JP5760972B2 - High strength bolt steel and high strength bolt with excellent delayed fracture resistance - Google Patents

High strength bolt steel and high strength bolt with excellent delayed fracture resistance Download PDF

Info

Publication number
JP5760972B2
JP5760972B2 JP2011246907A JP2011246907A JP5760972B2 JP 5760972 B2 JP5760972 B2 JP 5760972B2 JP 2011246907 A JP2011246907 A JP 2011246907A JP 2011246907 A JP2011246907 A JP 2011246907A JP 5760972 B2 JP5760972 B2 JP 5760972B2
Authority
JP
Japan
Prior art keywords
steel
delayed fracture
strength bolt
hydrogen
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011246907A
Other languages
Japanese (ja)
Other versions
JP2013104070A (en
Inventor
真也 寺本
真也 寺本
久保田 学
学 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011246907A priority Critical patent/JP5760972B2/en
Publication of JP2013104070A publication Critical patent/JP2013104070A/en
Application granted granted Critical
Publication of JP5760972B2 publication Critical patent/JP5760972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、耐遅れ破壊特性に優れた鋼に関し、例えばボルト用鋼を代表とする、引張強さ1200MPa超の耐遅れ破壊特性に優れた高強度鋼および、その高強度鋼からなる高強度ボルトに関するものである。   The present invention relates to a steel excellent in delayed fracture resistance, for example, a high strength steel excellent in delayed fracture resistance with a tensile strength exceeding 1200 MPa, such as a steel for bolts, and a high strength bolt made of the high strength steel. It is about.

自動車、産業機械、橋梁、土木建築等、各種産業分野で使用されている高強度鋼は、例えばJIS G4053に規定されるSCr(クロム鋼)、SCM(クロムモリブデン鋼)等の機械構造用合金鋼であり、その鋼に焼入れ、焼戻し処理を施すことによって製造されている。しかし、上記の鋼は、引張強さ1200MPaを超えると耐遅れ破壊特性が著しく低下し、使用中に環境から侵入する水素に起因する遅れ破壊を生じる危険性が増大することはよく知られている。そのため、例えば、土木建築向けの鋼では、規格は引張強さ1200MPa以下であり、実用上、引張強さが1150MPa級の鋼に制限されている。   High-strength steel used in various industrial fields such as automobiles, industrial machinery, bridges, civil engineering and construction is an alloy steel for machine structures such as SCr (chromium steel) and SCM (chromium-molybdenum steel) defined in JIS G4053. It is manufactured by quenching and tempering the steel. However, it is well known that when the above steel strength exceeds 1200 MPa, the delayed fracture resistance significantly decreases and the risk of delayed fracture due to hydrogen entering from the environment during use increases. . Therefore, for example, in steel for civil engineering and construction, the standard is a tensile strength of 1200 MPa or less, and the tensile strength is practically limited to steel of 1150 MPa class.

鋼材の高強度化にともない、耐遅れ破壊特性を改善した高強度鋼及びその製造方法が種々提案されている。例えば、特許文献1には、旧オーステナイト粒を微細化させることを図ることによって、耐遅れ破壊特性を改善した発明が記載されている。旧オーステナイト粒を微細化する方法は、耐遅れ破壊特性の改善効果は認められるものの、大幅な改善には至っていない。   With increasing strength of steel materials, various high strength steels with improved delayed fracture resistance and methods for producing the same have been proposed. For example, Patent Document 1 describes an invention in which delayed fracture resistance is improved by refining prior austenite grains. Although the method of refining prior austenite grains has been confirmed to have an effect of improving delayed fracture resistance, it has not yet improved significantly.

また、例えば、特許文献2、特許文献3、および特許文献4には、鋼中に水素をトラップさせる酸化物、炭化物、窒化物の単独あるいは複合析出物を分散分布させることにより、遅れ破壊が発現する臨界の水素量を増加させることにより耐遅れ破壊特性を改善した発明が記載されている。これら発明において、耐遅れ破壊特性を改善する機構の一つに焼入れ、焼戻し処理で生成する析出物を活用する技術思想が提案されている。この耐遅れ破壊特性を改善するためには、水素トラップさせる析出物を最適に分散分布させる鋼の化学成分や熱処理条件の限定が必須である。   Further, for example, in Patent Document 2, Patent Document 3, and Patent Document 4, delayed fracture occurs by dispersing or distributing oxides, carbides, nitrides alone or composite precipitates that trap hydrogen in steel. The invention describes improved delayed fracture resistance by increasing the critical hydrogen content. In these inventions, a technical idea of utilizing precipitates generated by quenching and tempering has been proposed as one of the mechanisms for improving delayed fracture resistance. In order to improve the delayed fracture resistance, it is essential to limit the chemical composition of the steel and the heat treatment conditions that optimally distribute and distribute the precipitate to be trapped with hydrogen.

