JP4411253B2 - Hot forged parts with excellent delayed fracture resistance and method for producing the same - Google Patents

Hot forged parts with excellent delayed fracture resistance and method for producing the same Download PDF

Info

Publication number
JP4411253B2
JP4411253B2 JP2005212217A JP2005212217A JP4411253B2 JP 4411253 B2 JP4411253 B2 JP 4411253B2 JP 2005212217 A JP2005212217 A JP 2005212217A JP 2005212217 A JP2005212217 A JP 2005212217A JP 4411253 B2 JP4411253 B2 JP 4411253B2
Authority
JP
Japan
Prior art keywords
delayed fracture
fracture resistance
tempering
hydrogen
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005212217A
Other languages
Japanese (ja)
Other versions
JP2007031735A (en
Inventor
卓 吉田
徹志 千田
学 久保田
敏三 樽井
英樹 松田
孝樹 水野
忠司 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2005212217A priority Critical patent/JP4411253B2/en
Publication of JP2007031735A publication Critical patent/JP2007031735A/en
Application granted granted Critical
Publication of JP4411253B2 publication Critical patent/JP4411253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐遅れ破壊特性に優れた熱間鍛造部品およびその製造方法に関し、特に、1600MPa級以上の引張強度を有する、耐遅れ破壊特性に優れた熱間鍛造部品およびその製造方法に関するものである。   The present invention relates to a hot forged part excellent in delayed fracture resistance and a manufacturing method thereof, and more particularly to a hot forged part excellent in delayed fracture resistance having a tensile strength of 1600 MPa class or more and a manufacturing method thereof. is there.

自動車、機械、橋梁、土木建築等、各種産業分野で使用される高強度鋼は、例えば、JIS G 4104、JIS G 4105に規定されるクロム鋼(SCr)、クロムモリブデン鋼(SCM)であって、C濃度が質量%で0.30〜0.45%の中炭素鋼であり、その鋼に焼入れ、焼戻し処理が施されて製造されている。しかし、上記の鋼材は、引張強度が1300MPaを超えると水素脆化の危険性、特に、使用中に環境から侵入する水素に起因する遅れ破壊現象の危険性が高まることがよく知られている。そのため、例えば、建築向けの場合、引張強度が1150MPa級の鋼材が上限となっているのが現状である。   High-strength steel used in various industrial fields such as automobiles, machinery, bridges, civil engineering and construction is chrome steel (SCr) and chrome molybdenum steel (SCM) defined in JIS G 4104 and JIS G 4105, for example. The medium carbon steel has a C concentration of 0.30 to 0.45% by mass, and is manufactured by quenching and tempering the steel. However, it is well known that the above steel materials have an increased risk of hydrogen embrittlement when the tensile strength exceeds 1300 MPa, in particular, the risk of delayed fracture due to hydrogen entering from the environment during use. Therefore, for example, in the case of construction, the upper limit is a steel material having a tensile strength of 1150 MPa class.

高強度鋼の耐遅れ破壊特性を向上させる従来の知見として、例えば、特許文献1に記載の発明では、旧オーステナイト粒を微細化させること、組織をベイナイト化させることが有効であると提案している。   As conventional knowledge for improving delayed fracture resistance of high-strength steel, for example, in the invention described in Patent Document 1, it is proposed that it is effective to refine prior austenite grains and to bainite the structure. Yes.

旧オーステナイト粒の微細化技術に関する発明については、上記特許文献1に記載の発明以外にも、特許文献2〜4でも提案されているが、いずれの場合ともに耐遅れ破壊特性の大幅な改善には至っていないことは既に特許文献8で指摘されている。また、特許文献5〜7においては、旧オーステナイト粒を伸長化させて破断亀裂伝播方向に対し粒界間隔を狭めることで実質的に細粒化機構と同様の効果を発揮させ、耐遅れ破壊特性を改善する発明が提案されている。しかし、これらの発明では、引張強度1600MPa以上の高強度鋼までは言及されておらず、高強度鋼での耐遅れ破壊特性改善効果は未知のままである。   In addition to the invention described in Patent Document 1, Patent Documents 2 to 4 propose inventions related to the refinement technology of prior austenite grains. It has already been pointed out in Patent Document 8 that this has not been reached. Further, in Patent Documents 5 to 7, the austenite grains are elongated and the intergranular spacing is narrowed with respect to the direction of propagation of fracture cracks, thereby exhibiting substantially the same effect as the refinement mechanism, and delayed fracture resistance. An invention for improving the above has been proposed. However, these inventions do not mention high-strength steel having a tensile strength of 1600 MPa or more, and the effect of improving delayed fracture resistance in high-strength steel remains unknown.

また、組織をベイナイト化させる方法は、耐遅れ破壊特性の改善効果は認められるものの、ベイナイト化処理に要する製造コストの上昇が課題である。   In addition, the method of bainiteizing the structure has an effect of improving the delayed fracture resistance, but raises the manufacturing cost required for the bainite treatment.

また、前述の特許文献8では、鋼中に水素をトラップさせる酸化物、炭化物、窒化物の単独あるいは複合析出物を分散分布させることにより、遅れ破壊が発現する臨界の水素量(限界拡散水素量)を増加させることにより耐遅れ破壊特性を向上させる発明が提案されている。   Further, in Patent Document 8 described above, a critical hydrogen amount (limited diffusion hydrogen amount) in which delayed fracture occurs by dispersing and distributing oxides, carbides, nitrides alone or composite precipitates that trap hydrogen in steel. ) Has been proposed to improve delayed fracture resistance.

