WO2011111872A1 - High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor - Google Patents

High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor Download PDF

Info

Publication number
WO2011111872A1
WO2011111872A1 PCT/JP2011/056481 JP2011056481W WO2011111872A1 WO 2011111872 A1 WO2011111872 A1 WO 2011111872A1 JP 2011056481 W JP2011056481 W JP 2011056481W WO 2011111872 A1 WO2011111872 A1 WO 2011111872A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
delayed fracture
bolt
less
strength
Prior art date
Application number
PCT/JP2011/056481
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 平上
徹志 千田
敏三 樽井
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to IN5089DEN2012 priority Critical patent/IN2012DN05089A/en
Priority to CN201180013427XA priority patent/CN102812145A/en
Priority to EP20110753527 priority patent/EP2546379B1/en
Priority to JP2012502334A priority patent/JP5177323B2/en
Priority to KR1020127010100A priority patent/KR101366375B1/en
Priority to US13/515,444 priority patent/US20120247618A1/en
Publication of WO2011111872A1 publication Critical patent/WO2011111872A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the present invention relates to a high-strength steel material used for wire rods, PC steel rods (prestressed concrete steel rods) and the like, in particular, a high-strength steel material having excellent delayed fracture resistance and a tensile strength of 1300 MPa or more, a high-strength bolt, and production thereof It is about the method.
  • High-strength steels used in many machines, automobiles, bridges, and building structures are medium carbon steels with a C content of 0.20 to 0.35%, such as SCr specified in JIS G 4104 and JIS G 4105. , SCM and the like are subjected to a tempering process. However, in any steel type, if the tensile strength exceeds 1300 MPa, the risk of delayed fracture increases.
  • a method for improving the delayed fracture resistance of high-strength steel a method in which the steel structure is a bainite structure or a method in which prior austenite grains are refined is effective.
  • Patent Document 1 discloses a steel in which old austenite grains are refined to increase delayed fracture resistance, and Patent Documents 2 and 3 increase delayed fracture resistance by suppressing segregation of steel components. Steel is disclosed. However, it is difficult to significantly improve the delayed fracture resistance by refinement of prior austenite grains and suppression of component segregation.
  • the bainite structure contributes to the improvement of the delayed fracture resistance, but the formation of the bainite structure requires appropriate additive elements and heat treatment, which increases the cost of steel.
  • Patent Documents 4 to 6 a pearlite structure having an area ratio of 80% or more is subjected to strong wire drawing to give a strength of 1200 N / mm 2 or more and excellent delayed fracture resistance. % Of high-strength bolts are disclosed.
  • Patent Document 7 discloses a coil spring in which the occurrence of delayed fracture after cold coiling is suppressed by using an oil tempered wire having an internal hardness of Hv550 or more.
  • the product surface hardness after nitriding is Hv 900 or more, and the delayed fracture characteristics are low under high load stress such as bolts and PC steel bars, and there is a problem that delayed fracture occurs when the corrosive environment becomes more severe.
  • Patent Document 8 discloses a high-strength steel material excellent in delayed fracture resistance mainly composed of a tempered martensite structure obtained by nitriding a steel having a required component composition.
  • the high-strength steel material disclosed in Patent Document 8 exhibits delayed fracture resistance even in a corrosive environment containing hydrogen.
  • the corrosive environment has become more severe, and there is a demand for a high-strength steel material that exhibits excellent delayed fracture resistance even under severe corrosive environments.
  • the present invention provides a high-strength steel material (wire rod, PC steel bar) and high-strength bolt that exhibit excellent delayed fracture resistance even in a severe corrosive environment, and a manufacturing method for manufacturing them at low cost. The purpose is to provide.
  • the inventors of the present invention have intensively studied a method for solving the above-described problems.
  • the steel material contains a predetermined amount of V and / or Mo that forms precipitates that trap hydrogen, and
  • This invention was made
  • the balance consists of Fe and unavoidable impurities
  • the structure is a steel material whose structure is mainly tempered martensite, and in the surface layer of the steel material, (A) a nitride layer having a thickness from the surface of the steel material of 200 ⁇ m or more and a nitrogen concentration of 12.0% by mass or less, which is 0.02% by mass or more higher than the nitrogen concentration of the steel material; and (B) A low carbon region having a depth from the surface of the steel material of 100 ⁇ m or more and 1000 ⁇ m or less and a carbon concentration of 0.05% by mass or more and 0.9 times or less of the carbon concentration of the steel material is formed. High strength steel with excellent delayed fracture resistance.
  • the amount of hydrogen entering the steel material is 0.5 ppm or less due to the presence of the nitride layer and the low carbon region, and the limit diffusible hydrogen content of the steel material is 2.00 ppm or more.
  • the steel material is, by mass%, Al: 0.003-0.1%, Ti: 0.003-0.05%, Mg: 0.0003-0.01%, Ca: 0.00. It has excellent delayed fracture resistance according to the above (1) or (2), characterized by containing one or more of 0003 to 0.01%, Zr: 0.0003 to 0.01% High strength steel.
  • the steel material is, in mass%, Al: 0.003-0.1%, Ti: 0.003-0.05%, Mg: 0.0003-0.01%, Ca: 0.00. It has excellent delayed fracture resistance as described in (8) or (9) above, comprising one or more of 0003 to 0.01%, Zr: 0.0003 to 0.01% High strength bolt.
  • a method for producing a high-strength steel material having excellent delayed fracture resistance according to any one of (1) to (7), (1)
  • the steel material having the composition described in (1) or (3) is heated, and the carbon concentration is 0.05% by mass or more from the surface of the steel material to a depth of 100 ⁇ m or more and 1000 ⁇ m or less.
  • Form a low carbon region of 0.9 times or less of the carbon concentration then cooled as it is to make the steel structure a martensite-based structure
  • the steel material is subjected to nitriding treatment at a temperature exceeding 500 ° C. and not more than 650 ° C., and the nitrogen concentration of the steel material is 12.0% by mass or less and 0.02% by mass than the nitrogen concentration of the steel material.
  • a method for producing a bolt having excellent delayed fracture resistance according to any one of (8) to (14), (1) The bolt which processed the steel material of the component composition as described in said (8) or (10) is heated, and carbon concentration is 0.05 mass% or more from the surface of a bolt to the depth of 100 micrometers or more and 1000 micrometers or less. , Forming a low carbon region of 0.9 times or less of the carbon concentration of the steel material, then cooled as it is, the steel material structure is a martensite-based structure, (2) The bolt is subjected to nitriding treatment at over 500 ° C.
  • a method for producing a high-strength bolt excellent in delayed fracture resistance characterized in that a nitride layer having a thickness of 200 ⁇ m or more from the surface of the bolt is formed, and the steel is made of a tempered martensite-based structure. .
  • a high-strength steel material (wire rod, PC steel bar) and high-strength bolt that exhibit excellent delayed fracture resistance even in a severe corrosive environment, and a manufacturing method capable of manufacturing them at low cost. I can.
  • FIG.1 (a) is a figure which shows typically the hydrogen release rate curve obtained by the hydrogen analysis by a temperature rising method.
  • FIG.1 (b) is a figure which shows typically the relationship between the fracture
  • FIG. 2 is a diagram showing a method for obtaining the depth (thickness) of a low carbon region from a carbon concentration curve obtained by an energy dispersive X-ray fluorescence spectrometer (EDX).
  • FIG. 3 is a diagram showing a method for obtaining the thickness (depth) of a nitride layer from a nitrogen concentration curve obtained with an energy dispersive X-ray fluorescence spectrometer (EDX).
  • FIG. 4 is a view showing a test piece used for a delayed fracture test of a steel material.
  • FIG. 5 is a diagram showing an embodiment of the delayed fracture tester.
  • FIG. 6 is a diagram showing the relationship between temperature, humidity and time in
  • FIG. 1 (a) schematically shows a hydrogen release rate curve obtained by hydrogen analysis by a temperature raising method. As shown in FIG. 1A, the amount of diffusible hydrogen released reaches a peak around 100 ° C. In the present invention, the sample is heated at 100 ° C./h, and the integrated value of the amount of hydrogen released between room temperature and 400 ° C. is defined as the amount of diffusible hydrogen. The amount of hydrogen released can be measured with a gas chromatograph.
  • the minimum amount of diffusible hydrogen that causes delayed fracture is referred to as the limit diffusible hydrogen amount.
  • the amount of critical diffusible hydrogen varies depending on the type of steel.
  • FIG. 1B schematically shows the relationship between the rupture time and the amount of diffusible hydrogen obtained in the constant load delayed fracture test of steel. As shown in FIG. 1B, the break time is short when the amount of diffusible hydrogen is large, and the break time is long when the amount of diffusible hydrogen is small. That is, if the amount of diffusible hydrogen is small, delayed fracture does not occur, and if the amount of diffusible hydrogen is large, delayed fracture occurs.
  • the maximum diffusible hydrogen amount that did not break for 100 hours or more was defined as the limit diffusible hydrogen amount, as shown in FIG. Comparing the amount of intrusive hydrogen and the amount of limit diffusible hydrogen, if the amount of limit diffusible hydrogen is greater than the amount of intrusion hydrogen, delayed fracture does not occur. Conversely, if the amount of limit diffusible hydrogen is less than the amount of intrusion hydrogen , Delayed fracture occurs. Therefore, the greater the amount of critical diffusible hydrogen, the more delayed the occurrence of delayed fracture. However, when the amount of hydrogen entering the steel material from the corrosive environment exceeds the limit diffusible hydrogen amount, delayed fracture occurs.
  • the present inventors examined the component composition of the steel material on the premise that the hydrogen that has entered the steel material is trapped by the fine precipitates and made harmless in order to increase the critical diffusible hydrogen content.
  • the present inventors contain an appropriate amount of one or two of V and Mo, and fine precipitates composed of carbides, nitrides, and / or carbonitrides of V and Mo in the steel material. It was confirmed that the amount of critical diffusible hydrogen can be increased by precipitation. However, on the other hand, it has also been confirmed that even if one or both of V and Mo are contained in the steel material, the delayed fracture resistance cannot be sufficiently improved. Therefore, the present inventors have made extensive studies by paying attention to the relationship between the crystal form of fine precipitates, the amount of critical diffusible hydrogen and the amount of invading hydrogen, and as a result, the following has been found.
  • Hexagonal Mo carbides, nitrides, and carbonitrides have a greater effect on increasing the amount of limit diffusible hydrogen than on increasing the amount of invading hydrogen, and thus greatly contribute to the improvement of delayed fracture resistance.
  • the strength improvement effect by fine precipitation is small compared with V carbide, nitride, and carbonitride of NaCl type crystal.
  • V-type carbides, nitrides, and carbonitrides of NaCl-type crystals are excellent in strength improvement effect by fine precipitation.
  • the NaCl-type crystal V carbide, nitride, and carbonitride increase the critical diffusible hydrogen amount while increasing the intrusion hydrogen amount.
  • the inventors have studied to improve the delayed fracture resistance by reducing the hardness of the nitrided layer, subjecting the surface to decarburization treatment, and further accelerating corrosion test and exposure of the steel material subjected to nitriding treatment Tests were conducted to investigate the hydrogen penetration characteristics and delayed fracture resistance of steel materials.
  • a nitride layer having a predetermined nitrogen concentration and thickness is formed on the surface of a steel material having a predetermined component composition and structure, and further, a low carbon region having a predetermined carbon concentration and depth is formed on the steel surface. It was found that the delayed fracture resistance is remarkably improved as compared with the case where only the nitride layer is formed on the steel surface.
  • a thickness of 200 ⁇ m or more from the surface of the steel material, a nitrogen concentration of 12.0% by mass or less, and 0.02% by mass or more higher than the steel material A nitride layer is formed, and (b) a low carbon region having a carbon concentration of 0.05% by mass or more and a carbon concentration of 0.9 times or less of the steel material at a depth of 100 ⁇ m or more and 1000 ⁇ m from the steel surface.
  • the high-strength steel material and high-strength bolt of the present invention have a predetermined composition, and have a nitride layer and a low carbon region simultaneously on the surface thereof.
  • the nitrogen concentration is 12.0 mass% or less, 0.02 mass% or more higher than the nitrogen concentration of the steel material, and the carbon concentration is 0.05 mass%.
  • the carbon concentration is 0.05 mass%.
  • the carbon concentration is 0.05% by mass or more and 0.9% or less of the carbon concentration of the steel material below the nitride layer.
  • the element content will have a low carbon region equivalent to steel.
  • the low carbon region will be described.
  • the low carbon region is a region having a carbon concentration of 0.05% by mass or more and 0.9 times or less the carbon concentration of the high-strength steel material or high-strength bolt.
  • a low carbon region is formed from the steel material surface to a depth of 100 ⁇ m or more and 1000 ⁇ m.
  • the depth and carbon concentration of the low carbon region are adjusted by the heating atmosphere, the heating temperature, and the holding time in the heat treatment for forming the low carbon region. For example, when the carbon potential of the heating atmosphere is low, the heating temperature is high, and the holding time is long, the low carbon region becomes deep and the carbon concentration in the low carbon region decreases. If the carbon concentration in the low carbon region is less than 0.05% by mass, the lower limit of 0.10% by mass of the carbon concentration of the steel material is not more than half, and the predetermined strength and hardness cannot be ensured in the low carbon region.
  • the low carbon region is defined as a region having a carbon concentration of 0.05% by mass or more and 0.9 times or less the carbon concentration of the steel material.
  • the carbon concentration in the low carbon region is 0.05% by mass or more and 0.9 times or less the carbon concentration of the steel material, the increase in the surface hardness due to the formation of the nitride layer can be reduced.
  • the hardness of the surface layer of the steel material is equal to the hardness of the steel material or lower than the hardness of the steel material, and the reduction of the critical diffusible hydrogen amount can be prevented.
  • the depth (thickness) of the low carbon region was set to a depth (thickness) of 100 ⁇ m or more from the surface of the steel material or bolt so as to obtain the above effect.
  • the depth (thickness) of the low carbon region is preferably as deep (thick) as possible, but if it exceeds 1000 ⁇ m, the strength of the entire steel material or the entire bolt decreases, so the depth (thickness) of the low carbon region is 1000 ⁇ m. Is the upper limit.
  • the nitride layer will be described.
  • the nitride layer is a region having a nitrogen concentration of 12.0% by mass or less and 0.02% by mass or more higher than the nitrogen concentration of the steel material or bolt.
  • the nitride layer is formed with a thickness of 200 ⁇ m or more from the surface of the steel material or bolt.
  • the thickness and nitrogen concentration of the nitride layer can be adjusted by the heating atmosphere, heating temperature, and holding time during the nitriding treatment. For example, when the concentration of ammonia or nitrogen in the heating atmosphere is high, the heating temperature is high, and the holding time is long, the nitride layer becomes thick and the nitrogen concentration of the nitride layer becomes high.
  • the nitrogen concentration in the nitride layer is higher than the nitrogen concentration in the steel material, the amount of hydrogen entering the steel material from the corrosive environment can be reduced, but the difference between the nitrogen concentration in the nitride layer and the nitrogen concentration in the steel material is less than 0.02% by mass. And the effect of reducing the amount of intrusion hydrogen cannot be sufficiently obtained. Therefore, the nitrogen concentration of the nitrided layer is set to a concentration higher than the nitrogen concentration of the steel material by 0.02% by mass or more. On the other hand, if the nitrogen concentration exceeds 12.0% by mass, the hardness of the nitrided layer increases excessively and becomes brittle, so 12.0% by mass was made the upper limit.
  • Corrosion occurs when a nitride layer is formed on the steel surface with a nitrogen concentration of 12.0 mass% or less, 0.02 mass% or more higher than the nitrogen concentration of the steel material, and a depth of 200 ⁇ m or more from the surface.
  • the amount of hydrogen entering the steel from the environment is greatly reduced.
  • the nitrided layer was limited to a thickness (depth) of 200 ⁇ m or more from the surface of the steel material or bolt so that the above effect was obtained.
  • the upper limit of the thickness of the nitrided layer is not particularly specified, but if it exceeds 1000 ⁇ m, the productivity is lowered and the cost is increased, so 1000 ⁇ m or less is preferable.
  • the depth (thickness) of the low carbon region formed in the high-strength steel material or high-strength bolt of the present invention can be determined from the carbon concentration curve from the surface of the steel material or bolt. Polishing the cross section of a steel material or bolt having a low carbon region and a nitride layer on the surface layer, an energy dispersive X-ray fluorescence analyzer (hereinafter sometimes referred to as “EDX”), or a wavelength dispersive X-ray fluorescence analyzer ( Hereinafter, the carbon concentration in the depth direction from the surface is measured by performing a line analysis.
  • FIG. 2 shows a method for obtaining the depth (thickness) of the low carbon region from the carbon concentration curve obtained by EDX. That is, FIG.
  • FIG. 2 is a diagram showing the relationship between the distance from the steel material surface and the carbon concentration obtained by measuring the carbon concentration in the depth direction from the surface using EDX.
  • the carbon concentration increases as the distance (depth) from the steel surface increases. This is because a low carbon region is formed on the steel surface by decarburization.
  • the carbon concentration is substantially constant (average carbon concentration a).
  • the average carbon concentration a is a carbon concentration in a region not affected by the decarburization process, and is equivalent to the carbon amount of the steel material before the decarburization process. Therefore, in the present invention, the chemical analysis value of the carbon concentration of the steel material is used as a reference value for determining the depth of the low carbon region. As shown in FIG.
  • the depth (thickness) of the low carbon region can be evaluated by determining the distance (depth) from the steel material surface at the boundary in the depth direction of the range.
  • the thickness (depth) of the nitride layer can be determined from the change in the nitrogen concentration from the surface of the steel material or bolt as in the low carbon region. Specifically, the cross section of a steel material or bolt having a low carbon region and a nitride layer on the surface layer is polished, and line analysis is performed by EDX or WDS to measure the nitrogen concentration in the depth direction from the surface.
  • FIG. 3 shows a method for determining the thickness (depth) of the nitride layer from the nitrogen concentration curve obtained with an energy dispersive X-ray fluorescence spectrometer (EDX). That is, FIG. 3 is a diagram showing the relationship between the distance from the steel material surface and the nitrogen concentration obtained by measuring the nitrogen concentration in the depth direction from the surface using EDX. As the distance (depth) from the steel material surface increases, the nitrogen concentration decreases, but the carbon concentration is substantially constant (average nitrogen concentration) in a region not affected by nitriding treatment. The average nitrogen concentration is a nitrogen concentration in a range not affected by the nitriding treatment, and is equivalent to the nitrogen amount of the steel material before the nitriding treatment.
  • EDX energy dispersive X-ray fluorescence spectrometer
  • the chemical analysis value of the nitrogen concentration of the steel material is used as a reference value for determining the thickness of the nitride layer.
  • a range in which the nitrogen concentration from the steel surface to the required depth is 0.02% by mass or more of the average nitrogen concentration is determined, and from the steel surface at the boundary in the depth direction of the range.
  • the thickness (depth) of the nitride layer can be evaluated.
  • the depth of the low carbon region and the thickness of the nitrided layer are obtained by simply averaging the values measured at any five points in the cross section of the steel material or bolt.
  • the carbon concentration and the nitrogen concentration of the steel material may be obtained by measuring the carbon concentration and the nitrogen concentration at a position sufficiently deeper than the depth of the low carbon region and the nitrided layer, for example, at a depth of 2000 ⁇ m or more from the surface. Good.
  • an analytical sample may be collected from a position at a depth of 2000 ⁇ m or more from the surface of the steel material or bolt, and obtained by chemical analysis.
  • the formation of a nitride layer in the low carbon region formed on the steel material surface suppresses the amount of intruded hydrogen