特開平03−243745号公報Japanese Patent Laid-Open No. 03-243745 特開2000−026934号公報JP 2000-026934 A 特開2001−288539号公報JP 2001-288539 A 特開2006−045670号公報JP 2006-045670 A

本発明は、鋼材の高強度化にともない現出する耐遅れ破壊現象に代表される水素脆化をより抑制することのできる、耐遅れ破壊特性に優れた高強度ボルト鋼、および、高強度ボルトを提供することを目的とする。 The present invention provides a high-strength bolt steel excellent in delayed fracture resistance and a high-strength bolt capable of further suppressing hydrogen embrittlement represented by the delayed fracture resistance phenomenon that appears as the strength of steel materials increases. The purpose is to provide.

本発明者らは、遅れ破壊特性に及ぼす各種因子について鋭意検討し、以下の知見を見出した。
(a)鋼中に多量のFe系炭化物εを析出することによって、遅れ破壊が発現する臨界の水素量(以下、「限界拡散性水素量」と記載する)は増加し、耐遅れ破壊特性が向上する。これは、Fe系炭化物εが外部環境から侵入した鋼中の水素をトラップし、限界拡散性水素量を増加させるためである。
(b)Siを多量に添加することによって、Fe系炭化物εが安定化し、より高温で焼戻し処理が可能となるため、母相の転位等の欠陥密度が減少し水素に対する脆化感受性が低下する。
The present inventors diligently studied various factors affecting delayed fracture characteristics and found the following findings.
(A) By depositing a large amount of Fe-based carbide ε in the steel, the critical hydrogen amount at which delayed fracture occurs (hereinafter referred to as “critical diffusible hydrogen amount”) is increased, and delayed fracture resistance is improved. improves. This is because the Fe-based carbide ε traps hydrogen in the steel that has entered from the outside environment and increases the amount of critical diffusible hydrogen.
(B) By adding a large amount of Si, Fe-based carbide ε is stabilized and tempering treatment is possible at a higher temperature, so that the defect density such as dislocations in the parent phase is reduced and the embrittlement sensitivity to hydrogen is reduced. .

本発明は上記知見に基づいて完成したもので、その発明の要旨とするところは、次の通りである。   The present invention has been completed based on the above findings, and the gist of the present invention is as follows.

(1) 質量%で、
C:0.20〜1.22%、
Si:0.50〜5.00%、
Mn:0.10〜3.00%、
P:0.0005〜0.1000%、
S:0.0005〜0.2000%、
N:0.0020〜0.0200%
を含有し、残部がFe及び不可避的不純物からなり、鋼組織はFe系炭化物εのサイズが20nm以下で分散し、Fe系炭化物εの面積率が1.0%以上である焼戻しマルテンサイト組織であって、水素トラップ量が2.5ppm以上、限界拡散性水素量が6.0ppm以上であることを特徴とする耐遅れ破壊特性に優れた高強度ボルト鋼。
(1) In mass%,
C: 0.20 to 1.22 %
Si: 0.50 to 5.00%
Mn: 0.10 to 3.00%,
P: 0.0005 to 0.1000%,
S: 0.0005 to 0.2000%,
N: 0.0020 to 0.0200%
The balance is composed of Fe and inevitable impurities, and the steel structure is a tempered martensite structure in which the size of the Fe-based carbide ε is dispersed at 20 nm or less and the area ratio of the Fe-based carbide ε is 1.0% or more. Oh it, hydrogen trapping amount is more than 2.5 ppm, a high strength bolts steel critical diffusible hydrogen amount is excellent in delayed fracture resistance, characterized in that at least 6.0 ppm.

) さらに、質量%で、
Cr:0.01〜4.79%、
Mo:0.01〜1.00%
のうちの1種もしくは2種を含有することを特徴とする上記(1)に記載の耐遅れ破壊特性に優れた高強度ボルト鋼。
( 2 ) Furthermore, in mass%,
Cr: 0.01 to 4.79 %,
Mo: 0.01 to 1.00%
The high-strength bolt steel having excellent delayed fracture resistance according to ( 1) above, comprising one or two of the above.

) さらに、質量%で、
Nb:0.01〜0.10%、
V:0.01〜0.50%、
Ti:0.010〜0.300%、
Al:0.01〜0.20%、
のうちの1種もしくは2種以上を含有することを特徴とする上記(1)または(2)に記載の耐遅れ破壊特性に優れた高強度ボルト鋼。
( 3 ) Furthermore, in mass%,
Nb: 0.01-0.10%,
V: 0.01 to 0.50%,
Ti: 0.010 to 0.300%,
Al: 0.01-0.20%,
The high-strength bolt steel excellent in delayed fracture resistance according to the above (1) or (2) , characterized by containing one or more of them.

)上記(1)ないし(3)のいずれかの1項に記載の高強度ボルト鋼からなることを特徴とする高強度ボルト。 ( 4 ) A high-strength bolt comprising the high-strength bolt steel according to any one of (1) to ( 3 ) above.

