JP2001032044A - Steel for high strength bolt and production of high strength bolt - Google Patents

Steel for high strength bolt and production of high strength bolt

Info

Publication number
JP2001032044A
JP2001032044A JP11210168A JP21016899A JP2001032044A JP 2001032044 A JP2001032044 A JP 2001032044A JP 11210168 A JP11210168 A JP 11210168A JP 21016899 A JP21016899 A JP 21016899A JP 2001032044 A JP2001032044 A JP 2001032044A
Authority
JP
Japan
Prior art keywords
less
delayed fracture
strength bolt
fracture resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11210168A
Other languages
Japanese (ja)
Other versions
JP3857835B2 (en
Inventor
Manabu Kubota
学 久保田
Hideo Kanisawa
秀雄 蟹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP21016899A priority Critical patent/JP3857835B2/en
Publication of JP2001032044A publication Critical patent/JP2001032044A/en
Application granted granted Critical
Publication of JP3857835B2 publication Critical patent/JP3857835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high strength bolt having high strength and excellent in delayed fracture characteristics. SOLUTION: Steel for a high strength bolt having a compsn. contg., by weight, 0.25 to 0.50% C, >0.40 to 1.50% Mn and 1.50 to 3.00% Mo or Mo+1/2W and 0.010 to 0.100% Al, moreover contg., at need, one or >= two kinds among 0.10 to 1.50% Cr, 0.01 to 0.40% V, 0.005 to 0.100% Nb, 0.005 to 0.100% Ti and 0.0005 to 0.0050% B, in which the content of Si is limited to <=0.10% (including 0%), P to <=0.012% (including 0%) and S to <=0.012% (including 0%), and the balance Fe with inevitable impurities is formed into a desired shape, is thereafter heated to >=Ac3, is subsequently subjected to quenching treatment and is tempered in the temp. range of 550 deg.C to Ac1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐遅れ破壊特性に
優れた高強度ボルト用鋼及び高強度ボルトの製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength bolt steel excellent in delayed fracture resistance and a method of manufacturing the high-strength bolt.

【0002】[0002]

【従来の技術】自動車や産業機械の高性能化、軽量化、
また建築構造物の大型化に伴い、高強度ボルト用鋼の開
発が要求されてきている。
2. Description of the Related Art High performance and light weight of automobiles and industrial machines,
Also, with the enlargement of building structures, development of high-strength bolt steel has been required.

【0003】現在一般に高強度ボルト用鋼として使用さ
れている鋼種はJISに規定されているSCM435、
SCR435等の低合金構造用鋼であり、焼入れ、焼も
どし処理を施すことによって製造されている。しかし、
これらの鋼種は、引張強さが1200MPaを超えると
耐遅れ破壊特性が急激に低下し、ボルトの使用中に遅れ
破壊による破断を生じる危険が増大するため、このレベ
ル以上の高強度化は実用上不可能であった。
[0003] Steel grades currently generally used as high-strength bolt steel are SCM435 defined by JIS,
Low alloy structural steel such as SCR435, which is manufactured by quenching and tempering. But,
When the tensile strength of these steel types exceeds 1200 MPa, the resistance to delayed fracture is sharply reduced, and the risk of fracture due to delayed fracture during the use of the bolt is increased. It was impossible.

【0004】耐遅れ破壊特性の改善を目的とした高強度
ボルト用鋼は、各社から提案されている。例えば、特開
平5−148576号公報や特開平5−148580号
公報には、ボルトの熱処理中に生じる軽浸炭、粒界酸化
を防止すること、Moを増量して焼もどし軟化抵抗の向
上を図ることによって耐遅れ破壊特性を向上する技術が
記載されているが、1500MPaクラス以上の高強度
ボルトに適用した場合、耐遅れ破壊特性が不十分とな
り、実用化は困難である。また、焼もどし温度の最適範
囲も示されていないし、同公報の実施例に記載されてい
る引張強さの最大値も147.0kgf/mm2止まり
である。
[0004] Various companies have proposed high-strength bolt steel for the purpose of improving delayed fracture resistance. For example, JP-A-5-148576 and JP-A-5-148580 disclose preventing light carburization and grain boundary oxidation occurring during heat treatment of bolts, and increasing the amount of Mo to improve tempering softening resistance. However, when applied to a high-strength bolt of 1500 MPa class or more, the delayed fracture resistance becomes insufficient and practical application is difficult. Further, the optimum range of the tempering temperature is not shown, and the maximum value of the tensile strength described in the examples of the publication is 147.0 kgf / mm 2 .

【0005】また例えば、特許第2739713号公報
には、Mo、Vを複合添加してFe 3Cの生成を極力防
止することによって1400MPaクラスのボルトの耐
遅れ破壊特性を向上する技術が記載されているが、16
00MPaクラス以上の高強度ボルトに適用した場合、
耐遅れ破壊特性が十分とは言えなくなり、実用化は困難
である。また、焼もどし温度の最適範囲も示されていな
いし、同公報の実施例に記載されている引張強さの最大
値も158.7kgf/mm2止まりである。
[0005] For example, Japanese Patent No. 2737913 is disclosed.
Mo and V are added in combination to ThreeMinimize C generation
By stopping, the bolt of 1400MPa class can withstand
A technique for improving delayed fracture characteristics is described.
When applied to high strength bolts of 00MPa class or higher,
Delayed fracture resistance is not sufficient, and practical application is difficult
It is. Also, the optimum range of tempering temperature is not shown.
The maximum tensile strength described in the examples of the publication
The value is also 158.7kgf / mmTwoStop.

