JP4485424B2 - Manufacturing method of high-strength bolts with excellent delayed fracture resistance - Google Patents

Manufacturing method of high-strength bolts with excellent delayed fracture resistance Download PDF

Info

Publication number
JP4485424B2
JP4485424B2 JP2005212218A JP2005212218A JP4485424B2 JP 4485424 B2 JP4485424 B2 JP 4485424B2 JP 2005212218 A JP2005212218 A JP 2005212218A JP 2005212218 A JP2005212218 A JP 2005212218A JP 4485424 B2 JP4485424 B2 JP 4485424B2
Authority
JP
Japan
Prior art keywords
strength
delayed fracture
hydrogen
temperature
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005212218A
Other languages
Japanese (ja)
Other versions
JP2007031736A (en
Inventor
卓 吉田
徹志 千田
学 久保田
敏三 樽井
英樹 松田
孝樹 水野
忠司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2005212218A priority Critical patent/JP4485424B2/en
Publication of JP2007031736A publication Critical patent/JP2007031736A/en
Application granted granted Critical
Publication of JP4485424B2 publication Critical patent/JP4485424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、耐遅れ破壊特性の優れた高強度ボルトの製造方法に関し、特に、1600MPa以上の引張強度を有する、耐遅れ破壊特性に優れた高強度ボルトの製造方法に関するものである。   The present invention relates to a method for producing a high-strength bolt excellent in delayed fracture resistance, and particularly relates to a method for producing a high-strength bolt excellent in delayed fracture resistance having a tensile strength of 1600 MPa or more.

自動車、機械、橋梁、土木建築等、各種産業分野で使用される高強度鋼は、例えばJIS G 4104、JIS G 4105に規定されるクロム鋼(SCr)、クロムモリブデン鋼(SCM)であって、C濃度が質量%で0.30〜0.45%の中炭素鋼であり、その鋼に焼入れ、焼戻し処理が施されて製造されている。しかし、上記の鋼材は引張強度が1300MPaを超えると水素脆化の危険性、特に、使用中に環境から侵入する水素に起因する遅れ破壊現象の危険性が高まることがよく知られている。そのため、例えば、建築向けの場合、引張強度が1150MPa級の鋼材が上限となっているのが現状である。   High-strength steel used in various industrial fields such as automobiles, machinery, bridges, civil engineering and construction is chrome steel (SCr) and chrome molybdenum steel (SCM) defined in JIS G 4104 and JIS G 4105, for example, It is a medium carbon steel with a C concentration of 0.30 to 0.45% by mass and is manufactured by quenching and tempering the steel. However, it is well known that the steel materials described above have an increased risk of hydrogen embrittlement, especially the risk of delayed fracture due to hydrogen entering from the environment during use, when the tensile strength exceeds 1300 MPa. Therefore, for example, in the case of construction, the upper limit is a steel material having a tensile strength of 1150 MPa class.

高強度鋼の耐遅れ破壊特性を向上させる従来の知見として、焼入れにより生成したマルテンサイト鋼の旧オーステナイト粒界においてフィルム状に析出するセメンタイトを高温焼戻しにより消失させることにより耐遅れ破壊特性が向上することが知られている。ただし、一方でマルテンサイト鋼の焼戻しにおいて高温で長時間保持すると強度低下が著しくなり、高強度化が困難になる。そこで、特許文献1に記載の発明では、高周波誘導加熱による高温短時間の焼戻しを行なうことにより、強度を大きく低下させることなく、耐遅れ破壊特性を向上させている。ただし、該発明では引張強度が高々1500MPa程度の鋼棒が対象であり、本発明の技術分野である1600MPa級以上の引張強度を必要とする強度領域では、そのまま適用することができなかった。   As a conventional finding to improve delayed fracture resistance of high strength steel, delayed fracture resistance is improved by eliminating high temperature tempering of cementite that precipitates in film form at the prior austenite grain boundaries of martensitic steel produced by quenching. It is known. However, on the other hand, if the martensitic steel is tempered and kept at a high temperature for a long time, the strength is remarkably lowered and it is difficult to increase the strength. Therefore, in the invention described in Patent Document 1, delayed fracture resistance is improved by performing high-temperature and short-time tempering by high-frequency induction heating without greatly reducing the strength. However, the present invention is intended for steel bars having a tensile strength of about 1500 MPa at most, and cannot be applied as it is in a strength region requiring a tensile strength of 1600 MPa class or higher, which is the technical field of the present invention.

一方、高強度化の手段として、焼戻しによる合金炭化物または合金炭窒化物の二次析出による強化方法が知られている。この合金炭化物は、鋼中に分散して分布し、水素をトラップさせる機能を有するため、遅れ破壊が発現する臨界の水素量(限界拡散水素量)を増加させることにより耐遅れ破壊特性を向上させることのできる発明が特許文献2で開示されている。   On the other hand, a strengthening method by secondary precipitation of alloy carbide or alloy carbonitride by tempering is known as means for increasing the strength. This alloy carbide is distributed and distributed in steel and has the function of trapping hydrogen. Therefore, the delayed fracture resistance is improved by increasing the critical hydrogen amount (critical diffusion hydrogen amount) that causes delayed fracture. An invention that can be used is disclosed in Patent Document 2.

ただし、該発明での成分系で高温短時間の焼戻しを適用させる場合、旧オーステナイト粒界に分布するフィルム状セメンタイトが消失する一方で、二次析出した合金炭化物が過時効となり、強度上昇への寄与、および水素トラップによる耐遅れ破壊特性への寄与がいずれも大きく減少することが懸念される。したがって、合金炭化物を水素トラップとして機能させる鋼材に高温短時間の焼戻しを適用するには、適切な化学種、化学成分範囲の選択と適切な高温短時間焼戻し条件の組み合わせを見出すことが必要であった。   However, when tempering at high temperature and short time is applied in the component system in the present invention, while film-like cementite distributed in the prior austenite grain boundaries disappears, secondary precipitated alloy carbides become over-aged, leading to an increase in strength. There is a concern that both the contribution and the contribution to the delayed fracture resistance due to the hydrogen trap are greatly reduced. Therefore, in order to apply high-temperature and short-time tempering to steel materials that function alloy carbides as hydrogen traps, it is necessary to find a combination of selection of appropriate chemical species and chemical composition ranges and appropriate high-temperature and short-time tempering conditions. It was.

特開昭58−001016号公報JP 58-001016 A 特開2000−026934号公報JP 2000-026934 A

上記したこれまでの状況の示す通り、従来技術では遅れ破壊特性を抜本的に向上させた高強度鋼を製造することには限界があった。   As shown in the above-mentioned situation, there has been a limit to the production of high-strength steel with drastically improved delayed fracture characteristics in the prior art.

そこで、本発明は、この問題を解決する成分、製造方法の必須条件を実現するプロセス条件を見出して、高強度化に伴い問題として現出する遅れ破壊現象に代表される水素脆化を有利に防止することのできる、引張強度が1600MPa以上の耐遅れ破壊特性に優れた高強度ボルトの製造方法を提供するものである。   Therefore, the present invention finds components that solve this problem, process conditions that realize the essential conditions of the manufacturing method, and advantageously hydrogen embrittlement represented by delayed fracture phenomenon that appears as a problem with increasing strength. The present invention provides a method for producing a high-strength bolt that can be prevented and has excellent delayed fracture resistance with a tensile strength of 1600 MPa or more.

上記課題に対し、鋼材の化学成分および熱処理等の製造方法について鋭意検討して初めて本発明を成すに至った。   In order to solve the above-mentioned problems, the present invention has been achieved only after intensive studies on the chemical composition of the steel material and the manufacturing method such as heat treatment.

本発明の要旨とするところは下記のとおりである。
(1)質量%で、C:0.2〜0.6%、Si:0.05〜0.5%、Mn:0.1〜2%、Mo:1.5〜10%、Al:0.005〜0.5%を含有し、残部がFe及び不可避的不純物からなる鋼を、900℃以上からの焼入れによりマルテンサイト組織にした後、鋼材表面温度で300℃以上からは5℃/秒以上の昇温速度で600℃以上750℃以下まで急速に加熱し、該温度域で0〜20秒間の保持をした後、放冷または加速冷却することを特徴とする、限界拡散性水素1.5ppm以上、引張強さ1600MPa以上の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
(2)さらに、質量%で、V:0.05〜1%、Ti:0.01〜1%、Nb:0.01〜1%の1種または2種以上を含有することを特徴とする、上記(1)に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
(3)さらに、質量%で、Cr:0.1〜2%、Ni:0.05〜1%、Cu:0.05〜0.5%、B:0.0003〜0.01%の1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.2 to 0.6%, Si: 0.05 to 0.5%, Mn: 0.1 to 2%, Mo: 1.5 to 10%, Al: 0 The steel containing 0.005 to 0.5% and the balance of Fe and inevitable impurities is made into a martensite structure by quenching from 900 ° C. or higher, and then from 300 ° C. or higher to 5 ° C./second at the steel surface temperature. 1. Critical diffusible hydrogen, characterized in that it is rapidly heated to 600 ° C. or higher and 750 ° C. or lower at the above temperature rising rate, held for 0 to 20 seconds in the temperature range, and then allowed to cool or accelerate. 5ppm or more, tensile strength 1600MP a than on the delayed method for producing excellent high strength bolts fracture characteristics.
(2) Further, it is characterized by containing one or more of V: 0.05 to 1%, Ti: 0.01 to 1%, Nb: 0.01 to 1% by mass%. The manufacturing method of the high intensity | strength bolt excellent in the delayed fracture resistance as described in said (1).
(3) Further, by mass%, Cr: 0.1-2%, Ni: 0.05-1%, Cu: 0.05-0.5%, B: 0.0003-0.01% The method for producing a high-strength bolt excellent in delayed fracture resistance according to the above (1) or (2), comprising a seed or two or more kinds.

本発明は、上述した各種問題点を解決し、高強度鋼において遅れ破壊に代表される水素脆化を防止するボルトおよびその製造方法の提供が可能となる。   The present invention solves the above-mentioned various problems, and can provide a bolt that prevents hydrogen embrittlement represented by delayed fracture in high-strength steel and a method for manufacturing the same.

まず、本発明において、鋼材の化学成分を限定した理由について説明する。なお、%は、質量%を意味する。   First, the reason why the chemical components of the steel material are limited in the present invention will be described. In addition,% means the mass%.

Cは、鋼の強度を向上させる有効な成分として添加するが、0.2%未満では、焼入れ熱処理時に、十分な焼きが入らず強度が不足する。一方、0.6%を超える過剰の添加は、強度の過剰な上昇、割れ感受性の上昇等、基本材質特性の低下が発生する。したがって、C濃度の限定範囲を0.2〜0.6%とした。   C is added as an effective component for improving the strength of the steel, but if it is less than 0.2%, sufficient quenching does not occur during the quenching heat treatment and the strength is insufficient. On the other hand, excessive addition exceeding 0.6% causes deterioration of basic material properties such as excessive increase in strength and increase in crack sensitivity. Therefore, the limited range of the C concentration is set to 0.2 to 0.6%.

Siは、脱酸元素として機能することに加えて、母材の強度確保に必要な成分であるが、0.05%未満では、殆ど強度向上に寄与せず、一方、0.5%を超えても効果は飽和する。したがって、Si濃度の限定範囲を0.05〜0.5%とした。   In addition to functioning as a deoxidizing element, Si is a component necessary for securing the strength of the base material. But the effect is saturated. Therefore, the limited range of the Si concentration is set to 0.05 to 0.5%.

Mnは、母材の強度、靭性の確保のために、0.1%以上添加する必要があるが、2%を超える添加は、強度の過剰な上昇、ミクロ偏析増大化等の理由により耐水素脆化特性を損なう。したがって、Mn濃度の限定範囲を0.1〜2%とした。   Mn needs to be added in an amount of 0.1% or more in order to ensure the strength and toughness of the base material. However, the addition of more than 2% is resistant to hydrogen for reasons such as excessive increase in strength and increased microsegregation. Impairs embrittlement characteristics. Therefore, the limited range of the Mn concentration is set to 0.1 to 2%.

Moは、炭化物を生成する合金元素である。本発明では、この炭化物の析出により、常温および高温強度を確保するのみならず、その析出物界面は水素のトラップサイトとして機能することが明らかとなった。0.5%以下では、充分な水素トラップ機能を発揮できず、一方、10%超では、焼入れ性が上昇しすぎて、母材靭性を損なうことから、Mo濃度の限定範囲を0.5〜10%とした。ただし、確実に引張強さを確保するためには上記の範囲をさらに限定して1.5〜10%が望ましい。   Mo is an alloy element that generates carbides. In the present invention, it has been clarified that the precipitation of the carbides not only ensures normal temperature and high temperature strength, but also the precipitate interface functions as a hydrogen trap site. If it is 0.5% or less, a sufficient hydrogen trap function cannot be exhibited. On the other hand, if it exceeds 10%, the hardenability is excessively increased and the base material toughness is impaired. 10%. However, in order to ensure the tensile strength, the above range is further limited to 1.5 to 10%.

Alは、強力な脱酸元素であるが、0.005%未満では、十分な脱酸効果は得られない。一方、0.5%を超えても効果は飽和する。したがって、Al濃度の限定範囲を0.005〜0.5%とした。   Al is a strong deoxidizing element, but if it is less than 0.005%, a sufficient deoxidizing effect cannot be obtained. On the other hand, even if it exceeds 0.5%, the effect is saturated. Therefore, the limited range of the Al concentration is set to 0.005 to 0.5%.

次に、上記の成分に加えて、本発明において選択的に添加する合金元素であるV、Ti、Nbの濃度範囲に係る規定理由について説明する。   Next, in addition to the above components, the reason for the regulation related to the concentration ranges of V, Ti and Nb which are alloy elements selectively added in the present invention will be described.

Vは、単独であるいは他の炭化物、炭窒化物構成元素であるMoおよび、Ti、Nbと複合して、炭化物、炭窒化物を構成し、析出強化および水素トラップ能向上に寄与する合金元素である。V添加量が0.05%未満では炭窒化物の析出量が不十分で、上記効果が得られず、一方、1%超では、炭窒化物の析出量が過剰となり、靭性を損なう。以上から、V濃度の限定範囲を0.05〜1%とした。   V is an alloy element that alone or in combination with other carbides and carbonitride-constituting elements Mo, Ti, and Nb to form carbides and carbonitrides, contributing to precipitation strengthening and improving hydrogen trapping ability. is there. If the amount of V added is less than 0.05%, the amount of carbonitride deposited is insufficient and the above effect cannot be obtained. On the other hand, if it exceeds 1%, the amount of carbonitride deposited becomes excessive and the toughness is impaired. From the above, the limited range of the V concentration was set to 0.05 to 1%.

Tiは、単独であるいはVやNbと複合して炭窒化物を構成する合金元素であり、析出強化に寄与するとともに、その析出物は水素トラップとして機能することにより、遅れ破壊等の耐水素脆化特性を向上させる。Ti濃度が0.01%未満では析出量が不十分であるために、析出強化および水素トラップとしての機能は不十分であり、1%以上を超えても効果は飽和する。したがって、Ti濃度の限定範囲を0.01〜1%とした。   Ti is an alloy element that forms carbonitrides alone or in combination with V or Nb, and contributes to precipitation strengthening, and the precipitate functions as a hydrogen trap, thereby preventing hydrogen embrittlement such as delayed fracture. Improve the conversion characteristics. If the Ti concentration is less than 0.01%, the amount of precipitation is insufficient, so the functions of precipitation strengthening and hydrogen trapping are insufficient, and the effect is saturated even if it exceeds 1% or more. Therefore, the limited range of the Ti concentration is set to 0.01 to 1%.

Nbは、単独で、あるいはVやTiと複合して炭窒化物を構成する合金元素であり、析出強化に寄与するとともに、その析出物は水素トラップとして機能することにより、遅れ破壊等の耐水素脆化特性を向上させる。Nb濃度が0.01%未満では析出量が不十分であるために、析出強化および水素トラップとしての機能は不十分であり、1%を超える場合においても、溶体化温度が高くなり工業的に使用される加熱炉での溶体化は不十分で、粗大な炭窒化物が分散し、析出強化への寄与および水素トラップ能が不十分となる。以上から、Nb濃度の限定範囲を0.01〜1%とした。   Nb is an alloy element constituting carbonitride by itself or in combination with V or Ti, and contributes to precipitation strengthening, and the precipitate functions as a hydrogen trap, so that hydrogen resistance such as delayed fracture is obtained. Improve embrittlement characteristics. Since the precipitation amount is insufficient when the Nb concentration is less than 0.01%, the precipitation strengthening and the function as a hydrogen trap are insufficient, and even when it exceeds 1%, the solution temperature becomes high and industrially. Solutionization in the heating furnace used is insufficient, coarse carbonitrides are dispersed, and the contribution to precipitation strengthening and hydrogen trapping ability are insufficient. From the above, the limited range of the Nb concentration was set to 0.01 to 1%.

次に、上記の成分に加えて、本発明において選択的に添加する合金元素であるCr、Ni、Cu、Bの濃度範囲に係る規定理由について説明する。   Next, in addition to the above components, the reason for the regulation relating to the concentration range of Cr, Ni, Cu, B, which are alloy elements selectively added in the present invention, will be described.

Crは、焼入れ性の向上および焼戻し処理時の軟化抵抗を増加させるために必要な元素であるが、0.1%未満ではその効果が充分に発揮できず、一方、2%を超えると靭性の低下、冷間加工性の劣化を招く。したがって、Cr濃度の限定範囲を0.1〜2%とした。   Cr is an element necessary for improving the hardenability and increasing the softening resistance during the tempering treatment. However, if it is less than 0.1%, the effect cannot be sufficiently exhibited. Lowering and cold workability will be caused. Therefore, the limited range of the Cr concentration is set to 0.1 to 2%.

Niは、高強度化に伴って劣化する延性を向上させるとともに、熱処理時の焼入れ性を向上させて引張強さを向上させるために添加する。Ni濃度が0.05%未満ではその効果が少なく、1%を超えても濃度に見合う効果を発揮できないため、0.05〜1%に限定した。   Ni is added to improve ductility, which deteriorates with increasing strength, and to improve the hardenability during heat treatment and improve the tensile strength. If the Ni concentration is less than 0.05%, the effect is small, and even if it exceeds 1%, an effect commensurate with the concentration cannot be exhibited. Therefore, the Ni concentration is limited to 0.05 to 1%.

Cuは、焼戻し軟化抵抗を高めるために有効な元素であるが、0.05%未満ではその効果を発揮することができず、0.5%を超えると熱間加工性が低下するため、0.05〜0.5%に限定した。   Cu is an effective element for increasing the tempering softening resistance. However, if it is less than 0.05%, the effect cannot be exerted, and if it exceeds 0.5%, the hot workability is lowered. Limited to 0.05 to 0.5%.

Bは、粒界破壊を抑制し、耐遅れ破壊特性を向上させる効果がある。さらに、Bは旧オーステナイト粒界に偏析して、焼入れ性を著しく向上させるが、0.0003%未満ではその効果を発揮することができず、0.01%を超えても効果が飽和するため、0.0003〜0.01%にBの濃度範囲を限定した。   B has an effect of suppressing grain boundary fracture and improving delayed fracture resistance. Furthermore, B segregates at the prior austenite grain boundaries and significantly improves the hardenability. However, if less than 0.0003%, the effect cannot be exhibited, and if it exceeds 0.01%, the effect is saturated. The B concentration range was limited to 0.0003 to 0.01%.

次に、本発明において必要とする高温短時間の焼戻し条件について説明する。まず、焼戻しを行なう前の鋼材のミクロ組織はマルテンサイト組織であることが前提である。マルテンサイト組織を確保するためには、オーステナイト域からの急冷が必要であるが、同時に、合金炭化物を二次析出させるために合金炭化物を一旦溶体化させることが必要となるため、焼入れ温度を900℃以上とした。ただし、過度に高温で溶体化させてもその効果はほとんど変化がないことから、焼入れ開始温度は、900から1000℃の範囲が望ましい。   Next, tempering conditions at a high temperature and a short time required in the present invention will be described. First, it is assumed that the microstructure of the steel material before tempering is a martensite structure. In order to secure the martensite structure, rapid cooling from the austenite region is necessary. At the same time, however, the alloy carbide needs to be once solutionized in order to cause secondary precipitation of the alloy carbide. It was set to above ℃. However, even if the solution is formed at an excessively high temperature, the effect hardly changes, so that the quenching start temperature is desirably in the range of 900 to 1000 ° C.

焼入れ後、焼戻しでの昇温速度を鋼材表面温度で少なくとも300℃以上からは5℃/s以上としたのは、300℃以上の温度域で5℃/s未満の昇温速度であれば、高温での保持時間が充分確保されることになり、二次析出により生成する合金炭化物が過時効状態となって、強度および耐遅れ破壊特性の減少をもたらし、目的とする強度および耐遅れ破壊特性が得られなくなるためである。   After quenching, the rate of temperature increase in tempering is at least 300 ° C. or more and 5 ° C./s or more at the steel surface temperature, if the temperature increase rate is less than 5 ° C./s in the temperature range of 300 ° C. or more, Sufficient holding time at high temperature will be secured, alloy carbide produced by secondary precipitation will be over-aged, resulting in a decrease in strength and delayed fracture resistance, and the desired strength and delayed fracture resistance This is because no longer can be obtained.

また、本発明では、焼戻し温度を600℃以上750℃以下の範囲で0sから必要に応じて最大20sまで高温状態で保持するように限定した。この限定理由は以下の通りである。600℃よりも低温で焼戻しを行なう場合、二次析出が不十分となる一方で、焼戻し温度が750℃を超える場合および焼戻し温度での保持時間が20sを超える場合、二次析出により生成する合金炭化物が過時効を起こし強度および耐遅れ破壊特性の減少をもたらすことから、焼戻し温度範囲および保持時間が限定範囲から逸脱する場合はいずれも目的とする強度および耐遅れ破壊特性が得られなくなるためである。   Moreover, in this invention, it limited so that tempering temperature was hold | maintained in the high temperature state from 0 s to the maximum 20 s as needed in the range of 600 degreeC or more and 750 degrees C or less. The reason for this limitation is as follows. When tempering is performed at a temperature lower than 600 ° C., secondary precipitation becomes insufficient. On the other hand, when the tempering temperature exceeds 750 ° C. and when the holding time at the tempering temperature exceeds 20 s, the alloy formed by secondary precipitation This is because carbides cause overaging and decrease strength and delayed fracture resistance, so if the tempering temperature range and holding time depart from the limited range, the desired strength and delayed fracture resistance will not be obtained. is there.

ボルト製造工程においては、上記の焼入れ焼戻しに加えて、ヘッダー加工、矯直、ねじ転造等の成形プロセスが加えられるが、これらのプロセスは焼入れ焼戻しの前あるいは後のいずれで実施しても問題ない。   In the bolt manufacturing process, in addition to the quenching and tempering described above, a molding process such as header processing, straightening, and thread rolling is added. However, these processes may be performed either before or after quenching and tempering. Absent.

また、本発明の製造方法は、ボルトを対象としたものであるが、ボルト以外の鋼製部品の製造にも適用し、耐遅れ破壊の優れた部品を製造することが可能であることは自明である。   Moreover, although the manufacturing method of the present invention is intended for bolts, it is obvious that it can also be applied to the manufacture of steel parts other than bolts and can manufacture parts with excellent delayed fracture resistance. It is.

以下、実施例により本発明の効果をさらに具体的に説明する。表1に示す化学組成を有する12mmφの丸棒を製造した後、表2に示す条件で焼入れ焼戻し、およびヘッダー加工、矯直、ねじ転造を行ない、鋼材の引張特性、耐遅れ破壊特性を確認した。なお、焼戻しには昇温速度5℃/秒以上を確保するために高周波誘導加熱を採用して急速加熱を行なった。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples. After manufacturing a 12mmφ round bar with the chemical composition shown in Table 1, quenching and tempering, header processing, straightening and thread rolling are performed under the conditions shown in Table 2, and the tensile properties and delayed fracture resistance properties of the steel are confirmed. did. For tempering, in order to ensure a temperature rising rate of 5 ° C./second or more, high-frequency induction heating was employed to perform rapid heating.

なお、引張強度等の引張特性については引張試験の結果から得られたものであり、限界拡散性水素量(鉄と鋼、Vol.83(1997)、p454参照。)等の遅れ破壊特性は、電解水素チャージ法により鋼材中に強制的に水素を導入させた状態で、引張強度の0.9倍の一定荷重で引張応力を付与した試験(以下、定荷重試験と表記)において破断しない限界の水素濃度を分析、測定することにより求めた。   The tensile properties such as tensile strength were obtained from the results of the tensile test, and the delayed fracture properties such as the limit diffusible hydrogen content (iron and steel, Vol. 83 (1997), p454), In the state in which hydrogen is forcibly introduced into the steel by the electrolytic hydrogen charging method and the tensile stress is applied at a constant load 0.9 times the tensile strength (hereinafter referred to as a constant load test) It was determined by analyzing and measuring the hydrogen concentration.

ここで、電解水素チャージ法とは、鋼材をチオシアン酸アンモニウム水溶液中に浸漬した状態で鋼材表面にアノード電位を発生させて水素を鋼材中に取り込む方法である。この方法において、チオシアン酸アンモニウム水溶液濃度、チャージ時間、電流値等の設定条件を種々調整することにより、鋼中の水素量を調整することが可能である。   Here, the electrolytic hydrogen charging method is a method in which the steel material is immersed in an aqueous solution of ammonium thiocyanate, an anode potential is generated on the surface of the steel material, and hydrogen is taken into the steel material. In this method, the amount of hydrogen in the steel can be adjusted by variously adjusting the setting conditions such as the concentration of the ammonium thiocyanate aqueous solution, the charging time, and the current value.

定荷重試験においては、試験中の鋼材表面からの水素の逃散を回避するために、予め鋼材表面にCdめっきを施すとともに、試料中央部で破断させるために中央位置に円周Vノッチ切欠き加工を施した。本試験において、定荷重負荷状態で約100hr破断ないまま保持した鋼材については「破断なし」と判定した。   In the constant load test, in order to avoid the escape of hydrogen from the steel material surface under test, Cd plating is applied to the steel material surface in advance, and a circumferential V-notch notch is formed at the center position for breaking at the center of the sample. Was given. In this test, the steel material that was held without breaking for about 100 hr under a constant load was determined as “no breakage”.

定荷重試験で破断した鋼材、および破断しなかった鋼材はいずれも、試験後直ちに回収し、めっき落としした後にガスクロマトグラフ装置にて昇温分析により放出水素量を測定した。なお、本発明では、昇温速度100℃/hrで測定を行った。   Both the steel material that broke in the constant load test and the steel material that did not break were collected immediately after the test, and after removing the plating, the amount of released hydrogen was measured by temperature analysis using a gas chromatograph apparatus. In the present invention, the measurement was performed at a temperature rising rate of 100 ° C./hr.

遅れ破壊現象に影響を及ぼす拡散性水素とは比較的に結合力が弱い水素トラップサイトにトラップされる水素であり、昇温分析において経時的に放出量が減衰するピークを有する。本発明では400℃までに検出される水素放出ピークがその対象となり、昇温分析によって400℃までに検出される放出水素量の累積値を拡散性水素量と定めた。   The diffusible hydrogen that affects the delayed fracture phenomenon is hydrogen that is trapped at a hydrogen trap site with a relatively weak binding force, and has a peak in which the amount of emission decays with time in temperature rising analysis. In the present invention, the hydrogen release peak detected up to 400 ° C. is the target, and the cumulative value of the released hydrogen amount detected up to 400 ° C. by the temperature rise analysis is defined as the diffusible hydrogen amount.

以上の手順で測定を実施し、試料の破断時間と拡散性水素量を整理し、定荷重試験で破断しなかった鋼材の中で、拡散性水素量の最大値を限界拡散性水素量と定義し、この値が高ければ耐遅れ破壊特性が優れていると評価した。   The measurement was carried out according to the above procedure, and the rupture time and diffusible hydrogen content of the sample were arranged. The maximum diffusible hydrogen content was defined as the critical diffusible hydrogen content among steel materials that did not break in the constant load test. If this value is high, it was evaluated that the delayed fracture resistance is excellent.

Figure 0004485424
Figure 0004485424

Figure 0004485424
Figure 0004485424

表1、2に示す発明例はいずれも1600MPa以上の高い引張強度を有し、かつ限界拡散性水素量はいずれも1.6ppm以上あり、優れた耐遅れ破壊特性を有していると判定される。   The invention examples shown in Tables 1 and 2 all have a high tensile strength of 1600 MPa or more, and the amount of limit diffusible hydrogen is 1.6 ppm or more, both of which are judged to have excellent delayed fracture resistance. The

これに対し、表中に示す比較例を説明する。比較例17は、Moが本発明の限定範囲よりも下回るため、強度が不足する。比較例18は、焼入れ温度が本発明の限定範囲よりも下回るため、合金炭化物の溶体化が不十分となり強度、限界拡散性水素量ともに低い結果となる。比較例19は、焼戻しでの昇温速度が本発明の限定範囲よりも遅いため、また、比較例20は、焼戻し温度での保持時間が本発明の限定範囲よりも長時間となったため、いずれの場合ともに過時効となり強度が不足する。比較例21は、焼戻し温度が本発明の限定範囲よりも下回るため、合金炭化物の二次析出が不十分となり、限界拡散性水素量が低位となる。比較例22は、焼戻し温度が本発明の限定範囲よりも上回るため、過時効となり強度が不足する。比較例23は、焼入れ温度が本発明の限定範囲よりも下回り、かつ焼戻し温度での保持時間が本発明の限定範囲よりも長時間となったため、過時効となり強度が不足する。比較例24は、焼戻しでの昇温速度が本発明の限定範囲よりも遅く、かつ焼戻し温度での保持時間が本発明の限定範囲よりも長時間となったため、過時効となり強度が不足する。比較例25は、焼戻し温度が本発明の限定範囲よりも下回るため、焼戻し温度での保持時間が本発明の限定範囲よりも長時間であるものの合金炭化物の二次析出が不十分となり、限界拡散性水素量が低位となる。   On the other hand, the comparative example shown in a table | surface is demonstrated. Since the comparative example 17 has Mo less than the limited range of the present invention, the strength is insufficient. In Comparative Example 18, since the quenching temperature is lower than the limit range of the present invention, the alloy carbide is not sufficiently solutionized, and both the strength and the amount of critical diffusible hydrogen are low. In Comparative Example 19, the temperature increase rate during tempering is slower than the limited range of the present invention, and in Comparative Example 20, the holding time at the tempering temperature is longer than the limited range of the present invention. In both cases, overaging occurs and the strength is insufficient. In Comparative Example 21, since the tempering temperature is lower than the limited range of the present invention, secondary precipitation of alloy carbide becomes insufficient, and the amount of critical diffusible hydrogen becomes low. In Comparative Example 22, the tempering temperature is higher than the limited range of the present invention, and thus overaging occurs and the strength is insufficient. In Comparative Example 23, the quenching temperature was lower than the limited range of the present invention, and the holding time at the tempering temperature was longer than the limited range of the present invention. In Comparative Example 24, the rate of temperature increase during tempering was slower than the limited range of the present invention, and the holding time at the tempering temperature was longer than the limited range of the present invention. In Comparative Example 25, since the tempering temperature is lower than the limited range of the present invention, although the retention time at the tempering temperature is longer than the limited range of the present invention, secondary precipitation of the alloy carbide becomes insufficient, and the critical diffusion. The amount of reactive hydrogen is low.

以上の実施例からも明らかなごとく、引張強度が1600MPa以上の高強度部材の耐遅れ破壊特性に代表される耐水素脆化特性を大幅に向上させることが可能となった。高強度ボルトをはじめとして、自動車、機械、土木建築分野に使用する部材への適用が可能であり、部材軽量化、高効率化、安全性向上等、産業上の効果は極めて顕著である。また、ボルト以外にも高強度かつ耐遅れ破壊特性が要求される部品へ適用することも可能である。   As is clear from the above examples, the hydrogen embrittlement resistance typified by delayed fracture resistance of high strength members having a tensile strength of 1600 MPa or more can be greatly improved. In addition to high-strength bolts, it can be applied to members used in the fields of automobiles, machinery and civil engineering, and industrial effects such as lighter members, higher efficiency, and improved safety are extremely remarkable. In addition to bolts, it can also be applied to parts that require high strength and delayed fracture resistance.

Claims (3)

質量%で、
C :0.2〜0.6%、
Si:0.05〜0.5%、
Mn:0.1〜2%、
Mo:1.5〜10%、
Al:0.005〜0.5%
を含有し、残部がFe及び不可避的不純物からなる鋼を、900℃以上からの焼入れによりマルテンサイト組織にした後、鋼材表面温度で300℃以上からは5℃/秒以上の昇温速度で600℃以上750℃以下まで急速に加熱し、該温度域で0〜20秒間の保持をした後、放冷または加速冷却することを特徴とする、限界拡散性水素1.5ppm以上、引張強さ1600MPa以上の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
% By mass
C: 0.2 to 0.6%
Si: 0.05 to 0.5%,
Mn: 0.1 to 2%,
Mo: 1.5 to 10%,
Al: 0.005 to 0.5%
Steel, the balance of Fe and unavoidable impurities is made into a martensite structure by quenching from 900 ° C. or higher, and then from 300 ° C. or higher to 600 ° C. at a rate of temperature increase of 5 ° C./second or higher. It is rapidly heated up to 750 ° C. or more and 750 ° C. or less, held for 0 to 20 seconds in the temperature range, and then allowed to cool or accelerated cooling. delayed production method of excellent high strength bolts fracture characteristics over a following.
さらに、質量%で、
V :0.05〜1%、
Ti:0.01〜1%、
Nb:0.01〜1%
の1種または2種以上を含有することを特徴とする、請求項1に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
Furthermore, in mass%,
V: 0.05 to 1%
Ti: 0.01 to 1%,
Nb: 0.01 to 1%
The manufacturing method of the high strength bolt excellent in the delayed fracture resistance of Claim 1 characterized by including 1 type, or 2 or more types of these.
さらに、質量%で、
Cr:0.1〜2%、
Ni:0.05〜1%、
Cu:0.05〜0.5%、
B :0.0003〜0.01%
の1種または2種以上を含有することを特徴とする、請求項1または2に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
Furthermore, in mass%,
Cr: 0.1 to 2%,
Ni: 0.05 to 1%,
Cu: 0.05 to 0.5%,
B: 0.0003 to 0.01%
The method for producing a high-strength bolt excellent in delayed fracture resistance according to claim 1 or 2, characterized by containing one or more of the following.
JP2005212218A 2005-07-22 2005-07-22 Manufacturing method of high-strength bolts with excellent delayed fracture resistance Active JP4485424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212218A JP4485424B2 (en) 2005-07-22 2005-07-22 Manufacturing method of high-strength bolts with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212218A JP4485424B2 (en) 2005-07-22 2005-07-22 Manufacturing method of high-strength bolts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2007031736A JP2007031736A (en) 2007-02-08
JP4485424B2 true JP4485424B2 (en) 2010-06-23