本発明によれば、上述した鋼成分範囲、熱処理条件、およびミクロ組織形態を選択することにより、耐遅れ破壊特性に優れた引張強さ1200MPaを超える高強度ボルト鋼を提供することが可能となる。このような高強度ボルト鋼は耐遅れ破壊特性の必要なボルト材料として適用が期待でき、産業上の効果は極めて顕著である。 According to the present invention, it is possible to provide a high-strength bolt steel having a tensile strength exceeding 1200 MPa excellent in delayed fracture resistance by selecting the above-described steel component range, heat treatment conditions, and microstructure form. . Such high strength bolt steel can be expected applied to the required bolt materials of delayed fracture resistance, the effect on the industry is extremely remarkable.

本発明について、以下詳細に説明する。まず、上述した鋼成分範囲の限定理由について説明する。   The present invention will be described in detail below. First, the reason for limiting the steel component range described above will be described.

C:0.20〜1.22
Cは鋼の強度を決める重要な元素である。十分に強度を得るためには、下限は0.20%とする。他の合金元素に比べて合金コストは安く、Cを多量に添加することができれば鋼材の合金コストは低減できる。しかしながら、多量のCを添加すると水素に対する脆化感受性が高まるため、上限は1.50%するが、実施例から1.22%に限定した。
C: 0.20 to 1.22 %
C is an important element that determines the strength of steel. In order to obtain sufficient strength, the lower limit is made 0.20%. Compared to other alloy elements, the alloy cost is low. If a large amount of C can be added, the alloy cost of the steel material can be reduced. However, since the increasing embrittlement susceptibility to hydrogen when adding a large amount and C, the upper limit is 1.50%, but is limited to 1.22% from the examples.

Si:0.50〜5.00%
SiはFe系炭化物εを安定化させ、Fe系炭化物θへの遷移を遅らせことで焼戻し軟化抵抗に大きく寄与するだけでなく、耐遅れ破壊特性を向上させる重要な元素である。これら効果を得るためには、下限を0.20%以上とする。好ましくは0.30%以上であり、より好ましくは0.50%以上である。しかしながら、多量に添加すると鋼材の表層に顕著な脱炭が生じるため、上限は5.00%とする。
Si: 0.50 to 5.00%
Si is an important element that not only greatly contributes to temper softening resistance by stabilizing the Fe-based carbide ε and delaying the transition to the Fe-based carbide θ, but also improves delayed fracture resistance. In order to obtain these effects, the lower limit is made 0.20% or more. Preferably it is 0.30% or more, more preferably 0.50% or more. However, if added in a large amount, remarkable decarburization occurs in the surface layer of the steel material, so the upper limit is made 5.00%.

Mn:0.10〜3.00%
Mnは鋼の焼入れ性を向上するのに有効な元素であるとともに、鋼中のSをMnSとして固定することによって熱間脆性を防止する効果がある。これら効果を得るためには、下限を0.10%以上とする。しかしながら、3.00%を超える添加は、かえって水素に対する脆化感受性が高め遅れ破壊特性を低下させる。したがって、上限を3.00%とする。
Mn: 0.10 to 3.00%
Mn is an element effective for improving the hardenability of steel and has an effect of preventing hot brittleness by fixing S in the steel as MnS. In order to obtain these effects, the lower limit is made 0.10% or more. However, the addition exceeding 3.00% increases the embrittlement susceptibility to hydrogen and lowers the delayed fracture characteristics. Therefore, the upper limit is made 3.00%.

P:0.0005〜0.1000%
Pは鋼中の不可避的不純物として、0.0005%以上は含有しているため、下限を0.0005%とする。鋼中のPは、耐遅れ破壊特性を低下させるため、上限を0.1000%とする。
P: 0.0005 to 0.1000%
Since P contains 0.0005% or more as an inevitable impurity in steel, the lower limit is made 0.0005%. P in steel lowers the delayed fracture resistance, so the upper limit is made 0.1000%.

S:0.0005〜0.2000%
SはPと同様に鋼中の不可避的不純物として通常、0.0005%以上は含有し、鋼中に存在すると鋼を脆化させる。Sの場合、一部MnSとして固定することによって、極力その影響は小さくなるものの、その添加量は少ないことが望ましい。したがって、Sの含有量は、0.0005〜0.2000%とする。
S: 0.0005 to 0.2000%
S, like P, usually contains 0.0005% or more as an unavoidable impurity in steel, and when present in steel, it causes embrittlement of the steel. In the case of S, it is desirable that the amount added is small although the influence is minimized by fixing as MnS partially. Therefore, the content of S is set to 0.0005 to 0.2000%.

N:0.0020〜0.0200%
Nは窒化物を形成し、旧オーステナイト粒を微細化する効果がある。この効果を得るためには、Nの下限は0.0020%とする。しかしながら、多量に添加しても、この効果は飽和するため、Nの上限は0.0200%とする。
N: 0.0020 to 0.0200%
N forms nitrides and has the effect of refining prior austenite grains. In order to obtain this effect, the lower limit of N is set to 0.0020%. However, even if added in a large amount, this effect is saturated, so the upper limit of N is 0.0200%.