【0006】建築構造物や機械部品の軽量化、高性能化
の観点からは、ボルトの強度レベルは高ければ高いほど
好ましいが、さらに1500MPa、1600MPaク
ラスにまで高強度化が必要な場合は上記のような従来技
術では対応できず、耐遅れ破壊特性が低下するため、1
500MPa以上の強度レベルの高強度ボルトは実用化
されていない。
From the viewpoint of reducing the weight and improving the performance of building structures and mechanical parts, the higher the strength level of the bolt is, the more preferable it is. However, if it is necessary to further increase the strength to the 1500 MPa or 1600 MPa class, the above-described method is used. Such conventional techniques cannot cope with the above, and the delayed fracture resistance deteriorates.
High strength bolts having a strength level of 500 MPa or more have not been put to practical use.

【0007】以上述べた通り、1500MPa以上の強
度レベルを有し、かつ耐遅れ破壊特性に優れた高強度ボ
ルトは現状では見あたらない。
As described above, no high-strength bolt having a strength level of 1500 MPa or more and excellent in delayed fracture resistance has been found at present.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上のような
課題を解決し、耐遅れ破壊特性に優れた高強度ボルト用
鋼及び高強度ボルトの製造方法を提供することを目的と
する。詳細には、高強度においても現在1000MPa
級のボルトとして多く使われているSCM435よりも
耐遅れ破壊特性に優れた、引張強さ1500MPa以上
の高強度ボルト用鋼及び高強度ボルトの製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a method for manufacturing a high-strength bolt steel and a high-strength bolt excellent in delayed fracture resistance. In detail, even at high strength, 1000 MPa
It is an object of the present invention to provide a high-strength bolt steel having a tensile strength of 1500 MPa or more and a method of manufacturing a high-strength bolt, which is more excellent in delayed fracture resistance than SCM435, which is often used as a grade bolt.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、以下の
(1)〜(7)の通りである。
The gist of the present invention is as follows (1) to (7).

【0010】(1) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、Si:0.10%以下(0%
を含む)、P:0.012%以下(0%を含む)、S:
0.012%以下(0%を含む)に各々制限し、残部が
Fe及び不可避的不純物よりなることを特徴とする、耐
遅れ破壊特性に優れた高強度ボルト用鋼。
(1) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
0.100%, Si: 0.10% or less (0%
), P: 0.012% or less (including 0%), S:
A high-strength bolt steel excellent in delayed fracture resistance, characterized by being limited to 0.012% or less (including 0%) and the balance being Fe and unavoidable impurities.

【0011】(2) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、さらに、Cr:0.10〜
1.50%、V:0.01〜0.40%のうちの1種ま
たは2種を含有し、Si:0.10%以下(0%を含
む)、P:0.012%以下(0%を含む)、S:0.
012%以下(0%を含む)に各々制限し、残部がFe
及び不可避的不純物よりなることを特徴とする、耐遅れ
破壊特性に優れた高強度ボルト用鋼。
(2) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
-0.100%, and further Cr: 0.10-0.10%
1.50%, V: contains one or two of 0.01 to 0.40%, Si: 0.10% or less (including 0%), P: 0.012% or less (0% %, S: 0.
012% or less (including 0%), and the balance is Fe
And high-strength bolt steel with excellent delayed fracture resistance, characterized by being composed of unavoidable impurities.

【0012】(3) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、さらに、Nb:0.005〜
0.100%、Ti:0.005〜0.100%のうち
の1種または2種を含有し、Si:0.10%以下(0
%を含む)、P:0.012%以下(0%を含む)、
S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
(3) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
000.100%, and Nb: 0.005 to
0.100%, one or two of Ti: 0.005 to 0.100%, and Si: 0.10% or less (0
%, P: 0.012% or less (including 0%),
S: High-strength bolt steel excellent in delayed fracture resistance, characterized by being limited to 0.012% or less (including 0%) and the balance being Fe and unavoidable impurities.

【0013】(4) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、さらに、Cr:0.10〜
1.50%、V:0.01〜0.40%のうちの1種ま
たは2種を含有し、さらに、Nb:0.005〜0.1
00%、Ti:0.005〜0.100%のうちの1種
または2種を含有し、Si:0.10%以下(0%を含
む)、P:0.012%以下(0%を含む)、S:0.
012%以下(0%を含む)に各々制限し、残部がFe
及び不可避的不純物よりなることを特徴とする、耐遅れ
破壊特性に優れた高強度ボルト用鋼。
(4) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
-0.100%, and further, Cr: 0.10-0.10%
1.50%, V: one or two of 0.01 to 0.40%, and Nb: 0.005 to 0.1
00%, one or two of Ti: 0.005 to 0.100%, Si: 0.10% or less (including 0%), P: 0.012% or less (0% S: 0).
012% or less (including 0%), and the balance is Fe
And high-strength bolt steel excellent in delayed fracture resistance, characterized by being composed of unavoidable impurities.

【0014】(5) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、さらに、Nb:0.005〜
0.100%、Ti:0.005〜0.100%のうち
の1種または2種を含有し、さらに、B:0.0005
〜0.0050%を含有し、Si:0.10%以下(0
%を含む)、P:0.012%以下(0%を含む)、
S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
(5) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
000.100%, and Nb: 0.005 to
0.100%, one or two of Ti: 0.005 to 0.100%, and B: 0.0005
0.0050%, Si: 0.10% or less (0
%, P: 0.012% or less (including 0%),
S: High-strength bolt steel excellent in delayed fracture resistance, characterized by being limited to 0.012% or less (including 0%) and the balance being Fe and unavoidable impurities.