この発明に従えば、耐遅れ破壊特性を向上させる機構の一つに焼入れ・焼戻し処理で生成する炭化物を活用する技術思想が挙げられているといえるが、その効果を最大限に有効活用する成分設計および製造方法の限定方法については明確に限定されていなかった。   According to the present invention, it can be said that one of the mechanisms for improving delayed fracture resistance is the technical idea of utilizing carbides produced by quenching and tempering treatment, but the component that effectively utilizes the effect to the maximum The method of limiting the design and manufacturing method was not clearly limited.

特公平03−243744号公報Japanese Patent Publication No. 03-243744 特公昭61−064815号公報Japanese Examined Patent Publication No. 61-064815 特公昭64−004566号公報Japanese Patent Publication No. 64-004566 特公平03−243745号公報Japanese Patent Publication No. 03-243745 特開平09−078191号公報Japanese Patent Application Laid-Open No. 09-078191 特開平09−078192号公報Japanese Patent Application Laid-Open No. 09-078192 特開平09−078193号公報Japanese Patent Application Laid-Open No. 09-078193 特開2000−026934号公報JP 2000-026934 A

上記に記したこれまでの状況の示す通り、従来技術では遅れ破壊特性を抜本的に向上させた高強度鋼を製造することには限界があった。   As shown in the above-described situation so far, there is a limit to the production of high-strength steel with drastically improved delayed fracture characteristics in the prior art.

そこで、本発明は、この問題を解決する成分、製造方法およびミクロ組織形態の必須条件およびそれを実現する製造プロセス条件を見出して、高強度化に伴い特に問題として現出する遅れ破壊に代表される水素脆化を有利に防止することのできる、引張強度が1600MPa以上の耐遅れ破壊特性に優れた熱間鍛造部品およびその製造方法を提供するものである。   Therefore, the present invention is typified by delayed fracture, which appears as a problem especially as the strength is increased, by finding the essential components for solving this problem, the manufacturing method and the essential condition of the microstructure form, and the manufacturing process conditions for realizing it. The present invention provides a hot-forged part that can advantageously prevent hydrogen embrittlement and has excellent delayed fracture resistance with a tensile strength of 1600 MPa or more, and a method for producing the same.

上記課題に対し、鋼材の化学成分、製造方法、およびミクロ組織形態について鋭意検討して初めて本発明を成すに至った。   In order to solve the above-mentioned problems, the present invention has been made only after intensive studies on the chemical composition, manufacturing method, and microstructure of steel materials.

本発明の要旨とするところは下記のとおりである。
(1)質量%で、C:0.2〜0.6%、Si:0.05〜0.5%、Mn:0.1〜2%、Mo:0.5〜10%、Al:0.005〜0.5%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、焼戻しマルテンサイト組織で構成され、かつ旧オーステナイト粒の長手方向長さと長手方向に垂直な長さとの比(以後、アスペクト比という。)が1.5以上であるミクロ組織を有し、限界拡散性水素が1.5ppm以上、引張強さが1600MPa以上であることを特徴とする、耐遅れ破壊特性に優れた熱間鍛造部品。
(2)さらに、質量%で、V:0.05〜1%、Ti:0.01〜1%、Nb:0.01〜1%のいずれか1種、または2種以上を含有することを特徴とする、上記(1)に記載の耐遅れ破壊特性に優れた熱間鍛造部品。
(3)さらに、質量%で、Cr:0.1〜2%、Ni:0.05〜1%、Cu:0.05〜0.5%、B:0.0003〜0.01%のいずれか1種または2種以上を含有することを特徴とする、上記(1)または(2)に記載の耐遅れ破壊特性に優れた熱間鍛造部品。
(4)請求項1ないし3のいずれか1項に記載の成分組成を有する鋼を、900〜1300℃で加熱し、780〜1000℃間で減面率10%以上の熱間加工を行なって仕上げた後、20秒以内に5℃/秒以上の冷却速度で冷却し、その後、550〜700℃で焼戻しを行なうことを特徴とする、耐遅れ破壊特性に優れた熱間鍛造部品の製造方法。
(5)前記焼戻しに先立って、もしくは前記焼戻し後に、または前記焼戻しの前および後のいずれでも、室温〜700℃で仕上げ加工することを特徴とする、上記(4)に記載の耐遅れ破壊特性に優れた熱間鍛造部品の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.2 to 0.6%, Si: 0.05 to 0.5%, Mn: 0.1 to 2%, Mo: 0.5 to 10%, Al: 0 0.005 to 0.5%, with the balance being composed of Fe and inevitable impurities, composed of a tempered martensite structure, and the longitudinal length of the prior austenite grains and the length perpendicular to the longitudinal direction Having a microstructure with a ratio of 1.5 (hereinafter referred to as aspect ratio) of 1.5 or more, a limit diffusible hydrogen of 1.5 ppm or more, and a tensile strength of 1600 MPa or more, delayed fracture resistance Hot forged parts with excellent characteristics.
(2) Furthermore, it contains any one of V: 0.05 to 1%, Ti: 0.01 to 1%, Nb: 0.01 to 1%, or two or more by mass%. A hot forged part having excellent delayed fracture resistance as described in (1) above.
(3) Further, any one of Cr: 0.1 to 2%, Ni: 0.05 to 1%, Cu: 0.05 to 0.5%, B: 0.0003 to 0.01% by mass% Or a hot forged part excellent in delayed fracture resistance according to (1) or (2) above, characterized by containing at least one kind.
(4) The steel having the component composition according to any one of claims 1 to 3 is heated at 900 to 1300 ° C, and hot working is performed at a reduction in area of 10% or more between 780 and 1000 ° C. After finishing, it is cooled at a cooling rate of 5 ° C./second or more within 20 seconds and then tempered at 550 to 700 ° C. .
(5) Delayed fracture resistance according to (4) above, characterized by finishing at room temperature to 700 ° C. before or after the tempering, or before and after the tempering. Manufacturing method for hot forged parts with excellent resistance.

