JPH07216497A - Steel sheet or steel sheet parts with high fatigue strength and their production - Google Patents

Steel sheet or steel sheet parts with high fatigue strength and their production

Info

Publication number
JPH07216497A
JPH07216497A JP1177294A JP1177294A JPH07216497A JP H07216497 A JPH07216497 A JP H07216497A JP 1177294 A JP1177294 A JP 1177294A JP 1177294 A JP1177294 A JP 1177294A JP H07216497 A JPH07216497 A JP H07216497A
Authority
JP
Japan
Prior art keywords
less
cementite
steel sheet
steel
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1177294A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1177294A priority Critical patent/JPH07216497A/en
Publication of JPH07216497A publication Critical patent/JPH07216497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To attain superior formability at the time of plastic working and the property of improving the strength of a base material at the time of nitriding treatment by specifying a composition and controlling an internal structure. CONSTITUTION:A steel sheet, as a stock, has a composition consisting of, by weight ratio, 0.10-0.70% C, 0.05-1.0% Si, 0.05-0.50% Mn, <=2.00% Ni, 0.01-1.00% acid-soluble Al, 0.002-0.010% N, 3-50ppm B, <=0.010% Ca, <=0.010% S, <=0.020% P, and the balance essentially Fe. This steel sheet is box-annealed and spheroidal cementite is dispersed in graphite, followed by plastic working to form into required parts shape. Then, the parts are further soaked at 460-500'C in a gaseous mixture of N2 and H2 or in a gaseous mixture, prepared by adding CO and/or CO2 to the former gaseous mixture, for 1 to 30hr, by which a surface layer nitrided structure of <=50mum thickness and an internal structure consisting of ferrite, graphite, and cementite in which grain size is regulated to two levels of >=0.2mum and <=0.05mum can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車用等の高強度部
品として好適な、高い疲労強度を有する薄鋼板または薄
鋼板部品およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin steel plate or a thin steel plate component having high fatigue strength, which is suitable as a high strength component for automobiles and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】一般に、複雑な形状と高い疲労強度を必
要とする鋼製部品には、鉄鋼メーカーで製造された鋼板
または条鋼等に塑性加工を施した後、ガス窒化または溶
融青酸塩中での窒化(タフトライド)等の処理により表
面を硬化させたものが用いられている。このような処理
に供される鋼種では一般に、塑性加工の段階で高い伸び
が必要であるため、C量の低いものが用いられる。しか
しこのような鋼種の場合、C量が低いことから塑性加工
時の加工硬化により引張強度が上昇しても、窒化処理で
の温度上昇により軟化する。このため、表層の窒化層の
形成による疲労強度上昇効果は得られるものの、その強
度上昇には限界がある。このような理由で、表面層硬度
の上昇を目的として窒化処理する際に、同時に材料自体
の強度上昇が可能な素材鋼板とその強度上昇方法の開発
が望まれている。
2. Description of the Related Art Generally, steel parts requiring a complicated shape and high fatigue strength are subjected to gas nitriding or molten hydrocyanate after being subjected to plastic working on a steel plate or a bar steel manufactured by a steel manufacturer. Those whose surface is hardened by a treatment such as nitriding (tuftride) are used. In general, the steel type used for such treatment requires a high elongation at the stage of plastic working, and therefore a steel having a low C content is used. However, in the case of such a steel type, since the C content is low, even if the tensile strength increases due to work hardening during plastic working, it softens due to the temperature increase during the nitriding treatment. Therefore, although the effect of increasing the fatigue strength can be obtained by the formation of the surface nitrided layer, there is a limit to the increase in the strength. For these reasons, it is desired to develop a material steel sheet and a method for increasing the strength thereof, which can simultaneously increase the strength of the material itself when performing the nitriding treatment for the purpose of increasing the hardness of the surface layer.

【0003】特開昭64−25946 号公報及び特開平2−10
7742号公報等には、低炭素から中炭素の素材鋼板の組織
をフェライトと黒鉛またはフェライト、黒鉛およびセメ
ンタイトからなるものとし、成形性、焼入性等を向上さ
せた鋼板が示されている。しかしこれらの発明では、窒
化処理時に母材強度を向上させ得るような方法は示され
ていない。
JP-A-64-25946 and JP-A-2-10
Japanese Patent No. 7742 discloses a steel sheet having a low carbon to medium carbon material steel sheet having a structure of ferrite and graphite or ferrite, graphite and cementite, and having improved formability and hardenability. However, these inventions do not show a method capable of improving the strength of the base material during the nitriding treatment.

【0004】自動車変速機用ギヤ等の製造の際の窒化処
理は、特開平2−107742号公報に開示されているよう
に、中炭素鋼または低炭素鋼がその対象である。このよ
うな鋼種に対して窒化処理中に母材強度を上昇させる方
法としては、Cuを添加して窒化温度域でε−Cuを析出さ
せるか、またはNb等を添加して窒化温度域でNbN、NbC
等の析出物を形成させる等の手段が検討されている。し
かし、これら合金元素を添加すると塑性加工前の材料強
度が上昇し、十分な成形性が得られない等の問題が発生
する。
The nitriding treatment in the production of gears for automobile transmissions is intended for medium carbon steel or low carbon steel, as disclosed in JP-A-2-107742. As a method for increasing the base metal strength during the nitriding treatment for such steel types, Cu is added to precipitate ε-Cu in the nitriding temperature range, or Nb or the like is added to NbN in the nitriding temperature range. , NbC
Means for forming precipitates such as However, the addition of these alloying elements raises the material strength before plastic working, resulting in problems such as insufficient formability.

【0005】自動車変速機用ギヤ等の製造を目的とし
て、例えば鉄と鋼,78,8(1992),p.1383等にこの課題の解
決策が示されている。上記論文に示される方法は、Cu、
Nbを添加しない鋼を対象として、熱間鍛造さらには冷間
鍛造を施してギヤ歯を成形し、さらに必要に応じてこの
製品を浸炭または軟窒化処理して歯部の硬度を増大せし
めるものであり、軟窒化処理においては母材そのものの
強度上昇効果を期待することはできない。
A solution to this problem is shown in, for example, Iron and Steel, 78, 8 (1992), p.1383 for the purpose of manufacturing gears for automobile transmissions. The method presented in the above paper is Cu,
This is a steel for which Nb is not added and is subjected to hot forging and cold forging to form gear teeth, and if necessary, this product is carburized or nitrocarburized to increase the hardness of the teeth. However, the effect of increasing the strength of the base material itself cannot be expected in the soft nitriding treatment.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の課題を
解決するためになされたものである。本発明の目的は、
鋼板の塑性加工時には一般の低炭素鋼と同等の成形性を
有し、かつ塑性加工後の窒化処理時に母材強度が上昇し
た薄鋼板または薄鋼板部品とその製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems. The purpose of the present invention is to
It is an object of the present invention to provide a thin steel plate or a thin steel plate component having a formability equivalent to that of a general low carbon steel at the time of plastic working of a steel plate and having an increased base metal strength at the time of nitriding treatment after the plastic working, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、次の
(1) の薄鋼板または薄鋼板部品および(2) のその製造方
法にある。
The summary of the present invention is as follows.
The thin steel plate or the thin steel plate component of (1) and the manufacturing method of (2).