【0015】(6) 重量%で、C:0.25〜0.5
0%、Mn:0.40超〜1.50%、MoまたはMo
+1/2W:1.50〜3.00%、Al:0.010
〜0.100%を含有し、さらに、Cr:0.10〜
1.50%、V:0.01〜0.40%のうちの1種ま
たは2種を含有し、さらに、Nb:0.005〜0.1
00%、Ti:0.005〜0.100%のうちの1種
または2種を含有し、さらに、B:0.0005〜0.
0050%を含有し、Si:0.10%以下(0%を含
む)、P:0.012%以下(0%を含む)、S:0.
012%以下(0%を含む)に各々制限し、残部がFe
及び不可避的不純物よりなることを特徴とする、耐遅れ
破壊特性に優れた高強度ボルト用鋼。
(6) In weight%, C: 0.25 to 0.5
0%, Mn: more than 0.40 to 1.50%, Mo or Mo
+ 1 / 2W: 1.50 to 3.00%, Al: 0.010
-0.100%, and further Cr: 0.10-0.10%
1.50%, V: one or two of 0.01 to 0.40%, and Nb: 0.005 to 0.1
00%, one or two of Ti: 0.005 to 0.100%, and B: 0.0005 to 0.5%.
0050%, Si: 0.10% or less (including 0%), P: 0.012% or less (including 0%), S: 0.
012% or less (including 0%), and the balance is Fe
And high-strength bolt steel with excellent delayed fracture resistance, characterized by being composed of unavoidable impurities.

【0016】(7) 前記(1)〜(6)のいずれかの
高強度ボルト用鋼を所望の形状に成形後、AC3以上の温
度に加熱した後に焼入れ処理を行い、550℃〜AC1
温度範囲で焼きもどすことを特徴とする、耐遅れ破壊特
性に優れた高強度ボルトの製造方法。
(7) After forming the high-strength bolt steel according to any one of the above (1) to (6) into a desired shape, the steel is heated to a temperature of A C3 or more, and then subjected to a quenching treatment to perform 550 ° C. to A C1. A method for producing a high-strength bolt having excellent delayed fracture resistance, characterized by tempering in a temperature range of:

【0017】[0017]

【発明の実施の形態】本発明者らは、遅れ破壊特性に及
ぼす各種因子について鋭意検討し、以下の知見を見出し
た。すなわち、(1)高強度鋼の遅れ破壊特性には焼も
どし温度の影響が大きく、同一の引張強さを有する鋼材
の耐遅れ破壊特性を比較すると、焼もどし温度が高いほ
ど耐遅れ破壊特性が向上する傾向が大きい。これは、焼
もどし温度が高いほど旧オーステナイト粒界に析出する
セメンタイトの形態が球状化して粒界の結合力が増加す
ることと、マトリックスの転位等の欠陥の密度が減少
し、水素に対する脆化感受性が低下することのためであ
る。(2)1500MPaクラス以上の高強度鋼の耐遅
れ破壊特性を、現在広く実用化されているSCM435
の1000MPaクラスの耐遅れ破壊特性と同等程度に
するためには、焼もどし温度を少なくとも550℃以上
に設定する必要がある。(3)焼もどし温度を上記温度
範囲に設定し、かつ1500MPaクラス以上の高強度
を得るためには、Mo単独またはMo+Wをある範囲で
多量添加し、焼もどし時に析出するMo炭化物、W炭化
物による析出強化を利用することが有効である。(4)
粒界に偏析する不純物であるP、S量をある量以下に規
制することによって旧オーステナイト粒界の強化が図ら
れ、耐遅れ破壊特性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies on various factors affecting delayed fracture characteristics and found the following findings. That is, (1) the effect of tempering temperature is great on the delayed fracture characteristics of high-strength steel. Comparing the delayed fracture resistance characteristics of steel materials having the same tensile strength, the higher the tempering temperature, the lower the delayed fracture resistance. The tendency to improve is great. This is because the higher the tempering temperature, the more the cementite morphology that precipitates at the old austenite grain boundaries becomes spheroidized, increasing the bonding force of the grain boundaries, and the density of defects such as matrix dislocations decreases, resulting in embrittlement against hydrogen This is because the sensitivity is reduced. (2) The delayed fracture resistance characteristics of high-strength steel of 1500 MPa class or more can be measured using SCM435, which is currently widely used.
The tempering temperature must be set to at least 550.degree. C. in order to make it equivalent to the 1000 MPa class delayed fracture resistance. (3) In order to set the tempering temperature in the above temperature range and obtain high strength of 1500 MPa class or more, Mo alone or Mo + W is added in a large amount in a certain range, and Mo carbide and W carbide precipitated during tempering are used. It is effective to use precipitation strengthening. (4)
By restricting the amounts of P and S, which are impurities segregated at the grain boundaries, to a certain amount or less, the austenite grain boundaries are strengthened, and the delayed fracture resistance is improved.

【0018】さらに、フェライトの固溶強化元素である
Siを極力低減するとともに、Mn、Cr等の合金元素
の添加量を最低限に抑えることによってMoの多量添加
による冷間鍛造性の低下を補い、ボルトの冷間鍛造性を
損なうことなく高強度化を図ることができることを見出
した。
In addition, Si, which is a solid solution strengthening element for ferrite, is reduced as much as possible, and addition of alloying elements such as Mn and Cr is minimized to compensate for a decrease in cold forgeability due to a large amount of Mo added. It has been found that high strength can be achieved without impairing the cold forgeability of the bolt.

【0019】以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0020】C:Cは強度を得るために有効な元素であ
るため0.25%以上添加するが、0.50%を超えて
添加すると冷間鍛造性、靭性が低下するので、0.25
〜0.50%の範囲にする必要がある。好適範囲は0.
30〜0.45%である。
C: Since C is an effective element for obtaining strength, it is added in an amount of 0.25% or more. However, if added in excess of 0.50%, cold forgeability and toughness are reduced.
Must be in the range of ~ 0.50%. The preferred range is 0.
30 to 0.45%.