本発明は、上述した各種問題点を解決し、高強度鋼において遅れ破壊に代表される水素脆化を防止する熱間鍛造部品、およびその製造方法の提供が可能となる。   The present invention solves the various problems described above, and can provide a hot forged part that prevents hydrogen embrittlement represented by delayed fracture in high-strength steel, and a method for manufacturing the same.

まず、本発明において、鋼材の化学成分を限定した理由について説明する。なお、%は、質量%を意味する。   First, the reason why the chemical components of the steel material are limited in the present invention will be described. In addition,% means the mass%.

Cは、鋼の強度を向上させる有効な成分として添加するが、0.2%未満では、焼入れ熱処理時に、十分な焼きが入らず強度が不足する。一方、0.6%を超える過剰の添加は、強度の過剰な上昇、割れ感受性の上昇等、基本材質特性の低下が発生する。したがって、C濃度の限定範囲を0.2〜0.6%とした。   C is added as an effective component for improving the strength of the steel, but if it is less than 0.2%, sufficient quenching does not occur during the quenching heat treatment and the strength is insufficient. On the other hand, excessive addition exceeding 0.6% causes deterioration of basic material properties such as excessive increase in strength and increase in crack sensitivity. Therefore, the limited range of the C concentration is set to 0.2 to 0.6%.

Siは、脱酸元素として機能することに加えて、母材の強度確保に必要な成分であるが、0.05%未満では、殆ど強度向上に寄与せず、一方、0.5%を超えても効果は飽和する。したがって、Si濃度の限定範囲を0.05〜0.5%とした。   In addition to functioning as a deoxidizing element, Si is a component necessary for securing the strength of the base material. But the effect is saturated. Therefore, the limited range of the Si concentration is set to 0.05 to 0.5%.

Mnは、母材の強度、靭性の確保のために、0.1%以上添加する必要があるが、2%を超える添加は、強度の過剰な上昇、ミクロ偏析増大化等の理由により耐水素脆化特性を損なう。したがって、Mn濃度の限定範囲を0.1〜2%とした。   Mn needs to be added in an amount of 0.1% or more in order to ensure the strength and toughness of the base material. However, the addition of more than 2% is resistant to hydrogen for reasons such as excessive increase in strength and increased microsegregation. Impairs embrittlement characteristics. Therefore, the limited range of the Mn concentration is set to 0.1 to 2%.

Moは、炭化物を生成する合金元素である。本発明では、この炭化物の析出により、常温および高温強度を確保するのみならず、その析出物界面は水素のトラップサイトとして機能することが明らかとなった。0.5%未満では、水素トラップ機能を発揮できず、一方、10%超では、焼入れ性が上昇しすぎて、母材靭性を損なうことから、Mo濃度の限定範囲を0.5〜10%とした。ただし、確実に引張強さを確保するためには上記の範囲をさらに限定して1.5〜10%が望ましい。   Mo is an alloy element that generates carbides. In the present invention, it has been clarified that the precipitation of the carbides not only ensures normal temperature and high temperature strength, but also the precipitate interface functions as a hydrogen trap site. If it is less than 0.5%, the hydrogen trap function cannot be exhibited. On the other hand, if it exceeds 10%, the hardenability is excessively increased and the base material toughness is impaired. It was. However, in order to ensure the tensile strength, the above range is further limited to 1.5 to 10%.

Alは、強力な脱酸元素であるが、0.005%未満では、十分な脱酸効果は得られない。一方、0.5%を超えても効果は飽和する。したがって、Al濃度の限定範囲を0.005〜0.5%とした。   Al is a strong deoxidizing element, but if it is less than 0.005%, a sufficient deoxidizing effect cannot be obtained. On the other hand, even if it exceeds 0.5%, the effect is saturated. Therefore, the limited range of the Al concentration is set to 0.005 to 0.5%.

次に、上記の成分に加えて、本発明において選択的に添加する合金元素であるV、Ti、Nbの濃度範囲に係る規定理由について説明する。   Next, in addition to the above components, the reason for the regulation related to the concentration ranges of V, Ti and Nb which are alloy elements selectively added in the present invention will be described.

Vは、単独であるいは他の炭化物、炭窒化物構成元素であるMoおよび、Ti、Nbと複合して、炭化物、炭窒化物を構成し、析出強化および水素トラップ能向上に寄与する合金元素である。V添加量が0.05%未満では炭窒化物の析出量が不十分で、上記効果が得られず、一方、1%超では、炭窒化物の析出量が過剰となり、靭性を損なう。以上から、V濃度の限定範囲を0.05〜1%とした。   V is an alloy element that alone or in combination with other carbides and carbonitride-constituting elements Mo, Ti, and Nb to form carbides and carbonitrides, contributing to precipitation strengthening and improving hydrogen trapping ability. is there. If the amount of V added is less than 0.05%, the amount of carbonitride deposited is insufficient and the above effect cannot be obtained. On the other hand, if it exceeds 1%, the amount of carbonitride deposited becomes excessive and the toughness is impaired. From the above, the limited range of the V concentration was set to 0.05 to 1%.

