JP5281413B2 - High strength bolt excellent in delayed fracture resistance and method for manufacturing the same - Google Patents

High strength bolt excellent in delayed fracture resistance and method for manufacturing the same Download PDF

Info

Publication number
JP5281413B2
JP5281413B2 JP2008548378A JP2008548378A JP5281413B2 JP 5281413 B2 JP5281413 B2 JP 5281413B2 JP 2008548378 A JP2008548378 A JP 2008548378A JP 2008548378 A JP2008548378 A JP 2008548378A JP 5281413 B2 JP5281413 B2 JP 5281413B2
Authority
JP
Japan
Prior art keywords
mass
less
delayed fracture
bolt
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008548378A
Other languages
Japanese (ja)
Other versions
JP2009521600A (en
Inventor
リ,サンーユン
リ,ドクーナク
チュ,サンーウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2009521600A publication Critical patent/JP2009521600A/en
Application granted granted Critical
Publication of JP5281413B2 publication Critical patent/JP5281413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、鋼構造締結用及び自動車部品に用いられるボルト及びその製造方法に係り、より詳しくは、鋼の微細組織の適切な制御により、耐遅れ破壊特性に優れて、且つ高強度化が可能な鋼ボルトに関する。   The present invention relates to bolts used for fastening steel structures and automotive parts and a method for manufacturing the same, and more specifically, by appropriately controlling the microstructure of steel, it has excellent delayed fracture resistance and can be strengthened. Related to steel bolts.

最近の建築構造物は、鉄筋−コンクリート構造物から安全性に優れている鋼構造物に変わっていく傾向にある。これら鋼構造物の安全性確保において重要なもののうちの一つは、部材の接合技術で、部材を接合する方法には、溶接接合とボルトによる締結がある。ボルト締結は、溶接接合に比べ熟練された技術を要せず、また、脆弱な溶接部に代わって鋼構造物の安全性を高める利点がある。ボルトの高強度化は、締結ボルト数の減少及びボルト締結力を増加させ、工期を短縮すると共に、接合部の面積を減少させ接合部の健全性を追及するという利点がある。従って、最近ではより効率的な鋼構造物の建設のため鋼構造締結用ボルトの高強度化に向けて努力がなされてきた。   Recent building structures tend to change from rebar-concrete structures to steel structures with excellent safety. One of the important things in ensuring the safety of these steel structures is a joining technique of members. Methods for joining the members include welding joining and fastening with bolts. Bolt fastening does not require skilled techniques as compared to welded joints, and has the advantage of increasing the safety of steel structures in place of brittle welds. Increasing the strength of the bolt has the advantage of reducing the number of fastening bolts and increasing the bolt fastening force, shortening the work period, and reducing the area of the joint and pursuing the soundness of the joint. Therefore, recently, efforts have been made to increase the strength of bolts for fastening steel structures in order to construct more efficient steel structures.

従来のボルトは、線材をボルト形状に加工した後、焼入れ工程により強度を確保している。線材をボルト形状に加工する工程は生産性を考慮して大部分冷間鍛造工程により行われている。従って、ボルト加工用の線材は、冷間鍛造に適合な物性、即ち、良好なCHQ(冷間圧延性)特性を有すべきであるが、CHQ特性確保のために最も必要な条件は、加工が容易であるように線材の靭性を適正水準に低める必要があるということである。   Conventional bolts ensure strength by a quenching process after processing the wire into a bolt shape. The process of processing the wire into a bolt shape is mostly performed by a cold forging process in consideration of productivity. Accordingly, the wire for bolt processing should have physical properties suitable for cold forging, that is, good CHQ (cold rollability) characteristics, but the most necessary condition for securing the CHQ characteristics is processing. This means that it is necessary to reduce the toughness of the wire to an appropriate level so that it is easy.

上記のような良好なCHQ性を有する線材を製造するためには、線材はなるべく低い強度を有した状態で製造される上、サイジングの目的の伸線加工を経た後、ボルト加工前の強度をより減少させるために球状化熱処理を経る。球状化熱処理は、線材内部に固溶された炭素が固溶強化により線材の強度を高めているため、炭素を球状化された炭化物形態で析出されることにより線材の強度をより減少させる熱処理をいう。上記球状化熱処理後には、上述のようにボルト形状に加工した後、焼入れ熱処理を経る。しかし、焼入れしたボルト内部には、マルテンサイト組織が形成されているため、ボルトの靭性が急激に低下する。従って、マルテンサイト組織によるボルトの靭性低下を防ぐため、焼戻し工程を経るが、このような過程により製造されたボルトは、内部にいわゆる焼戻しマルテンサイト組織を有するようになる。   In order to manufacture a wire having good CHQ properties as described above, the wire is manufactured in a state having as low a strength as possible, and after undergoing wire drawing for the purpose of sizing, the strength before bolting is increased. In order to reduce more, a spheroidizing heat treatment is performed. The spheroidizing heat treatment is a heat treatment that further reduces the strength of the wire by precipitating the carbon in a spheroidized carbide form because the carbon dissolved in the wire increases the strength of the wire by solid solution strengthening. Say. After the spheroidizing heat treatment, it is processed into a bolt shape as described above and then subjected to a quenching heat treatment. However, since a martensite structure is formed inside the quenched bolt, the toughness of the bolt is drastically reduced. Accordingly, a tempering process is performed to prevent a decrease in the toughness of the bolt due to the martensitic structure. The bolt manufactured by such a process has a so-called tempered martensitic structure inside.

焼戻しマルテンサイト組織を有する鋼材の高強度化には合金元素、特に、炭素の添加が最も効果的であることが知られているが、炭素を添加させることは、線材の段階から強度を増加させ、冷間加工が困難である上、製品の延性−脆性遷移温度(DBTT)を急激に上昇させ、水素により引き起こされる耐遅れ破壊特性が大きく低下する。また、加工時、加工硬化が増加しボルトの成形にも不利で、別途の軟化熱処理が必要になる。   It is known that the addition of alloying elements, especially carbon, is the most effective for increasing the strength of steel materials having a tempered martensite structure. However, the addition of carbon increases the strength from the wire stage. Further, cold working is difficult, and the ductility-brittle transition temperature (DBTT) of the product is rapidly increased, and the delayed fracture resistance caused by hydrogen is greatly reduced. Moreover, work hardening increases at the time of processing, and it is disadvantageous for bolt forming, and a separate softening heat treatment is required.

また、上記焼戻しマルテンサイトは、その特性上、結晶粒界にFe系析出物が分布し、ラスマルテンサイトの母材にも析出物が分布しやすい組織である。このような焼戻しマルテンサイトをボルトのような高張力(高強度)の鋼部品に適用する場合は、用いられる状況に従いより高い応力に露出されるようになるが、このような応力により水素の移動がより容易に行われ、また、上記析出物に水素が多量に集積されるため、遅延破壊が起こりやすい条件になる。従って、上記のような焼戻しマルテンサイト組織は、高強度部品の製造に用いるには限界がある。   In addition, the tempered martensite has a structure in which Fe-based precipitates are distributed in crystal grain boundaries and precipitates are easily distributed in the base material of lath martensite. When such tempered martensite is applied to steel parts with high tension (high strength) such as bolts, it will be exposed to higher stress depending on the situation used, but such stress causes hydrogen migration. In addition, since a large amount of hydrogen accumulates in the precipitate, delayed fracture is likely to occur. Therefore, the tempered martensite structure as described above has a limit for use in manufacturing high-strength parts.

上記のように、ボルトの強度と耐遅れ破壊特性は両立しにくい物性で、強度及び耐遅れ破壊特性の双方をもつボルトを開発することが非常に重要である。耐遅れ破壊特性に優れて、且つ高強度化が可能なボルト用の鋼が開発される場合、期待される利点は以下の通りである。鋼構造物の側面で、ボルト締結は溶接接合に比べ熟練された技術を要せず、脆弱な溶接部に代わることを考慮すると、まず、ボルト締結時、締結力の強化と締結部の面積減少による鋼構造物の安全性を高めることができ、次に、ボルト締結数の減少により鋼材の使用量を減らし建築工期を短縮することができる。また、自動車部品の側面では、部品の軽量化に寄与し、最後に部品の軽量化による自動車の組立装置の設計の多様化及びコンパクト化が可能であるという利点がある。   As described above, it is very important to develop a bolt having both strength and delayed fracture resistance because the bolt strength and delayed fracture resistance are difficult to achieve at the same time. When a steel for bolts having excellent delayed fracture resistance and capable of high strength is developed, the expected advantages are as follows. On the side of steel structures, bolt tightening does not require skilled techniques compared to welded joints, and considering that it replaces weak welds, first of all, when tightening bolts, tightening force is strengthened and the area of the fastening part is reduced Therefore, the safety of the steel structure can be improved. Next, the amount of steel used can be reduced and the construction period can be shortened by reducing the number of bolts. Further, from the aspect of automobile parts, there is an advantage that it contributes to weight reduction of parts, and finally, it is possible to diversify and downsize the design of an automobile assembly apparatus by weight reduction of parts.