【0021】Mn:Mnは焼入れ性を向上するのに有効
な元素であるとともに鋼中のSをMnSとして固定する
ことによって熱間脆性を防止する効果があるため0.4
0%を超えて添加するが、1.50%を超えて添加する
と耐遅れ破壊特性、冷間鍛造性が低下するので、0.4
0超〜1.50%の範囲にする必要がある。好適範囲は
0.45〜0.65%である。
Mn: Mn is an element effective for improving hardenability and has an effect of preventing hot brittleness by fixing S in steel as MnS.
Although it is added in excess of 0%, if it is added in excess of 1.50%, the delayed fracture resistance and cold forgeability deteriorate.
It needs to be in the range of more than 0 to 1.50%. The preferred range is 0.45 to 0.65%.

【0022】MoまたはMo+1/2W:Mo、Wは焼
もどし時に微細なMo炭化物、W炭化物の析出によって
顕著な二次硬化を生じ、高温焼もどしを可能とすること
によって耐遅れ破壊特性を顕著に向上させる元素であ
る。また、高温焼もどしによって強度−延性バランスを
向上することができる。WはMoと同様の効果を持つ
が、その効果はMoの1/2である。550℃以上の焼
もどし温度範囲において、Mo炭窒化物、W炭化物の析
出硬化によって1500MPaクラスの高強度を得るた
めにはMoまたはMo+1/2Wを1.50%以上添加
する必要があるが、3.00%を超えて添加すると冷間
鍛造性が低下するとともに、焼入れ加熱時に合金炭化物
がマトリックスに固溶し難くなり、粗大な未溶解炭化物
の量が多くなることによって延性が低下するので、1.
50〜3.00%の範囲にする必要がある。好適範囲は
1.80〜2.20%である。
Mo or Mo + 1 / 2W: Mo, W causes remarkable secondary hardening due to precipitation of fine Mo carbides and W carbides at the time of tempering, and remarkably exhibits delayed fracture resistance by enabling high temperature tempering. It is an element to improve. Further, the strength-ductility balance can be improved by high-temperature tempering. W has the same effect as Mo, but the effect is half of Mo. In the tempering temperature range of 550 ° C. or more, in order to obtain a high strength of 1500 MPa class by precipitation hardening of Mo carbonitride and W carbide, it is necessary to add Mo or Mo + / W of 1.50% or more. If the addition exceeds 0.000%, the cold forgeability is reduced, and the alloy carbide is hardly dissolved in the matrix at the time of quenching and heating, and the ductility is reduced by increasing the amount of coarse undissolved carbide. .
It needs to be in the range of 50 to 3.00%. The preferred range is 1.80 to 2.20%.

【0023】Al:Alは鋼の脱酸に必要な元素である
とともに、窒化物を形成して旧オーステナイト粒を微細
化する効果があるので0.010%以上添加するが、
0.100%を超えて添加すると効果が飽和するのみな
らずアルミナ系介在物が増加し、靭性が低下するので、
0.010〜0.100%の範囲にする必要がある。好
適範囲は0.020〜0.050%である。
Al: Al is an element necessary for the deoxidation of steel, and has an effect of forming nitrides and refining old austenite grains. Therefore, Al is added in an amount of 0.010% or more.
If added in excess of 0.100%, not only does the effect become saturated, but also alumina-based inclusions increase and toughness decreases.
It is necessary to be in the range of 0.010 to 0.100%. A preferred range is from 0.020 to 0.050%.

【0024】Cr:Crは焼入れ性を向上するのに有効
な元素であり、かつ鋼に焼もどし軟化抵抗を付与する効
果があるため0.10%以上添加するが、1.50%を
超えて添加すると冷間鍛造性が低下するので、0.10
〜1.50%の範囲にする必要がある。好適範囲は0.
15〜0.50%である。
Cr: Cr is an element effective for improving hardenability, and has an effect of imparting tempering softening resistance to steel. Therefore, Cr is added in an amount of 0.10% or more. When added, the cold forgeability decreases, so 0.10
Must be in the range of 1.51.50%. The preferred range is 0.
15 to 0.50%.

【0025】V:Vは旧オーステナイト結晶粒を微細化
する効果があるとともに、焼もどし時に顕著な二次硬化
を起こし、高温焼もどしを可能とすることによって耐遅
れ破壊特性を向上させる元素である。さらに、焼もどし
時にマトリックス中に微細に析出するV炭窒化物が水素
の粒内トラップサイトとなり、粒界に集積する水素の量
を低減し、耐遅れ破壊特性を向上させる元素であるので
0.01%を超えて添加するが、0.40%を超えて添
加すると冷間鍛造性が低下するとともに、焼入れ加熱時
に合金炭化物がマトリックスに固溶し難くなり、粗大な
未溶解炭化物の量が多くなることによって延性が低下す
るので、0.01〜0.40%の範囲にする必要があ
る。好適範囲は0.05〜0.15%である。
V: V is an element that has the effect of refining the prior austenite crystal grains, causes remarkable secondary hardening during tempering, and improves the delayed fracture resistance by enabling high temperature tempering. . Further, V carbonitride, which is finely precipitated in the matrix at the time of tempering, becomes an intragranular trap site of hydrogen, and is an element that reduces the amount of hydrogen accumulated at the grain boundaries and improves delayed fracture resistance. When the content exceeds 0.4%, the cold forgeability is reduced, and the alloy carbide is hardly dissolved in the matrix during quenching and heating, and the amount of coarse undissolved carbide increases. Therefore, the ductility decreases, so that the content needs to be in the range of 0.01 to 0.40%. The preferred range is 0.05-0.15%.