Tiは、単独であるいはVやNbと複合して炭窒化物を構成する合金元素であり、析出強化に寄与するとともに、その析出物は水素トラップとして機能することにより、遅れ破壊等の耐水素脆化特性を向上させる。Ti濃度が0.01%未満では析出量が不十分であるために、析出強化および水素トラップとしての機能は不十分であり、1%以上を超えても効果は飽和する。したがって、Ti濃度の限定範囲を0.01〜1%とした。   Ti is an alloy element that forms carbonitrides alone or in combination with V or Nb, and contributes to precipitation strengthening, and the precipitate functions as a hydrogen trap, thereby preventing hydrogen embrittlement such as delayed fracture. Improve the conversion characteristics. If the Ti concentration is less than 0.01%, the amount of precipitation is insufficient, so the functions of precipitation strengthening and hydrogen trapping are insufficient, and the effect is saturated even if it exceeds 1% or more. Therefore, the limited range of the Ti concentration is set to 0.01 to 1%.

Nbは、単独で、あるいはVやTiと複合して炭窒化物を構成する合金元素であり、析出強化に寄与するとともに、その析出物は水素トラップとして機能することにより、遅れ破壊等の耐水素脆化特性を向上させる。Nb濃度が0.01%未満では析出量が不十分であるために、析出強化および水素トラップとしての機能は不十分であり、1%を超える場合においても、溶体化温度が高くなり工業的に使用される加熱炉での溶体化は不十分で、粗大な炭窒化物が分散し、析出強化への寄与および水素トラップ能が不十分となる。以上から、Nb濃度の限定範囲を0.01〜1%とした。   Nb is an alloy element constituting carbonitride by itself or in combination with V or Ti, and contributes to precipitation strengthening, and the precipitate functions as a hydrogen trap, so that hydrogen resistance such as delayed fracture is obtained. Improve embrittlement characteristics. Since the precipitation amount is insufficient when the Nb concentration is less than 0.01%, the precipitation strengthening and the function as a hydrogen trap are insufficient, and even when it exceeds 1%, the solution temperature becomes high and industrially. Solutionization in the heating furnace used is insufficient, coarse carbonitrides are dispersed, and the contribution to precipitation strengthening and hydrogen trapping ability are insufficient. From the above, the limited range of the Nb concentration was set to 0.01 to 1%.

次に、上記の成分に加えて、本発明において選択的に添加する合金元素であるCr、Ni、Cu、Bの濃度範囲に係る規定理由について説明する。   Next, in addition to the above components, the reason for the regulation relating to the concentration range of Cr, Ni, Cu, B, which are alloy elements selectively added in the present invention, will be described.

Crは、焼入れ性の向上および焼戻し処理時の軟化抵抗を増加させるために必要な元素であるが、0.1%未満ではその効果が充分に発揮できず、一方、2%を超えると靭性の低下、冷間加工性の劣化を招く。したがって、Cr濃度の限定範囲を0.1〜2%とした。   Cr is an element necessary for improving the hardenability and increasing the softening resistance during the tempering treatment. However, if it is less than 0.1%, the effect cannot be sufficiently exhibited. Lowering and cold workability will be caused. Therefore, the limited range of the Cr concentration is set to 0.1 to 2%.

Niは、高強度化に伴って劣化する延性を向上させるとともに、熱処理時の焼入れ性を向上させて引張強さを向上させるために添加する。Ni濃度が0.05%未満ではその効果が少なく、1%を超えても濃度に見合う効果を発揮できないため、0.05〜1%に限定した。   Ni is added to improve ductility, which deteriorates with increasing strength, and to improve the hardenability during heat treatment and improve the tensile strength. If the Ni concentration is less than 0.05%, the effect is small, and even if it exceeds 1%, an effect commensurate with the concentration cannot be exhibited. Therefore, the Ni concentration is limited to 0.05 to 1%.

Cuは、焼戻し軟化抵抗を高めるために有効な元素であるが、0.05%未満ではその効果を発揮することができず、0.5%を超えると熱間加工性が低下するため、0.05〜0.5%に限定した。   Cu is an effective element for increasing the tempering softening resistance. However, if it is less than 0.05%, the effect cannot be exerted, and if it exceeds 0.5%, the hot workability is lowered. Limited to 0.05 to 0.5%.

Bは、粒界破壊を抑制し、耐遅れ破壊特性を向上させる効果がある。さらに、Bは、旧オーステナイト粒界に偏析して、焼入れ性を著しく向上させるが、0.0003%未満ではその効果を発揮することができず、0.01%を超えても効果が飽和するため、0.0003〜0.01%にBの濃度範囲を限定した。   B has an effect of suppressing grain boundary fracture and improving delayed fracture resistance. Further, B segregates at the prior austenite grain boundaries and remarkably improves the hardenability. However, if it is less than 0.0003%, the effect cannot be exhibited, and if it exceeds 0.01%, the effect is saturated. Therefore, the concentration range of B is limited to 0.0003 to 0.01%.

次に、本発明においては、適切な熱処理条件での熱間加工を行ない、その後、適切な焼戻しおよび仕上げ加工を施すことにより耐遅れ破壊特性に優れた熱間鍛造部品の製造が可能であることを見出した。   Next, in the present invention, hot forged parts having excellent delayed fracture resistance can be manufactured by performing hot working under appropriate heat treatment conditions and then performing appropriate tempering and finishing. I found.

まず、900〜1300℃で加熱するのは、素材を熱間加工温度に加熱すると同時に、素材の合金元素を一旦充分に溶体化させるのに必要な温度を確保するためである。900℃未満では後続の熱間加工で加工に必要な温度を確保することが難しいのみならず、合金元素の溶体化が不十分である。一方、1300℃を超えて加熱を行なう場合は、熱間加工に必要な素材温度を確保できるが、経済的に非効率であることから、上限を1300℃に設定した。   First, the reason for heating at 900 to 1300 ° C. is to secure the temperature necessary for once sufficiently melting the alloy elements of the material, while simultaneously heating the material to the hot working temperature. If it is less than 900 ° C., it is difficult not only to secure a temperature necessary for the subsequent hot working, but also solution of the alloy elements is insufficient. On the other hand, when heating is performed at a temperature exceeding 1300 ° C., the material temperature necessary for hot working can be secured, but the upper limit is set to 1300 ° C. because it is economically inefficient.

熱間加工温度を780〜1000℃間の範囲に限定したのは、熱間加工により伸長化させたオーステナイト組織を再結晶させないまま保持させるためである。1000℃を超えた温度での熱間加工では、加工直後に直ちに再結晶が起こり伸長オーステナイト組織は消失する。一方、780℃を下回る温度では一部にフェライト変態が発生し、熱間加工を施すと加工歪が蓄積し、耐遅れ破壊特性が低下する。   The reason why the hot working temperature is limited to the range of 780 to 1000 ° C. is to keep the austenite structure elongated by hot working without being recrystallized. In hot working at a temperature exceeding 1000 ° C., recrystallization occurs immediately after the working and the elongated austenite structure disappears. On the other hand, at temperatures below 780 ° C., ferrite transformation occurs in part, and when hot working is performed, processing strain accumulates and delayed fracture resistance is reduced.

なお、780〜1000℃間の減面率を10%以上としたのは、減面率が10%未満では加工量が不十分で表層部の伸長オーステナイト組織を得るには不十分なためである。上記の範囲のなかでも、望ましくは減面率15%以上に限定させる。なぜならば、加工量の増加に伴って引張強さが上昇することから、引張強さ確保のための合金元素を減らすことにより、コストを抑えることができるためである。   The reason why the area reduction ratio between 780 and 1000 ° C. was set to 10% or more is that when the area reduction ratio is less than 10%, the processing amount is insufficient and it is insufficient to obtain an elongated austenite structure of the surface layer portion. . Within the above range, the area reduction rate is preferably limited to 15% or more. This is because the tensile strength increases with an increase in the processing amount, and the cost can be suppressed by reducing the alloy elements for securing the tensile strength.

熱間加工を仕上げた後、20秒以内に5℃/秒以上の冷却速度で冷却するのは、オーステナイト組織を再結晶させないまま保持させるためである。冷却開始まで20秒を超える場合、および5℃/秒未満の冷却速度の場合はいずれも、再結晶が起こり伸長オーステナイト組織は消失するため、耐遅れ破壊特性の向上に寄与しない。   The reason for cooling at a cooling rate of 5 ° C./second or more within 20 seconds after finishing the hot working is to keep the austenite structure without being recrystallized. In both the case where it exceeds 20 seconds until the start of cooling and the case where the cooling rate is less than 5 ° C./second, recrystallization occurs and the elongated austenite structure disappears, so that it does not contribute to the improvement of the delayed fracture resistance.

冷却後、550〜700℃で焼戻しを行なうのは、合金炭化物の焼戻し二次析出で強度および耐遅れ破壊特性を向上させるためである。最適な焼戻し温度範囲を550〜700℃に限定したが、この理由は、550℃未満では焼戻し二次析出が不十分であり、700℃を超える場合は過時効となり、二次析出した合金炭化物が安定化、粗大化して、強度向上への寄与、耐遅れ破壊特性向上への寄与が薄れるためである。   The reason for tempering at 550 to 700 ° C. after cooling is to improve strength and delayed fracture resistance by tempering secondary precipitation of alloy carbide. Although the optimum tempering temperature range was limited to 550 to 700 ° C., the reason for this is that tempering secondary precipitation is insufficient when the temperature is lower than 550 ° C., and over aging when the temperature exceeds 700 ° C. This is because stabilization and coarsening reduce the contribution to improving strength and improving delayed fracture resistance.

仕上げ加工が必要な場合は、割れの防止、変形抵抗低減の観点から、加熱して加工することが望ましいが、焼戻しで二次析出する合金炭化物が過時効となることを防止するために加工温度の上限を700℃とした。700℃を超える仕上げ加工では、合金炭化物の過時効に起因する強度低下、耐遅れ破壊特性低下が生じ、本発明の目的とする耐遅れ破壊特性に優れた高強度部品を製造することができない。   When finishing is required, it is desirable to heat and process from the viewpoint of preventing cracking and reducing deformation resistance. However, in order to prevent overheating of alloy carbides that are secondarily precipitated by tempering, the processing temperature Was set to 700 ° C. In finishing processing exceeding 700 ° C., the strength and delayed fracture resistance are reduced due to overaging of the alloy carbide, and it is impossible to produce a high-strength part excellent in delayed fracture resistance, which is the object of the present invention.

以下、実施例により本発明の効果をさらに具体的に説明する。熱間鍛造部品の代表として高強度ボルトの製造における実施例を示す。なお、ボルトの製造において、請求項に示す仕上げ加工に相当するのはヘッダー加工およびねじ転造工程である。   Hereinafter, the effects of the present invention will be described more specifically with reference to examples. Examples in the production of high-strength bolts are shown as representatives of hot forged parts. In the manufacture of bolts, the header processing and the thread rolling process correspond to the finishing processing shown in the claims.

表1に示す化学組成を有する丸棒素材を加熱後、所定の温度で12mmφの棒鋼に熱間加工し、熱間加工後に加速冷却を施した。その後、表に示す条件で焼戻し、ヘッダー加工、ねじ転造を行ない、ボルトの引張特性、耐遅れ破壊特性を確認した。   A round bar material having the chemical composition shown in Table 1 was heated, then hot worked into a 12 mmφ bar steel at a predetermined temperature, and subjected to accelerated cooling after hot working. Thereafter, tempering, header processing, and thread rolling were performed under the conditions shown in the table, and the tensile properties and delayed fracture resistance of the bolts were confirmed.

なお、引張強度等の引張特性については引張試験の結果から得られたものであり、限界拡散性水素量(鉄と鋼、Vol.83(1997)、p454参照。)等の遅れ破壊特性は、電解水素チャージ法により鋼材中に強制的に水素を導入させた状態で、引張強度の0.9倍の一定荷重で引張応力を付与した試験(以下、定荷重試験と表記)において破断しない限界の水素濃度を分析、測定することにより求めた。   The tensile properties such as tensile strength were obtained from the results of the tensile test, and the delayed fracture properties such as the limit diffusible hydrogen content (iron and steel, Vol. 83 (1997), p454), In the state in which hydrogen is forcibly introduced into the steel by the electrolytic hydrogen charging method and the tensile stress is applied at a constant load 0.9 times the tensile strength (hereinafter referred to as a constant load test) It was determined by analyzing and measuring the hydrogen concentration.

ここで、電解水素チャージ法とは、鋼材をチオシアン酸アンモニウム水溶液中に浸漬した状態で鋼材表面にアノード電位を発生させて水素を鋼材中に取り込む方法である。この方法において、チオシアン酸アンモニウム水溶液濃度、チャージ時間、電流値等の設定条件を種々調整することにより、鋼中の水素量を調整することが可能である。   Here, the electrolytic hydrogen charging method is a method in which the steel material is immersed in an aqueous solution of ammonium thiocyanate, an anode potential is generated on the surface of the steel material, and hydrogen is taken into the steel material. In this method, the amount of hydrogen in the steel can be adjusted by variously adjusting the setting conditions such as the concentration of the ammonium thiocyanate aqueous solution, the charging time, and the current value.

定荷重試験においては、試験中の鋼材表面からの水素の逃散を回避するために、予めボルト表面にCdめっきを施した。本試験において、定荷重負荷状態で約100hr破断ないまま保持したボルトについては「破断なし」と判定した。   In the constant load test, Cd plating was applied to the bolt surface in advance in order to avoid escape of hydrogen from the steel material surface under test. In this test, the bolt held without breaking for about 100 hr in a constant load state was judged as “no break”.

定荷重試験で破断したボルト、および破断しなかったボルトはいずれも、試験後直ちに回収し、めっき落としした後にガスクロマトグラフ装置にて昇温分析により放出水素量を測定した。なお、本発明では、昇温速度100℃/hrで測定を行った。   Bolts that broke in the constant load test and bolts that did not break were collected immediately after the test, and after removing the plating, the amount of released hydrogen was measured by temperature analysis using a gas chromatograph. In the present invention, the measurement was performed at a temperature rising rate of 100 ° C./hr.

遅れ破壊現象に影響を及ぼす拡散性水素とは比較的に結合力が弱い水素トラップサイトにトラップされる水素であり、昇温分析において経時的に放出量が減衰するピークを有する。本発明では400℃までに検出される水素放出ピークがその対象となり、昇温分析によって400℃までに検出される放出水素量の累積値を拡散性水素量と定めた。   The diffusible hydrogen that affects the delayed fracture phenomenon is hydrogen that is trapped at a hydrogen trap site with a relatively weak binding force, and has a peak in which the amount of emission decays with time in temperature rising analysis. In the present invention, the hydrogen release peak detected up to 400 ° C. is the target, and the cumulative value of the released hydrogen amount detected up to 400 ° C. by the temperature rise analysis is defined as the diffusible hydrogen amount.

以上の手順で測定を実施し、試験に供したボルトの破断時間と拡散性水素量を整理して、定荷重試験で破断しなかった鋼材の中で、拡散性水素量の最大値を限界拡散性水素量と定義し、この値が高ければ耐遅れ破壊特性が優れていると評価した。   The measurement was carried out according to the above procedure, and the rupture time and diffusible hydrogen content of the bolts used in the test were arranged, and the maximum diffusible hydrogen content was limited diffusion among the steel materials that did not break in the constant load test. The amount of reactive hydrogen was defined, and if this value was high, the delayed fracture resistance was evaluated as excellent.

また、旧オーステナイト粒の分布についてはミクロ組織観察により確認し、旧オーステナイト粒のアスペクト比を求めた。   The distribution of the prior austenite grains was confirmed by microstructural observation, and the aspect ratio of the prior austenite grains was determined.

Figure 0004411253
Figure 0004411253

Figure 0004411253
Figure 0004411253

表2に示すように発明例はいずれも1600MPa以上の高い引張強度を有し、かつ限界拡散性水素量はいずれも1.5ppm以上あり、優れた耐遅れ破壊特性を有していると判定される。   As shown in Table 2, all of the inventive examples have high tensile strength of 1600 MPa or more, and the amount of limit diffusible hydrogen is 1.5 ppm or more, respectively, and is judged to have excellent delayed fracture resistance. The

これに対し、表中に示す比較例を説明する。比較例22は、Moが本発明の限定範囲よりも下回るため、強度が不足する。比較例23、24は、焼戻し前の溶体化処理時に熱間加工を施さなかったため、アスペクト比が1.5未満であるとともに、限界拡散性水素は低位となり、耐遅れ破壊特性が不十分となる。比較例25、26、27、28、30は、加工仕上げ温度が本発明の範囲から外れているため、さらに、比較例29は、加工仕上げ温度が本発明の限定範囲から外れていることに加えて、加工後仕上げまでの時間が本発明の限定範囲から外れているため、アスペクト比が1.5未満であるとともに、限界拡散性水素は低位となり、耐遅れ破壊特性が不十分となる。比較例29、31は、加工後仕上げまでの時間が本発明の限定範囲から外れているため、アスペクト比が1.5未満であるとともに、限界拡散性水素は低位となり、耐遅れ破壊特性が不十分となる。比較例32は、冷却速度が本発明の限定範囲から外れているため、アスペクト比が1.5未満であるとともに、限界拡散性水素は低位となり、耐遅れ破壊特性が不十分となる。比較例33、34は、焼戻し温度が本発明の限定範囲から外れているため、強度不足あるいは耐遅れ破壊特性が不十分となる。   On the other hand, the comparative example shown in a table | surface is demonstrated. Since the comparative example 22 has Mo below the limited range of the present invention, the strength is insufficient. Since Comparative Examples 23 and 24 were not hot-worked during the solution treatment before tempering, the aspect ratio was less than 1.5, the critical diffusible hydrogen was low, and the delayed fracture resistance was insufficient. . In Comparative Examples 25, 26, 27, 28, and 30, the machining finishing temperature is out of the scope of the present invention. Further, in Comparative Example 29, the machining finishing temperature is out of the limited range of the present invention. Thus, since the time until finishing after processing is out of the limited range of the present invention, the aspect ratio is less than 1.5, the critical diffusible hydrogen is low, and the delayed fracture resistance is insufficient. In Comparative Examples 29 and 31, since the time until finishing after processing is outside the limited range of the present invention, the aspect ratio is less than 1.5, the critical diffusible hydrogen is low, and the delayed fracture resistance is not good. It will be enough. In Comparative Example 32, the cooling rate is out of the limited range of the present invention, so that the aspect ratio is less than 1.5, the critical diffusible hydrogen is low, and the delayed fracture resistance is insufficient. In Comparative Examples 33 and 34, the tempering temperature is out of the limited range of the present invention, so that the strength is insufficient or the delayed fracture resistance is insufficient.

なお、ボルトの製造において、ヘッダー加工およびねじ転造等の仕上げ加工が必須の工程であるため、実施例には請求項4に記載の本発明に相当する製造方法、すなわち仕上げ加工を実施しない製造方法については記載していないが、仕上げ加工を施さない熱間鍛造部品において、請求項4に記載の本発明に関するの製造方法を適用することにより、請求項5に記載の本発明、すなわち、仕上げ加工を行なう場合と同等の機械特性を有することは自明である。   In addition, in the manufacture of bolts, finishing processes such as header processing and screw rolling are indispensable steps. Therefore, in the embodiment, the manufacturing method corresponding to the present invention described in claim 4, that is, manufacturing without performing the finishing process. Although the method is not described, the present invention according to claim 5, ie, finishing, is applied to a hot-forged part that is not subjected to finishing by applying the manufacturing method according to the present invention according to claim 4. Obviously, it has the same mechanical properties as when processing.

以上の実施例からも明らかなごとく、引張強度が1600MPa以上の高強度部材の耐遅れ破壊特性に代表される耐水素脆化特性を大幅に向上させることが可能となった。高強度ボルトをはじめ熱間鍛造部品として、自動車、機械、土木建築分野に使用する部材への適用が可能であり、部材軽量化、高効率化、安全性向上等、産業上の効果は極めて顕著である。   As is clear from the above examples, the hydrogen embrittlement resistance typified by delayed fracture resistance of high strength members having a tensile strength of 1600 MPa or more can be greatly improved. As hot forged parts such as high-strength bolts, it can be applied to parts used in the fields of automobiles, machinery and civil engineering, and the industrial effects such as weight reduction, high efficiency, and safety improvement are extremely remarkable. It is.

Claims (5)

質量%で、
C :0.2〜0.6%、
Si:0.05〜0.5%、
Mn:0.1〜2%、
Mo:0.5〜10%、
Al:0.005〜0.5%
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、焼戻しマルテンサイト組織で構成され、かつ旧オーステナイト粒の長手方向長さと長手方向に垂直な長さとの比(以後、アスペクト比という。)が1.5以上であるミクロ組織を有し、限界拡散性水素が1.5ppm以上、引張強さが1600MPa以上であることを特徴とする、耐遅れ破壊特性に優れた熱間鍛造部品。
% By mass
C: 0.2 to 0.6%
Si: 0.05 to 0.5%,
Mn: 0.1 to 2%,
Mo: 0.5 to 10%,
Al: 0.005 to 0.5%
The balance of the length of the prior austenite grains in the longitudinal direction and the length perpendicular to the longitudinal direction (hereinafter referred to as the aspect ratio). Hot forging with excellent delayed fracture resistance, characterized in that it has a microstructure of 1.5 or more, limit diffusible hydrogen is 1.5 ppm or more, and tensile strength is 1600 MPa or more. parts.
さらに、質量%で、
V :0.05〜1%、
Ti:0.01〜1%、
Nb:0.01〜1%
のいずれか1種または2種以上を含有することを特徴とする、請求項1に記載の耐遅れ破壊特性に優れた熱間鍛造部品。
Furthermore, in mass%,
V: 0.05 to 1%
Ti: 0.01 to 1%,
Nb: 0.01 to 1%
The hot forged part having excellent delayed fracture resistance according to claim 1, wherein the hot forged part contains at least one of these.
さらに、質量%で、
Cr:0.1〜2%、
Ni:0.05〜1%、
Cu:0.05〜0.5%、
B :0.0003〜0.01%
のいずれか1種または2種以上を含有することを特徴とする、請求項1または2に記載の耐遅れ破壊特性に優れた熱間鍛造部品。
Furthermore, in mass%,
Cr: 0.1 to 2%,
Ni: 0.05 to 1%,
Cu: 0.05 to 0.5%,
B: 0.0003 to 0.01%
The hot forged part excellent in delayed fracture resistance according to claim 1 or 2, characterized by containing any one or more of the following.
請求項1ないし3のいずれか1項に記載の成分組成を有する鋼を、900〜1300℃で加熱し、780〜1000℃間で減面率10%以上の熱間加工を行なって仕上げた後、20秒以内に5℃/秒以上の冷却速度で冷却し、その後、550〜700℃で焼戻しを行なうことを特徴とする、耐遅れ破壊特性に優れた熱間鍛造部品の製造方法。   After heating the steel having the component composition according to any one of claims 1 to 3 at 900 to 1300 ° C and performing hot working with a reduction in area of 10% or more between 780 and 1000 ° C, and finishing the steel. A method for producing a hot forged part excellent in delayed fracture resistance, characterized by cooling at a cooling rate of 5 ° C./second or more within 20 seconds and then tempering at 550 to 700 ° C. 前記焼戻しに先立って、もしくは前記焼戻し後に、または前記焼戻しの前および後のいずれでも、室温〜700℃で仕上げ加工することを特徴とする、請求項4に記載の耐遅れ破壊特性に優れた熱間鍛造部品の製造方法。   The heat excellent in delayed fracture resistance according to claim 4, wherein the heat treatment is performed at room temperature to 700 ° C prior to the tempering, after the tempering, or before and after the tempering. Manufacturing method for inter-forged parts.
JP2005212217A 2005-07-22 2005-07-22 Hot forged parts with excellent delayed fracture resistance and method for producing the same Active JP4411253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212217A JP4411253B2 (en) 2005-07-22 2005-07-22 Hot forged parts with excellent delayed fracture resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212217A JP4411253B2 (en) 2005-07-22 2005-07-22 Hot forged parts with excellent delayed fracture resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007031735A JP2007031735A (en) 2007-02-08
JP4411253B2 true JP4411253B2 (en) 2010-02-10

Family

ID=37791347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212217A Active JP4411253B2 (en) 2005-07-22 2005-07-22 Hot forged parts with excellent delayed fracture resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4411253B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251632B2 (en) * 2008-05-13 2013-07-31 新日鐵住金株式会社 High strength steel material with excellent delayed fracture resistance, high strength bolt and manufacturing method thereof
US20130095347A1 (en) * 2010-06-14 2013-04-18 Kaoru Kawasaki Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
JP6737102B2 (en) * 2015-09-25 2020-08-05 日本製鉄株式会社 Steel material, sliding parts, and method for manufacturing steel material
CN106086686B (en) * 2016-08-24 2018-01-23 武汉钢铁有限公司 With the tensile strength >=2100MPa hot formings steel and production method of medium thin slab Direct Rolling
CN106086685B (en) 2016-08-24 2018-01-12 武汉钢铁有限公司 With the thin hot forming steel of tensile strength >=1500MPa of sheet billet Direct Rolling and production method
CN106119693B (en) * 2016-08-24 2018-01-12 武汉钢铁有限公司 With the thin hot forming steel of tensile strength >=2100MPa of sheet billet Direct Rolling and production method
KR102463005B1 (en) * 2020-12-14 2022-11-03 주식회사 포스코 High-strength wire rod with excellent hydrogen brittleness resistance, heat treatment parts using the same, and methods for manufacturing thereof

Also Published As

Publication number Publication date
JP2007031735A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4427012B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JP4485424B2 (en) Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP5281413B2 (en) High strength bolt excellent in delayed fracture resistance and method for manufacturing the same
JP4538094B2 (en) High strength thick steel plate and manufacturing method thereof
JP4542624B2 (en) High strength thick steel plate and manufacturing method thereof
JP5182642B2 (en) High strength thick steel plate with excellent delayed fracture resistance and weldability and method for producing the same
JP5760972B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
KR20080017365A (en) High-strength steel excellent in delayed fracture resistance characteristics and metal bolts
WO2014141697A1 (en) Thick, tough, high tensile strength steel plate and production method therefor
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
JP6232324B2 (en) Stabilizer steel and stabilizer with high strength and excellent corrosion resistance, and method for producing the same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP3494799B2 (en) High strength bolt excellent in delayed fracture characteristics and method of manufacturing the same
JP6798557B2 (en) steel
JP2001288538A (en) High strength steel for bolt excellent in delayed fracture resistance, bolt and method for producing the bolt
JP7200627B2 (en) High-strength bolt steel and its manufacturing method
JP4430559B2 (en) High strength bolt steel and high strength bolt with excellent delayed fracture resistance
JP5233307B2 (en) High-strength steel and metal bolts with excellent corrosion resistance and cold forgeability that prevent hydrogen from entering the environment
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
EP3633060A1 (en) Steel sheet and production method therefor
EP3971307B1 (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer
JP6992535B2 (en) High-strength bolts and their manufacturing methods
JP3358679B2 (en) High tension bolt with excellent delayed fracture resistance
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Ref document number: 4411253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350