耐遅れ破壊特性を改善するための従来の技術には、1)鋼材の腐食抑制、2)水素侵入量の最小化、3)遅れ破壊に寄与する拡散性水素の抑制、4)限界拡散性水素濃度が大きい鋼材の使用、5)引張応力の最小化、6)応力集中の緩和、7)オーステナイト結晶粒界の大きさの微細化等が挙げられる。これを達成するための手段として高合金化の追求するか、外部の水素侵入の防止のために表面コーティング、または、メッキを与える方法を主に用いており、その他にもオーステナイト結晶粒界を脆化させるリン(P)、硫黄(S)を最大限抑制させながら特定元素を添加し、拡散性水素をトラップすることができる析出物を生成させるか、微細組織を制御する方法等がある。   Conventional techniques for improving delayed fracture resistance include 1) inhibition of steel corrosion, 2) minimization of hydrogen penetration, 3) suppression of diffusible hydrogen contributing to delayed fracture, and 4) critical diffusible hydrogen. Use of a steel material having a high concentration, 5) minimization of tensile stress, 6) relaxation of stress concentration, 7) refinement of austenite grain boundary size, and the like. In order to achieve this, high alloying is pursued, or surface coating or plating is mainly used to prevent external hydrogen intrusion. In addition, austenite grain boundaries are brittle. For example, there is a method of adding a specific element while suppressing phosphorus (P) and sulfur (S) to be converted to the maximum, thereby generating a precipitate capable of trapping diffusible hydrogen, or controlling a microstructure.

このような耐遅れ破壊特性の改善のために開発された技術の一例として特許文献1に記載の技術を挙げることができるが、上記特許文献1は耐遅れ破壊特性に優れている高強度ボルトの製造方法に関するもので、炭素(C)が0.35質量%以下、シリコン(Si)が0.50質量%以下、マンガンが(Mn)が0.1〜2.0質量%、モリブデン(Mo)が0.05〜0.6質量%であり、さらに、ニオブ(Nb)が0.08質量%以下、バナジウム(V)が0.15質量%以下、タングステン(W)が1.5質量%以下のうち1種または2種以上、銅(Cu)、ニッケル(Ni)、クロム(Cr)、ホウ素(B)から選ばれた1種または2種以上で、かつ、0.5≦(C/12)/{(Ti/48)+(Mo/96)+(Nb/93)+(V/51)+(W/192)}≦5を満たし、残部がFe及び不純物からなる焼戻しマルテンサイトの単相組織鋼を特徴とする。しかし、上記特許文献1は耐遅れ破壊物性を得るために、高価の合金元素を多量に添加しており、焼戻し温度も高いため、実際生産に適用するには問題がある。 As an example of a technique developed for improving such delayed fracture resistance, the technique described in Patent Document 1 can be cited. However, Patent Document 1 describes a high-strength bolt excellent in delayed fracture resistance. It relates to a production method, carbon (C) is 0.35 mass % or less, silicon (Si) is 0.50 mass % or less, manganese (Mn) is 0.1 to 2.0 mass %, molybdenum (Mo) Is 0.05 to 0.6% by mass , niobium (Nb) is 0.08% by mass or less, vanadium (V) is 0.15% by mass or less, and tungsten (W) is 1.5% by mass or less. 1 type or 2 types or more, 1 type or 2 types or more selected from copper (Cu), nickel (Ni), chromium (Cr), boron (B), and 0.5 ≦ (C / 12 ) / {(Ti / 48) + (Mo / 96) + (Nb / 93) + V / 51) + (W / 192)} satisfies the ≦ 5, the balance being single phase steel tempered martensite consisting of Fe and impurities. However, in Patent Document 1, a large amount of an expensive alloy element is added to obtain delayed fracture resistance, and the tempering temperature is high.

また、特許文献2は、炭素(C)が0.05〜0.3質量%、シリコン(Si)が0.05〜2.0質量%、マンガンが(Mn)0.3〜5.0質量%、クロム(Cr)が1.0〜3.0質量%、ニオブ(Nb)が0.01〜0.5質量%、アルミニウム(Al)が0.01〜0.06質量%の組成を有する鋼を熱間成形した後、初析フェライトが析出されない臨界冷却速度以上で連続冷却してベイナイト+マルテンサイト二相複合組織鋼を製造する方法に関するものであるが、製造時、熱処理工程が多く実生産に適用しにくいという問題がある。 In Patent Document 2, carbon (C) is 0.05 to 0.3 mass %, silicon (Si) is 0.05 to 2.0 mass %, and manganese (Mn) is 0.3 to 5.0 mass %. %, Chromium (Cr) has a composition of 1.0 to 3.0% by mass , niobium (Nb) has a composition of 0.01 to 0.5% by mass , and aluminum (Al) has a composition of 0.01 to 0.06% by mass. This is related to a method of manufacturing bainite + martensite dual-phase composite steel by hot forming and then continuously cooling at or above the critical cooling rate at which pro-eutectoid ferrite does not precipitate. There is a problem that it is difficult to apply to production.

また、特許文献3は、フェライトと焼戻しマルテンサイト複合組織鋼を基本組織とし、(i)炭素が0.4〜0.6質量%、シリコンが2.0〜4.0質量%、マンガンが0.2〜0.8質量%、クロムが0.25〜0.8質量%、リンが0.01質量%以下、硫黄が0.01質量%以下、窒素が0.005〜0.01質量%、酸素が0.005質量%以下で、さらに(ii)バナジウムが0.05〜0.2質量%、ニオブが0.05〜0.2質量%、ニッケルが0.3〜2.0質量%、ホウ素が0.001〜0.003質量%、モリブデンが0.01〜0.5質量%、チタン、銅、及びコバルトからなるグループから選ばれた少なくとも1種からなる組成の高強度ボルトの製作方法の熱処理方法を提示したことを特徴とする。しかし、上記特許文献は低い焼入れ温度により球状化された炭化物がボルト内に残っており、切欠き靭性を低下させるという問題点がある。 Further, Patent Document 3, a ferrite and tempered martensite composite structure steel as a basic structure, (i) carbon 0.4 to 0.6 wt%, silicon 2.0 to 4.0 wt%, manganese 0 0.2 to 0.8 mass %, chromium is 0.25 to 0.8 mass %, phosphorus is 0.01 mass % or less, sulfur is 0.01 mass % or less, and nitrogen is 0.005 to 0.01 mass %. , Oxygen is 0.005 mass % or less, and (ii) vanadium is 0.05 to 0.2 mass %, niobium is 0.05 to 0.2 mass %, nickel is 0.3 to 2.0 mass % , boron 0.001 to 0.003 wt%, molybdenum 0.01 to 0.5 wt%, fabrication of titanium, copper, and high strength bolts having a composition comprising at least one selected from the group consisting of cobalt A method for heat treatment of the method is presented. However, the above-mentioned patent document has a problem that carbides spheroidized by a low quenching temperature remain in the bolt, and the notch toughness is lowered.

特開2003−321743公報JP 2003-321743 A 特開平7−173531公報Japanese Patent Laid-Open No. 7-173531 大韓民国特許公開2000−0033852明細書Korean Patent Publication 2000-0033852 Specification

従って、本発明は上記問題点を考慮してなされたもので、その目的は、合金元素を多量に添加しなくても耐遅れ破壊特性と共に高強度を実現し、切欠き靭性の低下の問題を起こさない高強度ボルトを提供することにある。   Accordingly, the present invention has been made in consideration of the above-mentioned problems, and its purpose is to realize high strength together with delayed fracture resistance without adding a large amount of alloy elements, and to reduce the notch toughness. It is to provide a high-strength bolt that does not occur.

本発明の他の目的は、複雑な熱処理工程なしに簡単、かつ便利に実施できる上記ボルトの製造方法を提供することにある。   Another object of the present invention is to provide a method for manufacturing the bolt that can be carried out easily and conveniently without complicated heat treatment steps.

上記目的を達成するための本発明の耐遅れ破壊特性に優れた高強度ボルトは、炭素が0.35〜0.55質量%、シリコンが0.05〜2.0質量%、マンガンが0.1〜0.8質量%、ホウ素が0.001〜0.004質量%、クロムが0.3〜1.5質量%、全酸素(T.O)が0.005質量%以下、リンが0.015質量%以下、硫黄が0.010質量%以下、バナジウムが0.05〜0.5質量%、モリブデンが0.1〜1.5質量%、チタンが0.01〜0.1質量%、及び残部が鉄及びその他不可避な不純物からなる組成のボルト形状の線材を、
Ae3+80℃以上の温度で加熱してから急冷する焼入れ工程と、急冷した線材を再度Ae3−10℃〜Ae3+10℃の温度で加熱して急冷する再焼入れ工程と、再焼入れた線材を450℃以上500℃以下の温度で加熱して焼戻しする工程と、を含んで製造された高強度ボルトで、
前記高強度ボルトは、面積率でフェライト3%以上10%未満、及び焼戻しマルテンサイト90〜97%の内部組織から構成され、内部に炭化物が面積率で10%以下含まれ、炭化物は円相当最大直径が5μm以下であることを特徴とする。

The high-strength bolt excellent in delayed fracture resistance of the present invention for achieving the above object is 0.35-0.55% by mass of carbon, 0.05-2.0% by mass of silicon, and 0.8% of manganese. 1 to 0.8 mass%, boron is 0.001 to 0.004 mass%, chromium is 0.3 to 1.5 mass%, total oxygen (TO) is 0.005 mass% or less, and phosphorus is 0 0.015 mass% or less, sulfur 0.010 mass% or less, vanadium 0.05-0.5 mass%, molybdenum 0.1-1.5 mass%, titanium 0.01-0.1 mass% , And the bolt-shaped wire of the composition consisting of iron and other inevitable impurities in the balance ,
A quenching step of heating at a temperature of Ae3 + 80 ° C or higher and then rapidly cooling, a re-quenching step of rapidly cooling the rapidly cooled wire at a temperature of Ae3-10 ° C to Ae3 + 10 ° C, and a re-quenched wire at a temperature of 450 ° C to 500 ° C. A high-strength bolt manufactured by heating and tempering at a temperature of ℃ or less,
The high-strength bolt is composed of an internal structure of ferrite 3% or more and less than 10% by area ratio and tempered martensite 90 to 97%, and carbide is contained within 10% or less by area ratio, and the carbide is equivalent to a circle. The diameter is 5 μm or less.