【0026】Nb:NbはAl、Ti、Vと同様に、結
晶粒を微細化する効果があるとともに、耐遅れ破壊特性
を向上する効果があるので0.005%以上添加する
が、0.100%を超えて添加すると効果が飽和するの
みならず冷間鍛造性が低下するので、0.005〜0.
100%の範囲にする必要がある。好適範囲は0.01
0〜0.050%である。
Nb: Similar to Al, Ti and V, Nb has the effect of refining crystal grains and the effect of improving delayed fracture resistance. Therefore, Nb is added in an amount of 0.005% or more. %, The effect is not only saturated, but also the cold forgeability deteriorates.
It must be in the range of 100%. The preferred range is 0.01
0 to 0.050%.

【0027】Ti:TiはAl、Nb、Vと同様に、結
晶粒を微細化する効果があるとともに、鋼中の固溶Nを
窒化物として固定し、耐遅れ破壊特性を向上する効果が
あるので0.005%以上添加するが、0.100%を
超えて添加すると効果が飽和するのみならず冷間鍛造性
が低下するので、0.005〜0.100%の範囲にす
る必要がある。好適範囲は0.010〜0.050%で
ある。
Ti: Ti, like Al, Nb, and V, has the effect of refining crystal grains, and has the effect of fixing solute N in steel as nitride and improving delayed fracture resistance. Therefore, 0.005% or more is added, but if added in excess of 0.100%, not only the effect is saturated, but also the cold forgeability decreases, so it is necessary to be in the range of 0.005 to 0.100%. . A preferred range is 0.010 to 0.050%.

【0028】B:Bは少量の添加で焼入れ性を向上する
効果があるとともに、旧オーステナイト粒界に偏析して
粒界を強化し、耐遅れ破壊特性を向上する効果があるの
で0.0005%以上添加するが、0.0050%を超
えて添加すると効果が飽和するので、0.0005〜
0.0050%の範囲にする必要がある。好適範囲は
0.0010〜0.0030%である。
B: B has the effect of improving hardenability with a small amount of addition, and has the effect of segregating at the former austenite grain boundary to strengthen the grain boundary and improving delayed fracture resistance, so 0.0005%. The effect is saturated when added in excess of 0.0050%.
Must be in the range of 0.0050%. A preferred range is 0.0010 to 0.0030%.

【0029】Si:Siは鋼の脱酸に必要な元素である
が、0.10%を超えて添加すると冷間鍛造性が顕著に
低下するので0.10%以下に制限する必要がある。好
適範囲は0.08%以下である。
Si: Si is an element necessary for deoxidation of steel, but if added in excess of 0.10%, the cold forgeability is significantly reduced, so it must be limited to 0.10% or less. The preferred range is 0.08% or less.

【0030】P:Pは旧オーステナイト粒界に偏析して
粒界を脆化させ、耐遅れ破壊特性を顕著に低下させる効
果があるので少なくとも0.012%以下に制限する必
要があり、極力低減すべきである。好適範囲は0.01
0%以下である。
P: P segregates at the prior austenite grain boundaries, embrittles the grain boundaries, and has the effect of significantly reducing delayed fracture resistance. Therefore, it is necessary to limit P to at least 0.012% or less. Should. The preferred range is 0.01
0% or less.

【0031】S:Sは旧オーステナイト粒界に偏析して
粒界を脆化させ、耐遅れ破壊特性を顕著に低下させる効
果があるので少なくとも0.012%以下に制限する必
要があり、極力低減すべきである。好適範囲は0.01
0%以下である。
S: S has the effect of segregating at the former austenite grain boundary to embrittle the grain boundary and significantly reduce the delayed fracture resistance, so it is necessary to limit it to at least 0.012% or less. Should. The preferred range is 0.01
0% or less.

【0032】本発明はN含有量を特に規定していない
が、鋼中の固溶Nは耐遅れ破壊特性を低下させる元素で
あるため、できるだけ低減する方が好ましい。好適範囲
は0.0080%以下である。
In the present invention, the N content is not particularly specified, but since solid solution N in steel is an element which lowers the delayed fracture resistance, it is preferable to reduce it as much as possible. A preferred range is 0.0080% or less.

【0033】本発明は二次加工工程を特に規定していな
いが、製造工程中に冷間鍛造工程が入るものについては
冷間鍛造性を向上させるため、熱間圧延後の素材に焼
鈍、または球状化焼鈍処理を施しても良い。また、素材
の寸法精度が必要なボルトの場合は、冷間鍛造の前に伸
線を行なうのが一般的である。
Although the present invention does not particularly define the secondary working step, in the case where a cold forging step is included in the manufacturing step, in order to improve the cold forgeability, the material after hot rolling is annealed or A spheroidizing annealing treatment may be performed. In the case of a bolt that requires dimensional accuracy of the material, it is common to draw the wire before cold forging.

【0034】上記した成分のボルト用鋼が最も効果を発
揮するのは、以下に説明するボルトの製造方法において
である。
The steel for bolts having the above-mentioned components is most effective in the method for manufacturing bolts described below.

【0035】上記した成分のボルト用鋼を鍛造、切削等
によって所望のボルト形状に成形した後、鋼に強度を付
与するため、AC3点以上の温度に加熱した後、水冷、ま
たは油冷によって焼入れ処理を行う。加熱温度が低すぎ
るとMo、W、Vの炭化物の溶体化が不十分となり、所
望の特性を得ることができない。他方、加熱温度が高す
ぎると結晶粒の粗大化を招き、靭性及び耐遅れ破壊特性
の劣化を招く。また、操業面からは熱処理炉の炉体、及
び付属部品の損傷が顕著になり、製造コストが上昇する
ため、あまり高い温度に加熱するのは好ましくない。本
発明の成分範囲では、焼入れ加熱温度を900〜100
0℃とするのが好適である。
After the bolt steel having the above-mentioned components is formed into a desired bolt shape by forging, cutting, or the like, the steel is heated to a temperature of A C3 or more to impart strength to the steel, and then water-cooled or oil-cooled. A quenching process is performed. If the heating temperature is too low, the solution of the carbides of Mo, W, and V becomes insufficient, and the desired properties cannot be obtained. On the other hand, when the heating temperature is too high, the crystal grains become coarse, and the toughness and the delayed fracture resistance deteriorate. Further, from the viewpoint of the operation, the furnace body of the heat treatment furnace and the attached parts become remarkably damaged, and the production cost increases. Therefore, it is not preferable to heat the furnace to an excessively high temperature. Within the component range of the present invention, the quenching heating temperature is 900 to 100
The temperature is preferably set to 0 ° C.