Cr:0.01〜4.79
Crは鋼の焼入れ性を向上するのに有効な元素であるとともに、焼戻し軟化抵抗に寄与する元素である。これら効果を得るためには、下限は0.01%とする。しかしながら、CrはFe系炭化物θ中に固溶し安定化させ、多量に添加した場合、焼入れ性の向上や焼戻し軟化抵抗の効果を得るために、焼入れ処理前に高温で加熱する必要がある。これにより、旧オーステナイト粒が粗大化し、耐遅れ破壊特性が低下する。したがって、上限は5.00%とするが、実施例から4.79%に限定した。
Cr: 0.01 to 4.79 %
Cr is an element effective for improving the hardenability of steel and an element contributing to temper softening resistance. In order to obtain these effects, the lower limit is made 0.01%. However, Cr needs to be heated at a high temperature before the quenching treatment in order to obtain a solid solution and stabilize in the Fe-based carbide θ and to stabilize it and to add a large amount to obtain effects of improving hardenability and temper softening resistance. As a result, the prior austenite grains become coarse, and the delayed fracture resistance deteriorates. Therefore, the upper limit is set to 5.00%, but is limited to 4.79% from the examples.

Mo:0.01〜1.00%
Moは鋼の焼入れ性を向上するのに有効な元素であるとともに、焼戻し軟化抵抗に寄与する元素である。これら効果を得るためには、下限を0.01%とする。しかしながら、1.00%を超えて添加すると、これら効果は飽和する。したがって、上限を1.00%とする。
Mo: 0.01 to 1.00%
Mo is an element effective for improving the hardenability of steel and an element contributing to temper softening resistance. In order to obtain these effects, the lower limit is made 0.01%. However, these effects are saturated when added over 1.00%. Therefore, the upper limit is made 1.00%.

Nb:0.01〜0.10%、V:0.01〜0.50%、Ti:0.010〜0.300%、Al:0.01〜0.20%のうちの1種もしくは2種以上を含有する。
Nb、V、Ti、Alは窒化物を形成し、旧オーステナイト粒を微細化する効果がある。この効果を得るためには、Nb、V、Ti、Alの下限は0.01%とする。しかしながら、それぞれ多量に添加しても、この効果は飽和するため、Nbの上限は0.10%、Vの上限は0.50%、Tiの上限は0.300%、Alの上限は0.20%とする。
One or two of Nb: 0.01 to 0.10%, V: 0.01 to 0.50%, Ti: 0.010 to 0.300%, Al: 0.01 to 0.20% Contains more than seeds.
Nb, V, Ti, and Al have the effect of forming nitrides and refining prior austenite grains. In order to obtain this effect, the lower limit of Nb, V, Ti, and Al is 0.01%. However, even if added in a large amount, this effect is saturated. Therefore, the upper limit of Nb is 0.10%, the upper limit of V is 0.50%, the upper limit of Ti is 0.300%, and the upper limit of Al is 0.00%. 20%.

次に上述した鋼組織の限定理由について説明する。   Next, the reason for limiting the steel structure described above will be described.

鋼組織中の析出物をFe系炭化物εに規定したのは、粗大なFe系炭化物θでは外部環境から侵入した鋼中の水素をトラップすることができないのに対して、微細なFe系炭化物εは鋼中の水素をトラップすることができ、臨界拡散性水素量を増加させることができるためである。また鋼組織について焼戻しマルテンサイト組織に規定したのは、多量のFe系炭化物εを微細分散するためには、焼入れ焼戻し処理が有効であるためである。   The precipitates in the steel structure are defined as Fe-based carbides ε, because coarse Fe-based carbides θ cannot trap hydrogen in steel that has entered from the external environment, whereas fine Fe-based carbides ε. This is because hydrogen in steel can be trapped and the amount of critical diffusible hydrogen can be increased. The reason why the steel structure is defined as the tempered martensite structure is that quenching and tempering treatment is effective for finely dispersing a large amount of Fe-based carbide ε.

次に上述したFe系炭化物εのサイズや面積率の限定理由について説明する。   Next, the reasons for limiting the size and area ratio of the Fe-based carbide ε will be described.

Fe系炭化物εのサイズを1〜20nmに規定したのは、20nm超では母相と析出物の界面の整合性が保たれなくなり、水素をトラップする歪みが形成しないためであり、水素トラップ効果を得るには1nm以上が必要なためである。好ましくは2nm以上10nm以下である。またFe系炭化物εの面積率を1.0%以上に規定したのは、Fe系炭化物εが析出し水素をトラップしても、その量が少なければ耐遅れ破壊特性の大きな向上は得られないためである。上記面積率は、鋼中C量により自ずと飽和する。   The reason why the size of the Fe-based carbide ε is defined to be 1 to 20 nm is that when the thickness exceeds 20 nm, the consistency between the interface of the parent phase and the precipitate is not maintained, and the strain for trapping hydrogen is not formed. This is because a thickness of 1 nm or more is necessary to obtain. Preferably they are 2 nm or more and 10 nm or less. Also, the area ratio of Fe-based carbide ε is defined to be 1.0% or more. Even if Fe-based carbide ε precipitates and traps hydrogen, if the amount is small, the delayed fracture resistance cannot be greatly improved. Because. The area ratio is naturally saturated by the amount of C in steel.

次に上述した水素トラップ量と限界拡散性水素量の限定理由について説明する。   Next, the reasons for limiting the hydrogen trap amount and the limit diffusible hydrogen amount will be described.

水素トラップ量が2.5ppm未満、または限界拡散性水素量が6.0ppm未満では、外部環境から鋼材中に侵入する水素によって遅れ破壊が発生するため、水素トラップ量を2.5ppm以上、限界拡散性水素量を6.0ppm以上に限定した。   If the hydrogen trap amount is less than 2.5 ppm, or the limit diffusible hydrogen amount is less than 6.0 ppm, delayed fracture occurs due to hydrogen entering the steel from the external environment. The amount of reactive hydrogen was limited to 6.0 ppm or more.

次に上述した焼戻し温度の限定理由について説明する。   Next, the reason for limiting the tempering temperature described above will be described.

鋼に所定の強度および靱性、延性を付与するために、焼入れ後に焼戻しを行う必要がある。焼戻しは、一般に150℃からAC1点の温度範囲で行われるが、本発明では250〜525℃の温度範囲に限定する必要がある。その理由は、焼戻し温度が525℃を超えると、Siを5%添加しFe系炭化物εを安定化させても、Fe系炭化物θに遷移し臨界拡散性水素量が低下するためである。ただし、Fe系炭化物εからθに遷移する温度はSi量に大きく依存するため、規定した焼戻し温度範囲であったとしても、Si量が少なければ高温焼戻しでFe系炭化物θが析出する。 In order to impart predetermined strength, toughness and ductility to the steel, it is necessary to perform tempering after quenching. Tempering is generally performed in a temperature range from 150 ° C. to AC 1 point, but in the present invention, it is necessary to limit the temperature range to 250 to 525 ° C. The reason is that when the tempering temperature exceeds 525 ° C., even if 5% of Si is added to stabilize the Fe-based carbide ε, the transition to Fe-based carbide θ occurs and the critical diffusible hydrogen amount decreases. However, since the temperature at which the Fe-based carbide ε transitions to θ greatly depends on the amount of Si, even if the temperature is within the specified tempering temperature range, the Fe-based carbide θ is precipitated by high-temperature tempering if the Si amount is small.

そこでFe系炭化物εが析出する焼戻し処理条件とSi量の関係について検討した。C量:0.60%(質量%、以下同じ)、Si量:0.20〜5.00%、Mn量:0.75%、P量:0.005〜0.009%、S量:0.006〜0.0010%、N量:0.0070%、残部がFe及び不可避的不純物からなる鋼材を準備し、これら鋼材を1050℃に加熱後、焼戻し温度150〜550℃、保定時間1〜18000sec.の範囲で熱処理した。透過型電子顕微鏡を用いて鋼中の析出物を観察し、制限視野回折図形からFe系炭化物を特定した。検討の結果、Fe系炭化物εが析出する焼戻し処理条件と鋼中Si量との関係式(a)、(b)が得られた。
0.20≦[Si]<2.00 のとき
(273+T)×(log(t/3600)+20)
−2067[Si]−9467>0・・・(a)
2.00≦[Si]≦5.00 のとき
(273+T)×(log(t/3600)+20)
−733[Si]−12133>0・・・(b)
ここで、[Si]は鋼中のSi含有量(質量%)、Tは焼戻し温度(℃)、tは保定時間(秒)である。したがって、(a)式、及び(b)式の値が0以下の場合、Fe系炭化物εが析出する。また焼戻し温度525℃を超えると、Si量に関係なくFe系炭化物θが析出するため、(a)式、及び(b)式からFe系炭化物εが析出する適用範囲は焼戻し温度150〜525℃である。
Therefore, the relationship between the tempering conditions for precipitation of Fe-based carbide ε and the amount of Si was examined. C amount: 0.60% (mass%, the same applies hereinafter), Si amount: 0.20 to 5.00%, Mn amount: 0.75%, P amount: 0.005 to 0.009%, S amount: 0.006 to 0.0010%, N amount: 0.0070%, the balance is prepared with a steel material composed of Fe and inevitable impurities, and after heating these steel materials to 1050 ° C, a tempering temperature of 150 to 550 ° C and a holding time of 1 ~ 18000 sec. It heat-processed in the range. Precipitates in the steel were observed using a transmission electron microscope, and Fe-based carbides were identified from the limited field diffraction pattern. As a result of the study, relational expressions (a) and (b) between the tempering treatment conditions in which Fe-based carbide ε precipitates and the amount of Si in the steel were obtained.
When 0.20 ≦ [Si] <2.00 (273 + T) × (log (t / 3600) +20)
-2067 [Si] -9467> 0 (a)
When 2.00 ≦ [Si] ≦ 5.00 (273 + T) × (log (t / 3600) +20)
-733 [Si] -12133> 0 (b)
Here, [Si] is the Si content (% by mass) in the steel, T is the tempering temperature (° C.), and t is the retention time (seconds). Therefore, when the values of the formulas (a) and (b) are 0 or less, Fe-based carbide ε is precipitated. When the tempering temperature exceeds 525 ° C., Fe-based carbide θ precipitates regardless of the amount of Si. Therefore, the application range in which Fe-based carbide ε precipitates from the equations (a) and (b) is tempering temperature 150 to 525 ° C. It is.

ただし、焼戻し温度250℃未満では、Fe系炭化物εは析出するものの、母相中の転位等の欠陥密度が高く、水素に対する脆化感受性が高いため、本発明では、焼戻し下限温度を上記のとおり250℃とした。鋼中にFe系炭化物εが安定に存在するならば、より水素に対する脆化感受性を低下させるために、高温で焼戻しすることが望ましい。好ましくは、焼戻し温度350℃以上である。   However, when the tempering temperature is less than 250 ° C., the Fe-based carbide ε is precipitated, but the defect density such as dislocations in the matrix phase is high and the embrittlement sensitivity to hydrogen is high. Therefore, in the present invention, the lower tempering temperature is as described above. The temperature was 250 ° C. If the Fe-based carbide ε is stably present in the steel, it is desirable to temper at a high temperature in order to further reduce the susceptibility to hydrogen embrittlement. Preferably, the tempering temperature is 350 ° C. or higher.

本発明を実施例によって以下に詳述する。なお、これら実施例は本発明の技術的意義、効果を説明するためのものであり、本発明の範囲を限定するものではない。   The invention is described in detail below by means of examples. These examples are for explaining the technical significance and effects of the present invention, and do not limit the scope of the present invention.

表1に示す化学成分の鋼を真空溶解炉で溶製後、熱間圧延することによって15mmφの鋼棒材を作製した。その後、鋼成分組成に応じて、Fe系炭化物の溶体化や組織のオーステナイト化が可能な温度を850〜1050℃から選択して加熱し、60℃の油に焼入れした後、表2に示す焼戻し温度で60min、焼戻し処理を施した。これら熱処理材からJIS Z 2201の14号引張試験片を採取し、引張強さを評価した。   A steel bar having a diameter of 15 mm was produced by hot rolling the steel having chemical components shown in Table 1 in a vacuum melting furnace. Then, according to the steel component composition, the temperature at which solution of Fe-based carbides and austenite of the structure can be selected is selected from 850 to 1050 ° C., heated, quenched in oil at 60 ° C., and then tempered as shown in Table 2. Tempering was performed for 60 minutes at a temperature. JIS Z 2201 No. 14 tensile test specimens were collected from these heat treated materials and evaluated for tensile strength.

鋼中の析出物を特定するために、透過型電子顕微鏡を用いて観察し、制限視野回折図形から判断した。析出物のサイズおよび面積率は、透過型電子顕微鏡で、1視野の面積を50000nmとし、20視野観察し、画像解析にて平均値として求めたものである。 In order to identify precipitates in the steel, they were observed using a transmission electron microscope and judged from the limited-field diffraction pattern. The size and area ratio of the precipitates were determined as an average value by image analysis by observing 20 visual fields with a transmission electron microscope with an area of 1 visual field of 50000 nm 2 .

水素トラップ量は、3%チオシアン酸アンモニウム溶液にNaClを3g/l添加した水溶液に試験片を浸漬し0.2mA/cmの電流密度で電解水素チャージを42時間行い、その後、室温で96時間放置した後、ガスクロマトグラフによる昇温水素分析法で測定した。ガスクロマトグラフの昇温速度は100℃/時間であり、室温から400℃までに試験片から放出される水素量を水素トラップ量と定義している。水素トラップ量を評価するための試験片は7mmφの丸棒を準備した。限界拡散性水素量は、鉄と鋼、Vol.83(1997)、p.454に記載の方法で測定した。限界拡散性水素量が6.0ppm未満であるものは遅れ破壊特性に劣ると判断した。 The amount of the hydrogen trap was determined by immersing the test piece in an aqueous solution obtained by adding 3 g / l of NaCl to a 3% ammonium thiocyanate solution and performing electrolytic hydrogen charging at a current density of 0.2 mA / cm 2 for 42 hours, and then at room temperature for 96 hours. After leaving it to stand, it was measured by a temperature rising hydrogen analysis method using a gas chromatograph. The temperature rising rate of the gas chromatograph is 100 ° C./hour, and the amount of hydrogen released from the test piece from room temperature to 400 ° C. is defined as the hydrogen trap amount. As a test piece for evaluating the amount of hydrogen trap, a 7 mmφ round bar was prepared. The amount of critical diffusible hydrogen is iron and steel, Vol. 83 (1997), p. Measured by the method described in 454. Those having a limit diffusible hydrogen content of less than 6.0 ppm were judged to be inferior in delayed fracture characteristics.

表2から分かるように、No.1〜16の本発明例は、いずれも鋼組成および鋼組織が規定範囲内であるため、引張強さ1600MPa以上の高強度にも関わらず遅れ破壊特性に優れる。また本発明例No.4と15、No.11と16を比較して分かるように、焼戻し温度が高いほど水素に対する脆化感受性が低下し、遅れ破壊特性に優れる。これに対して、比較例No.17及び20は、鋼組織は規定範囲内であり、水素をトラップする能力はあるものの、C、Mnの含有量が多く、水素に対する脆化感受性が高くなり、かえって遅れ破壊特性に劣る。また比較例No.18及び19は、Siの含有量が少なく、Fe系炭化物θが析出したため、遅れ破壊特性に劣る。また比較例No.21は、鋼組織は規定範囲内であり、水素をトラップする能力はあるものの、Crの含有量が多く、焼入れ性の向上や焼戻し軟化抵抗の効果を得るには、焼入れ処理前の加熱温度を1200℃の高温に加熱する必要がある。これにより、旧オーステナイト粒が粗大化し遅れ破壊特性に劣る。また比較例No.22は、焼戻し温度が550℃と高く、Fe系炭化物θが析出したため、遅れ破壊特性に劣る。また比較例No.23は、鋼組成および焼戻し温度が規定範囲内であるものの、Fe系炭化物εが析出する焼戻し条件とSi量の関係から逸脱したためにFe系炭化物θが析出し、遅れ破壊特性に劣る。   As can be seen from Table 2, no. In all of Examples 1 to 16 of the present invention, the steel composition and the steel structure are within the specified ranges, so that the delayed fracture property is excellent despite the high strength of 1600 MPa or more. In addition, Invention Example No. 4 and 15, no. As can be seen by comparing 11 and 16, the higher the tempering temperature, the lower the susceptibility to hydrogen embrittlement and the better the delayed fracture characteristics. In contrast, Comparative Example No. In Nos. 17 and 20, although the steel structure is within the specified range and has the ability to trap hydrogen, the contents of C and Mn are large, the embrittlement susceptibility to hydrogen is increased, and the delayed fracture characteristics are inferior. Comparative Example No. Nos. 18 and 19 are inferior in delayed fracture characteristics because the Si content is small and Fe-based carbides θ are precipitated. Comparative Example No. No. 21, although the steel structure is within the specified range and has the ability to trap hydrogen, the Cr content is large, and in order to obtain the effects of improved hardenability and temper softening resistance, the heating temperature before the quenching treatment should be adjusted. It is necessary to heat to a high temperature of 1200 ° C. Thereby, the prior austenite grains become coarse and inferior in delayed fracture characteristics. Comparative Example No. No. 22 has a high tempering temperature of 550 ° C., and the Fe-based carbide θ is precipitated. Comparative Example No. In No. 23, although the steel composition and the tempering temperature are within the specified ranges, the deviation from the relationship between the tempering conditions in which the Fe-based carbide ε precipitates and the amount of Si results in the precipitation of Fe-based carbide θ, which is inferior in delayed fracture characteristics.

Figure 0005760972
Figure 0005760972

Figure 0005760972
Figure 0005760972

Claims (4)

質量%で、
C:0.20〜1.22%、
Si:0.50〜5.00%、
Mn:0.10〜3.00%、
P:0.0005〜0.1000%、
S:0.0005〜0.2000%、
N:0.0020〜0.0200%
を含有し、残部がFe及び不可避的不純物からなり、鋼組織はFe系炭化物εのサイズが20nm以下で分散し、Fe系炭化物εの面積率が1.0%以上である焼戻しマルテンサイト組織であって、水素トラップ量が2.5ppm以上、限界拡散性水素量が6.0ppm以上であることを特徴とする耐遅れ破壊特性に優れた高強度ボルト鋼。
% By mass
C: 0.20 to 1.22 %
Si: 0.50 to 5.00%
Mn: 0.10 to 3.00%,
P: 0.0005 to 0.1000%,
S: 0.0005 to 0.2000%,
N: 0.0020 to 0.0200%
The balance is composed of Fe and inevitable impurities, and the steel structure is a tempered martensite structure in which the size of the Fe-based carbide ε is dispersed at 20 nm or less and the area ratio of the Fe-based carbide ε is 1.0% or more. Oh it, hydrogen trapping amount is more than 2.5 ppm, a high strength bolts steel critical diffusible hydrogen amount is excellent in delayed fracture resistance, characterized in that at least 6.0 ppm.
さらに、質量%で、
Cr:0.01〜4.79%、
Mo:0.01〜1.00%
のうちの1種もしくは2種を含有することを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度ボルト鋼。
Furthermore, in mass%,
Cr: 0.01 to 4.79 %,
Mo: 0.01 to 1.00%
The high-strength bolt steel having excellent delayed fracture resistance according to claim 1, wherein one or two of them are contained.
さらに、質量%で、
Nb:0.01〜0.10%、
V:0.01〜0.50%、
Ti:0.010〜0.300%、
Al:0.01〜0.20%、
のうちの1種もしくは2種以上を含有することを特徴とする請求項1または2に記載の耐遅れ破壊特性に優れた高強度ボルト鋼。
Furthermore, in mass%,
Nb: 0.01-0.10%,
V: 0.01 to 0.50%,
Ti: 0.010 to 0.300%,
Al: 0.01-0.20%,
The high-strength bolt steel excellent in delayed fracture resistance according to claim 1 or 2 , wherein one or more of them are contained.
請求項1ないしのいずれかの1項に記載の高強度ボルト鋼からなることを特徴とする高強度ボルト。 A high-strength bolt comprising the high-strength bolt steel according to any one of claims 1 to 3 .
JP2011246907A 2011-11-10 2011-11-10 High strength bolt steel and high strength bolt with excellent delayed fracture resistance Active JP5760972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011246907A JP5760972B2 (en) 2011-11-10 2011-11-10 High strength bolt steel and high strength bolt with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011246907A JP5760972B2 (en) 2011-11-10 2011-11-10 High strength bolt steel and high strength bolt with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2013104070A JP2013104070A (en) 2013-05-30
JP5760972B2 true JP5760972B2 (en) 2015-08-12