【0008】(1)重量割合で、C:0.10〜0.70%、Si:
0.05〜1.00%、Mn:0.05〜0.50%、Ni:2.00%以下(無
添加でもよい)、sol.Al:0.01〜1.00%、N: 0.002〜
0.010%、B:3〜50ppm およびCa:0.010 %以下(無
添加でもよい)を含有し、残部は実質的にFeおよび不可
避的不純物からなり、不純物中のPは0.020 %以下、S
は0.010 %以下であり、その表層組織として厚さ50μm
以下の窒化層を有し、内部組織がフェライト、黒鉛およ
び径が 0.2μm以上と0.05μm以下の2水準に分かれた
セメンタイトからなることを特徴とする薄鋼板または薄
鋼板部品。
(1) C: 0.10 to 0.70% by weight, Si:
0.05 to 1.00%, Mn: 0.05 to 0.50%, Ni: 2.00% or less (without addition), sol.Al: 0.01 to 1.00%, N: 0.002 to
0.010%, B: 3 to 50 ppm and Ca: 0.010% or less (there may be no addition), and the balance substantially consists of Fe and unavoidable impurities, P in the impurities is 0.020% or less, S
Is 0.010% or less and the surface layer has a thickness of 50 μm.
A thin steel plate or thin steel plate part having the following nitriding layer and having an internal structure made of ferrite, graphite and cementite divided into two levels having a diameter of 0.2 μm or more and 0.05 μm or less.

【0009】(2)重量割合で、C:0.10〜0.70%、Si:
0.05〜1.00%、Mn:0.05〜0.50%、Ni:2.00%以下(無
添加でもよい)、sol.Al:0.01〜1.00%、N: 0.002〜
0.010%、B:3〜50ppm およびCa:0.010 %以下(無
添加でもよい)を含有し、残部は実質的にFeおよび不可
避的不純物からなり、不純物中のPは0.020 %以下、S
は0.010 %以下である素材薄鋼板を、 650〜780 ℃で箱
焼鈍することにより鋼中に球状化セメンタイトと黒鉛を
分散させた後、塑性加工を施し、更に 400〜650℃で
とH2との混合ガス、またはこの混合ガスにCO、CO2
の1種以上を加えた混合ガス雰囲気中で1時間以上30時
間以下均熱し、厚さ50μm以下の窒化層からなる表層組
織と、フェライト、黒鉛および粒径が 0.2μm以上と0.
05μm以下の2水準に分かれたセメンタイトからなる内
部組織とを形成させることを特徴とする薄鋼板または薄
鋼板部品の製造方法。
(2) C: 0.10 to 0.70% by weight, Si:
0.05 to 1.00%, Mn: 0.05 to 0.50%, Ni: 2.00% or less (without addition), sol.Al: 0.01 to 1.00%, N: 0.002 to
0.010%, B: 3 to 50 ppm and Ca: 0.010% or less (there may be no addition), and the balance substantially consists of Fe and unavoidable impurities, P in the impurities is 0.020% or less, S
The material steel sheets 0.010% or less, after the spheroidized cementite and graphite were dispersed in the steel by box annealing at six hundred and fifty to seven hundred eighty ° C., subjected to plastic working, further 400 to 650 ° C. with N 2 and H a mixed gas of 2 CO or the mixed gas,, CO 2
In a mixed gas atmosphere containing at least one of the above, soaked for 1 hour or more and 30 hours or less, and a surface layer structure composed of a nitride layer having a thickness of 50 μm or less, ferrite, graphite and a grain size of 0.2 μm or more and 0.
A method for producing a thin steel plate or a thin steel plate part, which comprises forming an internal structure made of cementite divided into two levels of 05 μm or less.

【0010】Ni:2.00%以下、Ca:0.010 %以下とは、
いずれも0%であってもよく、必要に応じて、それぞれ
上限を2.00%、0.010 %として含有させることを意味す
る。
Ni: 2.00% or less, Ca: 0.010% or less means
Any of these may be 0%, which means that the upper limits are 2.00% and 0.010%, respectively, if necessary.

【0011】なお、上記の薄鋼板部品とは、薄鋼板を素
材として深絞り加工、転造加工、スピニング加工などに
より成形された部品、例えば、ギヤ、プーリー、ハブな
どを意味する。
The above-mentioned thin steel plate component means a component formed from a thin steel plate as a material by deep drawing, rolling, spinning or the like, for example, a gear, a pulley or a hub.

【0012】本発明者は前記課題の解決策として、材料
と製造方法の両面から次のような具体的手段の検討を進
めた。
As a solution to the above-mentioned problems, the present inventor has proceeded with the study of the following concrete means from the viewpoint of both material and manufacturing method.

【0013】材料面では、 ・0.10%C以上の鋼種で、焼鈍後の鋼板の段階ではCを
黒鉛として鋼中に分散させて強度を低下させ、従来の軟
鋼板と同等の伸びを維持させること。
In terms of materials, steel grade of 0.10% C or more, and at the stage of the steel sheet after annealing, C is dispersed in the steel as graphite to reduce the strength and maintain the same elongation as conventional mild steel sheets. .

【0014】・窒化処理のための加熱時に、鋼中のC
を、Cu、V等を含む析出物の代替として作用する極微細
なセメンタイトとして鋼板の内部(母材部)に再析出さ
せること。
C in steel during heating for nitriding
Is re-precipitated inside the steel sheet (base material portion) as ultrafine cementite that acts as a substitute for precipitates containing Cu, V, etc.

【0015】・この再析出により、C量に応じて引張強
度を上昇させ、強度を最大200 MPa上昇させること。
By this reprecipitation, the tensile strength is increased according to the amount of C and the strength is increased up to 200 MPa.

【0016】製造方法面では、 ・極微細セメンタイトの析出が可能なように、 400〜65
0 ℃での窒化処理が可能な製造プロセスを用いること。
In terms of the manufacturing method: 400-65 to enable precipitation of ultrafine cementite
Use a manufacturing process that allows nitriding at 0 ° C.

【0017】その結果、本発明者は次の〜の知見を
得て本発明をなした。
As a result, the present inventor has accomplished the present invention by obtaining the following findings.

【0018】焼鈍後において、軟質化と高い伸びを確
保するために黒鉛化の促進を図り、さらに窒化処理後に
極微細セメンタイトを形成させるには、C量の下限は0.
10%とする必要があること。
In order to promote graphitization in order to secure softening and high elongation after annealing and to form ultrafine cementite after nitriding treatment, the lower limit of C content is 0.
Must be 10%.

【0019】焼鈍工程でセメンタイトを黒鉛化するに
は、固溶硬化作用の大きなSi、sol.Alよりも、その作用
が小さいBの添加が有効であること。同じく固溶硬化作
用の小さいNi、Caは必要に応じて添加すればよいこと。
In order to graphitize cementite in the annealing step, it is effective to add B, which has a smaller action than Si and sol.Al, which have a large solid solution hardening action. Similarly, Ni and Ca, which have a small solid solution hardening effect, should be added if necessary.

【0020】Mnは、黒鉛組織を確保するため上限を0.
50%、MnSとして析出させること等により靱性を確保す
るため下限を0.05%、とする必要があること。
Mn has an upper limit of 0 to secure a graphite structure.
The lower limit should be 0.05% in order to secure toughness by precipitating as 50% and MnS.