【0036】鋼に所定の強度および靱性、延性を付与す
るために焼入れ後に焼もどしを行う必要がある。焼もど
しは、一般に150℃〜AC1点の温度範囲で行われる
が、本発明では550℃〜AC1の温度範囲に限定する必
要がある。その理由は、550℃以下では粒界に析出す
るセメンタイトの形態を球状化して粒界の結合力を増加
することができず、耐遅れ破壊特性をSCM435の1
000MPaクラスと同等以上とすることができないた
めと、焼もどし時に析出するMo炭化物、W炭化物によ
る析出強化が550℃以上で顕著に発現するためであ
る。一方、焼もどし温度がAC1を超えると所望の強度を
得ることが困難となる。好適範囲は575〜675℃で
ある。
In order to impart predetermined strength, toughness and ductility to the steel, it is necessary to perform tempering after quenching. Tempering is generally performed in a temperature range of 150 ° C. to A C1, but in the present invention, it is necessary to limit the temperature range to 550 ° C. to A C1 . The reason is that at 550 ° C. or lower, the form of cementite precipitated at the grain boundary cannot be made spherical to increase the bonding strength of the grain boundary, and the delayed fracture resistance is one of SCM435's.
The reason is that it cannot be equal to or higher than the 000 MPa class, and the precipitation strengthening by Mo carbide and W carbide precipitated at the time of tempering is remarkably exhibited at 550 ° C. or more. On the other hand, when the tempering temperature exceeds A C1 , it becomes difficult to obtain a desired strength. The preferred range is 575-675 ° C.

【0037】[0037]

【実施例】以下に、実施例により本発明をさらに説明す
る。
The present invention will be further described below with reference to examples.

【0038】表1に示す組成を有する転炉溶製鋼を連続
鋳造し、必要に応じて均熱拡散処理工程、分塊圧延工程
を経て162mm角の圧延素材とした。続いて熱間圧延
によって線材形状とした。
Converter steelmaking steel having the composition shown in Table 1 was continuously cast and, if necessary, was subjected to a soaking process and a slab rolling process to obtain a 162 mm square rolled material. Subsequently, a wire rod shape was obtained by hot rolling.

【0039】[0039]

【表1】 [Table 1]

【0040】次にこれらの材料の遅れ破壊特性を調査す
るため、ボルトを製作した。圧延材に必要により焼鈍ま
たは球状化焼鈍を施し、冷間鍛造によってボルト形状に
成形した。その後所定の条件で加熱し、油槽中に焼入
れ、表2の条件で焼もどしを行った。上記の工程で製作
したボルトから、直径8mmの引張試験片、及び環状切
り欠きノッチ付きの遅れ破壊試験片(平行部の直径8m
m、ノッチ部の直径6mm)を機械加工によって製作
し、機械的性質、及び遅れ破壊特性を調査した。
Next, bolts were manufactured in order to investigate the delayed fracture characteristics of these materials. The rolled material was subjected to annealing or spheroidizing annealing as necessary, and was formed into a bolt shape by cold forging. Thereafter, the mixture was heated under predetermined conditions, quenched in an oil bath, and tempered under the conditions shown in Table 2. From the bolts manufactured in the above process, a tensile test piece having a diameter of 8 mm and a delayed fracture test piece with an annular notch notch (diameter of the parallel portion 8 m)
m, the diameter of the notch 6 mm) was manufactured by machining, and the mechanical properties and the delayed fracture characteristics were investigated.

【0041】遅れ破壊試験はpH3.0の希硫酸(液温
30℃)中で試験片に電流密度1.0mA/cm2の水
素チャージを行い、定荷重を負荷して破断までの時間を
測定した。試験時間は最大200時間とし、200時間
破断しない最大の負荷応力を測定した。200時間破断
しない最大の負荷応力を大気中での破断応力で割った値
を「遅れ破壊強度比」と定義し、遅れ破壊特性の指標と
した。引張強さが1000MPa級のボルトとして一般
に多く使われているSCM435の遅れ破壊強度比が
0.5程度であることから、遅れ破壊強度比が0.5未
満のものは耐遅れ破壊特性に劣ると判断した。これらの
各種試験結果も表2にまとめて示した。
In the delayed fracture test, a test piece was charged with hydrogen at a current density of 1.0 mA / cm 2 in dilute sulfuric acid (solution temperature: 30 ° C.) at pH 3.0, a constant load was applied, and the time until fracture was measured. did. The test time was a maximum of 200 hours, and the maximum applied stress that did not break for 200 hours was measured. The value obtained by dividing the maximum applied stress that does not break for 200 hours by the breaking stress in the atmosphere was defined as “delayed fracture strength ratio” and used as an index of delayed fracture characteristics. Since the delayed fracture strength ratio of SCM435, which is generally used as a bolt having a tensile strength of 1000 MPa class, is about 0.5, the one having a delayed fracture strength ratio of less than 0.5 is inferior in delayed fracture resistance. It was judged. Table 2 also summarizes the results of these various tests.