  • the steel material surface By forming the low carbon region, the delayed fracture resistance is remarkably improved by a synergistic effect with the increase in the amount of critical diffusible hydrogen.
  • the presence of a nitride layer and a low carbon region on the surface layer of the steel material suppresses the amount of hydrogen entering the steel material to 0.5 ppm or less, and the limit diffusible hydrogen content of the steel material Can be increased to 2.00 ppm or more.
  • C is an essential element for securing the strength of the steel material. If it is less than 0.10%, the required strength cannot be obtained, and if it exceeds 0.55%, ductility and toughness are lowered and delayed fracture resistance is also lowered, so C is 0.10 to 0.00. 55%.
  • Si Si is an element that increases strength by solid solution strengthening. If it is less than 0.01%, the effect of addition is insufficient, and if it exceeds 3%, the effect is saturated, so Si was made 0.01 to 3%.
  • Mn is an element not only for deoxidation and desulfurization but also for increasing the hardenability by lowering the transformation temperature of the pearlite structure or the bainite structure in order to obtain a martensite structure. If it is less than 0.1%, the effect of addition is insufficient. If it exceeds 2%, it segregates at the grain boundary during austenite heating, embrittles the grain boundary, and deteriorates the delayed fracture resistance.
  • the high-strength steel material or high-strength bolt of the present invention contains one or two of V and Mo in order to improve delayed fracture resistance.
  • V is an element for precipitating carbides, nitrides, and / or carbonitride fine precipitates in the steel material.
  • V is an element that contributes to improving the strength by lowering the transformation temperature of the pearlite structure or bainite structure to enhance the hardenability and the softening resistance during the tempering treatment. If V exceeds 1.5%, the solution temperature for precipitation strengthening becomes high, and the force for trapping hydrogen is saturated, so it was made 1.5% or less. If V is less than 0.05%, the effect of improving the strength due to the precipitation of fine precipitates cannot be obtained sufficiently, so 0.05% or more is preferable.
  • Mo is an element that precipitates carbides, nitrides, and / or carbonitride fine precipitates in the steel material. This fine precipitate captures the hydrogen that has entered the steel material, renders it harmless, and acts to increase the amount of critical diffusible hydrogen. Moreover, the fine precipitate contributes to the improvement of the delayed fracture resistance by increasing the critical diffusible hydrogen amount while contributing to the strength improvement of the steel material. Mo is an element that contributes to the improvement of strength by lowering the transformation temperature of the pearlite structure and bainite structure to increase the hardenability and the softening resistance during the tempering treatment. If Mo exceeds 3.0%, the solution temperature for precipitation strengthening becomes high, and the force for capturing hydrogen is saturated, so it was made 3.0% or less.
  • V + 1 / 2Mo In the present invention, Mo and V need to satisfy V + 1 / 2Mo> 0.4%. If V and Mo satisfy the above formula, the amount of V that increases not only the amount of limit diffusible hydrogen but also the amount of invading hydrogen is relatively small with respect to the amount of Mo. Delayed fracture resistance can be obtained.
  • the high-strength steel material or high-strength bolt of the present invention is one or two kinds of Cr, Nb, Cu, Ni, and B as long as the excellent delayed fracture resistance is not excluded for the purpose of improving the strength. You may contain the above.
  • Cr Cr is an element that lowers the transformation temperature of the pearlite structure or bainite structure to increase the hardenability, and increases the softening resistance during the tempering process, thereby contributing to the improvement of the strength. If it is less than 0.05%, the effect of addition cannot be sufficiently obtained, and if it exceeds 1.5%, the toughness is deteriorated, so Cr is made 0.05 to 1.5%.
  • Nb Nb, like Cr, is an element that contributes to improving strength by increasing hardenability and temper softening resistance. If it is less than 0.001%, the effect of addition is not sufficiently obtained, and if it exceeds 0.05%, the effect of addition is saturated, so Nb was made 0.001 to 0.05%.
  • Cu is an element that contributes to improving the hardenability, increasing the temper softening resistance, and improving the strength due to the precipitation effect. If it is less than 0.01%, the effect of addition cannot be sufficiently obtained. If it exceeds 4%, grain boundary embrittlement occurs and the delayed fracture resistance deteriorates, so Cu was made 0.01 to 4%.
  • Ni Ni is an element that increases the hardenability and is effective in improving ductility and toughness that decrease with increasing strength. If it is less than 0.01%, the effect of addition is not sufficiently obtained, and if it exceeds 4%, the effect of addition is saturated, so Ni was made 0.01 to 4%.
  • B is an element that suppresses grain boundary fracture and is effective in improving delayed fracture resistance.
  • B is an element that segregates at the austenite grain boundary and remarkably increases the hardenability.
  • the content is less than 0.0001%, the effect of addition cannot be sufficiently obtained.
  • the content exceeds 0.005%, B carbide or Fe carbon boride is generated at the grain boundary, and grain boundary embrittlement occurs, resulting in delay resistance. Since the fracture characteristics deteriorate, B is set to 0.0001 to 0.005%.
  • the high-strength steel material and high-strength bolt of the present invention are one or two of Al, Ti, Mg, Ca, and Zr as long as the excellent delayed fracture resistance is not excluded for the purpose of refining the structure. It may contain seeds or more.
  • Al is an element that forms oxides and nitrides, prevents coarsening of austenite grains, and suppresses deterioration of delayed fracture resistance. If it is less than 0.003%, the effect of addition is insufficient, and if it exceeds 0.1%, the effect of addition is saturated. Therefore, Al is preferably 0.003 to 0.1%.
  • Ti Ti, like Al, is an element that forms oxides and nitrides to prevent coarsening of austenite grains and suppress deterioration of delayed fracture resistance. If it is less than 0.003%, the effect of addition is insufficient, and if it exceeds 0.05%, Ti carbonitride is coarsened during rolling or processing, or during heat treatment, and the toughness is reduced.
  • Mg has deoxidation and desulfurization effects, and forms Mg oxide, Mg sulfide, Mg-Al, Mg-Ti, Mg-Al-Ti complex oxides and sulfides, etc.
  • Ca has a deoxidizing and desulfurizing effect, and also forms Ca oxide, Ca sulfide, Al, Ti, Mg composite oxide and composite sulfide to prevent austenite grain coarsening. It is an element that suppresses the deterioration of delayed fracture resistance. If it is less than 0.0003%, the effect of addition is insufficient, and if it exceeds 0.01%, the effect of addition is saturated. Therefore, Ca is preferably 0.0003 to 0.01%.
  • Zr forms Zr oxide, Zr sulfide, composite oxide or composite sulfide of Al, Ti, Mg, Zr, etc., prevents austenite grains from coarsening, and deteriorates delayed fracture resistance. It is an element to suppress.
  • the steel structure of the present invention is mainly tempered martensite, it has a good ductility and toughness even when the tensile strength is 1300 MPa or more.
  • the area ratio of tempered martensite in the low carbon region and the region excluding the nitrided layer is 85% or more, and the balance is a structure composed of one or more of retained austenite, bainite, pearlite, and ferrite.
  • the area ratio of tempered martensite is the deeper of the depth at which the carbon concentration is constant in the carbon concentration curve shown in FIG. 2 and the depth at which the nitrogen concentration is constant in the nitrogen concentration curve shown in FIG. Measure with For example, the area ratio of tempered martensite may be measured at a depth of 2000 ⁇ m or more from the surface of the steel material or bolt, or at a site that is 1/4 of the thickness or diameter of the steel material.
  • the area ratio of martensite can be obtained by observing the C cross section of a steel material using an optical microscope and measuring the area of martensite per unit area. Specifically, the C cross section of the steel material is polished and etched with a nital etchant, the area of martensite in five fields in the range of 0.04 mm 2 is measured, and the average value is calculated. Further, in the steel material of the present invention, the compressive residual stress on the steel material surface is generated by heating and rapid cooling during the nitriding treatment, thereby improving delayed fracture resistance. When the compressive residual stress is 200 MPa or more, the delayed fracture resistance is improved. Therefore, the compressive residual stress on the surface of the steel of the present invention is preferably 200 MPa or more.
  • the compressive residual stress can be measured using an X-ray residual stress measuring device. Specifically, the residual stress on the steel material surface is measured, and then the steel material surface is etched by 25 ⁇ m by electropolishing to measure the residual stress in the depth direction. It is preferable to measure three arbitrary points and use the average value.
  • the tensile strength is 1300 MPa or more
  • the occurrence frequency of delayed fracture is remarkably increased. Therefore, when the tensile strength is 1300 MPa or more, the delayed fracture resistance of the steel material of the present invention in which the low carbon region and the nitride layer are formed on the surface layer is remarkably excellent.
  • the manufacturing method of the steel material of the present invention includes a decarburization process in which a decarburization process is performed by heating a steel material (wire material, PC steel rod, steel material processed into a predetermined shape) having a required component composition, and a decarburized steel material.
  • the structure of the steel material of the present invention becomes a structure mainly composed of tempered martensite by the nitriding step.
  • the steel material of the present invention is decarburized, and the carbon concentration is 0.05% or more and 0.9 times or less of the carbon concentration of the steel material from the surface of the steel material to a depth of 100 ⁇ m or more and 1000 ⁇ m or less. To do.
  • the atmosphere of the heating furnace can be weakly decarburized by adjusting the concentration of methane gas to form a low carbon region.
  • the heating temperature in the decarburization treatment is preferably Ac 3 to 950 ° C. By heating to Ac 3 or higher, the steel structure becomes austenite, decarburization from the surface layer is promoted, and a low carbon region can be easily formed.
  • the upper limit of the heating temperature is preferably 950 ° C. from the viewpoint of suppressing coarsening of crystal grains and improving delayed fracture resistance.
  • the holding time at the heating temperature is preferably 30 to 90 minutes. By maintaining at the above heating temperature for 30 minutes or more, the depth of the low carbon region can be sufficiently secured and the steel structure can be made homogeneous.
  • the holding time at the heating temperature is preferably 90 minutes or less.
  • the heated steel material is cooled to a martensite-based structure.
  • the heated steel material may be quenched with oil as it is.
  • the area ratio of tempered martensite is preferably 85% or more in the steel structure of the present invention
  • the area ratio of martensite after quenching is preferably 85% or more.
  • nitriding treatment is performed on a steel material whose steel structure is mainly martensite and a low carbon region is formed on the surface layer.
  • a nitride layer having a thickness from the steel surface of 200 ⁇ m or more and a nitrogen concentration of 12.0% or less and 0.02% or more higher than the nitrogen concentration of the steel material is formed.
  • Tempering is performed to make the steel structure a structure mainly composed of tempered martensite and to precipitate fine precipitates that capture hydrogen.
  • the steel material contains one or both of V and Mo, fine carbides, nitrides, and / or carbonitrides (fine particles) that act to trap hydrogen in the nitriding step. Precipitate).
  • the nitriding treatment is performed, for example, by heating a steel material in an atmosphere containing ammonia or nitrogen.
  • the nitriding treatment is preferably held at 500 ° C. or higher and 650 ° C. or lower for 30 to 90 minutes. If the nitriding temperature exceeds 650 ° C., the strength of the steel material decreases, so the nitriding temperature is set to 650 ° C. or lower. If the nitriding temperature is 500 ° C.
  • the nitriding temperature is set to be over 500 ° C. Further, if the temperature of the nitriding treatment exceeds 500 ° C., the time required for diffusion of nitrogen from the steel material surface is shortened, the treatment time is shortened, and the productivity is increased. If the nitriding time is less than 30 minutes, the depth of the nitrided layer may not reach 200 ⁇ m or more from the surface, so the nitriding time is preferably 30 minutes or longer. Although the upper limit of the nitriding time is not specified, since the nitriding temperature is high in the present invention, a sufficiently thick nitride layer can be formed even in 90 minutes or less.
  • nitriding step a general nitriding method such as a gas nitriding method, a gas soft nitriding method, a plasma nitriding method, or a salt bath nitriding method can be used.
  • a method for producing the high-strength bolt of the present invention hereinafter sometimes referred to as “the bolt of the present invention”.
  • the manufacturing method of the bolt according to the present invention includes a processing step for processing the steel material according to the present invention into a bolt, a decarburizing step for heating and decarburizing the bolt, cooling the heated bolt, and It consists of a quenching process with a site-based structure and a nitriding process in which the quenched bolt is nitrided at a temperature of more than 500 ° C. and 650 ° C. or less.
  • the steel structure of the bolt becomes a structure mainly composed of tempered martensite.
  • a wire material that is a steel material may be cold-forged and rolled into a bolt shape.
  • the manufacturing method of the bolt of the present invention differs from the manufacturing method of the steel material of the present invention only in the processing step of processing the steel material into a bolt shape, the description of the other steps is omitted.
  • the compressive residual stress on the surface of the steel material or bolt can be set to 200 MPa or more. Due to the presence of this compressive residual stress, the delayed fracture resistance is further improved.
  • the atmosphere in the heating furnace was controlled to be weakly decarburized, and quenching was oil-cooled so that the cooling rate in the range of 700 to 300 ° C. was 5 ° C./s or more.
  • the depth of the low carbon region was adjusted by the carbon potential of the furnace atmosphere, the heating temperature and the holding time.
  • the steel material was subjected to nitriding treatment to form a nitrided layer by gas soft nitriding. After nitriding, the range of 500 to 200 ° C. was quenched at the cooling rate shown in Table 2 (cooling rate after tempering). 1 to 25 high strength steel materials were obtained.
  • the nitriding treatment was performed at a temperature shown in Table 2 with an ammonia volume ratio in the treatment gas atmosphere of 30 to 50% and a treatment time of 30 to 90 minutes.
  • the thickness of the nitride layer was adjusted by changing the heating temperature and holding time.
  • the nitrogen concentration of the nitride layer was adjusted by changing the ammonia volume ratio in the processing gas atmosphere.
  • Steel materials (wires) shown in Table 1 were processed into bolts and manufactured No. In the same process as the high-strength steel materials (wires) 1 to 25, the production No. 26 to 40 high-strength bolts were obtained.
  • the nitriding treatment was performed in the temperature range shown in Table 3, and after the nitriding treatment, the range of 500 to 200 ° C.
  • the C section of 26 to 40 high-strength bolts was polished and etched with a nital etchant, and using an optical microscope, the area of martensite with 5 visual fields in the range of 0.04 mm 2 was measured. did.
  • the remaining structure of the tempered martensite was one or more of retained austenite, bainite, pearlite, and ferrite.
  • Tensile strength The tensile strength was measured according to JIS Z 2241. Low carbon region depth and nitride layer thickness No. 1 to 25 high strength steel and production No.
  • the cross-sections of 26 to 40 high-strength bolts were polished, and the carbon concentration and the nitrogen concentration in the depth direction from the surface were measured at any five locations in the longitudinal direction using EDX.
  • the depth (thickness) of the region where the carbon concentration is 0.9 times or less the carbon concentration of the steel material ((carbon concentration in the low carbon region / carbon concentration in the steel material) ⁇ 0.9) is expressed as “low carbon region depth.
  • the depth (thickness) of the region where the nitrogen concentration is 0.02% or more higher than the nitrogen concentration of the steel material is referred to as “nitride layer thickness”. did.
  • the depth of the low carbon region and the thickness of the nitride layer were average values of values measured at arbitrary five locations in the longitudinal direction.
  • Compressive residual stress The compressive residual stress of the surface was measured using an X-ray residual stress measuring apparatus. Production No. 1 to 25 high-strength steel materials and production no. After measuring the residual stress on the surface of 26 to 40 high-strength bolts, the surface was etched by 25 ⁇ m by electrolytic polishing, and the residual stress in the depth direction was measured. The compressive residual stress was an average value of values measured at three arbitrary locations. Limiting diffusible hydrogen content and delayed fracture resistance No. 1 to 25 high strength steel and production No. A delayed fracture specimen having the shape shown in FIG.
  • the balance weight 2 is arranged at one end of the lever having the fulcrum 3 as a fulcrum, and the test piece 1 is arranged at the other end.
  • the test was conducted. And as shown in FIG.1 (b), the maximum value of the diffusible hydrogen amount of the test piece 1 which did the constant load delayed fracture test for 100 hours or more and did not fracture
  • the amount of diffusible hydrogen in test piece 1 the delayed fracture test piece was heated at 100 ° C./h, and the integrated value of the amount of hydrogen released between room temperature and 400 ° C. was measured with a gas chromatograph.
  • the delayed fracture resistance indicates “no delayed fracture” when the intrusion hydrogen amount shown in Table 2 and Table 3 is less than the limit diffusible hydrogen amount, and when the intrusion hydrogen amount is equal to or greater than the limit diffusible hydrogen amount. It was evaluated that there was delayed fracture.
  • Intrusion hydrogen amount The intrusion hydrogen amount is determined according to the production no. No. 1 to 25 high strength steel and production No.
  • Test pieces of 26 to 40 high-strength bolts were prepared, and 30 cycles of the corrosion acceleration test using the temperature / humidity / time pattern shown in FIG. 6 were performed. After removing the corrosion layer on the surface of the test piece by sand blasting, hydrogen analysis was performed by a temperature rising method, and the amount of hydrogen released from room temperature to 400 ° C. was measured to determine the amount of invading hydrogen. As shown in Table 2, the production No. of the invention example.
  • high-strength steel materials have a low carbon region depth of 100 ⁇ m or more and a nitrided layer thickness of 200 ⁇ m or more, all of which have a tensile strength of 1300 MPa or more and an intrusion hydrogen amount of 0.5 ppm or less.
  • the amount of ionic hydrogen was 2.00 ppm or more and the amount of invading hydrogen was less than the limit diffusible hydrogen amount, indicating “no delayed fracture”.
  • Each of the high strength steel materials 1 to 15 had a tempered martensite ratio of 50% or more, and was a tempered martensite-based structure.
  • production No. All the high strength steel materials 1 to 15 had a compressive residual stress of 200 MPa or more.
  • the production No. No. 16 high-strength steel material is an example in which the amount of C, the amount of Si and the amount of Mn are small and the strength is low.
  • Production No. No. 17 has a large amount of C.
  • No. 18 has a large amount of Mn.
  • No. 19 has a large amount of Cr.
  • No. 21 has a large amount of Cu.
  • No. 22 has a large amount of B.
  • No. 20 is an example in which the amount of critical diffusible hydrogen is low because “V + 1 / 2Mo” is low, resulting in “with delayed fracture”.
  • Production No. 23 is an example in which the heating time for quenching is short, the depth of the low carbon region is less than 100 ⁇ m, the amount of critical diffusible hydrogen is low, and “delayed fracture occurs”.
  • Production No. No. 24 is an example in which the time for the nitriding treatment is short, the nitrided layer thickness is less than 200 ⁇ m, the amount of invading hydrogen is large, and “delayed fracture occurs”.
  • Production No. In No. 25 since the concentration of ammonia in the nitriding gas was lowered, the difference in nitrogen concentration with the steel material was 0.01% by mass in the region from the surface to a depth of 200 ⁇ m, and the amount of invading hydrogen was large. This is an example.
  • High strength bolts of 26 to 40 have a low carbon region depth of 100 ⁇ m or more, a nitrided layer thickness of 200 ⁇ m or more, all of which have a tensile strength of 1300 MPa or more, an intrusion hydrogen amount of 0.5 ppm or less, and limit diffusion.
  • the amount of ionic hydrogen was 2.00 ppm or more and the amount of invading hydrogen was less than the limit diffusible hydrogen amount, indicating “no delayed fracture”.
  • Each of the high-strength bolts of 26 to 40 had a tempered martensite ratio of 50% or more, a tempered martensite-based structure, and a compressive residual stress of 200 MPa or more.
  • high-strength steel materials wire rods, PC steel rods
  • high-strength bolts that exhibit excellent delayed fracture resistance even in severe corrosive environments, and these can be manufactured at low cost.
  • a manufacturing method can be provided. Therefore, the present invention has extremely high applicability in the steel material manufacturing and use industries.
  • test piece 2 balance weight 3 fulcrum

Abstract

The disclosed steel contains, by mass: 0.10-0.55% carbon; 0.01-3% silicon; 0.1-2% manganese; and up to 1.5% vanadium and/or up to 3.0% molybdenum, with the vanadium content (V) and the molybdenum content (Mo) satisfying the relation V+½Mo > 0.4%. Said steel also contains one or more of the following: 0.05-1.5% chromium; 0.001-0.05% niobium; 0.01-4% copper; 0.01-4% nickel; and 0.0001-0.005% boron. The remainder comprises iron and unavoidable impurities. The structure of the disclosed steel is primarily tempered martensite. Said steel, which is a high-strength steel that exhibits excellent resistance to delayed fracture, is characterized by the following being formed in a surface layer thereof: (a) a nitrided layer with a thickness of at least 200 μm from the surface of the steel and a nitrogen concentration by mass that is at least 0.02% higher than that of the steel and no greater than 12.0%; and (b) a low-carbon region, at a depth between 100 μm and 1000 μm from the surface of the steel, with a carbon concentration by mass that is at most 0.9 times that of the steel and no less than 0.05%.

Description

耐遅れ破壊特性に優れた高強度鋼材と高強度ボルト、及び、その製造方法High-strength steel material and high-strength bolt excellent in delayed fracture resistance, and manufacturing method thereof
 本発明は、線材やPC鋼棒(プレストレスト・コンクリート用鋼棒)などに用いる高強度鋼材、特に、耐遅れ破壊特性に優れた引張強度1300MPa以上の高強度鋼材と高強度ボルト、及び、その製造方法に関するものである。 The present invention relates to a high-strength steel material used for wire rods, PC steel rods (prestressed concrete steel rods) and the like, in particular, a high-strength steel material having excellent delayed fracture resistance and a tensile strength of 1300 MPa or more, a high-strength bolt, and production thereof It is about the method.
 機械、自動車、橋梁、建築構造物に多数使用されている高強度鋼は、C量が0.20~0.35%の中炭素鋼、例えばJIS G 4104、JIS G 4105に規定されているSCr、SCM等に調質処理を施したものである。しかし、どの鋼種においても、引張強度が1300MPaを超えると、遅れ破壊が起きる危険性が大きくなる。
 高強度鋼の耐遅れ破壊特性を向上させる方法として、鋼組織をベイナイト組織とする方法、又は、旧オーステナイト粒を微細化する方法が有効である。
 特許文献1には、旧オーステナイト粒を微細化して耐遅れ破壊性を高めた鋼が開示され、また、特許文献2及び3には、鋼成分の偏析を抑制して耐遅れ破壊性を高めた鋼が開示されている。しかし、旧オーステナイト粒の微細化や、成分偏析の抑制では、耐遅れ破壊特性を大幅に改善することは難しい。
 ベイナイト組織は、耐遅れ破壊特性の向上に寄与するが、ベイナイト組織の形成には、適切な添加元素や熱処理が必要となるので、鋼のコストが上昇する。
 特許文献4~6には、面積率80%以上のパーライト組織を強伸線加工して、1200N/mm以上の強度と優れた耐遅れ破壊性を付与した、C0.5~1.0質量%の高強度ボルト用の線材が開示されている。しかし、特許文献4~6に記載の線材は、伸線加工によりコストが高く、また、線径の太いものの製造が困難である。
 特許文献7には、断面内部の硬さがHv550以上のオイルテンパー線を用いて、冷間コイリング後の遅れ破壊の発生を抑制したコイルばねが開示されている。しかし、窒化後の製品表層硬さがHv900以上であり、ボルトやPC鋼棒のような高負荷応力下では遅れ破壊特性が低く、腐食環境がより厳しくなると、遅れ破壊が発生する問題がある。
 特許文献8には、所要の成分組成の鋼に窒化処理を施した、焼戻しマルテンサイト組織が主体の耐遅れ破壊特性に優れた高強度鋼材が開示されている。特許文献8に開示の高強度鋼材は、水素を含む腐食環境下でも耐遅れ破壊特性を発現する。
 しかし、近年、腐食環境はより厳しくなり、厳しい腐食環境下でも、優れた耐遅れ破壊特性を発現する高強度鋼材が求められている。
High-strength steels used in many machines, automobiles, bridges, and building structures are medium carbon steels with a C content of 0.20 to 0.35%, such as SCr specified in JIS G 4104 and JIS G 4105. , SCM and the like are subjected to a tempering process. However, in any steel type, if the tensile strength exceeds 1300 MPa, the risk of delayed fracture increases.
As a method for improving the delayed fracture resistance of high-strength steel, a method in which the steel structure is a bainite structure or a method in which prior austenite grains are refined is effective.
Patent Document 1 discloses a steel in which old austenite grains are refined to increase delayed fracture resistance, and Patent Documents 2 and 3 increase delayed fracture resistance by suppressing segregation of steel components. Steel is disclosed. However, it is difficult to significantly improve the delayed fracture resistance by refinement of prior austenite grains and suppression of component segregation.
The bainite structure contributes to the improvement of the delayed fracture resistance, but the formation of the bainite structure requires appropriate additive elements and heat treatment, which increases the cost of steel.
In Patent Documents 4 to 6, a pearlite structure having an area ratio of 80% or more is subjected to strong wire drawing to give a strength of 1200 N / mm 2 or more and excellent delayed fracture resistance. % Of high-strength bolts are disclosed. However, the wire materials described in Patent Documents 4 to 6 are expensive due to wire drawing, and it is difficult to produce a wire having a large wire diameter.
Patent Document 7 discloses a coil spring in which the occurrence of delayed fracture after cold coiling is suppressed by using an oil tempered wire having an internal hardness of Hv550 or more. However, the product surface hardness after nitriding is Hv 900 or more, and the delayed fracture characteristics are low under high load stress such as bolts and PC steel bars, and there is a problem that delayed fracture occurs when the corrosive environment becomes more severe.
Patent Document 8 discloses a high-strength steel material excellent in delayed fracture resistance mainly composed of a tempered martensite structure obtained by nitriding a steel having a required component composition. The high-strength steel material disclosed in Patent Document 8 exhibits delayed fracture resistance even in a corrosive environment containing hydrogen.
However, in recent years, the corrosive environment has become more severe, and there is a demand for a high-strength steel material that exhibits excellent delayed fracture resistance even under severe corrosive environments.
特公昭64−4566号公報Japanese Patent Publication No. 64-4566 特開平3−243744号公報JP-A-3-243744 特開平3−243745号公報JP-A-3-243745 特開2000−337332号公報JP 2000-337332 A 特開2000−337333号公報JP 2000-337333 A 特開2000−337334号公報JP 2000-337334 A 特開平10−251803号公報JP-A-10-251803 特開2009−299180号公報JP 2009-299180 A
 以上、説明したように、高強度鋼材において、従来の手法で耐遅れ破壊特性を大幅に高めることには限界がある。耐遅れ破壊特性を高める方法として、鋼材中に微細な析出物を分散させ、析出物に水素を捕捉させる方法がある。しかし、この方法を採用しても、外部から進入する水素の量が多い場合、遅れ破壊を効果的に抑制することは難しい。
 本発明は、上記現状に鑑み、厳しい腐食環境下でも、優れた耐遅れ破壊特性を発現する高強度鋼材(線材、PC鋼棒)と高強度ボルト、及び、それらを安価に製造する製造方法を提供することを目的とする。
As described above, there is a limit to significantly increasing the delayed fracture resistance in a high strength steel material by a conventional method. As a method for improving delayed fracture resistance, there is a method in which fine precipitates are dispersed in a steel material and hydrogen is trapped in the precipitates. However, even if this method is adopted, it is difficult to effectively suppress delayed fracture when the amount of hydrogen entering from the outside is large.
In view of the above situation, the present invention provides a high-strength steel material (wire rod, PC steel bar) and high-strength bolt that exhibit excellent delayed fracture resistance even in a severe corrosive environment, and a manufacturing method for manufacturing them at low cost. The purpose is to provide.
 本発明者らは、上記課題を解決する手法について鋭意研究した。その結果、(a)鋼材に、水素を捕捉する析出物を形成するV及び/又はMoを所定量含有させ、(b)脱炭処理及び窒化処理で、鋼材の表層に、(b1)低炭素領域を形成して、硬化を抑制し、かつ、(b2)窒化層を形成して、水素の侵入を阻止すると、耐遅れ破壊特性が顕著に向上することが判明した。
 本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。
 (1)質量%で、C:0.10~0.55%、Si:0.01~3%、Mn:0.1~2%を含有し、さらに、V:1.5%以下及びMo:3.0%以下の1種又は2種を含有し、かつ、VとMoの含有量が、V+1/2Mo>0.4%を満たし、さらに、Cr:0.05~1.5%、Nb:0.001~0.05%、Cu:0.01~4%、Ni:0.01~4%、及び、B:0.0001~0.005%の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、組織が焼戻しマルテンサイト主体の組織である鋼材であって、上記鋼材の表層に、
 (a)上記鋼材の表面からの厚さが200μm以上で、かつ、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度より0.02質量%以上高い窒化層、及び、
 (b)上記鋼材の表面からの深さが100μm以上、1000μm以下で、かつ、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域
が形成されていることを特徴とする耐遅れ破壊特性に優れた高強度鋼材。
 (2)前記窒化層及び低炭素領域の存在により、鋼材に侵入する水素量が0.5ppm以下であり、かつ、鋼材の限界拡散性水素量が2.00ppm以上であることを特徴とする前記(1)に記載の耐遅れ破壊特性に優れた高強度鋼材。
 (3)さらに、前記鋼材が、質量%で、Al:0.003~0.1%、Ti:0.003~0.05%、Mg:0.0003~0.01%、Ca:0.0003~0.01%、Zr:0.0003~0.01%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)に記載の耐遅れ破壊特性に優れた高強度鋼材。
 (4)前記窒化層の厚さが1000μm以下であることを特徴とする前記(1)~(3)のいずれかに記載の耐遅れ破壊特性に優れた高強度鋼材。
 (5)前記焼戻しマルテンサイトの面積率が85%以上であることを特徴とする前記(1)~(4)のいずれかに記載の耐遅れ破壊特性に優れた高強度鋼材。
 (6)前記鋼材の表面における圧縮残留応力が200MPa以上であることを特徴とする前記(1)~(5)のいずれかに記載の耐遅れ破壊特性に優れた高強度鋼材。
 (7)前記鋼材の引張強度が1300MPa以上であることを特徴とする前記(1)~(6)のいずれかに記載の耐遅れ破壊特性に優れた高強度鋼材。
 (8)質量%で、C:0.10~0.55%、Si:0.01~3%、Mn:0.1~2%を含有し、さらに、V:1.5%以下及びMo:3.0%以下の1種又は2種を含有し、かつ、VとMoの含有量が、V+1/2Mo>0.4%を満たし、さらに、Cr:0.05~1.5%、Nb:0.001~0.05%、Cu:0.01~4%、Ni:0.01~4%、及び、B:0.0001~0.005%の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、組織が焼戻しマルテンサイト主体の組織である鋼材を加工したボルトであって、上記ボルトの表層に、
 (a)上記ボルトの表面からの厚さが200μm以上で、かつ、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度より0.02質量%以上高い窒化層、及び、
 (b)上記ボルトの表面からの深さが100μm以上、1000μm以下で、かつ、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域
が形成されていることを特徴とする耐遅れ破壊特性に優れた高強度ボルト。
 (9)前記窒化層及び低炭素領域の存在で、ボルトへ侵入する水素量が0.5ppm以下であり、かつ、ボルトの限界拡散性水素量が2.00ppm以上であることを特徴とする前記(8)に記載の耐遅れ破壊特性に優れた高強度ボルト。
 (10)さらに、前記鋼材が、質量%で、Al:0.003~0.1%、Ti:0.003~0.05%、Mg:0.0003~0.01%、Ca:0.0003~0.01%、Zr:0.0003~0.01%の1種又は2種以上を含有することを特徴とする前記(8)又は(9)に記載の耐遅れ破壊特性に優れた高強度ボルト。
 (11)前記ボルトの窒化層の厚さが1000μm以下であることを特徴とする前記(8)~(10)のいずれかに記載の耐遅れ破壊特性に優れた高強度ボルト。
 (12)前記焼戻しマルテンサイトの面積率が85%以上であることを特徴とする前記(8)~(11)のいずれかに記載の耐遅れ破壊特性に優れた高強度ボルト。
 (13)前記ボルトの表面における圧縮残留応力が200MPa以上であることを特徴とする前記(8)~(12)のいずれかに記載の耐遅れ破壊特性に優れた高強度ボルト。
 (14)前記ボルトの引張強度が1300MPa以上であることを特徴とする前記(8)~(13)のいずれかに記載の耐遅れ破壊特性に優れた高強度ボルト。
 (15)前記(1)~(7)のいずれかに記載の耐遅れ破壊特性に優れた高強度鋼材の製造方法であって、
 (1) 前記(1)又は(3)に記載の成分組成の鋼材を加熱して、鋼材の表面から100μm以上、1000μm以下の深さまで、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域を形成し、次いで、そのまま冷却して、鋼材組織をマルテンサイト主体の組織とし、その後、
 (2) 上記鋼材に、500℃超、650℃以下の窒化処理を施して、該鋼材の表層に、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度よりも0.02質量%以上高い、上記鋼材の表面からの厚さが200μm以上の窒化層を形成するとともに、鋼材組織を焼戻しマルテンサイト主体の組織とする
ことを特徴とする耐遅れ破壊特性に優れた高強度鋼材の製造方法。
 (16)前記窒化層の厚さが1000μm以下であることを特徴とする前記(15)に記載の耐遅れ破壊特性に優れた高強度鋼材の製造方法。
 (17)前記(8)~(14)のいずれかに記載の耐遅れ破壊特性に優れたボルトの製造方法であって、
 (1) 前記(8)又は(10)に記載の成分組成の鋼材を加工したボルトを加熱して、ボルトの表面から100μm以上、1000μm以下の深さまで、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域を形成し、次いで、そのまま冷却して、鋼材組織をマルテンサイト主体の組織とし、その後、
 (2) 上記ボルトに、500℃超、650℃以下の窒化処理を施して、該ボルトの表層に、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度よりも0.02質量%以上高い、上記ボルトの表面からの厚さが200μm以上の窒化層を形成するとともに、鋼材を焼戻しマルテンサイト主体の組織とする
ことを特徴とする耐遅れ破壊特性に優れた高強度ボルトの製造方法。
 (18)前記窒化層の厚さが1000μm以下であることを特徴とする前記(17)に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。
The inventors of the present invention have intensively studied a method for solving the above-described problems. As a result, (a) the steel material contains a predetermined amount of V and / or Mo that forms precipitates that trap hydrogen, and (b) decarburization treatment and nitriding treatment, (b1) low carbon It has been found that when the region is formed to suppress curing, and (b2) the nitride layer is formed to prevent hydrogen from entering, the delayed fracture resistance is remarkably improved.
This invention was made | formed based on the said knowledge, The summary is as follows.
(1) By mass%, C: 0.10 to 0.55%, Si: 0.01 to 3%, Mn: 0.1 to 2%, V: 1.5% or less and Mo : Containing one or two of 3.0% or less, and the contents of V and Mo satisfy V + 1 / 2Mo> 0.4%, and Cr: 0.05 to 1.5%, One or more of Nb: 0.001 to 0.05%, Cu: 0.01 to 4%, Ni: 0.01 to 4%, and B: 0.0001 to 0.005% are contained. And the balance consists of Fe and unavoidable impurities, and the structure is a steel material whose structure is mainly tempered martensite, and in the surface layer of the steel material,
(A) a nitride layer having a thickness from the surface of the steel material of 200 μm or more and a nitrogen concentration of 12.0% by mass or less, which is 0.02% by mass or more higher than the nitrogen concentration of the steel material; and
(B) A low carbon region having a depth from the surface of the steel material of 100 μm or more and 1000 μm or less and a carbon concentration of 0.05% by mass or more and 0.9 times or less of the carbon concentration of the steel material is formed. High strength steel with excellent delayed fracture resistance.
(2) The amount of hydrogen entering the steel material is 0.5 ppm or less due to the presence of the nitride layer and the low carbon region, and the limit diffusible hydrogen content of the steel material is 2.00 ppm or more. A high-strength steel material excellent in delayed fracture resistance as described in (1).
(3) Further, the steel material is, by mass%, Al: 0.003-0.1%, Ti: 0.003-0.05%, Mg: 0.0003-0.01%, Ca: 0.00. It has excellent delayed fracture resistance according to the above (1) or (2), characterized by containing one or more of 0003 to 0.01%, Zr: 0.0003 to 0.01% High strength steel.
(4) The high strength steel material excellent in delayed fracture resistance according to any one of (1) to (3), wherein the nitride layer has a thickness of 1000 μm or less.
(5) The high strength steel material having excellent delayed fracture resistance according to any one of (1) to (4), wherein the area ratio of the tempered martensite is 85% or more.
(6) The high-strength steel material having excellent delayed fracture resistance according to any one of (1) to (5), wherein a compressive residual stress on the surface of the steel material is 200 MPa or more.
(7) The high-strength steel material having excellent delayed fracture resistance according to any one of (1) to (6), wherein the steel material has a tensile strength of 1300 MPa or more.
(8) By mass%, C: 0.10 to 0.55%, Si: 0.01 to 3%, Mn: 0.1 to 2%, V: 1.5% or less and Mo : Containing one or two of 3.0% or less, and the contents of V and Mo satisfy V + 1 / 2Mo> 0.4%, and Cr: 0.05 to 1.5%, One or more of Nb: 0.001 to 0.05%, Cu: 0.01 to 4%, Ni: 0.01 to 4%, and B: 0.0001 to 0.005% are contained. And the balance is a bolt made of steel material which is composed of Fe and unavoidable impurities, and whose structure is mainly tempered martensite, and on the surface layer of the bolt,
(A) a nitride layer having a thickness from the surface of the bolt of 200 μm or more and a nitrogen concentration of 12.0% by mass or less, which is 0.02% by mass or more higher than the nitrogen concentration of the steel material; and
(B) A low carbon region having a depth from the surface of the bolt of 100 μm to 1000 μm and a carbon concentration of 0.05% by mass or more and 0.9 times or less of the carbon concentration of the steel material is formed. A high-strength bolt with excellent delayed fracture resistance.
(9) The presence of the nitride layer and the low carbon region, the amount of hydrogen penetrating into the bolt is 0.5 ppm or less, and the limiting diffusible hydrogen amount of the bolt is 2.00 ppm or more. A high-strength bolt excellent in delayed fracture resistance as described in (8).
(10) Further, the steel material is, in mass%, Al: 0.003-0.1%, Ti: 0.003-0.05%, Mg: 0.0003-0.01%, Ca: 0.00. It has excellent delayed fracture resistance as described in (8) or (9) above, comprising one or more of 0003 to 0.01%, Zr: 0.0003 to 0.01% High strength bolt.
(11) The high-strength bolt excellent in delayed fracture resistance according to any one of (8) to (10), wherein the nitride layer of the bolt has a thickness of 1000 μm or less.
(12) The high strength bolt excellent in delayed fracture resistance according to any one of (8) to (11), wherein the area ratio of the tempered martensite is 85% or more.
(13) The high-strength bolt excellent in delayed fracture resistance according to any one of (8) to (12), wherein a compressive residual stress on the surface of the bolt is 200 MPa or more.
(14) The high strength bolt excellent in delayed fracture resistance according to any one of (8) to (13), wherein the bolt has a tensile strength of 1300 MPa or more.
(15) A method for producing a high-strength steel material having excellent delayed fracture resistance according to any one of (1) to (7),
(1) The steel material having the composition described in (1) or (3) is heated, and the carbon concentration is 0.05% by mass or more from the surface of the steel material to a depth of 100 μm or more and 1000 μm or less. Form a low carbon region of 0.9 times or less of the carbon concentration, then cooled as it is to make the steel structure a martensite-based structure,
(2) The steel material is subjected to nitriding treatment at a temperature exceeding 500 ° C. and not more than 650 ° C., and the nitrogen concentration of the steel material is 12.0% by mass or less and 0.02% by mass than the nitrogen concentration of the steel material. Production of high-strength steel material excellent in delayed fracture resistance, characterized by forming a nitride layer with a thickness of 200 μm or more from the surface of the steel material higher than the above, and having the steel material structure mainly composed of tempered martensite Method.
(16) The method for producing a high-strength steel material having excellent delayed fracture resistance according to (15), wherein the nitride layer has a thickness of 1000 μm or less.
(17) A method for producing a bolt having excellent delayed fracture resistance according to any one of (8) to (14),
(1) The bolt which processed the steel material of the component composition as described in said (8) or (10) is heated, and carbon concentration is 0.05 mass% or more from the surface of a bolt to the depth of 100 micrometers or more and 1000 micrometers or less. , Forming a low carbon region of 0.9 times or less of the carbon concentration of the steel material, then cooled as it is, the steel material structure is a martensite-based structure,
(2) The bolt is subjected to nitriding treatment at over 500 ° C. and not more than 650 ° C., and the nitrogen concentration is 12.0 mass% or less on the surface layer of the bolt, and 0.02 mass% than the nitrogen concentration of the steel material. A method for producing a high-strength bolt excellent in delayed fracture resistance, characterized in that a nitride layer having a thickness of 200 μm or more from the surface of the bolt is formed, and the steel is made of a tempered martensite-based structure. .
(18) The method for producing a high-strength bolt excellent in delayed fracture resistance according to (17), wherein the nitrided layer has a thickness of 1000 μm or less.
 本発明によれば、厳しい腐食環境においても優れた耐遅れ破壊特性を発現する高強度鋼材(線材、PC鋼棒)及び高強度ボルトと、それらを安価に製造することができる製造方法を提供することできる。 According to the present invention, there are provided a high-strength steel material (wire rod, PC steel bar) and high-strength bolt that exhibit excellent delayed fracture resistance even in a severe corrosive environment, and a manufacturing method capable of manufacturing them at low cost. I can.
 図1(a)は、昇温法による水素分析で得られる水素放出速度曲線を模式的に示す図である。
 図1(b)は、鋼材の定荷重遅れ破壊試験で得られる破断時間と拡散性水素量の関係を模式的に示す図である。
 図2は、エネルギー分散型蛍光X線分析装置(EDX)で得た炭素濃度曲線から、低炭素領域の深さ(厚さ)を求める方法を示す図である。
 図3は、エネルギー分散型蛍光X線分析装置(EDX)で得た窒素濃度曲線から、窒化層の厚さ(深さ)を求める方法を示す図である。
 図4は、鋼材の遅れ破壊試験に用いる試験片を示す図である。
 図5は、遅れ破壊試験機の態様を示す図である。
 図6は、腐食促進試験における温度及び湿度と時間の関係を示す図である。
Fig.1 (a) is a figure which shows typically the hydrogen release rate curve obtained by the hydrogen analysis by a temperature rising method.
FIG.1 (b) is a figure which shows typically the relationship between the fracture | rupture time obtained by the constant load delayed fracture test of steel materials, and the amount of diffusible hydrogen.
FIG. 2 is a diagram showing a method for obtaining the depth (thickness) of a low carbon region from a carbon concentration curve obtained by an energy dispersive X-ray fluorescence spectrometer (EDX).
FIG. 3 is a diagram showing a method for obtaining the thickness (depth) of a nitride layer from a nitrogen concentration curve obtained with an energy dispersive X-ray fluorescence spectrometer (EDX).
FIG. 4 is a view showing a test piece used for a delayed fracture test of a steel material.
FIG. 5 is a diagram showing an embodiment of the delayed fracture tester.
FIG. 6 is a diagram showing the relationship between temperature, humidity and time in a corrosion acceleration test.
 鋼中の水素が遅れ破壊に関与していることが知られている。また、鋼への水素の侵入は、実環境での腐食に伴って起き、鋼中に侵入した拡散性水素は、引張応力の集中部に集積して、遅れ破壊が発生する。
 図1(a)に、昇温法による水素分析で得られる水素放出速度曲線を模式的に示す。図1(a)に示すように、拡散性水素の放出量は、100℃付近でピークに達する。
 本発明では、試料を100℃/hで昇温し、室温から400℃までの間に放出された水素量の積算値を、拡散性水素量と定義する。なお、放出水素量は、ガスクロマトグラフで測定できる。
 本発明では、遅れ破壊が発生する最小の拡散性水素量を限界拡散性水素量という。限界拡散性水素量は、鋼の種類によって異なる。
 図1(b)に、鋼材の定荷重遅れ破壊試験で得られる破断時間と拡散性水素量の関係を模式的に示す。図1(b)に示すように、拡散性水素量が多いと破断時間は短く、拡散性水素量が少ないと破断時間は長い。
 即ち、拡散性水素量が少ないと遅れ破壊は発生せず、拡散性水素量が多いと、遅れ破壊が発生する。本発明では、鋼材の定荷重遅れ破壊試験を行って、図1(b)に示すように、100時間以上破断しなかった拡散性水素量の最大値を限界拡散性水素量とした。
 侵入水素量と限界拡散性水素量を比較し、侵入水素量よりも限界拡散性水素量が多いと、遅れ破壊は発生せず、逆に、侵入水素量よりも限界拡散性水素量が少ないと、遅れ破壊が発生する。したがって、限界拡散性水素量が多いほど、遅れ破壊の発生が抑制される。
 しかし、腐食環境から鋼材へ侵入する水素の量が、限界拡散性水素量を超えると、遅れ破壊が発生する。
 したがって、遅れ破壊の発生を防止するためには、鋼材への水素の侵入を抑制するのが有効である。例えば、窒化処理で鋼材表面に窒化層を形成すると、腐食による侵入水素量が抑制されるので、耐遅れ破壊特性が向上する。
 しかし、鋼材表面に窒化層を形成すると、表層の硬化によって、限界拡散性水素量が減少して、耐遅れ破壊特性は向上しない。そこで、本発明者らは、限界拡散性水素量を増大するため、鋼材に侵入した水素を微細析出物で捕捉して無害化することを前提に、鋼材の成分組成について検討した。
 その結果、本発明者らは、適正量のV及びMoの1種又は2種を含有させ、鋼材中にVやMoの炭化物、窒化物、及び/又は、炭窒化物からなる微細析出物を析出させると、限界拡散性水素量を増大できることを確認した。
 しかし、一方で、鋼材中にV及びMoの一方又は双方を含有させても、耐遅れ破壊特性の向上が十分に得られない場合があることも確認した。
 そこで、本発明者らは、微細析出物の結晶形態と、限界拡散性水素量及び侵入水素量との関係に着目して、鋭意検討を重ねた結果、次のことが判明した。
 六方晶のMoの炭化物、窒化物、及び、炭窒化物は、限界拡散性水素量を増大する効果が、侵入水素量を増大する効果よりも大きいので、耐遅れ破壊特性の向上に大きく寄与するが、NaCl型結晶のVの炭化物、窒化物、及び、炭窒化物と比較して、微細析出による強度向上効果が小さい。
 一方、NaCl型結晶のVの炭化物、窒化物、及び、炭窒化物は、微細析出による強度向上効果が優れている。しかし、NaCl型結晶のVの炭化物、窒化物、及び、炭窒化物は、限界拡散性水素量を増大する一方で、侵入水素量も増大するので、耐遅れ破壊特性の向上効果は、六方晶のMoの炭化物、窒化物、及び、炭窒化物と比較して小さい。
 即ち、鋼材において、所要の強度を確保し、かつ、優れた耐遅れ破壊特性を確保するためには、MoとVの含有量を適正に設定することが必要である。
 そこで、本発明者らは、MoとVの含有量を適正に設定すべく鋭意検討した。その結果、V:1.5質量%以下、Mo:3.0質量%以下の1種又は2種を含有し、かつ、VとMoの含有量(質量%)が、V+1/2Mo>0.4質量%を満たせば、限界拡散性水素量を増大して、優れた耐遅れ破壊特性が得られることが判明した。
 また、本発明者らは、窒化層の硬度を下げて、耐遅れ破壊性を向上させることを検討し、表面に脱炭処理を施し、さらに、窒化処理を施した鋼材の腐食促進試験及び暴露試験を行い、鋼材の水素侵入特性及び耐遅れ破壊特性を調査した。
 その結果、所定の成分組成及び組織を有する鋼材の表面に、所定の窒素濃度及び厚さの窒化層を形成し、さらに、鋼材表面に、所定の炭素濃度及び深さの低炭素領域を形成すると、鋼材表面に窒化層のみを形成した場合と比較して、耐遅れ破壊特性が顕著に向上することが判明した。
 これは、(1)鋼材表面に形成した低炭素領域に窒化層を形成したことにより、窒化層単独の場合よりも、侵入水素量が抑制されたことと、(2)鋼材表面に低炭素領域を形成したことにより、表層の過剰な硬化が抑制されて、限界拡散性水素量が増大したこととの相乗効果によるものと考えられる。
 基本的には、所定の成分組成及び組織の鋼材の表層に、(a)鋼材表面から200μm以上の厚さで、窒素濃度が12.0質量%以下で、鋼材より0.02質量%以上高い窒化層を形成し、かつ、(b)鋼材表面から100μm以上、1000μmの深さで、炭素濃度が0.05質量%以上で、鋼材の炭素濃度の0.9倍以下の低炭素領域を形成すると、鋼材の限界拡散性水素量を増大し、かつ、侵入水素量を低減できることが判明した。
 また、本発明者らは、窒化処理時の加熱・急冷により、鋼材表面に圧縮残留応力が発生し、耐遅れ破壊特性が向上することを見いだした。特に、加工により表層に歪みが導入される高強度ボルトの場合、窒化層の生成が促進され、また、窒素濃度が高くなるので、耐遅れ破壊特性の向上が顕著である。
 以下、本発明について詳細に説明する。
 本発明の高強度鋼材及び高強度ボルトは、所定の成分組成からなり、その表面に、窒化層と低炭素領域が同時に存在するものである。
 即ち、本発明の高強度鋼材及び高強度ボルトの表層には、窒素濃度が12.0質量%以下で、鋼材の窒素濃度よりも0.02質量%以上高く、炭素濃度が0.05質量%以上で、鋼材の0.9倍以下の領域(低炭窒化層)が存在する。
 窒化層の厚さが低炭素領域の厚さよりも厚い場合、低炭素領域より深いところの炭素濃度は、鋼材の炭素濃度と同等で、窒素濃度は、鋼材の窒素濃度よりも高い。
 一方、低炭素領域の厚さが窒化層の厚さよりも厚い場合、窒化層の下に、炭素濃度が0.05質量%以上で、鋼材の炭素濃度の0.9倍以下であり、その他の元素の含有量は鋼材と同等の低炭素領域が存在することになる。
 まず、低炭素領域について説明する。本発明において、低炭素領域は、炭素濃度が、0.05質量%以上で、高強度鋼材又は高強度ボルトの炭素濃度の0.9倍以下の領域である。
 本発明の高強度鋼材及び高強度ボルトにおいては、鋼材表面から100μm以上、1000μmの深さまで低炭素領域を形成する。
 低炭素領域の深さ及び炭素濃度は、低炭素領域を形成する熱処理の際の加熱雰囲気、加熱温度、及び、保持時間によって調整する。例えば、加熱雰囲気の炭素ポテンシャルが低く、加熱温度が高く、保持時間が長いと、低炭素領域が深くなり、低炭素領域の炭素濃度が低下する。
 低炭素領域の炭素濃度が0.05質量%未満であると、鋼材の炭素濃度の下限0.10質量%の半分以下となり、低炭素領域で所定の強度及び硬さを確保することができない。低炭素領域の炭素濃度が、鋼材の炭素濃度の0.9倍を超えると、鋼材の炭素濃度とほぼ同等となり、低炭素領域の存在効果が薄れてしまう。
 それ故、本発明では、低炭素領域を、炭素濃度が0.05質量%以上で、鋼材の炭素濃度の0.9倍以下の領域と定めた。
 低炭素領域の炭素濃度が、0.05質量%以上で、鋼材の炭素濃度の0.9倍以下であると、窒化層の形成による表層硬さの増加量を低減することができる。その結果、鋼材の表層の硬さは、鋼材の硬さと同等か、又は、鋼材の硬さよりも低くなり、限界拡散性水素量の減少を阻止することができる。
 低炭素領域の深さ(厚さ)は、上記効果が得られるように、鋼材又はボルトの表面から100μm以上の深さ(厚さ)とした。低炭素領域の深さ(厚さ)は、深い(厚い)ほど好ましいが、1000μmを超えると、鋼材全体又はボルト全体の強度が低下するので、低炭素領域の深さ(厚さ)は、1000μmを上限とする。
 次に、窒化層について説明する。本発明において、窒化層は、窒素濃度が、12.0質量%以下で、鋼材又はボルトの窒素濃度より0.02質量%以上高い領域である。そして、窒化層は、鋼材又はボルトの表面から200μm以上の厚さで形成されている。
 窒化層の厚さ及び窒素濃度は、窒化処理の際の加熱雰囲気、加熱温度、及び、保持時間によって調整することができる。例えば、加熱雰囲気中のアンモニアや窒素の濃度が高く、加熱温度が高く、保持時間が長いと、窒化層は厚くなり、窒化層の窒素濃度は高くなる。
 窒化層の窒素濃度が、鋼材の窒素濃度より高いと、腐食環境から鋼材へ侵入する水素量を低減できるが、窒化層の窒素濃度と鋼材の窒素濃度の差が0.02質量%未満であると、侵入水素量を低減する効果が充分に得られない。それ故、窒化層の窒素濃度を鋼材の窒素濃度より0.02質量%以上高い濃度とした。
 一方、窒素濃度が12.0質量%を超えると、窒化層の硬さが過度に上昇して脆くなるので、12.0質量%を上限とした。
 鋼材表面に、窒素濃度が12.0質量%以下で、かつ、鋼材の窒素濃度より0.02質量%以上高く、かつ、表面から200μm以上の深さで窒化層が形成されていると、腐食環境から鋼材へ侵入する水素量が大幅に減少する。
 窒化層は、上記効果が得られるように、鋼材又はボルトの表面から200μm以上の厚さ(深さ)に限定した。窒化層の厚さの上限は、特に規定しないが、1000μmを超えると、生産性が低下し、コストの上昇を招くので、1000μm以下が好ましい。
 本発明の高強度鋼材又は高強度ボルトに形成した低炭素領域の深さ(厚さ)は、鋼材又はボルトの表面からの炭素濃度曲線から求めることができる。
 表層に低炭素領域及び窒化層を有する鋼材又はボルトの断面を研磨し、エネルギー分散型蛍光X線分析装置(以下「EDX」ということがある。)、又は、波長分散型蛍光X線分析装置(以下「WDS」ということがある。)にて線分析して、表面から深さ方向の炭素濃度を測定する。
 図2に、EDXで得た炭素濃度曲線から、低炭素領域の深さ(厚さ)を求める方法を示す。即ち、図2は、EDXを用いて、表面から深さ方向の炭素濃度を測定して得た、鋼材表面からの距離と炭素濃度の関係を示す図である。
 図2に示すように、鋼材表面からの距離(深さ)が長くなるのに伴い、炭素濃度が増加する。これは、脱炭処理により、鋼材表層に低炭素領域が形成されているからである。
 脱炭処理の影響を受けていない領域では、炭素濃度は、ほぼ一定(平均炭素濃度a)である。平均炭素濃度aは、脱炭処理の影響を受けていない領域の炭素濃度であり、脱炭処理前の鋼材の炭素量と同等である。
 したがって、本発明では、鋼材の炭素濃度の化学分析値を、低炭素領域の深さを求める際の基準値とする。
 図2に示すように、鋼材表面から所要の深さまでの炭素濃度が、平均炭素濃度aの10%(a×0.1)以上低くなっている範囲(鋼材の炭素濃度の0.9倍以下の範囲)を判別し、その範囲の深さ方向の境界の鋼材表面からの距離(深さ)を求めることで、低炭素領域の深さ(厚さ)を評価することができる。
 窒化層の厚さ(深さ)は、低炭素領域と同様に、鋼材又はボルトの表面からの窒素濃度の変化から求めることができる。具体的には、表層に低炭素領域及び窒化層を有する鋼材又はボルトの断面を研磨し、EDX又はWDSにて線分析して、表面から深さ方向の窒素濃度を測定する。
 図3に、エネルギー分散型蛍光X線分析装置(EDX)で得た窒素濃度曲線から、窒化層の厚さ(深さ)を求める方法を示す。即ち、図3は、EDXを用いて表面から深さ方向の窒素濃度を測定して得た、鋼材表面からの距離と窒素濃度の関係を示す図である。
 鋼材表面からの距離(深さ)が長くなるのに伴い、窒素濃度が減少するが、窒化処理の影響を受けていない領域で、炭素濃度は、ほぼ一定(平均窒素濃度)である。
 平均窒素濃度は、窒化処理の影響を受けていない範囲の窒素濃度であり、窒化処理前の鋼材の窒素量と同等である。したがって、本発明では、鋼材の窒素濃度の化学分析値を、窒化層の厚さを求める際の基準値とする。
 図3に示すように、鋼材表面から所要の深さまでの窒素濃度が、平均窒素濃度の0.02質量%以上高くなっている範囲を判別し、その範囲の深さ方向の境界の鋼材表面からの距離(深さ)を求めることで、窒化層の厚さ(深さ)を評価することができる。
 低炭素領域の深さ及び窒化層の厚さは、鋼材又はボルトの断面において、任意の5ヶ所で測定した値を単純に平均して求める。
 なお、鋼材の炭素濃度及び窒素濃度は、低炭素領域及び窒化層の深さよりも十分に深い位置、例えば、表面から2000μm以上の深さの位置の炭素濃度及び窒素濃度を測定して求めてもよい。また、鋼材又はボルトの表面から2000μm以上の深さの位置から分析試料を採取し、化学分析して求めてもよい。
 本発明の高強度鋼材においては、前述したように、(1)鋼材表面に形成した低炭素領域に窒化層を形成したことで、侵入水素量が抑制されたことと、(2)鋼材表面に低炭素領域を形成したことで、限界拡散性水素量が増大したこととの相乗効果で、耐遅れ破壊特性が顕著に向上する。
 本発明者らの調査によれば、鋼材の表層に窒化層と低炭素領域が共存することにより、鋼材に侵入する水素量を0.5ppm以下に抑制し、かつ、鋼材の限界拡散性水素量を2.00ppm以上に高めることができる。
 次に、鋼材の成分組成を限定する理由について説明する。以下、成分組成に係る%は、質量%を意味する。
 C:Cは、鋼材の強度を確保するうえで必須の元素である。0.10%未満であると、所要の強度が得られず、0.55%を超えると、延性、靭性が低下するとともに、耐遅れ破壊特性も低下するので、Cは0.10~0.55%とした。
 Si:Siは、固溶強化によって強度を高める元素である。0.01%未満であると、添加効果が不十分であり、3%を超えると、効果が飽和するので、Siは0.01~3%とした。
 Mn:Mnは、脱酸と脱硫のためだけでなく、マルテンサイト組織を得るため、パーライト組織や、ベイナイト組織の変態温度を下げて焼入れ性を高める元素である。0.1%未満であると、添加効果が不十分であり、2%を超えると、オーステナイト加熱時に粒界に偏析し、粒界を脆化させるとともに、耐遅れ破壊特性を劣化させるので、Mnは0.1~2%とした。
 本発明の高強度鋼材又は高強度ボルトは、耐遅れ破壊特性の向上のために、V及びMoの1種又は2種を含有する。
 V:Vは、鋼材中に、炭化物、窒化物、及び/又は、炭窒化物の微細析出物を析出させる元素である。この微細析出物は、鋼材に侵入した水素を捕捉して無害化し、限界拡散性水素量を増大する作用をなす。また、微細析出物は、鋼材の強度向上に寄与する。
 また、Vは、パーライト組織や、ベイナイト組織の変態温度を下げて、焼入れ性を高めるとともに、焼戻し処理時の軟化抵抗を高めて、強度の向上に寄与する元素である。
 Vが1.5%を超えると、析出強化のための溶体化温度が高くなり、また、水素を捕捉する力も飽和するので、1.5%以下とした。Vが0.05%未満であると、微細析出物の析出による強度向上効果が十分に得られないので、0.05%以上が好ましい。
 Mo:Moは、鋼材中に、炭化物、窒化物、及び/又は、炭窒化物の微細析出物を析出させる元素である。この微細析出物は、鋼材に侵入した水素を捕捉して無害化し、限界拡散性水素量を増大する作用をなす。また、微細析出物は、鋼材の強度向上に寄与するとともに、限界拡散性水素量を増大して、耐遅れ破壊特性の向上に寄与する。
 また、Moは、パーライト組織や、ベイナイト組織の変態温度を下げて、焼入れ性を高めるとともに、焼戻し処理時の軟化抵抗を高めて、強度の向上に寄与する元素である。
 Moが3.0%を超えると、析出強化のための溶体化温度が高くなり、また、水素を捕捉する力も飽和するので、3.0%以下とした。Moが0.4%未満であると、微細析出物の析出により、限界拡散性水素量を増大する効果が十分に得られないので、0.4%以上とした。
 V+1/2Mo:本発明において、MoとVは、V+1/2Mo>0.4%を満たす必要がある。VとMoが上記式を満たせば、限界拡散性水素量だけでなく侵入水素量も増大するV量が、Mo量に対して相対的に少なくなるので、限界拡散性水素量が増大し、優れた耐遅れ破壊特性が得られる。
 本発明の高強度鋼材又は高強度ボルトは、強度の向上を目的に、優れた耐遅れ破壊特性を疎外しない範囲で、さらに、Cr、Nb、Cu、Ni、及び、Bの1種又は2種以上を含有してもよい。
 Cr:Crは、パーライト組織や、ベイナイト組織の変態温度を下げて焼入れ性を高め、また、焼戻し処理時の軟化抵抗を高めて、強度の向上に寄与する元素である。0.05%未満では、添加効果が十分に得られず、1.5%を超えると、靭性の劣化を招くので、Crは0.05~1.5%とした。
 Nb:Nbは、Crと同様に、焼入れ性及び焼戻し軟化抵抗を高めて、強度の向上に寄与する元素である。0.001%未満では、添加効果が十分に得られず、0.05%を超えると、添加効果が飽和するので、Nbは0.001~0.05%とした。
 Cu:Cu、焼入れ性の向上、焼戻し軟化抵抗の増大、及び、析出効果による強度向上に寄与する元素である。0.01%未満では、添加効果が十分に得られず、4%を超えると、粒界脆化が起きて耐遅れ破壊特性が劣化するので、Cuは0.01~4%とした。
 Ni:Niは、焼入れ性を高め、高強度化に伴って低下する延性や靭性の改善に有効な元素である。0.01%未満であると、添加効果が十分に得られず、4%を超えると、添加効果が飽和するので、Niは0.01~4%とした。
 B:Bは、粒界破壊を抑制し、耐遅れ破壊特性の向上に有効な元素である。さらに、Bは、オーステナイト粒界に偏析し、焼入れ性を著しく高める元素である。0.0001%未満であると、添加効果が十分に得られず、0.005%を超えると、粒界にB炭化物やFe炭硼化物が生成して、粒界脆化が起きて耐遅れ破壊特性が低下するので、Bは0.0001~0.005%とした。
 本発明の高強度鋼材及び高強度ボルトは、さらに、組織の微細化を目的に、優れた耐遅れ破壊特性を疎外しない範囲で、Al、Ti、Mg、Ca、及び、Zrの1種又は2種以上を含有してもよい。
 Al:Alは、酸化物や窒化物を形成し、オーステナイト粒の粗大化を防止して、耐遅れ破壊特性の劣化を抑制する元素である。0.003%未満では、添加効果が不十分であり、0.1%を超えると、添加効果が飽和するので、Alは0.003~0.1%が好ましい。
 Ti:Tiも、Alと同様に、酸化物や窒化物を形成して、オーステナイト粒の粗大化を防止し、耐遅れ破壊特性の劣化を抑制する元素である。0.003%未満では、添加効果が不十分であり、0.05%を超えると、Ti炭窒化物が、圧延や加工時、又は、熱処理の加熱時に粗大化して、靭性が低下するので、Tiは0.003~0.05%が好ましい。
 Mg:Mgは、脱酸や脱硫効果を有し、また、Mg酸化物やMg硫化物、Mg−Al、Mg−Ti、Mg−Al−Tiの複合酸化物や複合硫化物等を形成して、オーステナイト粒の粗大化を防止して、耐遅れ破壊特性の劣化を抑制する元素である。0.0003%未満であると、添加効果が不十分であり、0.01%を超えると、添加効果が飽和するので、Mgは0.0003~0.01%が好ましい。
 Ca:Caは、脱酸や脱硫効果を有し、また、Ca酸化物やCa硫化物、Al、Ti、Mgの複合酸化物や複合硫化物等を形成して、オーステナイト粒の粗大化を防止し、耐遅れ破壊特性の劣化を抑制する元素である。0.0003%未満では、添加効果が不十分であり、0.01%を超えると、添加効果が飽和するので、Caは0.0003~0.01%が好ましい。
 Zr:Zrは、Zr酸化物やZr硫化物、Al、Ti、Mg、Zrの複合酸化物や複合硫化物等を形成し、オーステナイト粒の粗大化を防止して、耐遅れ破壊特性の劣化を抑制する元素である。0.0003%未満では、添加効果が不十分であり、0.01%を超えると、添加効果が飽和するので、Zrは0.0003~0.01%が好ましい。
 鋼組織
 次に、本発明の高強度鋼材及び高強度ボルトの組織(以下「本発明鋼組織」ということがある。)について説明する。本発明鋼組織は、焼戻しマルテンサイト主体であるので、引張強度が1300MPa以上でも、延性及び靭性が良好な組織である。
 本発明鋼組織は、低炭素領域及び窒化層を除く領域における焼戻しマルテンサイトの面積率が85%以上であり、残部が、残留オーステナイト、ベイナイト、パーライト、フェライトの1種又は2種以上からなる組織が好ましい。
 焼戻しマルテンサイトの面積率は、図2に示す炭素濃度曲線で炭素濃度が一定となる深さ、及び、図3に示す窒素濃度曲線で窒素濃度が一定となる深さのうち、深い方の位置で測定する。
 例えば、鋼材又はボルトの表面から2000μm以上の深さや、鋼材の厚さや直径の1/4の部位で焼戻しマルテンサイトの面積率を測定すればよい。
 なお、マルテンサイトの面積率は、鋼材のC断面を、光学顕微鏡を用いて観察し、単位面積当たりのマルテンサイトの面積を測定して求めることができる。具体的には、鋼材のC断面を研磨してナイタールエッチング液でエッチングし、0.04mmの範囲の5視野のマルテンサイトの面積を測定し、その平均値を算出する。
 また、本発明鋼材において、鋼材表面の圧縮残留応力は、窒化処理時の加熱、急冷で発生し、耐遅れ破壊特性を改善する。圧縮残留応力が200MPa以上発生すると、耐遅れ破壊特性が向上するので、本発明鋼材の表面の圧縮残留応力は200MPa以上が好ましい。
 圧縮残留応力は、X線残留応力測定装置を用いて測定することができる。具体的には、鋼材表面の残留応力を測定し、その後、鋼材表面を電解研磨で25μmずつエッチングして、深さ方向の残留応力を測定する。任意の3箇所を測定し、その平均値を用いることが好ましい。
 表層に低炭素領域及び窒化層が形成されていない鋼材においては、引張強度が1300MPa以上になると、遅れ破壊の発生頻度が著しく増加する。したがって、引張強度が1300MPa以上の場合、表層に低炭素領域及び窒化層が形成されている本発明鋼材の耐遅れ破壊特性は、顕著に優れた特性である。
 本発明鋼材の引張強度の上限は、特に限定されないが、2200MPaを超えることは、現時点で、技術的に困難であるので、一応、2200MPaが上限である。なお、引張強度は、JIS Z 2241に準拠して測定すればよい。
 製造方法
 次に、本発明鋼材の製造方法について説明する。
 本発明鋼材の製造方法は、所要の成分組成の鋼材(線材やPC鋼棒、所定の形状に加工した鋼材)を加熱して脱炭処理を施す脱炭工程、脱炭処理が施された鋼材を冷却して、鋼組織をマルテンサイト主体の組織とする焼入れ工程、及び、焼入れた鋼材に、500℃超、650℃以下で窒化処理を施す窒化工程からなる。
 なお、窒化工程により、本発明鋼材の組織は焼戻しマルテンサイト主体の組織となる。
 脱炭工程で、本発明鋼材に脱炭処理を施して、鋼材の表面から100μm以上、1000μm以下の深さまで、炭素濃度を、0.05%以上、鋼材の炭素濃度の0.9倍以下とする。加熱炉の雰囲気を、例えば、メタンガスの濃度を調整して弱脱炭性にして、低炭素領域を形成することができる。
 脱炭処理における加熱温度は、Ac~950℃が好ましい。Ac以上に加熱することにより、鋼組織をオーステナイトとし、表層からの脱炭を促進して、容易に低炭素領域を形成することができる。
 加熱温度の上限は、結晶粒の粗大化を抑制し、耐遅れ破壊特性を向上させる点で、950℃が好ましい。加熱温度での保持時間は30~90分が好ましい。上記加熱温度で30分以上保持することにより、低炭素領域の深さを充分に確保できるとともに、鋼組織を均質にすることができる。生産性を考慮すると、加熱温度での保持時間は、90分以下が好ましい。
 焼入れ工程では、加熱された鋼材を冷却してマルテンサイト主体の組織とする。加熱された鋼材をそのまま油冷して焼入れしてもよい。
 本発明鋼組織において焼戻しマルテンサイトの面積率は85%以上が好ましいので、焼入れ後のマルテンサイトの面積率は85%以上が好ましい。
 焼入れ工程で、マルテンサイトの面積率を85%以上確保するには、焼入れの際、700~300℃の範囲の冷却速度を5℃/s以上とすることが好ましい。冷却速度が5℃/s未満であると、マルテンサイトの面積率が85%未満になる場合がある。
 窒化工程では、鋼組織がマルテンサイト主体で、表層に低炭素領域が形成されている鋼材に、窒化処理を施す。窒化処理によって、鋼材表面からの厚さが200μm以上で、かつ、窒素濃度が12.0%以下で、鋼材の窒素濃度よりも0.02%以上高い窒化層を形成するとともに、同時に、鋼材を焼戻して、鋼組織を焼戻しマルテンサイト主体の組織とし、かつ、水素を捕捉する微細析出物を析出させる。
 本発明鋼材の製造方法では、鋼材が、V及びMoの一方又は双方を含有するので、窒化工程で、水素を捕捉する作用をなす微細な炭化物、窒化物、及び/又は、炭窒化物(微細析出物)を析出させている。
 窒化処理は、例えば、アンモニア又は窒素を含んだ雰囲気中で、鋼材を加熱して行う。窒化処理は、500℃超、650℃以下で30~90分間保持することが好ましい。窒化処理温度が650℃を超えると、鋼材の強度が低下するので、窒化処理温度は650℃以下とする。
 窒化処理温度が500℃以下であると、微細析出物が十分に析出しないので、窒化処理温度は500℃超とする。また、窒化処理の温度を500℃超にすれば、鋼材表面からの窒素の拡散に要する時間が短くなり、処理時間が短縮されて、生産性が高くなる。
 窒化処理時間が30分未満であると、窒化層の深さが、表面から200μm以上の深さに達しない恐れがあるので、窒化処理時間は30分以上が好ましい。窒化処理時間の上限は規定しないが、本発明では窒化処理温度が高いので、90分以下でも、十分な厚さの窒化層を形成できる。
 なお、窒化工程においては、ガス窒化法、ガス軟窒化法、プラズマ窒化法、塩浴窒化法など、一般的な窒化方法を用いることができる。
 次に、本発明の高強度ボルト(以下「本発明ボルト」ということがある。)の製造方法について説明する。
 本発明ボルトの製造方法は、所要の成分組成の本発明鋼材をボルトに加工する加工工程、ボルトを加熱して脱炭処理する脱炭工程、加熱されたボルトを冷却して、鋼組織をマルテンサイト主体の組織とする焼入れ工程、及び、焼入れされたボルトを500℃超、650℃以下の温度で窒化処理する窒化工程からなる。
 窒化工程で、ボルトの鋼組織は焼戻しマルテンサイト主体の組織となる。
 なお、加工工程では、例えば、鋼材である線材を冷間鍛造し、転造して、ボルト形状にしてもよい。
 本発明ボルトの製造方法が本発明鋼材の製造方法と異なるところは、鋼材をボルト形状に加工する加工工程のみであるので、その他の工程についての説明は省略する。
 本発明鋼材の製造方法、及び、本発明ボルトの製造方法においては、窒化処理後、500~200℃までの範囲を10~100℃/sの冷却速度で急冷することが好ましい。窒化処理後の急冷により、鋼材又はボルトの表面の圧縮残留応力を200MPa以上とすることができる。この圧縮残留応力の存在で、耐遅れ破壊特性がより一層向上する。
It is known that hydrogen in steel is involved in delayed fracture. Further, the penetration of hydrogen into the steel occurs with corrosion in the actual environment, and the diffusible hydrogen that has entered the steel accumulates in the concentrated portion of the tensile stress, resulting in delayed fracture.
FIG. 1 (a) schematically shows a hydrogen release rate curve obtained by hydrogen analysis by a temperature raising method. As shown in FIG. 1A, the amount of diffusible hydrogen released reaches a peak around 100 ° C.
In the present invention, the sample is heated at 100 ° C./h, and the integrated value of the amount of hydrogen released between room temperature and 400 ° C. is defined as the amount of diffusible hydrogen. The amount of hydrogen released can be measured with a gas chromatograph.
In the present invention, the minimum amount of diffusible hydrogen that causes delayed fracture is referred to as the limit diffusible hydrogen amount. The amount of critical diffusible hydrogen varies depending on the type of steel.
FIG. 1B schematically shows the relationship between the rupture time and the amount of diffusible hydrogen obtained in the constant load delayed fracture test of steel. As shown in FIG. 1B, the break time is short when the amount of diffusible hydrogen is large, and the break time is long when the amount of diffusible hydrogen is small.
That is, if the amount of diffusible hydrogen is small, delayed fracture does not occur, and if the amount of diffusible hydrogen is large, delayed fracture occurs. In the present invention, a constant load delayed fracture test was performed on the steel material, and the maximum diffusible hydrogen amount that did not break for 100 hours or more was defined as the limit diffusible hydrogen amount, as shown in FIG.
Comparing the amount of intrusive hydrogen and the amount of limit diffusible hydrogen, if the amount of limit diffusible hydrogen is greater than the amount of intrusion hydrogen, delayed fracture does not occur. Conversely, if the amount of limit diffusible hydrogen is less than the amount of intrusion hydrogen , Delayed fracture occurs. Therefore, the greater the amount of critical diffusible hydrogen, the more delayed the occurrence of delayed fracture.
However, when the amount of hydrogen entering the steel material from the corrosive environment exceeds the limit diffusible hydrogen amount, delayed fracture occurs.
Therefore, in order to prevent the occurrence of delayed fracture, it is effective to suppress the penetration of hydrogen into the steel material. For example, when a nitride layer is formed on the surface of a steel material by nitriding, the amount of invading hydrogen due to corrosion is suppressed, so that delayed fracture resistance is improved.
However, when a nitride layer is formed on the surface of the steel material, the amount of critical diffusible hydrogen decreases due to the hardening of the surface layer, and the delayed fracture resistance is not improved. Therefore, the present inventors examined the component composition of the steel material on the premise that the hydrogen that has entered the steel material is trapped by the fine precipitates and made harmless in order to increase the critical diffusible hydrogen content.
As a result, the present inventors contain an appropriate amount of one or two of V and Mo, and fine precipitates composed of carbides, nitrides, and / or carbonitrides of V and Mo in the steel material. It was confirmed that the amount of critical diffusible hydrogen can be increased by precipitation.
However, on the other hand, it has also been confirmed that even if one or both of V and Mo are contained in the steel material, the delayed fracture resistance cannot be sufficiently improved.
Therefore, the present inventors have made extensive studies by paying attention to the relationship between the crystal form of fine precipitates, the amount of critical diffusible hydrogen and the amount of invading hydrogen, and as a result, the following has been found.
Hexagonal Mo carbides, nitrides, and carbonitrides have a greater effect on increasing the amount of limit diffusible hydrogen than on increasing the amount of invading hydrogen, and thus greatly contribute to the improvement of delayed fracture resistance. However, the strength improvement effect by fine precipitation is small compared with V carbide, nitride, and carbonitride of NaCl type crystal.
On the other hand, V-type carbides, nitrides, and carbonitrides of NaCl-type crystals are excellent in strength improvement effect by fine precipitation. However, the NaCl-type crystal V carbide, nitride, and carbonitride increase the critical diffusible hydrogen amount while increasing the intrusion hydrogen amount. Small compared to Mo carbides, nitrides, and carbonitrides.
That is, it is necessary to set the contents of Mo and V appropriately in order to ensure the required strength and the excellent delayed fracture resistance in the steel material.
Then, the present inventors diligently studied to set the contents of Mo and V appropriately. As a result, V: 1.5% by mass or less, Mo: 3.0% by mass or less of one or two types, and the content (% by mass) of V and Mo are V + 1 / 2Mo> 0. It has been found that if 4 mass% is satisfied, the amount of critical diffusible hydrogen is increased and excellent delayed fracture resistance can be obtained.
In addition, the inventors have studied to improve the delayed fracture resistance by reducing the hardness of the nitrided layer, subjecting the surface to decarburization treatment, and further accelerating corrosion test and exposure of the steel material subjected to nitriding treatment Tests were conducted to investigate the hydrogen penetration characteristics and delayed fracture resistance of steel materials.
As a result, when a nitride layer having a predetermined nitrogen concentration and thickness is formed on the surface of a steel material having a predetermined component composition and structure, and further, a low carbon region having a predetermined carbon concentration and depth is formed on the steel surface. It was found that the delayed fracture resistance is remarkably improved as compared with the case where only the nitride layer is formed on the steel surface.
This is because (1) the formation of the nitride layer in the low carbon region formed on the steel material surface suppressed the amount of intrusion hydrogen compared to the case of the nitride layer alone, and (2) the low carbon region on the steel material surface. This is considered to be due to a synergistic effect with the increase in the amount of critical diffusible hydrogen by suppressing excessive curing of the surface layer.
Basically, on the surface layer of a steel material having a predetermined composition and structure, (a) a thickness of 200 μm or more from the surface of the steel material, a nitrogen concentration of 12.0% by mass or less, and 0.02% by mass or more higher than the steel material A nitride layer is formed, and (b) a low carbon region having a carbon concentration of 0.05% by mass or more and a carbon concentration of 0.9 times or less of the steel material at a depth of 100 μm or more and 1000 μm from the steel surface. Then, it became clear that the amount of limit diffusible hydrogen of steel materials can be increased, and the amount of intrusion hydrogen can be reduced.
Further, the present inventors have found that compression residual stress is generated on the surface of the steel material due to heating and rapid cooling during the nitriding treatment, and the delayed fracture resistance is improved. In particular, in the case of a high-strength bolt in which strain is introduced into the surface layer by processing, the formation of a nitrided layer is promoted and the nitrogen concentration is increased, so that the delayed fracture resistance is markedly improved.
Hereinafter, the present invention will be described in detail.
The high-strength steel material and high-strength bolt of the present invention have a predetermined composition, and have a nitride layer and a low carbon region simultaneously on the surface thereof.
That is, in the surface layer of the high-strength steel material and high-strength bolt of the present invention, the nitrogen concentration is 12.0 mass% or less, 0.02 mass% or more higher than the nitrogen concentration of the steel material, and the carbon concentration is 0.05 mass%. As described above, there is a region (low carbonitriding layer) 0.9 times or less that of the steel material.
When the thickness of the nitride layer is thicker than the thickness of the low carbon region, the carbon concentration deeper than the low carbon region is equal to the carbon concentration of the steel material, and the nitrogen concentration is higher than the nitrogen concentration of the steel material.
On the other hand, when the thickness of the low carbon region is thicker than the thickness of the nitride layer, the carbon concentration is 0.05% by mass or more and 0.9% or less of the carbon concentration of the steel material below the nitride layer. The element content will have a low carbon region equivalent to steel.
First, the low carbon region will be described. In the present invention, the low carbon region is a region having a carbon concentration of 0.05% by mass or more and 0.9 times or less the carbon concentration of the high-strength steel material or high-strength bolt.
In the high-strength steel material and high-strength bolt of the present invention, a low carbon region is formed from the steel material surface to a depth of 100 μm or more and 1000 μm.
The depth and carbon concentration of the low carbon region are adjusted by the heating atmosphere, the heating temperature, and the holding time in the heat treatment for forming the low carbon region. For example, when the carbon potential of the heating atmosphere is low, the heating temperature is high, and the holding time is long, the low carbon region becomes deep and the carbon concentration in the low carbon region decreases.
If the carbon concentration in the low carbon region is less than 0.05% by mass, the lower limit of 0.10% by mass of the carbon concentration of the steel material is not more than half, and the predetermined strength and hardness cannot be ensured in the low carbon region. If the carbon concentration in the low carbon region exceeds 0.9 times the carbon concentration of the steel material, the carbon concentration in the steel material is substantially equivalent to the carbon concentration in the steel material, and the existence effect of the low carbon region is reduced.
Therefore, in the present invention, the low carbon region is defined as a region having a carbon concentration of 0.05% by mass or more and 0.9 times or less the carbon concentration of the steel material.
When the carbon concentration in the low carbon region is 0.05% by mass or more and 0.9 times or less the carbon concentration of the steel material, the increase in the surface hardness due to the formation of the nitride layer can be reduced. As a result, the hardness of the surface layer of the steel material is equal to the hardness of the steel material or lower than the hardness of the steel material, and the reduction of the critical diffusible hydrogen amount can be prevented.
The depth (thickness) of the low carbon region was set to a depth (thickness) of 100 μm or more from the surface of the steel material or bolt so as to obtain the above effect. The depth (thickness) of the low carbon region is preferably as deep (thick) as possible, but if it exceeds 1000 μm, the strength of the entire steel material or the entire bolt decreases, so the depth (thickness) of the low carbon region is 1000 μm. Is the upper limit.
Next, the nitride layer will be described. In the present invention, the nitride layer is a region having a nitrogen concentration of 12.0% by mass or less and 0.02% by mass or more higher than the nitrogen concentration of the steel material or bolt. The nitride layer is formed with a thickness of 200 μm or more from the surface of the steel material or bolt.
The thickness and nitrogen concentration of the nitride layer can be adjusted by the heating atmosphere, heating temperature, and holding time during the nitriding treatment. For example, when the concentration of ammonia or nitrogen in the heating atmosphere is high, the heating temperature is high, and the holding time is long, the nitride layer becomes thick and the nitrogen concentration of the nitride layer becomes high.
If the nitrogen concentration in the nitride layer is higher than the nitrogen concentration in the steel material, the amount of hydrogen entering the steel material from the corrosive environment can be reduced, but the difference between the nitrogen concentration in the nitride layer and the nitrogen concentration in the steel material is less than 0.02% by mass. And the effect of reducing the amount of intrusion hydrogen cannot be sufficiently obtained. Therefore, the nitrogen concentration of the nitrided layer is set to a concentration higher than the nitrogen concentration of the steel material by 0.02% by mass or more.
On the other hand, if the nitrogen concentration exceeds 12.0% by mass, the hardness of the nitrided layer increases excessively and becomes brittle, so 12.0% by mass was made the upper limit.
Corrosion occurs when a nitride layer is formed on the steel surface with a nitrogen concentration of 12.0 mass% or less, 0.02 mass% or more higher than the nitrogen concentration of the steel material, and a depth of 200 μm or more from the surface. The amount of hydrogen entering the steel from the environment is greatly reduced.
The nitrided layer was limited to a thickness (depth) of 200 μm or more from the surface of the steel material or bolt so that the above effect was obtained. The upper limit of the thickness of the nitrided layer is not particularly specified, but if it exceeds 1000 μm, the productivity is lowered and the cost is increased, so 1000 μm or less is preferable.
The depth (thickness) of the low carbon region formed in the high-strength steel material or high-strength bolt of the present invention can be determined from the carbon concentration curve from the surface of the steel material or bolt.
Polishing the cross section of a steel material or bolt having a low carbon region and a nitride layer on the surface layer, an energy dispersive X-ray fluorescence analyzer (hereinafter sometimes referred to as “EDX”), or a wavelength dispersive X-ray fluorescence analyzer ( Hereinafter, the carbon concentration in the depth direction from the surface is measured by performing a line analysis.
FIG. 2 shows a method for obtaining the depth (thickness) of the low carbon region from the carbon concentration curve obtained by EDX. That is, FIG. 2 is a diagram showing the relationship between the distance from the steel material surface and the carbon concentration obtained by measuring the carbon concentration in the depth direction from the surface using EDX.
As shown in FIG. 2, the carbon concentration increases as the distance (depth) from the steel surface increases. This is because a low carbon region is formed on the steel surface by decarburization.
In the region not affected by the decarburization treatment, the carbon concentration is substantially constant (average carbon concentration a). The average carbon concentration a is a carbon concentration in a region not affected by the decarburization process, and is equivalent to the carbon amount of the steel material before the decarburization process.
Therefore, in the present invention, the chemical analysis value of the carbon concentration of the steel material is used as a reference value for determining the depth of the low carbon region.
As shown in FIG. 2, the range in which the carbon concentration from the steel surface to the required depth is lower by 10% (a × 0.1) or more than the average carbon concentration a (0.9 times or less the carbon concentration of the steel material) The depth (thickness) of the low carbon region can be evaluated by determining the distance (depth) from the steel material surface at the boundary in the depth direction of the range.
The thickness (depth) of the nitride layer can be determined from the change in the nitrogen concentration from the surface of the steel material or bolt as in the low carbon region. Specifically, the cross section of a steel material or bolt having a low carbon region and a nitride layer on the surface layer is polished, and line analysis is performed by EDX or WDS to measure the nitrogen concentration in the depth direction from the surface.
FIG. 3 shows a method for determining the thickness (depth) of the nitride layer from the nitrogen concentration curve obtained with an energy dispersive X-ray fluorescence spectrometer (EDX). That is, FIG. 3 is a diagram showing the relationship between the distance from the steel material surface and the nitrogen concentration obtained by measuring the nitrogen concentration in the depth direction from the surface using EDX.
As the distance (depth) from the steel material surface increases, the nitrogen concentration decreases, but the carbon concentration is substantially constant (average nitrogen concentration) in a region not affected by nitriding treatment.
The average nitrogen concentration is a nitrogen concentration in a range not affected by the nitriding treatment, and is equivalent to the nitrogen amount of the steel material before the nitriding treatment. Therefore, in the present invention, the chemical analysis value of the nitrogen concentration of the steel material is used as a reference value for determining the thickness of the nitride layer.
As shown in FIG. 3, a range in which the nitrogen concentration from the steel surface to the required depth is 0.02% by mass or more of the average nitrogen concentration is determined, and from the steel surface at the boundary in the depth direction of the range. By obtaining the distance (depth), the thickness (depth) of the nitride layer can be evaluated.
The depth of the low carbon region and the thickness of the nitrided layer are obtained by simply averaging the values measured at any five points in the cross section of the steel material or bolt.
Note that the carbon concentration and the nitrogen concentration of the steel material may be obtained by measuring the carbon concentration and the nitrogen concentration at a position sufficiently deeper than the depth of the low carbon region and the nitrided layer, for example, at a depth of 2000 μm or more from the surface. Good. Alternatively, an analytical sample may be collected from a position at a depth of 2000 μm or more from the surface of the steel material or bolt, and obtained by chemical analysis.
In the high-strength steel material according to the present invention, as described above, (1) the formation of a nitride layer in the low carbon region formed on the steel material surface suppresses the amount of intruded hydrogen, and (2) the steel material surface By forming the low carbon region, the delayed fracture resistance is remarkably improved by a synergistic effect with the increase in the amount of critical diffusible hydrogen.
According to the inventors' investigation, the presence of a nitride layer and a low carbon region on the surface layer of the steel material suppresses the amount of hydrogen entering the steel material to 0.5 ppm or less, and the limit diffusible hydrogen content of the steel material Can be increased to 2.00 ppm or more.
Next, the reason for limiting the component composition of the steel material will be described. Hereinafter,% related to the component composition means mass%.
C: C is an essential element for securing the strength of the steel material. If it is less than 0.10%, the required strength cannot be obtained, and if it exceeds 0.55%, ductility and toughness are lowered and delayed fracture resistance is also lowered, so C is 0.10 to 0.00. 55%.
Si: Si is an element that increases strength by solid solution strengthening. If it is less than 0.01%, the effect of addition is insufficient, and if it exceeds 3%, the effect is saturated, so Si was made 0.01 to 3%.
Mn: Mn is an element not only for deoxidation and desulfurization but also for increasing the hardenability by lowering the transformation temperature of the pearlite structure or the bainite structure in order to obtain a martensite structure. If it is less than 0.1%, the effect of addition is insufficient. If it exceeds 2%, it segregates at the grain boundary during austenite heating, embrittles the grain boundary, and deteriorates the delayed fracture resistance. Was 0.1 to 2%.
The high-strength steel material or high-strength bolt of the present invention contains one or two of V and Mo in order to improve delayed fracture resistance.
V: V is an element for precipitating carbides, nitrides, and / or carbonitride fine precipitates in the steel material. This fine precipitate captures the hydrogen that has entered the steel material, renders it harmless, and acts to increase the amount of critical diffusible hydrogen. Moreover, the fine precipitate contributes to the strength improvement of the steel material.
V is an element that contributes to improving the strength by lowering the transformation temperature of the pearlite structure or bainite structure to enhance the hardenability and the softening resistance during the tempering treatment.
If V exceeds 1.5%, the solution temperature for precipitation strengthening becomes high, and the force for trapping hydrogen is saturated, so it was made 1.5% or less. If V is less than 0.05%, the effect of improving the strength due to the precipitation of fine precipitates cannot be obtained sufficiently, so 0.05% or more is preferable.
Mo: Mo is an element that precipitates carbides, nitrides, and / or carbonitride fine precipitates in the steel material. This fine precipitate captures the hydrogen that has entered the steel material, renders it harmless, and acts to increase the amount of critical diffusible hydrogen. Moreover, the fine precipitate contributes to the improvement of the delayed fracture resistance by increasing the critical diffusible hydrogen amount while contributing to the strength improvement of the steel material.
Mo is an element that contributes to the improvement of strength by lowering the transformation temperature of the pearlite structure and bainite structure to increase the hardenability and the softening resistance during the tempering treatment.
If Mo exceeds 3.0%, the solution temperature for precipitation strengthening becomes high, and the force for capturing hydrogen is saturated, so it was made 3.0% or less. If Mo is less than 0.4%, the effect of increasing the amount of critical diffusible hydrogen cannot be sufficiently obtained due to the precipitation of fine precipitates.
V + 1 / 2Mo: In the present invention, Mo and V need to satisfy V + 1 / 2Mo> 0.4%. If V and Mo satisfy the above formula, the amount of V that increases not only the amount of limit diffusible hydrogen but also the amount of invading hydrogen is relatively small with respect to the amount of Mo. Delayed fracture resistance can be obtained.
The high-strength steel material or high-strength bolt of the present invention is one or two kinds of Cr, Nb, Cu, Ni, and B as long as the excellent delayed fracture resistance is not excluded for the purpose of improving the strength. You may contain the above.
Cr: Cr is an element that lowers the transformation temperature of the pearlite structure or bainite structure to increase the hardenability, and increases the softening resistance during the tempering process, thereby contributing to the improvement of the strength. If it is less than 0.05%, the effect of addition cannot be sufficiently obtained, and if it exceeds 1.5%, the toughness is deteriorated, so Cr is made 0.05 to 1.5%.
Nb: Nb, like Cr, is an element that contributes to improving strength by increasing hardenability and temper softening resistance. If it is less than 0.001%, the effect of addition is not sufficiently obtained, and if it exceeds 0.05%, the effect of addition is saturated, so Nb was made 0.001 to 0.05%.
Cu: Cu is an element that contributes to improving the hardenability, increasing the temper softening resistance, and improving the strength due to the precipitation effect. If it is less than 0.01%, the effect of addition cannot be sufficiently obtained. If it exceeds 4%, grain boundary embrittlement occurs and the delayed fracture resistance deteriorates, so Cu was made 0.01 to 4%.
Ni: Ni is an element that increases the hardenability and is effective in improving ductility and toughness that decrease with increasing strength. If it is less than 0.01%, the effect of addition is not sufficiently obtained, and if it exceeds 4%, the effect of addition is saturated, so Ni was made 0.01 to 4%.
B: B is an element that suppresses grain boundary fracture and is effective in improving delayed fracture resistance. Further, B is an element that segregates at the austenite grain boundary and remarkably increases the hardenability. When the content is less than 0.0001%, the effect of addition cannot be sufficiently obtained. When the content exceeds 0.005%, B carbide or Fe carbon boride is generated at the grain boundary, and grain boundary embrittlement occurs, resulting in delay resistance. Since the fracture characteristics deteriorate, B is set to 0.0001 to 0.005%.
The high-strength steel material and high-strength bolt of the present invention are one or two of Al, Ti, Mg, Ca, and Zr as long as the excellent delayed fracture resistance is not excluded for the purpose of refining the structure. It may contain seeds or more.
Al: Al is an element that forms oxides and nitrides, prevents coarsening of austenite grains, and suppresses deterioration of delayed fracture resistance. If it is less than 0.003%, the effect of addition is insufficient, and if it exceeds 0.1%, the effect of addition is saturated. Therefore, Al is preferably 0.003 to 0.1%.
Ti: Ti, like Al, is an element that forms oxides and nitrides to prevent coarsening of austenite grains and suppress deterioration of delayed fracture resistance. If it is less than 0.003%, the effect of addition is insufficient, and if it exceeds 0.05%, Ti carbonitride is coarsened during rolling or processing, or during heat treatment, and the toughness is reduced. Ti is preferably 0.003 to 0.05%.
Mg: Mg has deoxidation and desulfurization effects, and forms Mg oxide, Mg sulfide, Mg-Al, Mg-Ti, Mg-Al-Ti complex oxides and sulfides, etc. An element that prevents coarsening of austenite grains and suppresses deterioration of delayed fracture resistance. If it is less than 0.0003%, the effect of addition is insufficient, and if it exceeds 0.01%, the effect of addition is saturated. Therefore, Mg is preferably 0.0003 to 0.01%.
Ca: Ca has a deoxidizing and desulfurizing effect, and also forms Ca oxide, Ca sulfide, Al, Ti, Mg composite oxide and composite sulfide to prevent austenite grain coarsening. It is an element that suppresses the deterioration of delayed fracture resistance. If it is less than 0.0003%, the effect of addition is insufficient, and if it exceeds 0.01%, the effect of addition is saturated. Therefore, Ca is preferably 0.0003 to 0.01%.
Zr: Zr forms Zr oxide, Zr sulfide, composite oxide or composite sulfide of Al, Ti, Mg, Zr, etc., prevents austenite grains from coarsening, and deteriorates delayed fracture resistance. It is an element to suppress. If it is less than 0.0003%, the effect of addition is insufficient, and if it exceeds 0.01%, the effect of addition is saturated, so Zr is preferably 0.0003 to 0.01%.
Next, the structure of the high-strength steel material and the high-strength bolt of the present invention (hereinafter sometimes referred to as “the steel structure of the present invention”) will be described. Since the steel structure of the present invention is mainly tempered martensite, it has a good ductility and toughness even when the tensile strength is 1300 MPa or more.
In the steel structure of the present invention, the area ratio of tempered martensite in the low carbon region and the region excluding the nitrided layer is 85% or more, and the balance is a structure composed of one or more of retained austenite, bainite, pearlite, and ferrite. Is preferred.
The area ratio of tempered martensite is the deeper of the depth at which the carbon concentration is constant in the carbon concentration curve shown in FIG. 2 and the depth at which the nitrogen concentration is constant in the nitrogen concentration curve shown in FIG. Measure with
For example, the area ratio of tempered martensite may be measured at a depth of 2000 μm or more from the surface of the steel material or bolt, or at a site that is 1/4 of the thickness or diameter of the steel material.
In addition, the area ratio of martensite can be obtained by observing the C cross section of a steel material using an optical microscope and measuring the area of martensite per unit area. Specifically, the C cross section of the steel material is polished and etched with a nital etchant, the area of martensite in five fields in the range of 0.04 mm 2 is measured, and the average value is calculated.
Further, in the steel material of the present invention, the compressive residual stress on the steel material surface is generated by heating and rapid cooling during the nitriding treatment, thereby improving delayed fracture resistance. When the compressive residual stress is 200 MPa or more, the delayed fracture resistance is improved. Therefore, the compressive residual stress on the surface of the steel of the present invention is preferably 200 MPa or more.
The compressive residual stress can be measured using an X-ray residual stress measuring device. Specifically, the residual stress on the steel material surface is measured, and then the steel material surface is etched by 25 μm by electropolishing to measure the residual stress in the depth direction. It is preferable to measure three arbitrary points and use the average value.
In the steel material in which the low carbon region and the nitride layer are not formed on the surface layer, when the tensile strength is 1300 MPa or more, the occurrence frequency of delayed fracture is remarkably increased. Therefore, when the tensile strength is 1300 MPa or more, the delayed fracture resistance of the steel material of the present invention in which the low carbon region and the nitride layer are formed on the surface layer is remarkably excellent.
Although the upper limit of the tensile strength of the steel of the present invention is not particularly limited, it is technically difficult to exceed 2200 MPa at the present time, and therefore, the upper limit is 2200 MPa. In addition, what is necessary is just to measure a tensile strength based on JISZ2241.
Manufacturing method Next, the manufacturing method of this invention steel material is demonstrated.
The manufacturing method of the steel material of the present invention includes a decarburization process in which a decarburization process is performed by heating a steel material (wire material, PC steel rod, steel material processed into a predetermined shape) having a required component composition, and a decarburized steel material. And quenching the steel structure into a martensite-based structure, and a nitriding process in which the quenched steel material is subjected to nitriding treatment at over 500 ° C. and below 650 ° C.
Note that the structure of the steel material of the present invention becomes a structure mainly composed of tempered martensite by the nitriding step.
In the decarburization step, the steel material of the present invention is decarburized, and the carbon concentration is 0.05% or more and 0.9 times or less of the carbon concentration of the steel material from the surface of the steel material to a depth of 100 μm or more and 1000 μm or less. To do. For example, the atmosphere of the heating furnace can be weakly decarburized by adjusting the concentration of methane gas to form a low carbon region.
The heating temperature in the decarburization treatment is preferably Ac 3 to 950 ° C. By heating to Ac 3 or higher, the steel structure becomes austenite, decarburization from the surface layer is promoted, and a low carbon region can be easily formed.
The upper limit of the heating temperature is preferably 950 ° C. from the viewpoint of suppressing coarsening of crystal grains and improving delayed fracture resistance. The holding time at the heating temperature is preferably 30 to 90 minutes. By maintaining at the above heating temperature for 30 minutes or more, the depth of the low carbon region can be sufficiently secured and the steel structure can be made homogeneous. Considering productivity, the holding time at the heating temperature is preferably 90 minutes or less.
In the quenching step, the heated steel material is cooled to a martensite-based structure. The heated steel material may be quenched with oil as it is.
Since the area ratio of tempered martensite is preferably 85% or more in the steel structure of the present invention, the area ratio of martensite after quenching is preferably 85% or more.
In order to ensure an area ratio of martensite of 85% or more in the quenching step, it is preferable to set the cooling rate in the range of 700 to 300 ° C. to 5 ° C./s or more during quenching. If the cooling rate is less than 5 ° C / s, the area ratio of martensite may be less than 85%.
In the nitriding step, nitriding treatment is performed on a steel material whose steel structure is mainly martensite and a low carbon region is formed on the surface layer. By nitriding, a nitride layer having a thickness from the steel surface of 200 μm or more and a nitrogen concentration of 12.0% or less and 0.02% or more higher than the nitrogen concentration of the steel material is formed. Tempering is performed to make the steel structure a structure mainly composed of tempered martensite and to precipitate fine precipitates that capture hydrogen.
In the method for producing a steel material of the present invention, since the steel material contains one or both of V and Mo, fine carbides, nitrides, and / or carbonitrides (fine particles) that act to trap hydrogen in the nitriding step. Precipitate).
The nitriding treatment is performed, for example, by heating a steel material in an atmosphere containing ammonia or nitrogen. The nitriding treatment is preferably held at 500 ° C. or higher and 650 ° C. or lower for 30 to 90 minutes. If the nitriding temperature exceeds 650 ° C., the strength of the steel material decreases, so the nitriding temperature is set to 650 ° C. or lower.
If the nitriding temperature is 500 ° C. or less, fine precipitates are not sufficiently precipitated, so the nitriding temperature is set to be over 500 ° C. Further, if the temperature of the nitriding treatment exceeds 500 ° C., the time required for diffusion of nitrogen from the steel material surface is shortened, the treatment time is shortened, and the productivity is increased.
If the nitriding time is less than 30 minutes, the depth of the nitrided layer may not reach 200 μm or more from the surface, so the nitriding time is preferably 30 minutes or longer. Although the upper limit of the nitriding time is not specified, since the nitriding temperature is high in the present invention, a sufficiently thick nitride layer can be formed even in 90 minutes or less.
In the nitriding step, a general nitriding method such as a gas nitriding method, a gas soft nitriding method, a plasma nitriding method, or a salt bath nitriding method can be used.
Next, a method for producing the high-strength bolt of the present invention (hereinafter sometimes referred to as “the bolt of the present invention”) will be described.
The manufacturing method of the bolt according to the present invention includes a processing step for processing the steel material according to the present invention into a bolt, a decarburizing step for heating and decarburizing the bolt, cooling the heated bolt, and It consists of a quenching process with a site-based structure and a nitriding process in which the quenched bolt is nitrided at a temperature of more than 500 ° C. and 650 ° C. or less.
In the nitriding process, the steel structure of the bolt becomes a structure mainly composed of tempered martensite.
In the processing step, for example, a wire material that is a steel material may be cold-forged and rolled into a bolt shape.
Since the manufacturing method of the bolt of the present invention differs from the manufacturing method of the steel material of the present invention only in the processing step of processing the steel material into a bolt shape, the description of the other steps is omitted.
In the method for producing the steel material of the present invention and the method for producing the bolt of the present invention, it is preferable to rapidly cool the range from 500 to 200 ° C. at a cooling rate of 10 to 100 ° C./s after nitriding. By the rapid cooling after the nitriding treatment, the compressive residual stress on the surface of the steel material or bolt can be set to 200 MPa or more. Due to the presence of this compressive residual stress, the delayed fracture resistance is further improved.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 (実施例)
 表1に示す成分組成の溶鋼を、常法にしたがって鋳造し、鋳片を熱間加工して鋼材(線材)とした。鋼材を、Ac~950℃に加熱し、そのまま冷却して焼入れを行った。
 なお、加熱の際に、加熱炉の雰囲気を弱脱炭性に制御し、焼入れは、700~300℃の範囲の冷却速度が5℃/s以上になるように、油冷した。また、加熱炉の雰囲気の炭素ポテンシャル、加熱温度と保持時間によって低炭素領域の深さを調整した。
Figure JPOXMLDOC01-appb-T000001
 その後、鋼材に、ガス軟窒化法で、窒化層を形成する窒化処理を施した。窒化処理後、500~200℃の範囲を、表2に示す冷却速度(焼戻し後の冷却速度)で急冷し、製造No.1~25の高強度鋼材を得た。
 なお、窒化処理は、表2に示す温度で、処理ガス雰囲気中のアンモニア体積比を30~50%とし、処理時間を30~90分として行った。
 窒化層の厚さは、加熱温度と保持時間を変化させて調整した。窒化層の窒素濃度は、処理ガス雰囲気中のアンモニア体積比を変化させて調整した。
Figure JPOXMLDOC01-appb-T000002
 表1に示す鋼材(線材)をボルトに加工し、製造No.1~25の高強度鋼材(線材)と同様の工程で、製造No.26~40の高強度ボルトを得た。窒化処理は、表3に示す温度範囲で行い、窒化処理後、500~200℃の範囲を、表3に示す冷却速度(焼戻し後の冷却速度)で急冷した。
Figure JPOXMLDOC01-appb-T000003
 製造No.1~25の高強度鋼材(表2)、及び、製造No.26~40の高強度ボルト(表3)の焼戻しマルテンサイト比率、引張強度、低炭素領域深さ、窒化層厚さ、圧縮残留応力、侵入水素量、限界拡散性水素量、及び、耐遅れ破壊特性を以下に示す方法で測定した。その結果を、表2及び表3に併せて示す。
 焼戻しマルテンサイト比率
 焼戻しマルテンサイト比率は、製造No.1~25の高強度鋼材及び製造No.26~40の高強度ボルトのC断面を研磨してナイタールエッチング液でエッチングし、光学顕微鏡を用いて、0.04mmの範囲における5視野のマルテンサイトの面積を測定し、その平均値とした。
 なお、製造No.1~25の高強度鋼材及び製造No.27~41の高強度ボルトにおいて、焼戻しマルテンサイトの残部の組織は、残留オーステナイト、ベイナイト、パーライト、フェライトの1種又は2種以上であった。
 引張強度
 引張強度は、JIS Z 2241に準拠して測定した。
 低炭素領域深さと窒化層厚さ
 製造No.1~25の高強度鋼材及び製造No.26~40の高強度ボルトの断面を研磨し、長手方向の任意の5ヶ所について、EDXを用いて、表面から深さ方向の炭素濃度及び窒素濃度を測定した。
 炭素濃度が、鋼材の炭素濃度の0.9倍以下((低炭素領域の炭素濃度/鋼材の炭素濃度)≦0.9)である領域の深さ(厚さ)を「低炭素領域深さ」とし、窒素濃度が、鋼材の窒素濃度より0.02%以上高い(窒化層の窒素濃度−鋼材の窒素濃度≧0.02)領域の深さ(厚さ)を「窒化層厚さ」とした。
 なお、低炭素領域深さ、及び、窒化層厚さは、長手方向の任意の5箇所について測定した値の平均値とした。
 圧縮残留応力
 X線残留応力測定装置を用いて表面の圧縮残留応力を測定した。製造No.1~25の高強度鋼材、及び、製造No.26~40の高強度ボルトの表面の残留応力を測定した後、表面を電解研磨にて、25μmずつエッチングして、深さ方向の残留応力を測定した。なお、圧縮残留応力は、任意の3箇所について測定した値の平均値とした。
 限界拡散性水素量と耐遅れ破壊特性
 製造No.1~25の高強度鋼材及び製造No.26~40の高強度ボルトから、図4に示す形状の遅れ破壊試験片を作製して、水素を侵入させた。水素の侵入は、電解水素チャージ法を用い、チャージ電流を変化させて、表2及び表3に示すように、侵入水素量を変化させた。
 水素を侵入させた遅れ破壊試験片の表面に、拡散性水素の逃散を防止するため、Cdめっきを施し、上記試験片内部の水素濃度を均質化するため、室温で3時間放置した。
 その後、図5に示す遅れ破壊試験機を用いて、試験片1に引張強度の90%の引張荷重を負荷する定荷重遅れ破壊試験を行った。なお、図5に示す試験機では、試験片1に引張加重を付加する際、支点3を支点とするテコの一方の端にバランスウェイト2を配置し、他方の端に試験片1を配置して試験を行った。
 そして、図1(b)に示すように、定荷重遅れ破壊試験を100時間以上行って破断しなかった試験片1の拡散性水素量の最大値を限界拡散性水素量とした。試験片1の拡散性水素量は、遅れ破壊試験片を100℃/hで昇温し、室温~400℃の間に放出された水素量の積算値を、ガスクロマトグラフで測定した。
 侵入水素量と遅れ破壊の限界拡散性水素量を比較して、侵入水素量よりも限界拡散性水素量が多い場合は、遅れ破壊は発生せず、逆に、侵入水素量よりも限界拡散性水素量が少ない場合は、遅れ破壊が発生する。
 したがって、耐遅れ破壊特性は、表2及び表3に示す侵入水素量が限界拡散性水素量未満である場合、「遅れ破壊なし」、侵入水素量が限界拡散性水素量以上である場合、「遅れ破壊あり」と評価した。
 侵入水素量
 侵入水素量は、製造No.1~25の高強度鋼材及び製造No.26~40の高強度ボルトの試験片を用意し、図6に示す、温度・湿度・時間のパターンでの腐食促進試験を30サイクル行った。
 試験片の表面の腐食層をサンドブラストで除去してから、昇温法で水素分析を行い、室温から400℃までに放出された水素量を測定して、侵入水素量を求めた。
 表2に示すように、発明例の製造No.1~15の高強度鋼材は、低炭素領域深さが100μm以上で、かつ、窒化層厚さが200μm以上で、いずれも、引張強度が1300MPa以上、侵入水素量が0.5ppm以下、限界拡散性水素量が2.00ppm以上で、侵入水素量が限界拡散性水素量未満であり、「遅れ破壊なし」であった。
 また、製造No.1~15の高強度鋼材は、いずれも、焼戻しマルテンサイト比率が、50%以上であり、焼戻しマルテンサイト主体の組織であった。また、製造No.1~15の高強度鋼材は、いずれも、圧縮残留応力が200MPa以上であった。
 これに対して、表2に示すように、比較例の製造No.16の高強度鋼材は、C量、Si量及び、Mn量が少なく、強度が低い例である。
 製造No.17はC量が多く、製造No.18はMn量が多く、製造No.19はCr量が多く、製造No.21はCu量が多く、製造No.22はB量が多く、製造No.20はV+1/2Moが低いため、限界拡散性水素量が低く、「遅れ破壊あり」となった例である。
 また、製造No.23は、焼入れの加熱時間が短く、低炭素領域深さが100μm未満であり、限界拡散性水素量が低く、「遅れ破壊あり」となった例である。製造No.24は、窒化処理の時間が短く、窒化層厚さが200μm未満であり、侵入水素量が多く、「遅れ破壊あり」となった例である。
 製造No.25は、窒化処理のガスのアンモニアの濃度を低くしたため、表面から200μmの深さまでの部位において、鋼材との窒素濃度の差が0.01質量%となり、侵入水素量が多く、「遅れ破壊あり」となった例である。
 表3に示すように、発明例の製造No.26~40の高強度ボルトは、低炭素領域深さが100μm以上で、窒化層厚さが200μm以上で、いずれも、引張強度が1300MPa以上で、侵入水素量が0.5ppm以下で、限界拡散性水素量が2.00ppm以上で、侵入水素量が限界拡散性水素量未満であり、「遅れ破壊なし」であった。
 製造No.26~40の高強度ボルトは、いずれも、焼戻しマルテンサイト比率が、50%以上であり、焼戻しマルテンサイト主体の組織であり、圧縮残留応力が200MPa以上であった。
 表2及び表3から、鋼材(線材)をボルトに加工した点のみが、製造No.1~15の高強度鋼材と異なる製造No.26~40の高強度ボルト(製造No.1~15の高強度鋼材のそれぞれに、製造No.26~40の高強度ボルトが対応する)は、高強度鋼材と比較して、さらに、侵入水素量が抑制されていることが解る。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
(Example)
Molten steel having the composition shown in Table 1 was cast according to a conventional method, and the slab was hot worked to obtain a steel material (wire). The steel was heated to Ac 3 to 950 ° C., cooled as it was, and quenched.
During heating, the atmosphere in the heating furnace was controlled to be weakly decarburized, and quenching was oil-cooled so that the cooling rate in the range of 700 to 300 ° C. was 5 ° C./s or more. The depth of the low carbon region was adjusted by the carbon potential of the furnace atmosphere, the heating temperature and the holding time.
Figure JPOXMLDOC01-appb-T000001
Thereafter, the steel material was subjected to nitriding treatment to form a nitrided layer by gas soft nitriding. After nitriding, the range of 500 to 200 ° C. was quenched at the cooling rate shown in Table 2 (cooling rate after tempering). 1 to 25 high strength steel materials were obtained.
The nitriding treatment was performed at a temperature shown in Table 2 with an ammonia volume ratio in the treatment gas atmosphere of 30 to 50% and a treatment time of 30 to 90 minutes.
The thickness of the nitride layer was adjusted by changing the heating temperature and holding time. The nitrogen concentration of the nitride layer was adjusted by changing the ammonia volume ratio in the processing gas atmosphere.
Figure JPOXMLDOC01-appb-T000002
Steel materials (wires) shown in Table 1 were processed into bolts and manufactured No. In the same process as the high-strength steel materials (wires) 1 to 25, the production No. 26 to 40 high-strength bolts were obtained. The nitriding treatment was performed in the temperature range shown in Table 3, and after the nitriding treatment, the range of 500 to 200 ° C. was rapidly cooled at the cooling rate shown in Table 3 (cooling rate after tempering).
Figure JPOXMLDOC01-appb-T000003
Production No. No. 1 to 25 high strength steel (Table 2) and production No. Tempered martensite ratio, tensile strength, low carbon region depth, nitrided layer thickness, compressive residual stress, amount of penetrating hydrogen, amount of critical diffusible hydrogen, and delayed fracture resistance of high-strength bolts of 26 to 40 (Table 3) The characteristics were measured by the method shown below. The results are also shown in Table 2 and Table 3.
Tempered Martensite Ratio Tempered martensite ratio No. 1 to 25 high strength steel and production No. The C section of 26 to 40 high-strength bolts was polished and etched with a nital etchant, and using an optical microscope, the area of martensite with 5 visual fields in the range of 0.04 mm 2 was measured. did.
Production No. No. 1 to 25 high strength steel and production No. In the high-strength bolts of 27 to 41, the remaining structure of the tempered martensite was one or more of retained austenite, bainite, pearlite, and ferrite.
Tensile strength The tensile strength was measured according to JIS Z 2241.
Low carbon region depth and nitride layer thickness No. 1 to 25 high strength steel and production No. The cross-sections of 26 to 40 high-strength bolts were polished, and the carbon concentration and the nitrogen concentration in the depth direction from the surface were measured at any five locations in the longitudinal direction using EDX.
The depth (thickness) of the region where the carbon concentration is 0.9 times or less the carbon concentration of the steel material ((carbon concentration in the low carbon region / carbon concentration in the steel material) ≦ 0.9) is expressed as “low carbon region depth. The depth (thickness) of the region where the nitrogen concentration is 0.02% or more higher than the nitrogen concentration of the steel material (nitrogen concentration of the nitride layer−nitrogen concentration of the steel material ≧ 0.02) is referred to as “nitride layer thickness”. did.
The depth of the low carbon region and the thickness of the nitride layer were average values of values measured at arbitrary five locations in the longitudinal direction.
Compressive residual stress The compressive residual stress of the surface was measured using an X-ray residual stress measuring apparatus. Production No. 1 to 25 high-strength steel materials and production no. After measuring the residual stress on the surface of 26 to 40 high-strength bolts, the surface was etched by 25 μm by electrolytic polishing, and the residual stress in the depth direction was measured. The compressive residual stress was an average value of values measured at three arbitrary locations.
Limiting diffusible hydrogen content and delayed fracture resistance No. 1 to 25 high strength steel and production No. A delayed fracture specimen having the shape shown in FIG. 4 was produced from 26 to 40 high-strength bolts, and hydrogen was allowed to enter. For the hydrogen intrusion, an electrolytic hydrogen charging method was used, and the charge current was changed to change the amount of intruding hydrogen as shown in Tables 2 and 3.
In order to prevent the escape of diffusible hydrogen, the surface of the delayed fracture test piece into which hydrogen had penetrated was subjected to Cd plating and left at room temperature for 3 hours to homogenize the hydrogen concentration inside the test piece.
Thereafter, using a delayed fracture tester shown in FIG. 5, a constant load delayed fracture test was performed in which a tensile load of 90% of the tensile strength was applied to the test piece 1. In the testing machine shown in FIG. 5, when applying a tensile load to the test piece 1, the balance weight 2 is arranged at one end of the lever having the fulcrum 3 as a fulcrum, and the test piece 1 is arranged at the other end. The test was conducted.
And as shown in FIG.1 (b), the maximum value of the diffusible hydrogen amount of the test piece 1 which did the constant load delayed fracture test for 100 hours or more and did not fracture | rupture was made into the limit diffusible hydrogen amount. Regarding the amount of diffusible hydrogen in test piece 1, the delayed fracture test piece was heated at 100 ° C./h, and the integrated value of the amount of hydrogen released between room temperature and 400 ° C. was measured with a gas chromatograph.
Comparing the amount of intrusion hydrogen and the amount of critical diffusible hydrogen for delayed fracture, if the amount of critical diffusible hydrogen is greater than the amount of intruded hydrogen, delayed fracture does not occur. When the amount of hydrogen is small, delayed fracture occurs.
Therefore, the delayed fracture resistance indicates “no delayed fracture” when the intrusion hydrogen amount shown in Table 2 and Table 3 is less than the limit diffusible hydrogen amount, and when the intrusion hydrogen amount is equal to or greater than the limit diffusible hydrogen amount. It was evaluated that there was delayed fracture.
Intrusion hydrogen amount The intrusion hydrogen amount is determined according to the production no. No. 1 to 25 high strength steel and production No. Test pieces of 26 to 40 high-strength bolts were prepared, and 30 cycles of the corrosion acceleration test using the temperature / humidity / time pattern shown in FIG. 6 were performed.
After removing the corrosion layer on the surface of the test piece by sand blasting, hydrogen analysis was performed by a temperature rising method, and the amount of hydrogen released from room temperature to 400 ° C. was measured to determine the amount of invading hydrogen.
As shown in Table 2, the production No. of the invention example. 1 to 15 high-strength steel materials have a low carbon region depth of 100 μm or more and a nitrided layer thickness of 200 μm or more, all of which have a tensile strength of 1300 MPa or more and an intrusion hydrogen amount of 0.5 ppm or less. The amount of ionic hydrogen was 2.00 ppm or more and the amount of invading hydrogen was less than the limit diffusible hydrogen amount, indicating “no delayed fracture”.
In addition, production No. Each of the high strength steel materials 1 to 15 had a tempered martensite ratio of 50% or more, and was a tempered martensite-based structure. In addition, production No. All the high strength steel materials 1 to 15 had a compressive residual stress of 200 MPa or more.
On the other hand, as shown in Table 2, the production No. No. 16 high-strength steel material is an example in which the amount of C, the amount of Si and the amount of Mn are small and the strength is low.
Production No. No. 17 has a large amount of C. No. 18 has a large amount of Mn. No. 19 has a large amount of Cr. No. 21 has a large amount of Cu. No. 22 has a large amount of B. No. 20 is an example in which the amount of critical diffusible hydrogen is low because “V + 1 / 2Mo” is low, resulting in “with delayed fracture”.
In addition, production No. No. 23 is an example in which the heating time for quenching is short, the depth of the low carbon region is less than 100 μm, the amount of critical diffusible hydrogen is low, and “delayed fracture occurs”. Production No. No. 24 is an example in which the time for the nitriding treatment is short, the nitrided layer thickness is less than 200 μm, the amount of invading hydrogen is large, and “delayed fracture occurs”.
Production No. In No. 25, since the concentration of ammonia in the nitriding gas was lowered, the difference in nitrogen concentration with the steel material was 0.01% by mass in the region from the surface to a depth of 200 μm, and the amount of invading hydrogen was large. This is an example.
As shown in Table 3, the production numbers of the invention examples. High strength bolts of 26 to 40 have a low carbon region depth of 100 μm or more, a nitrided layer thickness of 200 μm or more, all of which have a tensile strength of 1300 MPa or more, an intrusion hydrogen amount of 0.5 ppm or less, and limit diffusion. The amount of ionic hydrogen was 2.00 ppm or more and the amount of invading hydrogen was less than the limit diffusible hydrogen amount, indicating “no delayed fracture”.
Production No. Each of the high-strength bolts of 26 to 40 had a tempered martensite ratio of 50% or more, a tempered martensite-based structure, and a compressive residual stress of 200 MPa or more.
From Table 2 and Table 3, only the point which processed the steel material (wire) into the volt | bolt is manufacture No.2. Production No. different from 1-15 high strength steel. The high strength bolts of 26 to 40 (the high strength bolts of production No. 26 to 40 correspond to the high strength steel materials of production Nos. 1 to 15) are more intruded hydrogen than the high strength steel materials. It can be seen that the amount is suppressed.
 前述したように、本発明によれば、厳しい腐食環境においても優れた耐遅れ破壊特性を発現する高強度鋼材(線材、PC鋼棒)及び高強度ボルトと、それらを安価に製造することができる製造方法を提供することできる。よって、本発明は、鋼材製造及び使用産業において利用可能性が極めて高いものである。 As described above, according to the present invention, high-strength steel materials (wire rods, PC steel rods) and high-strength bolts that exhibit excellent delayed fracture resistance even in severe corrosive environments, and these can be manufactured at low cost. A manufacturing method can be provided. Therefore, the present invention has extremely high applicability in the steel material manufacturing and use industries.
 1 試験片
 2 バランスウェイト
 3 支点
1 test piece 2 balance weight 3 fulcrum