【0021】P、S量の低減も必要であるが、特にC
量が 0.2〜0.4 %を上限とした中炭素域では、黒鉛化を
促進して高い伸びを得るにはP量を極力低減することが
求められ、Pの上限は0.020 %とする必要があること。
It is necessary to reduce the amounts of P and S, but especially C
In the medium carbon region with the upper limit of 0.2 to 0.4%, it is required to reduce the amount of P as much as possible in order to promote graphitization and obtain high elongation, and the upper limit of P must be 0.020%. .

【0022】このような化学組成からなる素材鋼板を
650〜780 ℃の範囲で箱焼鈍することでセメンタイトが
黒鉛化し、球状化セメンタイトと黒鉛が分散すること。
A material steel plate having such a chemical composition
Cementite is graphitized by box annealing in the range of 650-780 ℃, and spheroidized cementite and graphite are dispersed.

【0023】塑性加工後の窒化処理と、極微細なセメ
ンタイトを析出させ材料強度の上昇を図ることとを効率
的に両立させるためには、窒化条件を NH3+H2雰囲気と
し、400〜650 ℃の温度域で1時間以上30時間以下均熱
する必要があること。
In order to efficiently achieve both nitriding treatment after plastic working and increasing the material strength by precipitating ultrafine cementite, the nitriding condition is NH 3 + H 2 atmosphere and 400 to 650 ° C. It is necessary to soak for 1 hour to 30 hours in the temperature range.

【0024】[0024]

【作用】本発明の薄鋼板または薄鋼板部品の素材となる
鋼板の化学組成と組織、製品薄鋼板の製造方法と組織を
前記のように定めた理由を説明する。
The chemical composition and structure of the thin steel sheet or the material of the thin steel sheet component of the present invention, and the method of manufacturing the thin steel sheet and the structure thereof will be described below.

【0025】I.素材鋼板の化学組成 C:0.10〜0.70% 焼鈍後に黒鉛化組織を得、さらに窒化処理後に極微細セ
メンタイトを形成させるには、ある程度以上のC含有量
が必要となることから、その下限は0.10%とした。一
方、0.70%を超えて過度に含有量を増加させると、素材
鋼板の箱焼鈍において黒鉛の形成は促進されるものの、
鋼中の黒鉛が介在物として悪影響を現し、成形性を劣化
させることから、その上限は0.70%とした。
I. Chemical composition of raw steel sheet C: 0.10 to 0.70% In order to obtain a graphitized structure after annealing and to form ultrafine cementite after nitriding, a certain amount of C content is required. The lower limit was 0.10%. On the other hand, if the content is excessively increased to exceed 0.70%, the formation of graphite is promoted during box annealing of the raw steel sheet,
The upper limit was set to 0.70% because graphite in steel adversely affects as inclusions and deteriorates formability.

【0026】Si:0.05〜1.00% Siはセメンタイトの黒鉛化には必要な成分であり、また
脱酸材として一定量以上添加する必要があるため、その
下限は0.05%とした。一方、焼鈍後の鋼板の成形時の引
張強度を極力低減させる必要があることから、固溶硬化
能の高いSiは極力その高い含有量を避け、その上限値は
1.00%とした。
Si: 0.05 to 1.00% Si is a component necessary for graphitization of cementite, and it is necessary to add a certain amount or more as a deoxidizing agent, so the lower limit was made 0.05%. On the other hand, since it is necessary to reduce the tensile strength at the time of forming the steel sheet after annealing as much as possible, Si having a high solid solution hardening ability avoids its high content as much as possible, and its upper limit value is
It was 1.00%.

【0027】Mn:0.05〜0.50% Mnはセメンタイトを安定化し、焼鈍均熱中のセメンタイ
トの分解を抑制する。
Mn: 0.05 to 0.50% Mn stabilizes cementite and suppresses the decomposition of cementite during annealing and soaking.

【0028】このため、Mn含有量が0.50%を超えると黒
鉛の析出に対して著しい阻害要因となる。しかし、Mnは
鋼の焼入れ性向上あるいは鋼中のSと化合しMnSを形成
することによる靱性向上等の効果を有し、一定量以上含
有させる必要があることから、その下限は0.05%とし
た。
Therefore, if the Mn content exceeds 0.50%, it becomes a significant inhibiting factor for the precipitation of graphite. However, Mn has the effect of improving the hardenability of steel or improving the toughness by combining with S in the steel to form MnS, and it is necessary to contain a certain amount or more, so the lower limit was made 0.05%. .

【0029】sol.Al:0.01〜1.00% sol.Alは含有量の多い方が黒鉛の析出が容易になる。こ
の効果は0.01%未満では得られない。一方、1.00%を超
えて過剰に含有させると、フェライトの固溶硬化ととも
に鋼中に酸化物析出が増大する等の弊害をもたらす。こ
の結果、窒化処理後の製品の靱性が著しく劣化する場合
がある。このため、その上限は1.00%とした。
Sol.Al: 0.01 to 1.00% The higher the content of sol.Al, the easier the precipitation of graphite. This effect cannot be obtained at less than 0.01%. On the other hand, if the content exceeds 1.00% and is excessive, it causes adverse effects such as solid solution hardening of ferrite and increase of oxide precipitation in steel. As a result, the toughness of the product after the nitriding treatment may be significantly deteriorated. Therefore, the upper limit is set to 1.00%.

【0030】N: 0.002〜0.010 % Nは鋼中に不可避的に含有される元素であるが、焼鈍時
にBと結合してBNを形成しBNを核とした黒鉛形成を
促進するため、一定量以上の含有量になるように制御す
る必要があり、その下限を0.002 %とした。一方、B含
有量が0.010 %を超えると、鋼中Nの含有量が過度に増
大し伸びの劣化等を招くことから、その上限を0.010 %
とした。
N: 0.002 to 0.010% N is an element which is unavoidably contained in steel, but it is combined with B during annealing to form BN and promotes the formation of graphite with BN as a nucleus, so a certain amount. It is necessary to control the above content, and the lower limit was made 0.002%. On the other hand, if the B content exceeds 0.010%, the N content in the steel excessively increases, leading to deterioration of elongation, etc., so the upper limit is 0.010%.
And

【0031】B:3〜50ppm Bは窒化処理後の靱性を改善するとともに、焼鈍後の黒
鉛形成を促進することから、一定量以上添加することと
した。これら効果を得るための有効B量の最低値は3pp
m であり、一方、50ppm を上回ると熱延時にFeBを形成
し、靱性に対して悪影響を与える。よって、B含有量の
範囲は3〜50ppm とした。
B: 3 to 50 ppm B improves the toughness after nitriding and promotes graphite formation after annealing, so it was decided to add B in a certain amount or more. The minimum effective B amount for obtaining these effects is 3 pp
On the other hand, when it exceeds 50 ppm, FeB is formed during hot rolling, which adversely affects toughness. Therefore, the range of B content is 3 to 50 ppm.

【0032】P:0.020 %以下 Pはセメンタイトとフェライトとの界面に偏析するとさ
れており、C元素の移動を抑制して黒鉛の析出を著しく
阻害する元素であるので、P含有量はできるだけ低い方
がよい。特に、黒鉛化に対する箱焼鈍時間の短縮(最大
均熱時間36hr以内)を図るため、Pの許容上限は0.020
%とした。
P: 0.020% or less P is said to segregate at the interface between cementite and ferrite, and is an element that suppresses the migration of C element and significantly inhibits the precipitation of graphite. Therefore, the P content should be as low as possible. Is good. In particular, in order to shorten the box annealing time for graphitization (maximum soaking time within 36 hours), the allowable upper limit of P is 0.020
%.

【0033】S:0.010 %以下 SもPと同様に黒鉛化を阻害する元素であり、その含有
量が増えると黒鉛化に要する箱焼鈍時間が増大する。ま
た、靱性を著しく低下させることから、鋼中のSは極力
低減する必要がある。このため、Sの許容上限は0.010
%とした。
S: 0.010% or less S, like P, is an element that inhibits graphitization, and if its content increases, the box annealing time required for graphitization increases. Further, since the toughness is remarkably reduced, S in steel must be reduced as much as possible. Therefore, the upper limit of S is 0.010.
%.

【0034】Ni:2.00%以下 Niは、Siとともに黒鉛化を促進する元素であるが、Siほ
どフェライトに対する固溶硬化能はなく、焼鈍後の鋼板
の軟質化を引き出すのに有効な元素である。このため、
黒鉛化の促進を目的として必要に応じて添加するものと
した。しかし、2.00%を超えて過剰に含有させるとフェ
ライトの固溶硬化を招くとともに、コストの上昇を招く
ことから、その上限は2.00%とした。
Ni: 2.00% or less Ni is an element that promotes graphitization together with Si, but does not have a solid solution hardening ability for ferrite as much as Si, and is an element effective in drawing out softening of a steel sheet after annealing. . For this reason,
It was added as needed for the purpose of promoting graphitization. However, if the content exceeds 2.00% in excess, it causes solid solution hardening of ferrite and increases cost, so the upper limit was made 2.00%.

【0035】Ca:0.010 %以下 鋼中へのCaの添加は、鋼中の固溶酸素を低減する効果お
よびAl系酸化物を低減する効果を有している。焼鈍時の
黒鉛化促進のため、sol.Al含有量は前記の範囲に維持す
る必要があり、このため鋼中のAl系酸化物の増大が懸念
される場合がある。また、Mn含有量も前記のように抑制
する必要があることから、鋼中の固溶SをMnSとして固
定して低減する効果が十分得られない場合がある。
Ca: 0.010% or less Addition of Ca to steel has an effect of reducing solid solution oxygen in the steel and an effect of reducing Al-based oxides. In order to promote graphitization during annealing, it is necessary to maintain the sol.Al content within the above range, which may cause an increase in Al-based oxide in steel. Further, since the Mn content also needs to be suppressed as described above, the effect of fixing and reducing the solid solution S in the steel as MnS may not be sufficiently obtained in some cases.

【0036】したがって、Al系酸化物を低減したり、Ca
系硫化物としてSを固定する必要がある場合には、必要
に応じてCaを含有させるのがよい。含有させる場合、
0.010%を超えるとこれらの効果は飽和し、コストの上
昇を招くとともに、鋼中のCa系酸化物、硫化物が増大す
ることから、その上限は0.010 %とした。
Therefore, the amount of Al-based oxide is reduced and the amount of Ca is reduced.
When it is necessary to fix S as a system sulfide, it is preferable to add Ca as needed. When including,
If 0.010% is exceeded, these effects saturate, leading to an increase in cost, and Ca-based oxides and sulfides in the steel increase, so the upper limit was made 0.010%.

【0037】II. 鋼板の組織 焼鈍後の鋼板:塑性加工前の母材の鋼組織は、所定条件
の箱焼鈍により、球状化セメンタイトと黒鉛とが分散し
たものとする。成形性の向上には黒鉛の析出が有効であ
るものの、セメンタイトの全てが黒鉛化する必要はな
く、一方、そのセメンタイトの黒鉛化には非常に大きな
熱エネルギーを必要とする。このため、低コストで高い
成形性を確保するため、球状化セメンタイトと黒鉛の2
種が分散したものとした。
II. Structure of Steel Plate Steel Plate after Annealing: The steel structure of the base material before plastic working is assumed to be a dispersion of spheroidized cementite and graphite by box annealing under predetermined conditions. Although graphite precipitation is effective for improving formability, not all of cementite needs to be graphitized, while graphitization of cementite requires very large thermal energy. For this reason, in order to secure high formability at low cost, spheroidized cementite and graphite
Seeds were dispersed.

【0038】このときの望ましい球状化セメンタイトの
大きさは、直径が 0.2μm以上の粗粒である。
At this time, the preferable size of the spheroidized cementite is coarse particles having a diameter of 0.2 μm or more.

【0039】製品の薄鋼板または薄鋼板部品:本発明の
薄鋼板または薄鋼板部品は、その表層に厚さ50μm以下
の窒化層を有し、母材部の内部組織がフェライト、黒鉛
および粒径が 0.2μm以上と0.05μm以下の2水準に分
かれたセメンタイトの3種類からなるものである。
Thin steel plate or thin steel plate part of the product: The thin steel plate or thin steel plate part of the present invention has a nitride layer with a thickness of 50 μm or less on the surface layer, and the internal structure of the base material is ferrite, graphite and grain size. Consists of three types of cementite divided into two levels of 0.2 μm or more and 0.05 μm or less.

【0040】〔表層の窒化層〕表層の窒化層はFeX Nを
主体とする層であり、高い疲労強度と耐摩耗性を付与す
るために必要な表面硬化層である。その厚さが50μmを
超えると、靱性が劣化するほか、窒化のためのコストも
増大する。厚さの望ましい下限は、15μmである。この
厚さは、フェライト粒径の1層(1個)以上に相当する
ものである。
[Nitride Layer on Surface Layer] The nitride layer on the surface layer is a layer mainly composed of Fe X N, and is a surface hardened layer necessary for imparting high fatigue strength and wear resistance. If the thickness exceeds 50 μm, the toughness deteriorates and the cost for nitriding also increases. A desirable lower limit for the thickness is 15 μm. This thickness corresponds to one layer (one piece) or more of ferrite grain size.

【0041】〔窒化処理後の内部組織とそのセメンタイ
トの粒径〕内部の母材組織は、窒化処理時の所定条件で
の均熱により得られるものであり、前記の3種類のもの
からなるようにすることにより、引張強度、疲労強度が
向上する。
[Internal Microstructure after Nitriding Treatment and Grain Size of Cementite] The internal base metal structure is obtained by soaking under predetermined conditions during the nitriding treatment, and is composed of the above-mentioned three types. By this, the tensile strength and fatigue strength are improved.

【0042】高い疲労強度は、前記の窒化層の形成と、
黒鉛からフェライト中へ拡散したCから析出した粒径が
0.05μm以下の極微細セメンタイトとによって得られ
る。
High fatigue strength is due to the formation of the above-mentioned nitride layer,
The particle size precipitated from C diffused from graphite into ferrite is
It is obtained by using ultrafine cementite of 0.05 μm or less.

【0043】素材鋼板の焼鈍中に、ある程度のセメンタ
イトを黒鉛化すると、黒鉛化できずに残存するセメンタ
イトは、球状化組織として粒径が0.2 μm以上に成長し
て残存する (以下、この粗粒セメンタイトをFe3CIと記
す) 。しかしこのような粗粒セメンタイトは析出量が少
なく、引張強度へ与える影響は小さいので疲労強度も上
昇しない。一方、粒径が0.05μm以下の極微細セメンタ
イト (以下、Fe3C IIIと記す)は、素材鋼板の焼鈍後に
はフェライト中に残存しないが、窒化処理時に黒鉛から
拡散したCによって析出する。Fe3C IIIがフェライト中
に析出した場合、その引張強度を上昇させ、同時に疲労
強度も上昇させる。
When a certain amount of cementite is graphitized during the annealing of the material steel sheet, the cementite that cannot be graphitized and remains as a spheroidized structure grows to a grain size of 0.2 μm or more and remains (hereinafter, this coarse grain). Cementite is referred to as Fe 3 CI). However, since such coarse-grained cementite has a small amount of precipitation and has little influence on the tensile strength, the fatigue strength does not increase. On the other hand, ultrafine cementite with a grain size of 0.05 μm or less (hereinafter referred to as Fe 3 C III) does not remain in the ferrite after annealing of the steel sheet, but is precipitated by C diffused from graphite during the nitriding treatment. When Fe 3 C III precipitates in ferrite, it increases its tensile strength and simultaneously increases fatigue strength.

【0044】しかし、粒径が0.05μmを超え0.2 μm未
満のセメンタイト (以下、Fe3C IIと記す) が、素材鋼
板の焼鈍後、窒化処理前に鋼中に存在すると、窒化処理
中に析出してくるFe3CIII がFe3C II に吸着され粗大化
することにより、強度上昇効果が得られない。
However, if cementite having a grain size of more than 0.05 μm and less than 0.2 μm (hereinafter referred to as Fe 3 C II) is present in the steel after annealing the raw steel sheet and before the nitriding treatment, it is precipitated during the nitriding treatment. Since the incoming Fe 3 C III is adsorbed by Fe 3 C II and coarsens, the strength increasing effect cannot be obtained.

【0045】このため、窒化処理前の優れた成形性と、
窒化処理後に高い疲労強度を得ることを両立させるに
は、素材鋼板の焼鈍時には0.2 μm以上のFe3CIを分散
させ、窒化処理後はこのFe3CIのほか、0.05μm以下の
Fe3C IIIを分散させた組織とする必要がある。
Therefore, excellent formability before nitriding treatment and
In order to achieve both high fatigue strength after nitriding treatment, Fe 3 CI of 0.2 μm or more is dispersed during annealing of the steel sheet, and after nitriding treatment, Fe 3 CI of 0.05 μm or less
It is necessary to have a structure in which Fe 3 C III is dispersed.

【0046】III.製造方法および条件 本発明の薄鋼板または薄鋼板部品は、次の方法で製造す
る。すなわち、前記の化学組成の鋼スラブなどを常法に
より熱間圧延し、またはさらに必要に応じて常法により
冷間圧延を加えて素材薄鋼板とし、これを箱焼鈍により
球状化セメンタイトと黒鉛を分散させて良好な成形性と
軟鋼並の強度伸び特性とを有する鋼板とした後、深絞
り、冷間鍛造などの冷間加工または冷間圧延などの方法
で部品形状または板状に塑性加工を施し、その後表面の
窒化処理を行うと同時に、内部組織を適切に制御する。
III. Manufacturing Method and Conditions The thin steel plate or thin steel plate part of the present invention is manufactured by the following method. That is, a steel slab having the chemical composition described above is hot-rolled by a conventional method, or if necessary, cold-rolled by a conventional method to obtain a material thin steel sheet, which is spheroidized cementite and graphite by box annealing. After being dispersed into a steel sheet having good formability and strength and elongation characteristics similar to mild steel, it is subjected to cold working such as deep drawing and cold forging, or plastic working into a component shape or plate shape by a method such as cold rolling. Then, the surface is nitrided, and at the same time, the internal structure is appropriately controlled.

【0047】素材鋼板の黒鉛、球状化セメンタイト析出
の焼鈍条件:窒化処理前の段階で鋼板の成形性を向上さ
せるためには、素材薄鋼板に箱焼鈍を施してセメンタイ
トを黒鉛化し、球状化セメンタイトと黒鉛を分散させる
必要がある。しかし、全てのセメンタイトを黒鉛化する
には、長時間の箱焼鈍が必要となり、コストの増大を招
く。また、このセメンタイト全量を黒鉛化すると、マト
リクスであるフェライトは粗粒化し、強度とさらに延び
も低下する。よって、セメンタイトが適正な大きさに球
状化して分散状態で残存し、残りのセメンタイトが黒鉛
化して分散した組織としなければならない。
Annealing conditions for precipitating graphite and spheroidized cementite in the raw steel sheet: In order to improve the formability of the steel sheet before the nitriding treatment, the raw thin steel sheet is annealed in a box to graphitize the cementite and then the spheroidized cementite is formed. And graphite need to be dispersed. However, in order to graphitize all the cementite, long-time box annealing is required, which causes an increase in cost. Further, when the whole amount of this cementite is graphitized, the ferrite which is the matrix becomes coarse, and the strength and the elongation are also lowered. Therefore, it is necessary to form a structure in which cementite is spheroidized to an appropriate size and remains in a dispersed state, and the remaining cementite is graphitized and dispersed.

【0048】望ましい箱焼鈍条件は、 650〜780 ℃、12
〜24時間の範囲である。鋼中のセメンタイトを黒鉛化す
るには非常に長時間が必要であり、箱焼鈍を用いる。こ
のとき、黒鉛化に必要な温度条件としては650 ℃以上の
均熱温度が必要であり、これ未満の温度では、セメンタ
イトの黒鉛化に非常に長時間を要し、工業的な方法とし
て成立しない。一方、780 ℃を越えるとマトリクスがオ
ーステナイト化し、セメンタイトがマトリクス中に分解
固溶することから、高疲労強度を発揮する所望の組織が
得られない。
Desirable box annealing conditions are 650 to 780 ° C., 12
~ 24 hours range. It takes a very long time to graphitize cementite in steel, and box annealing is used. At this time, as a temperature condition necessary for graphitization, a soaking temperature of 650 ° C. or higher is required, and at a temperature lower than this, it takes a very long time to graphitize cementite, which is not established as an industrial method. . On the other hand, if the temperature exceeds 780 ° C., the matrix becomes austenite and cementite is decomposed and solid-solved in the matrix, so that a desired structure exhibiting high fatigue strength cannot be obtained.

【0049】塑性加工後の窒化処理条件:表層に窒化層
を形成するには、窒素を含有する雰囲気中で加熱する必
要があるが、特に窒化層形成の処理時間短縮を目的とし
て、雰囲気はN2とH2との混合ガス、またはこの混合ガス
にCO、CO2 の1種以上を加えた混合ガスを用いて、NH3
または NH3+H2、もしくは NH3−N2−CO−H2−CO2 の混
合雰囲気とするのがよい。
Nitriding condition after plastic working: In order to form a nitride layer on the surface layer, it is necessary to heat in an atmosphere containing nitrogen, but the atmosphere is N for the purpose of shortening the treatment time for forming the nitride layer. NH 3 using a mixed gas of 2 and H 2 or a mixed gas of one or more of CO and CO 2 added to this mixed gas.
Or NH 3 + H 2, or better to a mixed atmosphere of NH 3 -N 2 -CO-H 2 -CO 2.

【0050】処理温度は 400〜650 ℃の範囲で均熱す
る。後述する実施例2で示すように、400 ℃未満または
650 ℃を超える温度では、望ましい窒化層厚さの形成と
強度上昇をもたらすFe3C IIIの形成がともに困難であ
り、セメンタイトはFe3C IとFe3CIIしか得られない。
The treatment temperature is soaked in the range of 400 to 650 ° C. As shown in Example 2 below, below 400 ° C or
At temperatures above 650 ° C, it is difficult to form the desired nitride layer thickness and Fe 3 C III, which leads to strength increase, and only Fe 3 CI and Fe 3 CII can be obtained as cementite.

【0051】窒化処理のための均熱時間は1時間以上30
時間以下とする。後述する実施例2で示すように、1時
間未満では窒化層厚さの望ましい下限である15μmが確
保されない上に、強度上昇をもたらすFe3C IIIの形成が
困難である。一方、30時間を超えると、その厚さが上限
である50μmを超えるとともに、Fe3C IIIが粗大化して
セメンタイトはFe3C IとFe3C II しか得られず、強度上
昇効果が損なわれる。
Soaking time for nitriding treatment is 1 hour or more 30
Not more than time. As shown in Example 2 to be described later, if less than 1 hour, the desirable lower limit of the nitrided layer thickness of 15 μm cannot be ensured, and it is difficult to form Fe 3 C III that causes an increase in strength. On the other hand, when it exceeds 30 hours, the thickness exceeds the upper limit of 50 μm, Fe 3 C III is coarsened, and only Fe 3 CI and Fe 3 C II are obtained as cementite, and the strength increasing effect is impaired.

【0052】このような工程と条件で製造される薄鋼板
または薄鋼板部品は、表層に所望の窒化層を有する上、
内部の母材部には、フェライト、黒鉛および粒径が 0.2
μm以上と0.05μm以下の2水準に分かれたセメンタイ
トが形成され、高い疲労強度を有するものとなる。
The thin steel plate or thin steel plate part manufactured by the above process and conditions has a desired nitriding layer on the surface layer and
Ferrite, graphite and grain size 0.2
Cementite having two levels of μm or more and 0.05 μm or less is formed, and high fatigue strength is obtained.

【0053】[0053]

【実施例】【Example】

〔実施例1〕実験室真空溶解炉で溶製した表1に示す化
学組成の鋼の鋼塊を、板厚30mmに鍛造し、引き続き板厚
4mmの薄鋼板に熱間圧延した後、さらに板厚2.0mm に冷
間圧延し、素材鋼板とした。これらを表2に示す焼鈍条
件で箱焼鈍し、機械的性質を調査した。
[Example 1] A steel ingot of the steel having the chemical composition shown in Table 1 melted in a laboratory vacuum melting furnace was forged to a plate thickness of 30 mm, and subsequently hot-rolled into a thin steel plate having a plate thickness of 4 mm, and then further rolled. Cold rolled to a thickness of 2.0 mm to obtain a steel plate. These were subjected to box annealing under the annealing conditions shown in Table 2 and examined for mechanical properties.

【0054】焼鈍後の鋼板に、さらに5%の塑性歪みを
加えた後、50%NH3 −20%N2−10%CO−10%H2−10%CO
2 からなる 480℃の雰囲気ガス中で12時間均熱する方法
で表層に窒化層を設け、窒化処理後の窒化層深さ、母材
部のセメンタイトの粒径、引張強度、表層硬度を調査し
た。なお、このときの引張試験は、全てJIS 13B試験片
を用いて行った。
After 5% plastic strain was further applied to the annealed steel sheet, 50% NH 3 -20% N 2 -10% CO -10% H 2 -10% CO
A nitriding layer was formed on the surface by soaking for 12 hours in 480 ° C atmosphere gas consisting of 2 and the nitriding depth after nitriding, grain size of cementite in the base material, tensile strength, and surface hardness were investigated. . All the tensile tests at this time were performed using JIS 13B test pieces.

【0055】さらに、窒化処理後の疲労強度を次の方法
で測定した。
Further, the fatigue strength after nitriding treatment was measured by the following method.

【0056】上記焼鈍後の同じ板厚で平行部幅20mm、長
さ50mmの試験片に対し、中央部と幅方向との両側から深
さ2mm、先端角度30°、R=0.5mm のノッチを切り込
み、この試験片を上記と同一条件で窒化した後、4Hz
の周期の応力振幅 200〜500 N/mm2の範囲で2×106
までの測定で求めた。これらの結果を表2に示す。セメ
ンタイトの粒径の欄に示す○は鋼板中に存在すること、
×は同じく存在しないことを意味する。
After the above-mentioned annealing, a notch having a depth of 2 mm, a tip angle of 30 °, and a radius of 0.5 mm was formed on both sides of the center portion and the width direction of a test piece having the same plate thickness and a parallel portion width of 20 mm and a length of 50 mm. After cutting and nitriding this test piece under the same conditions as above, 4Hz
The stress amplitude of the cycle was measured in the range of 200 to 500 N / mm 2 up to 2 × 10 6 times. The results are shown in Table 2. ○ in the column of the grain size of cementite must be present in the steel sheet,
X also means not present.

【0057】表2から明らかなように、本発明で定める
化学組成を有する鋼2〜4から製造された鋼板では、い
ずれも焼鈍後は良好な伸びを有し、かつ窒化処理後は強
度上昇が認められ、疲労強度も高い。これに対し、本発
明の範囲外の化学組成である鋼1から製造された鋼板で
は、窒化処理による強度上昇がほとんどなく、疲労強度
も低い。また、同じく鋼5から製造された鋼板では、焼
鈍後の伸びが低く、塑性加工に適していない。
As is clear from Table 2, in the steel sheets manufactured from the steels 2 to 4 having the chemical composition defined in the present invention, all have good elongation after annealing and increase in strength after nitriding treatment. It is recognized and has a high fatigue strength. On the other hand, in the steel sheet manufactured from Steel 1 having a chemical composition outside the scope of the present invention, there is almost no increase in strength due to the nitriding treatment and the fatigue strength is low. Further, the steel sheet produced from the steel 5 also has a low elongation after annealing and is not suitable for plastic working.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】〔実施例2〕実験室真空溶解炉で溶製した
表3に示す化学組成の鋼の鋼塊を、板厚30mmに鍛造し、
引き続き板厚4mmの薄鋼板に熱間圧延し、素材鋼板とし
た。これらを板厚1.5mm に冷間圧延した後、表4に示す
焼鈍条件で箱焼鈍し、機械的性質を調査した。
Example 2 A steel ingot of steel having the chemical composition shown in Table 3 melted in a laboratory vacuum melting furnace was forged to a plate thickness of 30 mm,
Subsequently, it was hot-rolled into a thin steel plate having a thickness of 4 mm to obtain a raw steel plate. After cold-rolling these to a plate thickness of 1.5 mm, they were box-annealed under the annealing conditions shown in Table 4 and examined for mechanical properties.

【0061】焼鈍後の鋼板に、さらに5%の塑性歪みを
加えた後、表4に示す条件で窒化処理して表層に窒化層
を設け、窒化処理後の窒化層深さ、母材部のセメンタイ
トの粒径、引張強度、表層硬度を調査した。なお、この
ときの引張試験は、全て JIS13B試験片を用いて行っ
た。表4の窒化処理雰囲気の欄に示すRXは、RXガス
(ブタン分解ガス:例えば、30%CH4 −60%H2−4%N2
−5%CO−1%CO2 )を意味する。
After 5% of plastic strain was further applied to the annealed steel sheet, it was nitrided under the conditions shown in Table 4 to form a nitride layer on the surface layer. The particle size, tensile strength and surface hardness of cementite were investigated. In addition, all the tensile tests at this time were performed using JIS13B test pieces. RX shown in the column of nitriding atmosphere in Table 4 is RX gas (butane decomposition gas: for example, 30% CH 4 -60% H 2 -4% N 2
-5% CO-1% CO 2 ).

【0062】さらに、窒化処理後の疲労強度を実施例1
と同様の方法で測定した。これらの結果を表4に示す。
Furthermore, the fatigue strength after the nitriding treatment was determined in Example 1.
It measured by the method similar to. The results are shown in Table 4.

【0063】表4から明らかなように、本発明で定める
条件を満たすプロセスB、C、E、F、H、I、Jによ
り製造された鋼板では、いずれも焼鈍後の成形性が良好
で、かつ窒化処理後には高い表層硬度と引張強度の上昇
がみられる。
As is clear from Table 4, the steel sheets manufactured by the processes B, C, E, F, H, I and J satisfying the conditions defined in the present invention all have good formability after annealing, Moreover, a high surface hardness and an increase in tensile strength are observed after the nitriding treatment.

【0064】プロセスAでは、窒化処理温度が低く、望
ましい窒化層の厚さやFe3C III組織が得られていないた
め、表層硬化、強度上昇がみられない。また、プロセス
Dでは窒化処理温度が高すぎ、望ましいFe3C III組織が
得られていないため、表層硬度が低下している上に引張
強度上昇も小さい。
In Process A, the nitriding temperature is low, and the desired thickness of the nitrided layer and the Fe 3 C III structure are not obtained, so that the surface layer is not hardened and the strength is not increased. Further, in the process D, the nitriding temperature is too high, and the desired Fe 3 C III structure is not obtained, so that the surface hardness is decreased and the tensile strength is not increased so much.

【0065】一方、プロセスGでは窒化時間が短く、望
ましい窒化層の厚さやFe3C III組織が得られていないた
め、表層硬化、引張強度の上昇が小さい。プロセスKで
は、窒化処理時間が過度に長く、望ましいFe3C III組織
が得られていないため、引張強度上昇が小さい。
On the other hand, in the process G, the nitriding time is short, and the desired thickness of the nitrided layer and the Fe 3 C III structure are not obtained, so that the surface layer hardening and the increase in tensile strength are small. In Process K, the nitriding treatment time was excessively long and the desired Fe 3 C III structure was not obtained, so that the tensile strength increase was small.

【0066】窒化処理後の引張強度の上昇が小さいプロ
セスA、D、GおよびKでは、疲労強度も低くなってい
る。
In the processes A, D, G and K in which the increase in tensile strength after the nitriding treatment is small, the fatigue strength is also low.

【0067】[0067]

【表3】 [Table 3]

【0068】[0068]

【表4】 [Table 4]

【0069】〔実施例3〕実験室真空溶解炉で溶製した
表5に示す化学組成の鋼の鋼塊を、板厚30mmに鍛造し、
引き続き板厚1.8mm の薄鋼板に熱間圧延し、素材鋼板と
した。これらの熱延鋼板を表6に示す焼鈍条件で箱焼鈍
し、実施例1と同様の機械的性質を調査した。
Example 3 An ingot of steel having the chemical composition shown in Table 5 melted in a laboratory vacuum melting furnace was forged to a plate thickness of 30 mm,
Then, it was hot-rolled into a thin steel plate with a plate thickness of 1.8 mm to obtain a raw steel plate. These hot-rolled steel sheets were box-annealed under the annealing conditions shown in Table 6, and the same mechanical properties as in Example 1 were investigated.

【0070】焼鈍後の鋼板に5%の塑性歪みを加えた
後、実施例1と同じ条件で表層に窒化層を設け、窒化処
理後の窒化層深さ、母材部のセメンタイトの粒径、引張
強度、表層硬度および窒化処理後の疲労強度を調査し
た。これらの結果を表6に示す。
After 5% plastic strain was applied to the annealed steel sheet, a nitride layer was provided on the surface under the same conditions as in Example 1, the nitride layer depth after the nitriding treatment, the grain size of cementite in the base metal part, The tensile strength, surface hardness and fatigue strength after nitriding treatment were investigated. The results are shown in Table 6.

【0071】表6からわかるように、Si含有量が本発明
の範囲を超える鋼24から製造された鋼板では、焼鈍温度
が本発明で定める範囲であっても焼鈍後の成形性が得ら
れない。Mn含有量が本発明の範囲を超える鋼25による鋼
板では、焼鈍段階で黒鉛析出が抑制され、伸びが不十分
である。鋼26による鋼板では、焼鈍温度が低すぎるた
め、セメンタイトの黒鉛化が不十分で窒化処理でFe3CII
が生成し、疲労強度が低い。鋼27から製造された鋼板で
は、焼鈍温度が高すぎるため、窒化処理でFe3CIIも生成
し、疲労強度が低い。本発明で定める条件を全て満たし
て製造された鋼板では、所望の組織と良好な強度が得ら
れている。
As can be seen from Table 6, in the steel sheet produced from steel 24 having a Si content exceeding the range of the present invention, formability after annealing cannot be obtained even if the annealing temperature is within the range defined by the present invention. . In the steel sheet made of steel 25 having an Mn content exceeding the range of the present invention, graphite precipitation is suppressed in the annealing stage and the elongation is insufficient. In the case of steel plate made of steel 26, the annealing temperature is too low, so the graphitization of cementite is insufficient and Fe 3 CII
Is generated, and the fatigue strength is low. Since the annealing temperature of the steel sheet produced from steel 27 is too high, the nitriding treatment also produces Fe 3 CII, and the fatigue strength is low. A steel sheet manufactured by satisfying all the conditions defined in the present invention has a desired structure and good strength.

【0072】[0072]

【表5】 [Table 5]

【0073】[0073]

【表6】 [Table 6]

【0074】[0074]