【0042】[0042]

【表2】 [Table 2]

【0043】比較例のNo.12は、成分範囲は本発明
の範囲内であるものの、焼もどし温度が低いため、所望
の遅れ破壊特性が得られていない。また、表2に示した
遅れ破壊強度比と引張強さの関係を図1に整理して示
す。本発明例は、比較例に比べて良好な遅れ破壊特性を
示すことが分かる。
No. of Comparative Example In No. 12, although the component range was within the range of the present invention, the desired delayed fracture characteristics were not obtained because the tempering temperature was low. The relationship between the delayed fracture strength ratio and the tensile strength shown in Table 2 is shown in FIG. It can be seen that the inventive examples show better delayed fracture characteristics than the comparative examples.

【0044】これらから明らかなように、本発明例は比
較例に比べて高強度であり、耐遅れ破壊特性に優れてい
る。
As is apparent from these, the inventive examples have higher strength and are superior in delayed fracture resistance as compared with the comparative examples.

【0045】[0045]

【発明の効果】本発明によれば、引張強さ1500MP
a以上の高強度であり、遅れ破壊特性に優れたボルトを
提供することが可能となり、ボルトの締結軸力の増加、
サイズダウンによる軽量化等を通じて構造物、機械部品
の軽量化、高性能化に大きく寄与することができるた
め、その効果は極めて大きい。
According to the present invention, the tensile strength is 1500MP.
It is possible to provide a bolt having a high strength of a or more and excellent in delayed fracture characteristics, thereby increasing the fastening axial force of the bolt,
The effect is extremely large because it can greatly contribute to weight reduction and high performance of structures and mechanical parts through weight reduction by downsizing and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遅れ破壊強度比と引張強さの関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a delayed fracture strength ratio and a tensile strength.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
C .: 0.25 to 0.50%, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0% by weight 0.10% or less (including 0%), P: 0.012% or less (including 0%), S: 0.012% or less (including 0% High-strength bolt steel with excellent delayed fracture resistance, characterized by being limited to Fe and inevitable impurities.
【請求項2】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、さらに、 Cr:0.10〜1.50%、 V:0.01〜0.40%のうちの1種または2種を含
有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
2. In% by weight, C: 0.25 to 0.50%, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0 0.10 to 0.100%, further contains one or two of Cr: 0.10 to 1.50%, V: 0.01 to 0.40%, and Si: 0.1 to 0.10%. 10% or less (including 0%), P: limited to 0.012% or less (including 0%), S: limited to 0.012% or less (including 0%), and the balance is less than Fe and inevitable impurities. High strength bolt steel with excellent delayed fracture resistance.
【請求項3】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100%のうちの1種または2
種を含有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
C .: 0.25 to 0.50% by weight, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0 Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, or one or two of Nb: 0.005 to 0.100%
Seeds, Si: 0.10% or less (including 0%), P: 0.012% or less (including 0%), S: 0.012% or less (including 0%) A high-strength bolt steel excellent in delayed fracture resistance, characterized in that the balance consists of Fe and unavoidable impurities.
【請求項4】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、さらに、 Cr:0.10〜1.50%、 V:0.01〜0.40%のうちの1種または2種を含
有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100%のうちの1種または2
種を含有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
4. In% by weight, C: 0.25 to 0.50%, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0 0.10 to 0.100%, Cr: 0.10 to 1.50%, V: 0.01 to 0.40%, Nb: 0.005 to 0.100%, one of Ti: 0.005 to 0.100% or 2
Seeds, Si: 0.10% or less (including 0%), P: 0.012% or less (including 0%), S: 0.012% or less (including 0%) A high-strength bolt steel excellent in delayed fracture resistance, characterized in that the balance consists of Fe and unavoidable impurities.
【請求項5】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100%のうちの1種または2
種を含有し、さらに、 B:0.0005〜0.0050%を含有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
5. Weight%, C: 0.25 to 0.50%, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0 Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, or one or two of Nb: 0.005 to 0.100%
B: 0.0005% to 0.0050%, Si: 0.10% or less (including 0%), P: 0.012% or less (including 0%), S : A high-strength bolt steel excellent in delayed fracture resistance, characterized by being limited to 0.012% or less (including 0%) and the balance being Fe and unavoidable impurities.
【請求項6】 重量%で、 C:0.25〜0.50%、 Mn:0.40超〜1.50%、 MoまたはMo+1/2W:1.50〜3.00%、 Al:0.010〜0.100%を含有し、さらに、 Cr:0.10〜1.50%、 V:0.01〜0.40%のうちの1種または2種を含
有し、さらに、 Nb:0.005〜0.100%、 Ti:0.005〜0.100%のうちの1種または2
種を含有し、さらに、 B:0.0005〜0.0050%を含有し、 Si:0.10%以下(0%を含む)、 P:0.012%以下(0%を含む)、 S:0.012%以下(0%を含む)に各々制限し、残
部がFe及び不可避的不純物よりなることを特徴とす
る、耐遅れ破壊特性に優れた高強度ボルト用鋼。
6. In% by weight, C: 0.25 to 0.50%, Mn: more than 0.40 to 1.50%, Mo or Mo + 1 / 2W: 1.50 to 3.00%, Al: 0 0.10 to 0.100%, Cr: 0.10 to 1.50%, V: 0.01 to 0.40%, Nb: 0.005 to 0.100%, one of Ti: 0.005 to 0.100% or 2
B: 0.0005% to 0.0050%, Si: 0.10% or less (including 0%), P: 0.012% or less (including 0%), S : A high-strength bolt steel excellent in delayed fracture resistance, characterized by being limited to 0.012% or less (including 0%) and the balance being Fe and unavoidable impurities.
【請求項7】 請求項1〜6のいずれか記載の高強度ボ
ルト用鋼を所望の形状に成形後、AC3以上の温度に加熱
した後に焼入れ処理を行い、550℃〜AC1の温度範囲
で焼きもどすことを特徴とする、耐遅れ破壊特性に優れ
た高強度ボルトの製造方法。
7. The high-strength bolt steel according to any one of claims 1 to 6, which is formed into a desired shape, heated to a temperature of A C3 or more, and then subjected to a quenching treatment to perform a temperature range of 550 ° C. to A C1 . A method of manufacturing a high-strength bolt having excellent delayed fracture resistance, characterized by tempering with a bolt.
JP21016899A 1999-07-26 1999-07-26 Steel for high strength bolt and method for producing high strength bolt Expired - Fee Related JP3857835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21016899A JP3857835B2 (en) 1999-07-26 1999-07-26 Steel for high strength bolt and method for producing high strength bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21016899A JP3857835B2 (en) 1999-07-26 1999-07-26 Steel for high strength bolt and method for producing high strength bolt