上記のような耐遅れ破壊特性に優れている高強度ボルトを製造するための本発明の別の
態様によると、炭素が0.35〜0.55質量%、シリコンが0.05〜2.0質量%、マンガンが0.1〜0.8質量%、ホウ素が0.001〜0.004質量%、クロムが0.3〜1.5質量%、全酸素(T.O)が0.005質量%以下、リンが0.015質量%以下、硫黄が0.010質量%以下、バナジウムが0.05〜0.5質量%、モリブデンが0.1〜1.5質量%、チタンが0.01〜0.1質量%、及び残部が鉄及びその他不可避な不純物からなる組成のボルト形状の線材を、
Ae3+80℃以上の温度で加熱してから急冷する焼入れ段階と、
急冷した線材を再度Ae3−10℃〜Ae3+10℃の温度で加熱して急冷する再焼入れ段階と、
再焼入れた線材を450℃以上500℃以下の温度で加熱して焼戻しする段階と、
からなることを特徴とする。
According to another aspect of the present invention for the production of high strength bolts have excellent delayed fracture resistance as described above, carbon-containing is 0.35-0.55 wt%, silicon 0.05 to 2. 0 mass%, manganese 0.1-0.8 mass%, boron 0.001-0.004 mass%, chromium 0.3-1.5 mass%, total oxygen (TO) is 0.00. 005 wt% or less, phosphorus of 0.015% by mass or less, sulfur 0.010 wt% or less, vanadium 0.05 to 0.5 wt%, molybdenum 0.1 to 1.5 wt%, titanium Is a bolt-shaped wire having a composition of 0.01 to 0.1% by mass and the balance of iron and other inevitable impurities,
A quenching step of heating at a temperature of Ae3 + 80 ° C. or higher and then rapidly cooling;
A re-quenching step in which the rapidly cooled wire is again heated at a temperature of Ae3-10 ° C to Ae3 + 10 ° C and rapidly cooled;
Heating and tempering the re-quenched wire at a temperature of 450 ° C. to 500 ° C .;
It is characterized by comprising.

本発明によると、合金元素を多量に添加しなくても優れた耐遅れ破壊特性と共に高強度を有し、切欠き靭性の低下の問題も起こさない高強度ボルトを提供することができ、このような高強度ボルトを複雑な熱処理工程なしに簡単、かつ便利に製造する方法を提供することができる。   According to the present invention, it is possible to provide a high-strength bolt having high delayed strength with excellent delayed fracture resistance without causing a problem of notch toughness reduction without adding a large amount of alloy elements. It is possible to provide a method for manufacturing a simple high-strength bolt easily and conveniently without a complicated heat treatment process.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

従来技術の問題点を解決すると共に、強度と耐遅れ破壊特性に優れたボルト及びその製造方法について、綿密な実験と共に種々の広範囲かつ集中的な研究及び実験を繰り返した結果、本発明の発明者は、次のような結論に達した。   The inventors of the present invention have solved the problems of the prior art and repeated various extensive and intensive studies and experiments together with detailed experiments on bolts and methods of manufacturing the bolts with excellent strength and delayed fracture resistance. Reached the following conclusion.

即ち、従来のマルテンサイトの単相組織に比べフェライトと焼戻しマルテンサイトが共存する複合組織にし、フェライトの分率を一定水準に制限すると、フェライトが均一分散分布され旧オーステナイト結晶粒界に水素原子が侵入することを防いで耐遅れ破壊特性を高めることができ、また、上記フェライトは焼戻しマルテンサイトに比べ軟質相であるため、亀裂伝播時、亀裂先端が鈍化する効果により亀裂伝播を妨害することができるので、耐遅れ破壊特性の確保に効果的である。また、これと共に炭化鉄(Fe)、炭化クロム(Cr)等の粗大な炭化物を可能な限り減少させ、水素トラップによる遅れ破壊を防ぎ、存在する炭化物は可能な限り微細な大きさで分散分布させ多量の微細な水素トラップサイトを提供すると、耐遅れ破壊特性の改善に効果的である。また、上記のような耐遅れ破壊特性の改善に有利な組織と炭化物の分布のためには、鋼組成を下記のように適切な範囲内に制御することが重要である。   That is, compared to the conventional single-phase structure of martensite, a composite structure in which ferrite and tempered martensite coexist, and when the ferrite fraction is limited to a certain level, the ferrite is uniformly distributed and hydrogen atoms are present in the prior austenite grain boundaries. Delayed fracture resistance can be improved by preventing intrusion, and since the ferrite is a soft phase compared to tempered martensite, crack propagation can be hindered by the effect of blunting the crack tip during crack propagation. This is effective in ensuring delayed fracture resistance. Along with this, coarse carbides such as iron carbide (Fe) and chromium carbide (Cr) are reduced as much as possible to prevent delayed fracture due to hydrogen traps, and existing carbides are distributed and distributed in the smallest possible size. Providing a large amount of fine hydrogen trap sites is effective in improving delayed fracture resistance. Further, for the structure and carbide distribution advantageous for improving the delayed fracture resistance as described above, it is important to control the steel composition within an appropriate range as described below.

以下、本発明により提供される好ましいボルトの鋼組成、組織及び析出物分布に対して詳細に説明する。   Hereinafter, the steel composition, structure and precipitate distribution of the preferred bolt provided by the present invention will be described in detail.

(鋼組成)
炭素(C):0.35〜0.55質量
炭素(C)は、製品の強度を確保するために添加される元素である。しかし、炭素の含有量が0.55質量%を超える場合にはオーステナイト結晶粒界にフィルム形態の炭化物が多数析出され、水素耐遅れ破壊特性を低下させるため好ましくなく、0.35質量%未満では焼入れ、焼戻し熱処理によるボルトの引張強度が十分でないため、上記炭素の含有量は0.35〜0.55質量%であることが好ましい。
(Steel composition)
Carbon (C): 0.35-0.55 mass %
Carbon (C) is an element added to ensure the strength of the product. However, if the content of carbon exceeds 0.55 mass% is deposited many carbide film form austenite grain boundaries is not preferable to reduce the hydrogen delayed fracture resistance, is less than 0.35 wt% Since the tensile strength of the bolt by quenching and tempering heat treatment is not sufficient, the carbon content is preferably 0.35 to 0.55 mass %.

シリコン(Si):0.05〜2.0質量
シリコン(Si)は鋼の脱酸のために有用である上、強度確保にも効果的な元素である。しかし、シリコン含有量が2.0質量%を超える場合には線材をボルト形状に加工する冷間鍛造作業時、加工硬化現象が急激に起こり加工性が不良になり、0.05質量%未満の含有量ではボルト強度の確保が困難であるため、シリコン含有量は0.05〜2.0質量%に制限することが好ましい。
Silicon (Si): 0.05 to 2.0 mass %
Silicon (Si) is an element that is useful for deoxidizing steel and is effective in securing strength. However, when the silicon content exceeds 2.0% by mass, during the cold forging operation in which the wire is processed into a bolt shape, the work hardening phenomenon occurs suddenly, resulting in poor workability and less than 0.05% by mass . Since it is difficult to ensure the bolt strength with the content, the silicon content is preferably limited to 0.05 to 2.0 mass %.