【発明の効果】本発明によれば、窒化処理を適用して表
層厚さと内部組織を制御することで、母材強度を上昇さ
せ、疲労強度が向上した薄鋼板または薄鋼板部品を得る
ことができる。これらを自動車用等の高強度部品に適用
すれば、高寿命化の達成が可能である。
According to the present invention, by applying a nitriding treatment to control the surface layer thickness and internal structure, it is possible to increase the strength of the base material and obtain a thin steel plate or a thin steel plate part having improved fatigue strength. it can. If these are applied to high-strength parts for automobiles, etc., long life can be achieved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量割合で、C:0.10〜0.70%、Si:0.05
〜1.00%、Mn:0.05〜0.50%、Ni:2.00%以下(無添加
でもよい)、sol.Al:0.01〜1.00%、N: 0.002〜0.01
0 %、B:3〜50ppm およびCa:0.010 %以下(無添加
でもよい)を含有し、残部は実質的にFeおよび不可避的
不純物からなり、不純物中のPは0.020 %以下、Sは0.
010 %以下であり、その表層組織として厚さ50μm以下
の窒化層を有し、内部組織がフェライト、黒鉛および径
が 0.2μm以上と0.05μm以下の2水準に分かれたセメ
ンタイトからなることを特徴とする薄鋼板または薄鋼板
部品。
1. A weight ratio of C: 0.10 to 0.70%, Si: 0.05.
~ 1.00%, Mn: 0.05 ~ 0.50%, Ni: 2.00% or less (may be no addition), sol.Al: 0.01 ~ 1.00%, N: 0.002 ~ 0.01
0%, B: 3 to 50 ppm and Ca: 0.010% or less (there may be no addition), and the balance substantially consists of Fe and unavoidable impurities, P in the impurities is 0.020% or less, S is 0.
010% or less, has a nitrided layer with a thickness of 50 μm or less as its surface structure, and the internal structure is composed of ferrite, graphite, and cementite divided into two levels with a diameter of 0.2 μm or more and 0.05 μm or less. Thin steel plate or thin steel plate part.
【請求項2】重量割合で、C:0.10〜0.70%、Si:0.05
〜1.00%、Mn:0.05〜0.50%、Ni:2.00%以下(無添加
でもよい)、sol.Al:0.01〜1.00%、N: 0.002〜0.01
0 %、B:3〜50ppm およびCa:0.010 %以下(無添加
でもよい)を含有し、残部は実質的にFeおよび不可避的
不純物からなり、不純物中のPは0.020 %以下、Sは0.
010 %以下である素材薄鋼板を、 650〜780 ℃で箱焼鈍
することにより鋼中に球状化セメンタイトと黒鉛を分散
させた後、塑性加工を施し、さらに 400〜650℃でN2とH
2との混合ガス、またはこの混合ガスにCO、CO2 の1種
以上を加えた混合ガス雰囲気中で1時間以上30時間以下
均熱し、厚さ50μm以下の窒化層からなる表層組織と、
フェライト、黒鉛および粒径が 0.2μm以上と0.05μm
以下の2水準に分かれたセメンタイトからなる内部組織
とを形成させることを特徴とする薄鋼板または薄鋼板部
品の製造方法。
2. A weight ratio of C: 0.10 to 0.70%, Si: 0.05
~ 1.00%, Mn: 0.05 ~ 0.50%, Ni: 2.00% or less (may be no addition), sol.Al: 0.01 ~ 1.00%, N: 0.002 ~ 0.01
0%, B: 3 to 50 ppm and Ca: 0.010% or less (there may be no addition), and the balance substantially consists of Fe and unavoidable impurities, P in the impurities is 0.020% or less, S is 0.
After spheroidizing cementite and graphite are dispersed in the steel by box annealing at 650 to 780 ℃, the material thin steel sheet containing 010% or less is subjected to plastic working, and further N 2 and H at 400 to 650 ℃.
2 or a mixed gas atmosphere in which at least one of CO and CO 2 is added to this mixed gas, soaked for 1 hour to 30 hours, and a surface layer structure composed of a nitride layer having a thickness of 50 μm or less,
Ferrite, graphite and grain size of 0.2μm or more and 0.05μm
A method for producing a thin steel plate or a thin steel plate part, comprising forming an internal structure made of cementite divided into the following two levels.
JP1177294A 1994-02-03 1994-02-03 Steel sheet or steel sheet parts with high fatigue strength and their production Pending JPH07216497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1177294A JPH07216497A (en) 1994-02-03 1994-02-03 Steel sheet or steel sheet parts with high fatigue strength and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177294A JPH07216497A (en) 1994-02-03 1994-02-03 Steel sheet or steel sheet parts with high fatigue strength and their production

Publications (1)

Publication Number Publication Date
JPH07216497A true JPH07216497A (en) 1995-08-15

Family

ID=11787267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177294A Pending JPH07216497A (en) 1994-02-03 1994-02-03 Steel sheet or steel sheet parts with high fatigue strength and their production

Country Status (1)

Country Link
JP (1) JPH07216497A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030095594A (en) * 2002-06-12 2003-12-24 동국산업 주식회사 Annealing Method For Spheroidizing Hot Coil
JP2005114147A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
EP1577406A1 (en) * 2002-10-17 2005-09-21 National Institute for Materials Science Screw or tapping screw
EP1580291A1 (en) * 2002-10-17 2005-09-28 National Institute for Materials Science Superfine grain steel having nitrided layer
US7690847B2 (en) 2003-10-10 2010-04-06 Ntn Corporation Rolling bearing
JP2018516310A (en) * 2015-04-01 2018-06-21 フェデラル−モグル ニュルンベルク ゲーエムベーハー Aluminum casting alloy, engine part manufacturing method, engine part, and use of aluminum casting alloy for manufacturing engine part

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030095594A (en) * 2002-06-12 2003-12-24 동국산업 주식회사 Annealing Method For Spheroidizing Hot Coil
EP1577406A1 (en) * 2002-10-17 2005-09-21 National Institute for Materials Science Screw or tapping screw
EP1580291A1 (en) * 2002-10-17 2005-09-28 National Institute for Materials Science Superfine grain steel having nitrided layer
EP1580291A4 (en) * 2002-10-17 2006-01-18 Nat Inst For Materials Science Superfine grain steel having nitrided layer
EP1577406A4 (en) * 2002-10-17 2006-02-01 Nat Inst For Materials Science Screw or tapping screw
CN100359033C (en) * 2002-10-17 2008-01-02 独立行政法人物质·材料研究机构 Superfine grain steel having nitrided layer
JP2005114147A (en) * 2003-10-10 2005-04-28 Ntn Corp Rolling bearing
US7690847B2 (en) 2003-10-10 2010-04-06 Ntn Corporation Rolling bearing
JP2018516310A (en) * 2015-04-01 2018-06-21 フェデラル−モグル ニュルンベルク ゲーエムベーハー Aluminum casting alloy, engine part manufacturing method, engine part, and use of aluminum casting alloy for manufacturing engine part

Similar Documents

Publication Publication Date Title
KR101464712B1 (en) Steel component having excellent temper softening resistance
WO2014104113A1 (en) Steel for carburizing
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
JP4229609B2 (en) Carburized and hardened gear and manufacturing method thereof
JP2007131871A (en) Steel for induction hardening
JPH06108158A (en) Production of high carbon steel strip good in formability
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JPWO2020158357A1 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP2011006734A (en) Steel for vacuum carburizing and vacuum-carburized component
JP7125923B2 (en) High-carbon hot-rolled steel sheet for vacuum carburizing, its manufacturing method, and carburized steel parts
JPH0953149A (en) Case hardening steel with high strength and high toughness
KR102396706B1 (en) High carbon hot-rolled steel sheet and manufacturing method thereof
JPH10306343A (en) Steel for soft-nitriding, excellent in cold forgeability and pitting resistance
EP3020841B1 (en) Coil spring, and method for manufacturing same
JPH083629A (en) Carburizing and quenching method
JP4488228B2 (en) Induction hardening steel
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JPH1180882A (en) Carburized parts excellent in bending strength and impact characteristic
JPWO2020158356A1 (en) High carbon hot-rolled steel sheet and its manufacturing method
JPH07216497A (en) Steel sheet or steel sheet parts with high fatigue strength and their production
JP2023142664A (en) Nitridation steel with excellent core part hardness
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JPH08260039A (en) Production of carburized and case hardened steel
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material