Publications (2)

Publication Number Publication Date
JP2001032044A true JP2001032044A (en) 2001-02-06
JP3857835B2 JP3857835B2 (en) 2006-12-13

Family

ID=16584909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21016899A Expired - Fee Related JP3857835B2 (en) 1999-07-26 1999-07-26 Steel for high strength bolt and method for producing high strength bolt

Country Status (1)

Country Link
JP (1) JP3857835B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514800B1 (en) * 2002-06-12 2005-09-14 주식회사 포스코 Method for manufacturing wire rods having excellent cold formability
JP2006131990A (en) * 2004-10-08 2006-05-25 Nippon Steel Corp High strength bolt having excellent delayed fracture resistance and method for improving its delayed fracture resistance
EP1746177A1 (en) * 2005-07-22 2007-01-24 Nippon Steel Corporation High strength bolt excellent in delayed fracture resistance and method of production of same
EP1746176A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
FR2914929A1 (en) * 2007-04-12 2008-10-17 Mittal Steel Gandrange STEEL WITH GOOD HYDROGEN RESISTANCE FOR THE FORMING OF MECHANICAL PARTS WITH VERY HIGH CHARACTERISTICS.
KR20210148334A (en) 2019-05-14 2021-12-07 닛폰세이테츠 가부시키가이샤 Bolts, and steel for bolts
CN115572917A (en) * 2021-06-21 2023-01-06 宝山钢铁股份有限公司 Economical steel for fastener and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100514800B1 (en) * 2002-06-12 2005-09-14 주식회사 포스코 Method for manufacturing wire rods having excellent cold formability
JP2006131990A (en) * 2004-10-08 2006-05-25 Nippon Steel Corp High strength bolt having excellent delayed fracture resistance and method for improving its delayed fracture resistance
JP4555749B2 (en) * 2004-10-08 2010-10-06 新日本製鐵株式会社 Method for improving delayed fracture resistance of high strength bolts
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
EP1746177A1 (en) * 2005-07-22 2007-01-24 Nippon Steel Corporation High strength bolt excellent in delayed fracture resistance and method of production of same
US7754029B2 (en) 2005-07-22 2010-07-13 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1801 MPa class or more, and its shaped article
CN100443614C (en) * 2005-07-22 2008-12-17 新日本制铁株式会社 Steel with excellent delayed fracture resistance and tensile strength of 1600 mpa class or more, its shaped articles, and methods of production of the same
EP1746176A1 (en) 2005-07-22 2007-01-24 Nippon Steel Corporation Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
US7510614B2 (en) 2005-07-22 2009-03-31 Nippon Steel Corporation High strength bolt excellent in delayed fracture resistance and method of production of same
WO2008142275A3 (en) * 2007-04-12 2009-01-22 Arcerlormittal Gandrange Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
WO2008142275A2 (en) * 2007-04-12 2008-11-27 Arcerlormittal Gandrange Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
FR2914929A1 (en) * 2007-04-12 2008-10-17 Mittal Steel Gandrange STEEL WITH GOOD HYDROGEN RESISTANCE FOR THE FORMING OF MECHANICAL PARTS WITH VERY HIGH CHARACTERISTICS.
US9194018B2 (en) 2007-04-12 2015-11-24 Arcelormittal Gandrange S.A. Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
KR20210148334A (en) 2019-05-14 2021-12-07 닛폰세이테츠 가부시키가이샤 Bolts, and steel for bolts
KR102599767B1 (en) 2019-05-14 2023-11-08 닛폰세이테츠 가부시키가이샤 Bolts and steel materials for bolts
CN115572917A (en) * 2021-06-21 2023-01-06 宝山钢铁股份有限公司 Economical steel for fastener and manufacturing method thereof

Also Published As

Publication number Publication date
JP3857835B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CA2341667C (en) Cold workable steel bar or wire and process
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
WO2015146141A1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
CN112877591A (en) High-strength and high-toughness steel for hardware tool and chain and manufacturing method thereof
WO2018061101A1 (en) Steel
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP3536770B2 (en) Non-heat treated steel
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP3718369B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JP2756556B2 (en) Non-heat treated steel for hot forging
EP3483293A1 (en) Rolled wire rod
JP3533034B2 (en) Cold forging-induction hardening steel
JPH0526850B2 (en)
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JPH07216497A (en) Steel sheet or steel sheet parts with high fatigue strength and their production
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
JP3947353B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP3584726B2 (en) High strength non-heat treated steel
JPH08246051A (en) Production of medium carbon steel sheet excellent in workability
JP3217943B2 (en) Method for producing steel for machine structural use having excellent machinability, cold forgeability and fatigue properties after quenching and tempering
JPH05239588A (en) Medium carbon hot rolled steel plate excellent in formability and weldability and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060809

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees