.3 to 1.5%, Mn: 0.2 to 1.5%, S: 0.003-0.05%, Cr: 0.5-2.0%, Mo: 0.1-0.8%, Al: 0.01-0.05% and N: 0.008- 0.025% is contained, the balance consists of Fe and impurities, Ti in impurities is 0.005% or less, O (oxygen) is 0.002% or less, P is 0.025% or less, and steel material In the cross section, the minimum value of A represented by the following formula (1) is 13 or more, and the maximum length of the inclusion group excluding sulfide in the cross sectional area of 1500 mm 2 is 30 μm or less. Features steel.
    A = (1 + 0.681Si) (1 + 3.066Mn + 0.329Mn 2 ) (1 + 2.007Cr) (1 + 3.14Mo) (1)
    Here, the element symbol in the formula (1) represents the content in mass% of the element. In addition, the inclusion group refers to an inclusion in which the interval between the inclusions is 5 μm or less as one group.
  2. 浸炭部品又は浸炭窒化部品用の鋼材であって、質量%で、C:0.1〜0.3%、Si:0.3〜1.5%、Mn:0.2〜1.5%、S:0.003〜0.05%、Cr:0.5〜2.0%、Mo:0.1〜0.8%、Al:0.01〜0.05%及びN:0.008〜0.025%に加えて、更に、Nb:0.01〜0.08%及びV:0.02〜0.15%の1種以上を含有し、残部はFe及び不純物からなり、不純物中のTiは0.005%以下、O(酸素)は0.002%以下、Pは0.025%以下で、且つ、鋼材断面において、下記(1)式で表されるAの値の最小値が15以上で、しかも、断面積1500mm2中での硫化物を除く介在物群の最大長さが30μm以下であることを特徴とする鋼材。
    A=(1+0.681Si)(1+3.066Mn+0.329Mn2)(1+2.007Cr)(1+3.14Mo)・・・・・・・(1)
    ここで、(1)式中の元素記号は、その元素の質量%での含有量を表す。また、介在物群とは、介在物同士の間隔が5μm以下である介在物を1つの群とみなしたものをいう。
    It is a steel material for carburized parts or carbonitrided parts, and in mass%, C: 0.1 to 0.3%, Si: 0.3 to 1.5%, Mn: 0.2 to 1.5%, S: 0.003-0.05%, Cr: 0.5-2.0%, Mo: 0.1-0.8%, Al: 0.01-0.05% and N: 0.008- In addition to 0.025%, it further contains at least one of Nb: 0.01 to 0.08% and V: 0.02 to 0.15%, and the balance is made of Fe and impurities. Ti is 0.005% or less, O (oxygen) is 0.002% or less, P is 0.025% or less, and in the steel cross section, the minimum value of A represented by the following formula (1) is 15 or more, and the maximum length of the inclusion group excluding sulfide in a sectional area of 1500 mm 2 is 30 μm or less.
    A = (1 + 0.681Si) (1 + 3.066Mn + 0.329Mn 2 ) (1 + 2.007Cr) (1 + 3.14Mo) (1)
    Here, the element symbol in the formula (1) represents the content in mass% of the element. Also, the inclusion group will have what distance inclusions each other was regarded as one group of the inclusions is 5μm or less.
JP2004124356A 2004-04-20 2004-04-20 Steel materials for carburized parts or carbonitrided parts Active JP4280923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124356A JP4280923B2 (en) 2004-04-20 2004-04-20 Steel materials for carburized parts or carbonitrided parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124356A JP4280923B2 (en) 2004-04-20 2004-04-20 Steel materials for carburized parts or carbonitrided parts

Publications (3)

Publication Number Publication Date
JP2005307257A JP2005307257A (en) 2005-11-04
JP2005307257A5 true JP2005307257A5 (en) 2006-08-31
JP4280923B2 JP4280923B2 (en) 2009-06-17

Family

ID=35436355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124356A Active JP4280923B2 (en) 2004-04-20 2004-04-20 Steel materials for carburized parts or carbonitrided parts

Country Status (1)

Country Link
JP (1) JP4280923B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821582B2 (en) * 2006-11-28 2011-11-24 住友金属工業株式会社 Steel for vacuum carburized gear
KR20080056945A (en) * 2006-12-19 2008-06-24 주식회사 세아베스틸 Ultra high strength carburizing steel with high fatigue resistance
JP4872846B2 (en) * 2007-07-30 2012-02-08 住友金属工業株式会社 Rough shape for nitriding gear and nitriding gear
JP5182067B2 (en) * 2008-12-24 2013-04-10 新日鐵住金株式会社 Steel for vacuum carburizing or carbonitriding
JP6344423B2 (en) * 2015-04-22 2018-06-20 Jfeスチール株式会社 Case-hardened steel and method for producing case-hardened steel
WO2017146057A1 (en) * 2016-02-24 2017-08-31 株式会社神戸製鋼所 Cement steel component and steel material having excellent stability of rolling fatigue life, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4888277B2 (en) Hot rolled steel bar or wire rod
JP4709944B2 (en) Case-hardened steel, carburized parts, and method for producing case-hardened steel
JP4352261B2 (en) gear
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JPWO2006008960A1 (en) Parts for machine structure, manufacturing method thereof and induction hardening material
JP2013166983A (en) Rolled steel bar for hot forging, hot forged roughly shaped material, and common rail and method for producing the same
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP5262740B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
JP4280923B2 (en) Steel materials for carburized parts or carbonitrided parts
JPH11335777A (en) Case hardening steel excellent in cold workability and low carburizing strain characteristics, and its production
JP2005307257A5 (en)
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP6628014B1 (en) Steel for parts to be carburized
JP2010222634A (en) Case hardening steel superior in properties of reducing size of maximum crystal grain and manufacturing method therefor
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP4014042B2 (en) Induction hardening steel bar
JP2001279383A (en) High temperature carburizing steel excellent in high temperature carburizability, and hot forged member for high temperature carburizing
JP2008223083A (en) Crankshaft and manufacturing method therefor
JP2008144211A (en) V-containing non-heat treated steel
JP6881613B2 (en) Carburized bearing steel parts and steel bars for carburized bearing steel parts
JPWO2018212196A1 (en) Steel and parts
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP2010001500A (en) Pearlite-base high-carbon steel rail excellent in ductility
JP6930662B2 (en) Steel materials for steel pistons