Claims (18)

  1.  質量%で、
     C :0.10~0.55%、
     Si:0.01~3%、
     Mn:0.1~2%
    を含有し、さらに、
     V:1.5%以下及びMo:3.0%以下の1種又は2種を含有し、かつ、VとMoの含有量が、
     V+1/2Mo>0.4%
    を満たし、さらに、
     Cr:0.05~1.5%、
     Nb:0.001~0.05%、
     Cu:0.01~4%、
     Ni:0.01~4%、及び、
     B :0.0001~0.005%
    の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、組織が焼戻しマルテンサイト主体の組織である鋼材であって、
    上記鋼材の表層に、
     (a)上記鋼材の表面からの厚さが200μm以上で、かつ、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度より0.02質量%以上高い窒化層、及び、
     (b)上記鋼材の表面からの深さが100μm以上、1000μm以下で、かつ、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域
    が形成されている
    ことを特徴とする耐遅れ破壊特性に優れた高強度鋼材。
    % By mass
    C: 0.10 to 0.55%,
    Si: 0.01 to 3%,
    Mn: 0.1-2%
    In addition,
    V: 1.5% or less and Mo: 3.0% or less of 1 type or 2 types, and the contents of V and Mo are
    V + 1 / 2Mo> 0.4%
    Meet, and
    Cr: 0.05 to 1.5%,
    Nb: 0.001 to 0.05%,
    Cu: 0.01 to 4%,
    Ni: 0.01 to 4%, and
    B: 0.0001 to 0.005%
    One or more of the following, the balance is made of Fe and unavoidable impurities, the structure is a steel material mainly composed of tempered martensite,
    On the surface layer of the steel material,
    (A) a nitride layer having a thickness from the surface of the steel material of 200 μm or more and a nitrogen concentration of 12.0% by mass or less, which is 0.02% by mass or more higher than the nitrogen concentration of the steel material; and
    (B) A low carbon region having a depth from the surface of the steel material of 100 μm or more and 1000 μm or less and a carbon concentration of 0.05% by mass or more and 0.9 times or less of the carbon concentration of the steel material is formed. High strength steel with excellent delayed fracture resistance.
  2.  前記窒化層及び低炭素領域の存在により、鋼材に侵入する水素量が0.5ppm以下であり、かつ、鋼材の限界拡散性水素量が2.00ppm以上であることを特徴とする請求項1に記載の耐遅れ破壊特性に優れた高強度鋼材。 The amount of hydrogen entering the steel material is 0.5 ppm or less due to the presence of the nitrided layer and the low carbon region, and the limit diffusible hydrogen content of the steel material is 2.00 ppm or more. High strength steel with excellent delayed fracture resistance as described.
  3.  さらに、前記鋼材が、質量%で、
     Al:0.003~0.1%、
     Ti:0.003~0.05%、
     Mg:0.0003~0.01%、
     Ca:0.0003~0.01%、
     Zr:0.0003~0.01%
    の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の耐遅れ破壊特性に優れた高強度鋼材。
    Furthermore, the said steel material is the mass%,
    Al: 0.003 to 0.1%,
    Ti: 0.003 to 0.05%,
    Mg: 0.0003 to 0.01%
    Ca: 0.0003 to 0.01%,
    Zr: 0.0003 to 0.01%
    The high-strength steel material excellent in delayed fracture resistance according to claim 1 or 2, characterized by containing one or more of the following.
  4.  前記窒化層の厚さが1000μm以下であることを特徴とする請求項1~3のいずれか1項に記載の耐遅れ破壊特性に優れた高強度鋼材。 The high-strength steel material having excellent delayed fracture resistance according to any one of claims 1 to 3, wherein the nitride layer has a thickness of 1000 µm or less.
  5.  前記焼戻しマルテンサイトの面積率が85%以上であることを特徴とする請求項1~4のいずれか1項に記載の耐遅れ破壊特性に優れた高強度鋼材。 The high strength steel material having excellent delayed fracture resistance according to any one of claims 1 to 4, wherein an area ratio of the tempered martensite is 85% or more.
  6.  前記鋼材の表面における圧縮残留応力が200MPa以上であることを特徴とする請求項1~5のいずれか1項に記載の耐遅れ破壊特性に優れた高強度鋼材。 6. The high-strength steel material excellent in delayed fracture resistance according to any one of claims 1 to 5, wherein a compressive residual stress on the surface of the steel material is 200 MPa or more.
  7.  前記鋼材の引張強度が1300MPa以上であることを特徴とする請求項1~6のいずれか1項に記載の耐遅れ破壊特性に優れた高強度鋼材。 The high-strength steel material having excellent delayed fracture resistance according to any one of claims 1 to 6, wherein the steel material has a tensile strength of 1300 MPa or more.
  8.  質量%で、
     C :0.10~0.55%、
     Si:0.01~3%、
     Mn:0.1~2%
    を含有し、さらに、
     V:1.5%以下及びMo:3.0%以下の1種又は2種を含有し、かつ、VとMoの含有量が、
     V+1/2Mo>0.4%
    を満たし、さらに、
     Cr:0.05~1.5%、
     Nb:0.001~0.05%、
     Cu:0.01~4%、
     Ni:0.01~4%、及び、
     B :0.0001~0.005%
    の1種又は2種以上を含有し、残部がFe及び不可避的不純物からなり、組織が焼戻しマルテンサイト主体の組織である鋼材を加工したボルトであって、
    上記ボルトの表層に、
     (a)上記ボルトの表面からの厚さが200μm以上で、かつ、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度より0.02質量%以上高い窒化層、及び、
     (b)上記ボルトの表面からの深さが100μm以上、1000μm以下で、かつ、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域
    が形成されている
    ことを特徴とする耐遅れ破壊特性に優れた高強度ボルト。
    % By mass
    C: 0.10 to 0.55%,
    Si: 0.01 to 3%,
    Mn: 0.1-2%
    In addition,
    V: 1.5% or less and Mo: 3.0% or less of 1 type or 2 types, and the contents of V and Mo are
    V + 1 / 2Mo> 0.4%
    Meet, and
    Cr: 0.05 to 1.5%,
    Nb: 0.001 to 0.05%,
    Cu: 0.01 to 4%,
    Ni: 0.01 to 4%, and
    B: 0.0001 to 0.005%
    1 or 2 or more of the following, the balance is made of Fe and inevitable impurities, the structure is a bolt processed steel material that is a tempered martensite-based structure,
    On the surface of the bolt,
    (A) a nitride layer having a thickness from the surface of the bolt of 200 μm or more and a nitrogen concentration of 12.0% by mass or less, which is 0.02% by mass or more higher than the nitrogen concentration of the steel material; and
    (B) A low carbon region having a depth from the surface of the bolt of 100 μm to 1000 μm and a carbon concentration of 0.05% by mass or more and 0.9 times or less of the carbon concentration of the steel material is formed. A high-strength bolt with excellent delayed fracture resistance.
  9.  前記窒化層及び低炭素領域の存在で、ボルトへ侵入する水素量が0.5ppm以下であり、かつ、ボルトの限界拡散性水素量が2.00ppm以上であることを特徴とする請求項8に記載の耐遅れ破壊特性に優れた高強度ボルト。 9. The amount of hydrogen penetrating into the bolt is 0.5 ppm or less due to the presence of the nitride layer and the low carbon region, and the limiting diffusible hydrogen content of the bolt is 2.00 ppm or more. High strength bolt with excellent delayed fracture resistance as described.
  10.  さらに、前記鋼材が、質量%で、
     Al:0.003~0.1%、
     Ti:0.003~0.05%、
     Mg:0.0003~0.01%、
     Ca:0.0003~0.01%、
     Zr:0.0003~0.01%
    の1種又は2種以上を含有することを特徴とする請求項8又は9に記載の耐遅れ破壊特性に優れた高強度ボルト。
    Furthermore, the said steel material is the mass%,
    Al: 0.003 to 0.1%,
    Ti: 0.003 to 0.05%,
    Mg: 0.0003 to 0.01%
    Ca: 0.0003 to 0.01%,
    Zr: 0.0003 to 0.01%
    The high-strength bolt excellent in delayed fracture resistance according to claim 8 or 9, characterized by containing one or more of the following.
  11.  前記窒化層の厚さが1000μm以下であることを特徴とする請求項8~10のいずれか1項に記載の耐遅れ破壊特性に優れた高強度ボルト。 The high-strength bolt excellent in delayed fracture resistance according to any one of claims 8 to 10, wherein the nitride layer has a thickness of 1000 µm or less.
  12.  前記焼戻しマルテンサイトの面積率が85%以上であることを特徴とする請求項8~11のいずれか1項に記載の耐遅れ破壊特性に優れた高強度ボルト。 The high-strength bolt excellent in delayed fracture resistance according to any one of claims 8 to 11, wherein the area ratio of the tempered martensite is 85% or more.
  13.  前記ボルトの表面における圧縮残留応力が200MPa以上であることを特徴とする請求項8~12のいずれか1項に記載の耐遅れ破壊特性に優れた高強度ボルト。 The high-strength bolt excellent in delayed fracture resistance according to any one of claims 8 to 12, wherein a compressive residual stress on the surface of the bolt is 200 MPa or more.
  14.  前記ボルトの引張強度が1300MPa以上であることを特徴とする請求項8~13のいずれか1項に記載の耐遅れ破壊特性に優れた高強度ボルト。 The high strength bolt excellent in delayed fracture resistance according to any one of claims 8 to 13, wherein the bolt has a tensile strength of 1300 MPa or more.
  15.  請求項1~7のいずれか1項に記載の耐遅れ破壊特性に優れた高強度鋼材の製造方法であって、
     (1) 請求項1又は3に記載の成分組成の鋼材を加熱して、鋼材の表面から100μm以上、1000μm以下の深さまで、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域を形成し、次いで、そのまま冷却して、鋼材組織をマルテンサイト主体の組織とし、その後、
     (2) 上記鋼材に、500℃超、650℃以下の窒化処理を施して、該鋼材の表層に、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度よりも0.02質量%以上高い、上記鋼材の表面からの厚さが200μm以上の窒化層を形成するとともに、鋼材組織を焼戻しマルテンサイト主体の組織とする
    ことを特徴とする耐遅れ破壊特性に優れた高強度鋼材の製造方法。
    A method for producing a high-strength steel material having excellent delayed fracture resistance according to any one of claims 1 to 7,
    (1) The steel material having the composition according to claim 1 or 3 is heated to a depth of 100 μm or more and 1000 μm or less from the surface of the steel material, the carbon concentration is 0.05 mass% or more, and the carbon concentration of the steel material is Form a low carbon region of 0.9 times or less, then cooled as it is, the steel structure is a martensite-based structure,
    (2) The steel material is subjected to nitriding treatment at a temperature exceeding 500 ° C. and not more than 650 ° C., and the nitrogen concentration of the steel material is 12.0% by mass or less and 0.02% by mass than the nitrogen concentration of the steel material. Production of high-strength steel material excellent in delayed fracture resistance, characterized by forming a nitride layer with a thickness of 200 μm or more from the surface of the steel material higher than the above, and having the steel material structure mainly composed of tempered martensite Method.
  16.  前記窒化層の厚さが1000μm以下であることを特徴とする請求項15に記載の耐遅れ破壊特性に優れた高強度鋼材の製造方法。 The method for producing a high-strength steel material having excellent delayed fracture resistance according to claim 15, wherein the nitride layer has a thickness of 1000 μm or less.
  17.  請求項8~14のいずれか1項に記載の耐遅れ破壊特性に優れたボルトの製造方法であって、
     (1) 請求項8又は10に記載の成分組成の鋼材を加工したボルトを加熱して、ボルトの表面から100μm以上、1000μm以下の深さまで、炭素濃度が0.05質量%以上で、上記鋼材の炭素濃度の0.9倍以下の低炭素領域を形成し、次いで、そのまま冷却して、鋼材組織をマルテンサイト主体の組織とし、その後、
     (2) 上記ボルトに、500℃超、650℃以下の窒化処理を施して、該ボルトの表層に、窒素濃度が12.0質量%以下で、上記鋼材の窒素濃度よりも0.02質量%以上高い、上記ボルトの表面からの厚さが200μm以上の窒化層を形成するとともに、鋼材を焼戻しマルテンサイト主体の組織とする
    ことを特徴とする耐遅れ破壊特性に優れた高強度ボルトの製造方法。
    A method for producing a bolt excellent in delayed fracture resistance according to any one of claims 8 to 14,
    (1) A bolt obtained by processing a steel material having the component composition according to claim 8 or 10 is heated to have a carbon concentration of 0.05% by mass or more from the surface of the bolt to a depth of 100 μm or more and 1000 μm or less. Forming a low carbon region of 0.9 times or less of the carbon concentration of, and then cooling as it is, the steel structure becomes a martensite-based structure,
    (2) The bolt is subjected to nitriding treatment at over 500 ° C. and not more than 650 ° C., and the nitrogen concentration is 12.0 mass% or less on the surface layer of the bolt, and 0.02 mass% than the nitrogen concentration of the steel material. A method for producing a high-strength bolt excellent in delayed fracture resistance, characterized in that a nitride layer having a thickness of 200 μm or more from the surface of the bolt is formed, and the steel is made of a tempered martensite-based structure. .
  18.  前記窒化層の厚さが1000μm以下であることを特徴とする請求項17に記載の耐遅れ破壊特性に優れた高強度ボルトの製造方法。 The method for producing a high-strength bolt excellent in delayed fracture resistance according to claim 17, wherein the nitride layer has a thickness of 1000 μm or less.
PCT/JP2011/056481 2010-03-11 2011-03-11 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor WO2011111872A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
IN5089DEN2012 IN2012DN05089A (en) 2010-03-11 2011-03-11
CN201180013427XA CN102812145A (en) 2010-03-11 2011-03-11 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
EP20110753527 EP2546379B1 (en) 2010-03-11 2011-03-11 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP2012502334A JP5177323B2 (en) 2010-03-11 2011-03-11 High-strength steel material and high-strength bolt excellent in delayed fracture resistance
KR1020127010100A KR101366375B1 (en) 2010-03-11 2011-03-11 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
US13/515,444 US20120247618A1 (en) 2010-03-11 2011-03-11 High strength steel material and high strength bolt excellent in delayed fracture resistance and methods of production of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010054649 2010-03-11
JP2010-054649 2010-03-11

Publications (1)

Publication Number Publication Date
WO2011111872A1 true WO2011111872A1 (en) 2011-09-15

Family

ID=44563661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056481 WO2011111872A1 (en) 2010-03-11 2011-03-11 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor

Country Status (7)

Country Link
US (1) US20120247618A1 (en)
EP (1) EP2546379B1 (en)
JP (1) JP5177323B2 (en)
KR (1) KR101366375B1 (en)
CN (1) CN102812145A (en)
IN (1) IN2012DN05089A (en)
WO (1) WO2011111872A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014540A3 (en) * 2012-04-27 2014-03-27 Crs Holdings, Inc. High strength, high toughness steel alloy
CN104395489A (en) * 2012-06-20 2015-03-04 新日铁住金株式会社 Steel for oil well pipe, and method for producing same
WO2018230717A1 (en) * 2017-06-15 2018-12-20 新日鐵住金株式会社 Rolled wire for spring steel
JP2020176286A (en) * 2019-04-16 2020-10-29 高周波熱錬株式会社 Pc steel excellent in delayed fracture resistance, and method of manufacturing the same
WO2020230872A1 (en) * 2019-05-14 2020-11-19 日本製鉄株式会社 Bolt and steel material for bolt
WO2021106086A1 (en) * 2019-11-26 2021-06-03 日本製鉄株式会社 Steel and bearing
CN116445829A (en) * 2023-06-16 2023-07-18 中国矿业大学(北京) Corrosion-resistant anchor rod and production process thereof
JP7464832B2 (en) 2019-05-14 2024-04-10 日本製鉄株式会社 Bolts and bolt steel

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115135A1 (en) * 2011-02-23 2012-08-30 Dowaサーモテック株式会社 Nitrided steel member and method for producing same
BR112015005870B1 (en) * 2012-11-05 2018-11-21 Nippon Steel & Sumitomo Metal Corporation low alloy steel for tubular oil industry products that have sulphide stress crack resistance and manufacturing method
CN102943210B (en) * 2012-11-09 2015-02-04 谢亚平 High-strength bolt and processing method thereof
KR20140121229A (en) * 2013-04-05 2014-10-15 태양금속공업주식회사 A manufacturing method of steel bolt having high tensile strength
MX2015016224A (en) 2013-06-07 2016-03-01 Nippon Steel & Sumitomo Metal Corp Heat-treated steel material and method for producing same.
NL2011269C2 (en) * 2013-08-05 2015-02-09 Onderzoekscentrum Voor Aanwending Van Staal N V Structure for use in a corrosive environment.
JP6422176B2 (en) * 2014-08-29 2018-11-14 日産自動車株式会社 Steel for high-strength bolts and high-strength bolts
CN104313492B (en) * 2014-11-07 2017-04-12 广东鼎耀工程技术有限公司 PC steel bar with high strength and toughness and heat treatment method thereof
DE102014017275A1 (en) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh High strength air hardening multiphase steel with excellent processing properties and method of making a strip of this steel
CN107709594B (en) * 2015-06-29 2020-03-20 日本制铁株式会社 Bolt
CN105861919A (en) * 2016-06-14 2016-08-17 江苏永昊高强度螺栓有限公司 Production process of high-strength bolt
WO2018008703A1 (en) * 2016-07-05 2018-01-11 新日鐵住金株式会社 Rolled wire rod
CN106521316B (en) * 2016-11-15 2018-08-07 江阴兴澄特种钢铁有限公司 Carbon and low-alloy round steel and its manufacturing method in a kind of fastener high-hardenability
CN106756516B (en) * 2017-02-07 2018-06-08 和县隆盛精密机械有限公司 A kind of alloy-steel casting and its casting technique suitable for mechanical arm clamping screw
CN107058705A (en) * 2017-02-17 2017-08-18 江苏佳杰特种螺钉有限公司 A kind of production technology for the fastener applied in high ferro
RU2635641C1 (en) * 2017-03-28 2017-11-14 Юлия Алексеевна Щепочкина Cast steel
CN107513664A (en) * 2017-07-10 2017-12-26 安徽长江紧固件有限责任公司 A kind of torsion shear type high tensile bolt and its processing technology
CN107604243B (en) * 2017-08-09 2019-10-08 宁波市镇海甬鼎紧固件制造有限公司 A kind of high-strength bolt material and preparation method thereof
JP2019124481A (en) * 2018-01-12 2019-07-25 株式会社神戸製鋼所 Residual stress measurement method
CN111655883A (en) 2018-01-30 2020-09-11 日产自动车株式会社 Bolt
JP6988922B2 (en) * 2018-01-30 2022-01-05 日産自動車株式会社 Bolt and fastening structure
CN109266964B (en) * 2018-10-25 2021-03-05 青岛天赢智能工业股份有限公司 Production and machining process of steel forging
CN113322410B (en) * 2020-02-28 2022-06-28 宝山钢铁股份有限公司 High-strength bolt steel with excellent delayed fracture resistance and preparation method thereof
CN111931309B (en) * 2020-08-24 2022-09-09 长江水利委员会长江科学院 Method for simulating tensile hardening softening fracture of anchor rod/anchor cable structure
CN112795854A (en) * 2020-12-23 2021-05-14 石家庄钢铁有限责任公司 High-strength fastener bolt steel and production method thereof
CN115433871B (en) * 2021-06-02 2023-07-07 宝山钢铁股份有限公司 High-strength steel resistant to hydrogen embrittlement delayed fracture and manufacturing method thereof
CN114058974B (en) * 2021-11-30 2022-09-13 马鞍山钢铁股份有限公司 15.9-grade corrosion-resistant high-strength bolt steel and production method and heat treatment method thereof
CN115386803B (en) * 2022-08-31 2023-07-25 马鞍山钢铁股份有限公司 Non-quenched and tempered steel for high-strength and high-toughness wind power bolts and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141341A (en) * 1996-11-13 1998-05-26 Nkk Corp High strength bolt excellent in delayed fracture
JPH10226817A (en) * 1996-12-11 1998-08-25 Sumitomo Metal Ind Ltd Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2009299180A (en) * 2008-05-13 2009-12-24 Nippon Steel Corp High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165557A (en) * 1994-12-13 1996-06-25 Sumitomo Metal Ind Ltd Production of pitting resisting soft-nitrided gear
JP3754788B2 (en) * 1997-03-12 2006-03-15 中央発條株式会社 Coil spring with excellent delayed fracture resistance and manufacturing method thereof
JP2000337332A (en) * 2000-01-01 2000-12-05 Kobe Steel Ltd High strength bolt excellent in delayed fracture resistance
JP2000337334A (en) * 2000-01-01 2000-12-05 Kobe Steel Ltd High structure bolt excellent in delayed fracture resistance
JP3851533B2 (en) * 2001-10-05 2006-11-29 株式会社神戸製鋼所 High-strength non-tempered upset bolt wire, method for manufacturing the same, and high-strength non-tempered upset bolt
JP5251633B2 (en) * 2008-05-13 2013-07-31 新日鐵住金株式会社 High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141341A (en) * 1996-11-13 1998-05-26 Nkk Corp High strength bolt excellent in delayed fracture
JPH10226817A (en) * 1996-12-11 1998-08-25 Sumitomo Metal Ind Ltd Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP2009299180A (en) * 2008-05-13 2009-12-24 Nippon Steel Corp High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014014540A3 (en) * 2012-04-27 2014-03-27 Crs Holdings, Inc. High strength, high toughness steel alloy
CN104395489A (en) * 2012-06-20 2015-03-04 新日铁住金株式会社 Steel for oil well pipe, and method for producing same
EP2865775A4 (en) * 2012-06-20 2015-08-19 Nippon Steel & Sumitomo Metal Corp Steel for oil well pipe, and method for producing same
US10407758B2 (en) 2012-06-20 2019-09-10 Nippon Steel Corporation Steel for oil country tubular goods and method of producing the same
WO2018230717A1 (en) * 2017-06-15 2018-12-20 新日鐵住金株式会社 Rolled wire for spring steel
JP6447799B1 (en) * 2017-06-15 2019-01-09 新日鐵住金株式会社 Rolled wire rod for spring steel
US11118251B2 (en) 2017-06-15 2021-09-14 Nippon Steel Corporation Rolled wire rod for spring steel
JP2020176286A (en) * 2019-04-16 2020-10-29 高周波熱錬株式会社 Pc steel excellent in delayed fracture resistance, and method of manufacturing the same
JPWO2020230872A1 (en) * 2019-05-14 2020-11-19
WO2020230872A1 (en) * 2019-05-14 2020-11-19 日本製鉄株式会社 Bolt and steel material for bolt
JP7164032B2 (en) 2019-05-14 2022-11-01 日本製鉄株式会社 Bolts and steel materials for bolts
JP7464832B2 (en) 2019-05-14 2024-04-10 日本製鉄株式会社 Bolts and bolt steel
WO2021106086A1 (en) * 2019-11-26 2021-06-03 日本製鉄株式会社 Steel and bearing
JPWO2021106086A1 (en) * 2019-11-26 2021-06-03
JP7360060B2 (en) 2019-11-26 2023-10-12 日本製鉄株式会社 steel and bearings
CN116445829A (en) * 2023-06-16 2023-07-18 中国矿业大学(北京) Corrosion-resistant anchor rod and production process thereof
CN116445829B (en) * 2023-06-16 2023-09-08 中国矿业大学(北京) Corrosion-resistant anchor rod and production process thereof

Also Published As

Publication number Publication date
EP2546379A1 (en) 2013-01-16
JP5177323B2 (en) 2013-04-03
US20120247618A1 (en) 2012-10-04
EP2546379A4 (en) 2013-08-07
KR101366375B1 (en) 2014-02-24
IN2012DN05089A (en) 2015-10-09
CN102812145A (en) 2012-12-05
KR20120056879A (en) 2012-06-04
EP2546379B1 (en) 2015-04-29
JPWO2011111872A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP5177323B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JP5674620B2 (en) Steel wire for bolt and bolt, and manufacturing method thereof
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
JP5397247B2 (en) Hot rolled steel bar or wire rod
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
JP5251632B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
EP2530178A1 (en) Case-hardened steel and carburized material
KR20150002848A (en) Steel wire for high-strength spring having exceptional coiling performance and hydrogen embrittlement resistance, and method for manufacturing same
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
WO2013146676A1 (en) Wire rod and steel wire using same
WO2017115842A1 (en) Case-hardened steel, carburized component, and process for producing case-hardened steel
JP5251633B2 (en) High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
JP4254551B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
WO2018061101A1 (en) Steel
JP2017133052A (en) Case hardened steel excellent in coarse particle prevention property, fatigue property and machinability during carburization and manufacturing method therefor
JP4653389B2 (en) High-strength Al-plated wire rod and bolt excellent in delayed fracture resistance, and method for producing the same
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP6682863B2 (en) High carbon steel wire rod and high carbon steel wire
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
JPH06185513A (en) High strength bolt excellent in delay destruction resistance characteristic and manufacture thereof
JP2018035421A (en) Case hardening steel excellent in coarse grain prevention property upon carburization and fatigue property and production method therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013427.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012502334

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010100

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5089/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13515444

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011753527

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004464

Country of ref document: TH