マンガン(Mn):0.1〜0.8質量
マンガン(Mn)は、母材組織内に置換型固溶体を形成し固溶強化する元素で、高張力ボルト特性に非常に有用な元素である。マンガンの含有量は0.1〜0.8質量%の範囲であることが好ましい。即ち、マンガンを0.8質量%を超えて添加する場合、固溶強化の効果よりはマンガン偏析による組織の不均質がボルト特性により有害な影響を与える。鋼の凝固時、偏析機構により巨視偏析と微視偏析が生じやすいが、マンガン偏析は他の元素に比べ相対的に低い拡散係数により、偏析域の生成を容易にし、焼入れ硬化性の改善は、中心部の低温組織(コアマルテンサイト)を生成する主要因として役立つ。また、マンガンが0.1%質量未満に添加される場合、マンガン偏析による偏析大の影響はほとんどないが、固溶強化による応力弛緩の改善効果は期待しにくい。即ち、マンガンの含有量が0.1%質量未満の場合には、固溶強化の効果が十分でないため、焼入れ硬化性及び耐永久変形性の改善が十分でなく、0.8質量%を超える場合には、鋳造時、マンガン偏析による局部焼入れ硬化性の増大及び偏析域の形成で組織異方性の深化、即ち、組織不均一によりボルト特性が低下する。
Manganese (Mn): 0.1-0.8% by mass
Manganese (Mn) is an element that forms a substitutional solid solution in the matrix structure and strengthens the solid solution, and is an extremely useful element for high tension bolt characteristics. The content of manganese is preferably in the range of 0.1 to 0.8% by mass . That is, when manganese is added in an amount exceeding 0.8% by mass, the heterogeneity of the structure due to manganese segregation has a more harmful effect on the bolt characteristics than the effect of solid solution strengthening. Macrosegregation and microsegregation are likely to occur due to the segregation mechanism during solidification of the steel, but manganese segregation facilitates the generation of segregation zone due to the relatively low diffusion coefficient compared to other elements, It serves as the main factor for generating a low temperature structure (core martensite) in the center. In addition, when manganese is added to less than 0.1% by mass, there is almost no influence of segregation due to manganese segregation, but it is difficult to expect an effect of improving stress relaxation by solid solution strengthening. That is, when the content of manganese is less than 0.1% by mass , the effect of solid solution strengthening is not sufficient, so the improvement in quenching curability and permanent deformation resistance is not sufficient, and exceeds 0.8% by mass. In this case, at the time of casting, the bolt characteristics are deteriorated due to the deepening of the structure anisotropy due to the increase in the local quenching hardenability due to the segregation of manganese and the formation of the segregation zone, that is, the uneven structure.

ホウ素(B):0.001〜0.004質量
ホウ素(B)は、本発明において、焼入れ硬化性及び耐遅れ破壊特性の改善のために添加する結晶粒界強化元素として主要な機能をする。ホウ素含有量の下限は0.0010質量%が好ましいが、ホウ素含有量が0.0010質量%未満の場合には熱処理時、結晶粒界偏析による結晶粒界強度の改善効果や焼入れ硬化性の改善効果が十分でない。逆に、ホウ素含有量が0.004質量%を超えるとホウ素添付効果が飽和し、結晶粒界に窒化物ホウ素が析出し結晶粒界強度が低下する。
Boron (B): 0.001 to 0.004 mass %
In the present invention, boron (B) has a main function as a grain boundary strengthening element to be added for improving quenching hardenability and delayed fracture resistance. The lower limit of the boron content is preferably 0.0010% by mass. However, when the boron content is less than 0.0010% by mass , the grain boundary strength is improved by the grain boundary segregation during the heat treatment, and the quenching hardenability is improved. The effect is not enough. Conversely, when the boron content exceeds 0.004 mass %, the boron attachment effect is saturated, boron nitride precipitates at the crystal grain boundary, and the grain boundary strength decreases.

クロム(Cr):0.3〜1.5質量
クロム(Cr)は、焼入れ、焼戻し熱処理時、焼入れ硬化性の向上に有効な元素である。クロムの含有量が0.3質量%未満では焼入れ、焼戻し熱処理時、十分な 焼入れ硬化性の確保が困難であるため、クロム含有量は、0.3質量%以上にする必要がある。また、本発明者の研究結果によると、クロム自体の焼入れ硬化性の向上は微々たるものであるが、ホウ素と共に入れる場合、その改善効果が非常に増加するため、クロムの添加は必要なものと知られている。逆に、クロムを1.5質量%を超えて添加する場合は、鋼材内にフィルム形態の炭化物が生成されるため、好ましくない。このようなフィルム形態の炭化物がオーステナイト結晶粒界に存在するようになる場合は、水素によって引き起こされる耐遅れ破壊特性を低下させることが知られているからである。
Chromium (Cr): 0.3 to 1.5% by mass
Chromium (Cr) is an element effective for improving quenching curability during quenching and tempering heat treatment. If the chromium content is less than 0.3% by mass, it is difficult to ensure sufficient quenching curability during quenching and tempering heat treatment, so the chromium content must be 0.3% by mass or more. Further, according to the results of research by the present inventor, the improvement in quenching hardenability of chromium itself is insignificant. However, when added together with boron, the improvement effect is greatly increased, so that addition of chromium is necessary. Are known. On the contrary, when adding chromium over 1.5 mass %, since the carbide | carbonized_material of a film form is produced | generated in steel materials, it is unpreferable. This is because it is known that when such a film-like carbide is present in the austenite grain boundary, the delayed fracture resistance caused by hydrogen is reduced.

全酸素(T.O):0.005質量%以下
酸素は、全酸素(T.O)の形態として分析されるが、その含有量は、0.005質量%以下に制限する。酸素含有量が0.005質量%を超える場合には酸化物系非金属介在物により、疲労による寿命の低下が起きることがあるからである。
Total oxygen (TO): 0.005 mass % or less Oxygen is analyzed as a form of total oxygen (TO), but its content is limited to 0.005 mass % or less. This is because, when the oxygen content exceeds 0.005% by mass , the oxide-based nonmetallic inclusions may reduce the life due to fatigue.

リン(P):0.015質量%以下
リン(P)の含有量は0.015質量%以下に制限する。リンは、結晶粒界に偏析され靭性を低下させ、耐遅れ破壊特性を減少させる主要因であるため、その上限を0.015質量%に制限する。
Phosphorus (P): 0.015 mass % or less The content of phosphorus (P) is limited to 0.015 mass % or less. Phosphorus is segregated at the grain boundaries and is the main factor for reducing toughness and reducing delayed fracture resistance, so its upper limit is limited to 0.015 mass %.

硫黄(S):0.010質量%以下
硫黄(S)は、低融点元素で結晶粒界に偏析され靭性を低下させ、硫化物を形成させて耐遅れ破壊特性及び応力弛緩特性に有害な影響を及ぼすため、その上限を0.010質量%に制限することが好ましい。
Sulfur (S): 0.010% by mass or less Sulfur (S) is a low melting point element that segregates at the grain boundaries, lowers toughness, and forms sulfides, which has a detrimental effect on delayed fracture resistance and stress relaxation properties. Therefore, it is preferable to limit the upper limit to 0.010% by mass .

上記のような組成に、さらにバナジウム(V)、モリブデン(Mo)、及びチタン(Ti)の元素を夫々下記で制限する含有量の範囲でさらに添加することが好ましい。
The above composition, further vanadium (V), Mo Ribuden (Mo), and further it is preferably added in an amount of content that limits the element titanium (Ti), respectively below.

バナジウム(V):0.05〜0.5質量
バナジウム(V)は、析出物を形成して耐遅れ破壊特性及び耐軟化特性を改善する元素で、その含有量を0.05〜0.5質量%に制限する。その含有量が0.05質量%未満では、母材内でのバナジウム系析出物の分布が悪く、拡散出来ない水素トラップサイトとしての役割が十分でないため、耐遅れ破壊特性の改善効果が期待しにくく、また、所望の析出強化が期待にしくいため、耐軟化特性に対する改善効果が十分でない。他方、その含有量が0.5質量%を超えると析出物による耐遅れ破壊特性及び耐軟化特性に対する改善効果が飽和しオーステナイト熱処理時、母材に溶解されない粗大な合金炭化物が増加し非金属介在物のような作用をするため疲労特性の低下をもたらす。
Vanadium (V): 0.05 to 0.5% by mass
Vanadium (V) is an element that forms a precipitate to improve delayed fracture resistance and softening resistance, and its content is limited to 0.05 to 0.5 mass %. If the content is less than 0.05% by mass , the distribution of vanadium-based precipitates in the base metal is poor, and the role as a hydrogen trap site that cannot be diffused is not sufficient. In addition, since the desired precipitation strengthening is not expected, the effect of improving the softening resistance is not sufficient. On the other hand, if the content exceeds 0.5% by mass, the effect of improving the delayed fracture resistance and softening resistance due to precipitates is saturated, and during the austenite heat treatment, coarse alloy carbides that are not dissolved in the base metal increase and non-metallic inclusions It acts like a thing and brings about a decrease in fatigue characteristics.