Family

ID=48623856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011246907A Active JP5760972B2 (en) 2011-11-10 2011-11-10 High strength bolt steel and high strength bolt with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP5760972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355573A (en) * 2018-12-03 2019-02-19 东北大学 A kind of steel multistage hot rolled steel plate and its manufacturing method based on carbon distribution technique

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103710627A (en) * 2013-12-26 2014-04-09 马钢(集团)控股有限公司 High-carbon and low-alloy wheel steel for railway wagon and manufacturing method of wheel
CN104178618A (en) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 Heat treatment method favorable for quality of screw
CN104178619A (en) * 2014-08-17 2014-12-03 成都亨通兆业精密机械有限公司 Heat treatment method for benefiting impact toughness of screw
CN104294164B (en) * 2014-09-30 2018-08-07 合肥市伟远金属材料有限公司 A kind of high-carbon chromium steel
CN105369123A (en) * 2015-11-13 2016-03-02 浙江荣鑫带钢有限公司 Strip steel preparing method for blade
KR101797316B1 (en) * 2015-12-21 2017-11-14 주식회사 포스코 Part for automobile having high strength and excellent durability and manufacturing method therefor
CN110462083B (en) * 2017-08-18 2021-06-01 国立大学法人大阪大学 Steel having high hardness and excellent toughness
JP6992535B2 (en) * 2018-01-18 2022-02-04 大同特殊鋼株式会社 High-strength bolts and their manufacturing methods
US20220064766A1 (en) 2019-02-08 2022-03-03 Nippon Steel Corporation Bolt, and steel material for bolts
CN112063816B (en) * 2019-06-10 2021-11-19 育材堂(苏州)材料科技有限公司 Heat treatment method of high-strength steel and product obtained thereby
JPWO2021193057A1 (en) * 2020-03-27 2021-09-30

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494799B2 (en) * 1996-03-29 2004-02-09 新日本製鐵株式会社 High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP3793391B2 (en) * 2000-04-04 2006-07-05 新日本製鐵株式会社 High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP2002212665A (en) * 2001-01-11 2002-07-31 Kobe Steel Ltd High strength and high toughness steel
JP4427010B2 (en) * 2004-07-05 2010-03-03 新日本製鐵株式会社 High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP4593510B2 (en) * 2006-03-31 2010-12-08 新日本製鐵株式会社 High strength bearing joint parts excellent in delayed fracture resistance, manufacturing method thereof, and steel for high strength bearing joint parts
JP5064060B2 (en) * 2007-02-22 2012-10-31 新日本製鐵株式会社 Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof
WO2011048971A1 (en) * 2009-10-22 2011-04-28 日産自動車株式会社 Steel for high-strength bolts and process for production of high-strength bolts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109355573A (en) * 2018-12-03 2019-02-19 东北大学 A kind of steel multistage hot rolled steel plate and its manufacturing method based on carbon distribution technique

Also Published As

Publication number Publication date
JP2013104070A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5760972B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
US7510614B2 (en) High strength bolt excellent in delayed fracture resistance and method of production of same
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
CA2864453C (en) Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
WO2011111872A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
KR101604938B1 (en) Steel for bolts, bolt, and method for producing bolt
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
KR100945313B1 (en) Steel sheet for metal belt use with excellent strength, ductility, and toughness and method for producing the same, and metal belt and method for producing the same
US9777355B2 (en) Process for producing precipitation strengthening martensitic steel
WO2014097872A1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
KR101817451B1 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
JPWO2016186033A1 (en) Spring steel
JPH1180903A (en) High strength steel member excellent in delayed fracture characteristic, and its production
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
CN114752850A (en) High-strength steel plate with yield strength of 785MPa and manufacturing method thereof
JP6816826B2 (en) High-strength steel member
JP2022095157A (en) Steel for bolts and bolt
JPH04193930A (en) High strength steel for induction hardening
JP2022128623A (en) Steel for high strength bolt, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150525

R151 Written notification of patent or utility model registration

Ref document number: 5760972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350