Family

ID=37791348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212218A Active JP4485424B2 (en) 2005-07-22 2005-07-22 Manufacturing method of high-strength bolts with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4485424B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251632B2 (en) * 2008-05-13 2013-07-31 新日鐵住金株式会社 High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP2010014473A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method of detecting temporal change generated when contact fatigue damage is generated
JP2010014474A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method for detecting state of occurrence of contact fatigue damage on fixed type constant velocity universal joint
JP6737102B2 (en) * 2015-09-25 2020-08-05 日本製鉄株式会社 Steel material, sliding parts, and method for manufacturing steel material
JP6648659B2 (en) * 2015-09-28 2020-02-14 日本製鉄株式会社 Machine structural parts
CN109161794B (en) * 2018-08-31 2019-11-22 钢铁研究总院 A kind of anti-delayed fracture high strength steel and preparation method thereof
CN113383094B (en) 2019-02-08 2023-08-15 日本制铁株式会社 Bolt and steel for bolt
JP7164032B2 (en) * 2019-05-14 2022-11-01 日本製鉄株式会社 Bolts and steel materials for bolts
CN114107822B (en) * 2021-11-30 2022-09-02 马鞍山钢铁股份有限公司 15.9-grade high-strength bolt steel and production method and heat treatment method thereof
CN114622075A (en) * 2022-02-07 2022-06-14 首钢集团有限公司 Preparation method of high-temperature fastener steel
CN114908302B (en) * 2022-05-20 2023-04-28 钢铁研究总院有限公司 Hydrogen embrittlement resistant high-strength spring steel and heat treatment method thereof
CN115216695B (en) * 2022-07-22 2023-08-08 上海大学 Ultra-high strength alloy steel, 16.8-grade threaded fastener and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278672A (en) * 1994-04-12 1995-10-24 Nippon Steel Corp Manufacture of high strength bolt excellent in delayed crack resistance
JPH07278735A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Steel for high tensile strength bolt excellent in delayed fracture resistance
JPH07300651A (en) * 1994-04-28 1995-11-14 Nippon Steel Corp High strength steel bar excellent in delayed fracture resistance and its production
JPH08225845A (en) * 1995-02-20 1996-09-03 Daido Steel Co Ltd Production of high strength bolt excellent in delayed fracture resistance
JPH09263876A (en) * 1996-03-29 1997-10-07 Nippon Steel Corp High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JPH1017985A (en) * 1996-06-27 1998-01-20 Kobe Steel Ltd High strength steel excellent in hydrogen embrittlement resistance and its production
JP2000026934A (en) * 1998-05-01 2000-01-25 Nippon Steel Corp Steel excellent in delayed fracture characteristic and its production
JP2001032044A (en) * 1999-07-26 2001-02-06 Nippon Steel Corp Steel for high strength bolt and production of high strength bolt
JP2002097551A (en) * 2000-09-25 2002-04-02 Nippon Steel Corp High strength steel superior in resistance to hydrogen fatigue, and manufacturing method
JP2002097543A (en) * 2000-09-19 2002-04-02 Kobe Steel Ltd Steel superior in toughness
JP2002276637A (en) * 2001-03-22 2002-09-25 Nippon Steel Corp High tensile bolt excellent in delay breaking resistance characteristic and its steel product
JP2003027186A (en) * 2001-07-10 2003-01-29 Sumitomo Metals (Kokura) Ltd High strength bolt steel and method for producing bolt
JP2004076086A (en) * 2002-08-15 2004-03-11 Kobe Steel Ltd High-strength steel component superior in delayed fracture resistance, and manufacturing method therefor
JP2005029870A (en) * 2003-07-11 2005-02-03 Kobe Steel Ltd High strength steel having excellent hydrogen embrittlement resistance, and its production method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278672A (en) * 1994-04-12 1995-10-24 Nippon Steel Corp Manufacture of high strength bolt excellent in delayed crack resistance
JPH07278735A (en) * 1994-04-14 1995-10-24 Nippon Steel Corp Steel for high tensile strength bolt excellent in delayed fracture resistance
JPH07300651A (en) * 1994-04-28 1995-11-14 Nippon Steel Corp High strength steel bar excellent in delayed fracture resistance and its production
JPH08225845A (en) * 1995-02-20 1996-09-03 Daido Steel Co Ltd Production of high strength bolt excellent in delayed fracture resistance
JPH09263876A (en) * 1996-03-29 1997-10-07 Nippon Steel Corp High strength steel for machine structural use, excellent in delayed fracture characteristic, and its production
JPH1017985A (en) * 1996-06-27 1998-01-20 Kobe Steel Ltd High strength steel excellent in hydrogen embrittlement resistance and its production
JP2000026934A (en) * 1998-05-01 2000-01-25 Nippon Steel Corp Steel excellent in delayed fracture characteristic and its production
JP2001032044A (en) * 1999-07-26 2001-02-06 Nippon Steel Corp Steel for high strength bolt and production of high strength bolt
JP2002097543A (en) * 2000-09-19 2002-04-02 Kobe Steel Ltd Steel superior in toughness
JP2002097551A (en) * 2000-09-25 2002-04-02 Nippon Steel Corp High strength steel superior in resistance to hydrogen fatigue, and manufacturing method
JP2002276637A (en) * 2001-03-22 2002-09-25 Nippon Steel Corp High tensile bolt excellent in delay breaking resistance characteristic and its steel product
JP2003027186A (en) * 2001-07-10 2003-01-29 Sumitomo Metals (Kokura) Ltd High strength bolt steel and method for producing bolt
JP2004076086A (en) * 2002-08-15 2004-03-11 Kobe Steel Ltd High-strength steel component superior in delayed fracture resistance, and manufacturing method therefor
JP2005029870A (en) * 2003-07-11 2005-02-03 Kobe Steel Ltd High strength steel having excellent hydrogen embrittlement resistance, and its production method

Also Published As

Publication number Publication date
JP2007031736A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP5281413B2 (en) High strength bolt excellent in delayed fracture resistance and method for manufacturing the same
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
CA2864453C (en) Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
JP5760972B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
KR20080017365A (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP2001288539A (en) Spring steel excellent in hydrogen fatigue resistance and its production method
JP2005029870A (en) High strength steel having excellent hydrogen embrittlement resistance, and its production method
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP6798557B2 (en) steel
JP2001288538A (en) High strength steel for bolt excellent in delayed fracture resistance, bolt and method for producing the bolt
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP2019173160A (en) Low alloy steel excellent in hydrogen embrittlement resistance
JP4146271B2 (en) High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
JP5014257B2 (en) High strength and high toughness martensitic steel
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JP6729265B2 (en) Low alloy steel
JP2007031746A (en) Steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250