ニオブ(Nb):0.05〜0.5質量
ニオブ(Nb)は、バナジウムと同様に析出物を形成し耐遅れ破壊特性及び耐軟化特性を改善する元素で、その含有量を0.05〜0.5質量%に制限する。その含有量が0.05質量%以下では、母材内にニオブ系析出物の分布が充分でなく、拡散出来ない水素トラップサイトとしての役割を十分果たさず、耐遅れ破壊特性の改善効果が期待しにくく、また、析出強化が期待しにくいため耐軟化特性に対する改善効果が十分でない。他方、その含有量が0.5質量%を超えると析出物による耐遅れ破壊特性及び耐軟化特性に対する改善効果が飽和しオーステナイト熱処理時、母材に溶解されない粗大な合金炭化物が増加し非金属介在物のような作用をするため、疲労特性の低下をもたらす。
Niobium (Nb): 0.05 to 0.5 mass %
Niobium (Nb) is an element that forms precipitates and improves delayed fracture resistance and softening resistance in the same manner as vanadium, and its content is limited to 0.05 to 0.5 mass %. If its content is 0.05% by mass or less, the distribution of niobium-based precipitates in the base metal is not sufficient, and it does not serve as a hydrogen trap site that cannot be diffused, and is expected to improve delayed fracture resistance. The effect of improving the softening resistance is not sufficient because precipitation strengthening is difficult to expect. On the other hand, if the content exceeds 0.5% by mass, the effect of improving the delayed fracture resistance and softening resistance due to precipitates is saturated, and during the austenite heat treatment, coarse alloy carbides that are not dissolved in the base metal increase and non-metallic inclusions Since it acts like a thing, it brings about a decrease in fatigue characteristics.

ニッケル(Ni):0.1〜0.5質量
ニッケル(Ni)は、熱処理時、表面にニッケル濃化層を形成し外部水素の浸透を抑制し耐遅れ破壊特性を改善する元素である。その含有量が0.1質量%以下の場合には、表面濃化層の形成が不完全で耐遅れ破壊特性の改善効果を期待しにくく、ボルトの冷間加工時、冷間成形性の改善効果がなく、その含有量が0.5%質量を超えると、残留オーステナイト量が増加し衝撃靭性が低下する恐れがある。
Nickel (Ni): 0.1-0.5% by mass
Nickel (Ni) is an element that improves the delayed fracture resistance by forming a nickel concentrated layer on the surface during heat treatment to suppress permeation of external hydrogen. When the content is 0.1% by mass or less, the formation of the surface concentrated layer is incomplete, and it is difficult to expect the effect of improving the delayed fracture resistance, and the cold formability is improved during cold working of the bolt. If there is no effect and the content exceeds 0.5% by mass , the amount of retained austenite may increase and impact toughness may decrease.

モリブデン(Mo):0.1〜1.5質量
モリブデン(Mo)含有量は、0.1〜1.5質量%に制限する。その理由は0.1質量%以下では、焼戻しプロセス中に、イプシロン炭化物からセメンタイトへ遷移し成長することや、途中のセメンタイトの成長を抑え、耐軟化特性、あるいは耐遅れ破壊特性を向上するための炭化物の生成が少なくなるからである。他方、モリブデンを1.5質量%以上添加すると、耐軟化特性の増加には非常に効果的であるが、線材の製造時、低温組織(マルテンサイト、ベイナイト)が簡単に生成される。
Molybdenum (Mo): 0.1 to 1.5% by mass
The molybdenum (Mo) content is limited to 0.1 to 1.5% by mass . The reason for this is that when the content is 0.1% by mass or less, the transition from epsilon carbide to cementite grows during the tempering process, and the growth of cementite on the way is suppressed to improve softening resistance or delayed fracture resistance. This is because the generation of carbide is reduced. On the other hand, when molybdenum is added in an amount of 1.5% by mass or more, it is very effective in increasing the softening resistance, but a low-temperature structure (martensite, bainite) is easily generated during production of the wire.

チタン(Ti):0.01〜0.1質量
ホウ素が、窒化ホウ素物を形成する場合、焼入れ硬化性の改善が著しく減少する。チタン(Ti)は、ホウ素の代わりに窒素と結合し、窒化ホウ素の形成を抑制するために有用な元素である。本発明では、チタンの含有量を0.01〜0.1質量%に制限する。その含有量が0.01質量%未満では耐腐食特性に対する改善効果が不十分で、ホウ素の焼入れ硬化性の向上のために窒化ホウ素の生成を防ぐチタン窒化物の生成が困難である。他方、0.1質量%を超えるとチタン添付効果が飽和し、粗大なチタン系窒化物を形成し疲労特性に有害である。
Titanium (Ti): 0.01 to 0.1% by mass
When boron forms boron nitride, the quench hardening improvement is significantly reduced. Titanium (Ti) is an element useful for binding to nitrogen instead of boron and suppressing the formation of boron nitride. In the present invention, the titanium content is limited to 0.01 to 0.1% by mass . If the content is less than 0.01% by mass, the effect of improving the corrosion resistance is insufficient, and it is difficult to produce titanium nitride that prevents the formation of boron nitride for improving the quenching hardenability of boron. On the other hand, if it exceeds 0.1% by mass , the titanium attachment effect is saturated and coarse titanium-based nitrides are formed, which is harmful to fatigue characteristics.

(鋼の微細組織)
本発明で対象とするボルトの微細組織は、フェライトとマルテンサイトを含む複合組織とする。上記フェライトは均一に分散分布されていることが好ましいが、その理由は上述のように、フェライトは旧オーステナイト結晶粒界に水素原子が侵入することを防いで耐遅れ破壊特性を高めることができ、また、フェライトは焼戻しマルテンサイトに比べ軟質相であるため、亀裂伝播時、亀裂先端が鈍化する効果により亀裂伝播を妨害することができるため、耐遅れ破壊特性の確保に効果的であるためである。このようなフェライトの均一分散効果を得るためには、フェライトの面積率は3〜10%に制限することが好ましい。もし、フェライトの面積率が3%未満の場合は、上述のフェライトによる耐遅れ破壊特性の向上効果が期待しにくく、逆に、10%を超える場合は、フェライトが均一分散されず、ボルトの引張強度が過度に低くなり所望の強度を得ることが困難である。
(Steel microstructure)
The microstructure of the bolt that is the subject of the present invention is a composite structure containing ferrite and martensite. The ferrite is preferably uniformly distributed and distributed as described above because the ferrite can prevent delayed penetration of hydrogen atoms into the prior austenite grain boundaries and enhance the delayed fracture resistance. Also, since ferrite is a soft phase compared to tempered martensite, crack propagation can be hindered by the effect of blunting the crack tip during crack propagation, which is effective in ensuring delayed fracture resistance. . In order to obtain such a uniform dispersion effect of ferrite, the area ratio of ferrite is preferably limited to 3 to 10%. If the area ratio of the ferrite is less than 3%, it is difficult to expect the effect of improving the delayed fracture resistance by the above-mentioned ferrite. Conversely, if it exceeds 10%, the ferrite is not uniformly dispersed and the tension of the bolt The strength becomes excessively low and it is difficult to obtain a desired strength.

(析出物の分布)
上記で説明したように、ボルトは、線材の段階で球状化熱処理を経た後、ボルト形状に加工される。球状化熱処理は、線材の強度を高める炭素を炭化物の形態で析出するための工程であるため、球状化熱処理された後の線材内部には、粗大な炭化物が多量に分布するようになる。特に、本発明の意図したボルトの組成によると炭化鉄及び炭化クロムが生成されるが、これらは水素トラップサイトを提供するため、耐遅れ破壊特性が減少する。従って、ボルトの加工段階では、これらの含有量が最小化される必要があるが、その条件は以下の通りである。
(Distribution of precipitates)
As described above, the bolt is subjected to spheroidizing heat treatment at the stage of the wire, and then processed into a bolt shape. Since the spheroidizing heat treatment is a process for precipitating carbon that enhances the strength of the wire in the form of carbides, a large amount of coarse carbide is distributed inside the wire after the spheroidizing heat treatment. In particular, the intended bolt composition of the present invention produces iron carbide and chromium carbide, which provide hydrogen trap sites and thus reduce delayed fracture resistance. Therefore, in the bolt processing stage, these contents need to be minimized, and the conditions are as follows.

炭化物の面積率は、10%以下に制御する必要がある。10%を超える場合には耐遅れ破壊特性が減少する上、炭化物による切欠き靭性が減少する問題まで発生する可能性があるため、炭化物の面積率は10%以下であることが好ましい。   It is necessary to control the area ratio of carbide to 10% or less. If it exceeds 10%, the delayed fracture resistance is reduced, and there is a possibility that notch toughness due to carbide may be reduced. Therefore, the area ratio of carbide is preferably 10% or less.

また、除去されず存在する炭化物の直径は5μm以下である必要がある。即ち、炭化物の同一面積率で炭化物の大きさが微細な場合には、水素がトラップされるサイトの数が増加する上、微細になるため、集積される水素の分圧を低める役割をすることができる。従って、炭化物の大きさは、5μm以下に維持する必要がある。   Moreover, the diameter of the carbide | carbonized_material which exists without being removed needs to be 5 micrometers or less. In other words, when the carbide size is fine with the same area ratio of carbide, the number of sites where hydrogen is trapped increases and it becomes fine, so it serves to reduce the partial pressure of accumulated hydrogen. Can do. Therefore, the size of the carbide needs to be maintained at 5 μm or less.

以下、本発明により提供された耐遅れ破壊特性に優れている高強度ボルトを製造する方法についてより詳しく説明する。   Hereinafter, the method for producing a high-strength bolt excellent in delayed fracture resistance provided by the present invention will be described in more detail.

(製造方法)
高強度ボルトを製造するためには、上述の好ましい鋼組成を有し、ボルト形状に加工された線材に対して焼入れ、再焼入れ及び焼戻し(いわゆる、Q−Q’−T)プロセスを実施する過程が必要である。
(Production method)
In order to manufacture a high-strength bolt, a process of performing quenching, re-quenching and tempering (so-called QQ'-T) process on a wire having the above-described preferable steel composition and processed into a bolt shape is necessary.

焼入れ(Q)過程は、炭化鉄及び炭化クロム等の炭化物を固溶体状態にし、炭化物の面積率を10%以下に管理し、微細な炭化物を形成させるためのもので、このステップで炭化物を固溶させるための加熱温度は、Ae3+80℃以上である必要がある。この温度以下で加熱する場合には、炭化物がボルトの母材組織内に十分に固溶されず、粗大な炭化物が残留する問題が発生する。上記特定温度で加熱され内部の炭化物が再溶解されたボルトは、その後急冷し炭化物が再析出することを防ぐ。   The quenching (Q) process is for making carbides such as iron carbide and chromium carbide into a solid solution state, controlling the area ratio of the carbides to 10% or less, and forming fine carbides. The heating temperature for making it necessary to be Ae3 + 80 ° C. or higher. When heating below this temperature, the carbides are not sufficiently dissolved in the base metal structure of the bolt, and there is a problem that coarse carbides remain. The bolt heated at the specific temperature and re-dissolved in the internal carbide is then rapidly cooled to prevent the carbide from re-depositing.

その後、均一なフェライト相を得るためにオーステナイトとフェライト+オーステナイトの二つの相域にある二相域臨界熱処理を行い、その後急冷(Q’)する。この加熱温度は、Ae3+10〜Ae3−10℃の範囲にあることが好ましい。加熱温度が、Ae3+10℃を超える場合はフェライトの比率が減少するようになり、本発明で意図するフェライトの均一分散分布による耐遅れ破壊特性の向上効果を得ることができず、逆に、加熱温度がAe3−10℃未満の場合には、フェライトの比率が過多になり、フェライトの均一分散が困難である上、ボルトの引張強度が減少する恐れがある。   Thereafter, in order to obtain a uniform ferrite phase, a two-phase critical heat treatment in two phase regions of austenite and ferrite + austenite is performed, and then rapid cooling (Q ') is performed. This heating temperature is preferably in the range of Ae3 + 10 to Ae3-10 ° C. When the heating temperature exceeds Ae3 + 10 ° C., the ferrite ratio decreases, and the effect of improving the delayed fracture resistance due to the uniform dispersion distribution of ferrite intended in the present invention cannot be obtained. Is less than Ae3-10 ° C., the ratio of ferrite becomes excessive, and it is difficult to uniformly disperse ferrite, and the tensile strength of the bolt may be reduced.

次いで、ボルトの靭性を確保するための焼戻し熱処理(T)が続く。本発明の組成によるボルトの熱処理は450℃以上の温度で行われなければならないが、上記温度未満で焼戻し処理をすると、焼戻し脆性が生じる恐れがある上、オーステナイト結晶粒界にフィルム形状の炭化物が析出される問題が生じる可能性がある。しかし、逆に焼戻し処理を500℃を超える高温で行うと、ボルトの引張強度が十分でない。従って、適切な焼戻し熱処理の温度は450〜500℃の範囲である。   Subsequently, a tempering heat treatment (T) for ensuring the toughness of the bolt is followed. The heat treatment of the bolt according to the composition of the present invention must be performed at a temperature of 450 ° C. or higher. However, if the tempering treatment is performed at a temperature lower than the above temperature, temper embrittlement may occur, and a film-like carbide is formed at the austenite grain boundary. A problem of precipitation may occur. However, if the tempering process is performed at a high temperature exceeding 500 ° C., the bolt tensile strength is not sufficient. Accordingly, a suitable tempering heat treatment temperature is in the range of 450-500 ° C.

以下、下記の実施例を通じ本発明をより詳細に説明する。これらの実施例は、本発明を説明するためのものであり、本発明の範囲や考え方を制限するものではない。   Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are for explaining the present invention, and do not limit the scope or concept of the present invention.

表1に記載の組成を有する鋼片を1200℃で48時間均質化熱処理し、次いで熱間圧延した。圧延時、圧延加工率を80%、仕上げ圧延温度は950℃にし、熱間圧延後空冷し直径13mmの鋼線材を製造した。   Steel slabs having the composition described in Table 1 were subjected to a homogenization heat treatment at 1200 ° C. for 48 hours and then hot-rolled. During rolling, the rolling rate was 80%, the finish rolling temperature was 950 ° C., and hot-rolled and then air-cooled to produce a steel wire having a diameter of 13 mm.

下記表1で本発明例の材料1、及び2は、本発明で規定する組成を満たす鋼片組成を示し、比較例、材料1は、本発明の組成範囲から外れた鋼片の組成を示すものである。   In Table 1 below, materials 1 and 2 of the examples of the present invention indicate steel slab compositions that satisfy the composition defined in the present invention, and Comparative Example and Material 1 indicate the composition of steel slabs outside the composition range of the present invention. Is.

Figure 0005281413
Figure 0005281413

機械的性質(引張及び伸び率)及び耐遅れ破壊特性を評価するための試片を圧延材の圧延方向で採取した。   Specimens for evaluating mechanical properties (tensile and elongation) and delayed fracture resistance were taken in the rolling direction of the rolled material.

下記表2に記載したように、鋼種材料を夫々二つの熱処理方式で熱処理した。一つ目の方式は、ボルトの内部組織が焼戻しマルテンサイトの単相組織の場合の物性を評価するためのもので、焼入れ温度900℃で40分間熱処理し、急冷する焼入れ処理を行った後、表2の焼戻し温度で90分間熱処理(いわゆる、Q−T程)する順序で行った。二つ目の方式は、焼入れ熱処理後、フェライト相を均一に分布させるために表2に記載の再焼き入れ温度で40分間加熱してから急冷し、その後表2に記載の焼戻し温度で90分間熱処理(いわゆる、Q−Q’−T工程)する順序で行った。上記一つ目の熱処理方式と二つ目の熱処理方式の相違点は、内部組織が焼戻しマルテンサイトの単相組織であるか、あるいは、フェライト(面積率10%以下)+焼戻しマルテンサイトの複合組織であるかということである。但し、同じQ−Q’−T工程により製造された場合でも、比較例3は焼入れ温度がAe3+80℃未満で焼入れ条件が本発明の条件を満たさず、鋼の組成も本発明に適合した条件を満たさない場合である。   As described in Table 2 below, the steel material was heat-treated by two heat treatment methods. The first method is for evaluating the physical properties when the internal structure of the bolt is a single-phase structure of tempered martensite. After the heat treatment at a quenching temperature of 900 ° C. for 40 minutes and quenching, The heat treatment was performed in the order of heat treatment (so-called Q-T) for 90 minutes at the tempering temperature shown in Table 2. In the second method, after quenching heat treatment, in order to uniformly distribute the ferrite phase, heating is performed at the re-quenching temperature shown in Table 2 for 40 minutes, followed by rapid cooling, and then at the tempering temperature shown in Table 2 for 90 minutes. It performed in order of heat processing (what is called QQ'-T process). The difference between the first heat treatment method and the second heat treatment method is that the internal structure is a single-phase structure of tempered martensite or a composite structure of ferrite (area ratio 10% or less) + tempered martensite. It is whether it is. However, even when manufactured by the same QQ'-T process, Comparative Example 3 has a quenching temperature of less than Ae3 + 80 ° C. and the quenching conditions do not satisfy the conditions of the present invention, and the steel composition satisfies the conditions suitable for the present invention. It is a case where it does not satisfy.

上記夫々の製造方式で製造されたボルトに対する物性評価の結果を下記表2に示した。   Table 2 shows the results of the physical property evaluation for the bolts manufactured by the above-described respective manufacturing methods.

表2の耐遅れ破壊特性の評価は、当業界で一般的に用いられる一定荷重法を適用した。この評価法は、負荷応力別または特定応力下で破壊までの所要時間で耐遅れ破壊特性を評価する方法である。耐遅れ破壊試験時、試験応力は、切欠き引張強度を基準に負荷応力を決めた。   The constant load method generally used in this industry was applied to the evaluation of the delayed fracture resistance in Table 2. This evaluation method is a method for evaluating delayed fracture resistance characteristics according to the time required for fracture under load stress or specific stress. During the delayed fracture resistance test, the test stress was determined based on the notch tensile strength.

耐遅れ破壊試験機は、一定荷重型耐遅れ破壊試験機を用いた。耐遅れ破壊試験片は、直径6mm、切欠き部直径4mm、切欠き半径0.1mmに製造した。試験片雰囲気の溶液は、PH2の溶液(NaCl+CHCHOOH)を作り、常温25℃±5℃で行った。 As the delayed fracture resistance tester, a constant load type delayed fracture resistance tester was used. The delayed fracture resistance test piece was manufactured to have a diameter of 6 mm, a notch diameter of 4 mm, and a notch radius of 0.1 mm. The solution in the test piece atmosphere was a PH2 solution (NaCl + CH 3 CHOOH), which was carried out at room temperature of 25 ° C. ± 5 ° C.

臨界耐遅れ破壊強度は、同じ応力比(負荷応力/切欠き引張強度)で破綻時まで所要時間150時間以上折損されない引張強度を意味し、切欠き強度は切欠き試片を引張試験し(最大荷重/切欠き部断面積)の値で求めた。臨界耐遅れ破壊強度の設定のための試験片数は、最少15個であった。   Critical delayed fracture strength means the tensile strength that does not break for 150 hours or more until failure at the same stress ratio (load stress / notch tensile strength). Notch strength is a tensile test of a notched specimen (maximum The load / notch cross-sectional area) was obtained. The number of specimens for setting the critical delayed fracture strength was at least 15.

Figure 0005281413
Figure 0005281413

表2で確認できるように、本発明の例1と例2の引張強度及び伸び率は、夫々比較例1と比較例2を比較するとき、同等水準以上の値を有していることが分かる。   As can be seen from Table 2, it can be seen that the tensile strength and elongation of Example 1 and Example 2 of the present invention have values equal to or higher than those of Comparative Example 1 and Comparative Example 2, respectively. .

また、表2の結果から、引張強度は略同一レベルでありながら、例1−1の耐遅れ破壊強度は、比較例2〜4の実施例の耐遅れ破壊強度に比べ100MPa以上高いということを確認することができる。   Moreover, from the results of Table 2, it can be seen that the delayed fracture resistance of Example 1-1 is higher than that of Examples of Comparative Examples 2 to 4 by 100 MPa or more, while the tensile strength is substantially the same level. Can be confirmed.

即ち、同じ成分を使用しても、本発明の工程は従来のQ−T工程に比べ、同等水準以上の引張強度と伸び率を確保しながら、優れた耐遅れ破壊特性を有する鋼を製造することができる。   That is, even if the same components are used, the process of the present invention produces steel having excellent delayed fracture resistance while securing a tensile strength and elongation rate equal to or higher than those of the conventional QT process. be able to.

例1及び例2の引張強度を、従来から耐遅れ破壊特性の鋼材に多く使用されてきた比較材(比較例3及び比較例4)の引張強度と比較すると、例1及び例2が従来の比較材より優れた引張強度を有していることが分かる。   Comparing the tensile strength of Example 1 and Example 2 with the tensile strength of comparative materials (Comparative Example 3 and Comparative Example 4) that have been conventionally used in steel materials with delayed fracture resistance, Example 1 and Example 2 are conventional. It can be seen that it has a tensile strength superior to that of the comparative material.

そして、伸び率は13%以上の値を安定的に示せばいいが、例1及び例2は比較例3と比較例4に比べてそれ程劣らない良好な値を示している。   The elongation percentage may be a stable value of 13% or more, but Examples 1 and 2 show good values that are not so inferior to those of Comparative Examples 3 and 4.

上記のように、本発明の例1及び例2引張強度と伸び率は、従来の比較材(比較例3または比較例4)と比べて劣らないか、それ以上の良好な値を有し、耐遅れ破壊特性の強度は、比較例3と比べるときは400MPa以上、そして比較例3と比べるときも100MPa以上高い。このように表2で分かるように、例1及び例2の鋼材は従来の耐遅れ破壊特性鋼に比べ著しく優れた値を示している。   As described above, the tensile strength and elongation of Examples 1 and 2 of the present invention are not inferior to those of conventional comparative materials (Comparative Example 3 or Comparative Example 4), or have good values beyond that. The strength of delayed fracture resistance is 400 MPa or more when compared with Comparative Example 3, and 100 MPa or more when compared with Comparative Example 3. Thus, as can be seen in Table 2, the steel materials of Examples 1 and 2 show significantly superior values compared to conventional delayed fracture resistant steels.

焼入れ温度による引張試験の結果が変ることを確認するために、本発明の例1と同一成分の鋼材からボルトを製作し引張試験を行った。この結果を表3に示す。   In order to confirm that the result of the tensile test depending on the quenching temperature is changed, a bolt was manufactured from a steel material having the same composition as in Example 1 of the present invention, and a tensile test was performed. The results are shown in Table 3.

Figure 0005281413
Figure 0005281413

表3から、焼入れ時加熱温度が870℃の場合は、900℃の場合と比べ伸び率が遥かに低いことが確認できる From Table 3, if the quenching during the heating temperature of 870 ° C., it can be confirmed that the much lower elongation compared with the case of 900 ° C..

球状化熱処理により生成されたFe、Cr炭化物はその後の、焼入れ工程で完全に溶解されなければならない。このような現象を避けるためには、焼入れ熱処理工程における焼入れ温度を十分に上げ炭化物を完全に溶解させる必要がある。炭化物が完全に溶解すると、ボルトの伸び率は回復する。 The Fe and Cr carbides produced by the spheroidizing heat treatment must be completely dissolved in the subsequent quenching process . To avoid phenomena such as this, it is necessary to completely dissolve sufficiently on up carbides quenching temperature in quenching heat treatment step. When the carbide is completely dissolved, the bolt elongation recovers.

本発明の好ましい実施の形態は、説明を目的に開示してきたが、当業者は、特許請求の範囲に記載された本発明の技術的範囲や精神を逸脱することなく、種々の変更、追加及び代替が可能である。   While the preferred embodiments of the present invention have been disclosed for purposes of illustration, those skilled in the art will recognize that various modifications, additions and additions can be made without departing from the scope and spirit of the invention as described in the claims. Alternatives are possible.

本発明は、複雑な熱処理プロセスなしに、又、多量の合金成分を加えることなく、優れた耐遅れ破壊特性とともに高強度を実現できる高強度ボルトの製造分野に適用できる。

The present invention can be applied to the field of manufacturing high-strength bolts capable of realizing high strength with excellent delayed fracture resistance without complicated heat treatment processes and without adding a large amount of alloy components.

Claims (2)

炭素が0.35〜0.55質量%、シリコンが0.05〜2.0質量%、マンガンが0.1〜0.8質量%、ホウ素が0.001〜0.004質量%、クロムが0.3〜1.5質量%、全酸素(T.O)が0.005質量%以下、リンが0.015質量%以下、硫黄が0.010質量%以下、バナジウムが0.05〜0.5質量%、モリブデンが0.1〜1.5質量%、チタンが0.01〜0.1質量%、及び残部が鉄及びその他不可避な不純物からなる組成のボルト形状の線材を、
Ae3+80℃以上の温度で加熱してから急冷する焼入れ段階と、
前記急冷した線材を再度Ae3−10℃〜Ae3+10℃の温度で加熱してから急冷する再焼入れ段階と、
前記再焼入れた線材を450℃以上500℃以下の温度で加熱して焼戻しする段階と、
からなることを特徴とする耐遅れ破壊特性に優れた高強度ボルトの製造方法。
Carbon is 0.35-0.55 mass%, Silicon is 0.05-2.0 mass%, Manganese is 0.1-0.8 mass%, Boron is 0.001-0.004 mass%, Chromium is 0.3 to 1.5 mass%, total oxygen (TO) is 0.005 mass% or less, phosphorus is 0.015 mass% or less, sulfur is 0.010 mass% or less, and vanadium is 0.05 to 0 A bolt-shaped wire having a composition of 0.5% by mass, molybdenum of 0.1 to 1.5% by mass, titanium of 0.01 to 0.1% by mass, and the balance of iron and other inevitable impurities,
A quenching step of heating at a temperature of Ae3 + 80 ° C. or higher and then rapidly cooling;
And re-hardening step of quenching after heating at the quenching temperatures of the wire again Ae3-10 ℃ ~Ae3 + 10 ℃,
Heating and tempering the re-quenched wire at a temperature of 450 ° C. or higher and 500 ° C. or lower;
A method for producing a high-strength bolt excellent in delayed fracture resistance.
炭素が0.35〜0.55質量%、シリコンが0.05〜2.0質量%、マンガンが0.1〜0.8質量%、ホウ素が0.001〜0.004質量%、クロムが0.3〜1.5質量%、全酸素(T.O)が0.005質量%以下、リンが0.015質量%以下、硫黄が0.010質量%以下、バナジウムが0.05〜0.5質量%、モリブデンが0.1〜1.5質量%、チタンが0.01〜0.1質量%、及び残部が鉄及びその他不可避な不純物からなる組成のボルト形状の線材を、
Ae3+80℃以上の温度で加熱してから急冷する焼入れ工程と、
前記急冷した線材を再度Ae3−10℃〜Ae3+10℃の温度で加熱してから急冷する再焼入れ工程と、
前記再焼入れた線材を450℃以上500℃以下の温度で加熱して焼戻しする工程とを含んで製造された高強度ボルトで
前記高強度ボルトは、面積率でフェライト3%以上10%未満、及び焼戻しマルテンサイト90〜97%の内部組織から構成され、内部に炭化物が面積率で10%以下含まれ、前記炭化物は円相当最大直径が5μm以下であることを特徴とする耐遅れ破壊特性に優れた高強度ボルト。
Carbon is 0.35-0.55 mass%, Silicon is 0.05-2.0 mass%, Manganese is 0.1-0.8 mass%, Boron is 0.001-0.004 mass%, Chromium is 0.3 to 1.5 mass%, total oxygen (TO) is 0.005 mass% or less, phosphorus is 0.015 mass% or less, sulfur is 0.010 mass% or less, and vanadium is 0.05 to 0 A bolt-shaped wire having a composition of 0.5% by mass, molybdenum of 0.1 to 1.5% by mass, titanium of 0.01 to 0.1% by mass, and the balance of iron and other inevitable impurities ,
A quenching step of heating at a temperature of Ae3 + 80 ° C. or higher and then rapidly cooling;
A re-quenching step in which the quenched wire is heated again at a temperature of Ae3-10 ° C to Ae3 + 10 ° C and then rapidly cooled;
A high-strength bolt manufactured by heating and tempering the re-quenched wire at a temperature of 450 ° C. or higher and 500 ° C. or lower ,
The high-strength bolt is composed of an internal structure of ferrite 3% or more and less than 10% in area ratio and tempered martensite 90 to 97%, and carbide is contained in the area ratio 10% or less, and the carbide is equivalent to a circle. A high-strength bolt excellent in delayed fracture resistance characterized by a maximum diameter of 5 μm or less.
JP2008548378A 2005-12-26 2006-12-14 High strength bolt excellent in delayed fracture resistance and method for manufacturing the same Active JP5281413B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020050130106A KR100723186B1 (en) 2005-12-26 2005-12-26 High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same
KR10-2005-0130106 2005-12-26
PCT/KR2006/005457 WO2007074984A1 (en) 2005-12-26 2006-12-14 High-strength steel bolt having excellent resistance for delayed fracture and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009521600A JP2009521600A (en) 2009-06-04
JP5281413B2 true JP5281413B2 (en) 2013-09-04

Family

ID=38218187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008548378A Active JP5281413B2 (en) 2005-12-26 2006-12-14 High strength bolt excellent in delayed fracture resistance and method for manufacturing the same

Country Status (4)

Country Link
JP (1) JP5281413B2 (en)
KR (1) KR100723186B1 (en)
CN (1) CN101346481B (en)
WO (1) WO2007074984A1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101253790B1 (en) 2005-12-27 2013-04-12 주식회사 포스코 High-strength steel part having excellent resistance for delayed fracture and method for producing the same
KR101290454B1 (en) 2011-06-28 2013-07-26 현대제철 주식회사 High-carbon steel sheet and method of manufacturing high-carbon steel product using the high-carbon steel sheet
CN102260831B (en) * 2011-07-08 2013-01-30 宁波市胜源技术转移有限公司 Fastener, such as screw bolt, screw nut and the like made from high-strength steel
CN102260830B (en) * 2011-07-08 2013-03-20 宁波市胜源技术转移有限公司 Method for processing high-strength fastener and hot-treating process
KR101325317B1 (en) * 2011-07-15 2013-11-08 주식회사 포스코 Steel wire rod having excellent resistance of hydrogen delayed fracture and method for manufacturing the same and high strength bolt using the same and method for manufacturing the bolt
KR20140121229A (en) * 2013-04-05 2014-10-15 태양금속공업주식회사 A manufacturing method of steel bolt having high tensile strength
JP6267618B2 (en) * 2014-09-30 2018-01-24 株式会社神戸製鋼所 Bolt steel and bolts
CN104400344A (en) * 2014-10-30 2015-03-11 无锡市威海达机械制造有限公司 Bolt manufacturing technology
WO2016151345A1 (en) * 2015-03-23 2016-09-29 Arcelormittal Parts with a bainitic structure having high strength properties and manufacturing process
KR102062733B1 (en) 2015-06-29 2020-01-06 닛폰세이테츠 가부시키가이샤 volt
KR101822292B1 (en) 2016-08-17 2018-01-26 현대자동차주식회사 High strength special steel
KR101822293B1 (en) 2016-08-17 2018-01-26 현대자동차주식회사 High strength special steel
KR101822295B1 (en) 2016-09-09 2018-01-26 현대자동차주식회사 High strength special steel
CN107587069B (en) * 2017-08-25 2019-03-08 武汉钢铁有限公司 A kind of high-intensity and high-tenacity bolt steel and production method
CN109161794B (en) * 2018-08-31 2019-11-22 钢铁研究总院 A kind of anti-delayed fracture high strength steel and preparation method thereof
KR102524924B1 (en) * 2019-03-29 2023-04-25 닛폰세이테츠 가부시키가이샤 steel plate
KR102326045B1 (en) * 2019-12-18 2021-11-15 주식회사 포스코 Steel wire rod, part for cold forging having excellent delayed fracture resistance, and manufacturing method thereof
CN115404399B (en) * 2021-05-28 2023-04-11 宝山钢铁股份有限公司 Homogeneous high-strength durable bolt steel and preparation method thereof
CN114107594A (en) * 2021-09-17 2022-03-01 阳春新钢铁有限责任公司 Production method for improving seismic resistance of 500 MPa-level anchor rod reinforcing steel bar
CN114672724B (en) * 2022-02-21 2023-03-10 长沙东鑫环保材料有限责任公司 Rare earth and nitrogen microalloyed molybdenum-containing HRB500E disc spiral steel bar and production method thereof
CN114951573B (en) * 2022-04-26 2024-04-02 江苏省沙钢钢铁研究院有限公司 Wire rod for 12.9-grade fastener and production method thereof
CN114875323A (en) * 2022-05-18 2022-08-09 首钢长治钢铁有限公司 High-strength-to-yield-ratio MG600 anchor rod steel and production method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52139613A (en) 1976-05-18 1977-11-21 Nippon Kokan Kk <Nkk> Corrosion resistant and high strength steel for bolt and nut kind
US4304134A (en) * 1980-05-08 1981-12-08 Westinghouse Electric Corp. Apparatus for ultrasonically inspecting circular bores
JP2614659B2 (en) 1989-05-31 1997-05-28 株式会社神戸製鋼所 High strength bolt steel with delayed fracture resistance and cold forgeability
JPH11315349A (en) 1998-04-30 1999-11-16 Kobe Steel Ltd High strength wire rod excellent in delayed fracture resistance, its production, and high strength bolt
JP3940270B2 (en) * 2000-04-07 2007-07-04 本田技研工業株式会社 Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
US6558484B1 (en) 2001-04-23 2003-05-06 Hiroshi Onoe High strength screw
JP3548519B2 (en) * 2000-12-01 2004-07-28 新日本製鐵株式会社 High strength steel with excellent hydrogen embrittlement resistance
CN1152148C (en) * 2001-06-22 2004-06-02 钢铁研究总院 High-strength bolt steel
JP2003239041A (en) * 2002-02-14 2003-08-27 Nippon Steel Corp High strength bolt and production method therefor
JP5167616B2 (en) * 2005-10-31 2013-03-21 Jfeスチール株式会社 Metal bolts with excellent delayed fracture resistance

Also Published As

Publication number Publication date
KR100723186B1 (en) 2007-05-29
JP2009521600A (en) 2009-06-04
CN101346481B (en) 2011-10-12
WO2007074984A1 (en) 2007-07-05
WO2007074984A9 (en) 2010-07-08
CN101346481A (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP5281413B2 (en) High strength bolt excellent in delayed fracture resistance and method for manufacturing the same
KR102263332B1 (en) A high-hardness hot-rolled steel product, and a method of manufacturing the same
KR102020385B1 (en) Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
KR101028613B1 (en) High strength thick steel sheet and its manufacturing method
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
KR20090071163A (en) High strength wire rod for spring having excellent corrosion resistance and manufacturing method thereof
JP4411253B2 (en) Hot forged parts with excellent delayed fracture resistance and method for producing the same
KR102166592B1 (en) Steel reinforcement and method of manufacturing the same
JP5826383B2 (en) Wire rod excellent in hydrogen delayed fracture resistance, method for producing the same, high strength bolt using the same, and method for producing the same
KR20090071164A (en) High-strength steel bolt having excellent resistance for delayed fracture and notch toughness method for producing the same
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
KR20200021668A (en) Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same
KR100380739B1 (en) High strength high elongation duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
KR100516518B1 (en) Steel having superior cold formability and delayed fracture resistance, and method for manufacturing working product made of it
KR100363194B1 (en) A method for high toughness bolts
JPH11270531A (en) High strength bolt having good delayed fracture characteristic and manufacture thereof
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR100345715B1 (en) Manufacturing method of composite tissue steel for high strength bolts with resistance ratio
KR100376532B1 (en) High strength duplex steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100363193B1 (en) A method for manufacturing bolts having high strength and elongation
KR100368226B1 (en) High strength high toughness bainitic steel with a good delayed fracture resistance and a method of manufacturing therefor
KR100363192B1 (en) A method for manufacturing high strength bolts
KR100946130B1 (en) Method of manufacturing high carbon Working product having superior delayed fracture resistance
KR20240006482A (en) Chromium-molybdenum steel having excellent strength and ductility and manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250