JP6648659B2 - Machine structural parts - Google Patents

Machine structural parts Download PDF

Info

Publication number
JP6648659B2
JP6648659B2 JP2016183730A JP2016183730A JP6648659B2 JP 6648659 B2 JP6648659 B2 JP 6648659B2 JP 2016183730 A JP2016183730 A JP 2016183730A JP 2016183730 A JP2016183730 A JP 2016183730A JP 6648659 B2 JP6648659 B2 JP 6648659B2
Authority
JP
Japan
Prior art keywords
steel
content
present
delayed fracture
fracture resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016183730A
Other languages
Japanese (ja)
Other versions
JP2017066521A (en
Inventor
徹志 千田
徹志 千田
大村 朋彦
朋彦 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JP2017066521A publication Critical patent/JP2017066521A/en
Application granted granted Critical
Publication of JP6648659B2 publication Critical patent/JP6648659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、機械構造用部品に関し、詳しくは、優れた耐遅れ破壊特性を備えた機械構造用部品に関する。   The present invention relates to a machine structural component, and more particularly to a machine structural component having excellent delayed fracture resistance.

自動車や各種産業機械の軽量化、高性能化、あるいは土木・建築構造物の建設費削減のために、機械構造用部品の高強度化が進められている。   In order to reduce the weight and performance of automobiles and various industrial machines, or to reduce the construction costs of civil engineering and building structures, the strength of mechanical structural parts has been increased.

例えば、ボルトは、JIS G 4053で規定されているSCM435、SCM440などの低合金鋼を用い、所定の形状に成形後、焼入れ−焼戻し処理によって製造されている。このため、ボルトを簡単に高強度化するためには、焼戻し温度を低くすればよい。   For example, the bolt is manufactured by quenching and tempering after forming into a predetermined shape using low alloy steel such as SCM435 and SCM440 specified in JIS G 4053. Therefore, in order to easily increase the strength of the bolt, the tempering temperature may be lowered.

しかしながら、引張強さが1200MPaを超えるような機械構造用部品では、水素脆化の一種である遅れ破壊が問題となる。上記の「遅れ破壊」は、静的応力下に置かれた部品が、ある時間経過後に突然、脆性的に破壊する現象であり、微量の水素でも生じる。上記の部品が屋外、特に、海水、融雪塩などの塩分が飛来する環境で使用される場合には、さび層下のpHが低下し、水素侵入量が多くなり、遅れ破壊の危険性が高まる。   However, in a mechanical structure component having a tensile strength exceeding 1200 MPa, delayed fracture, which is a kind of hydrogen embrittlement, becomes a problem. The above-mentioned "delay fracture" is a phenomenon in which a part placed under static stress suddenly and brittlely fractures after a certain period of time, and occurs even with a small amount of hydrogen. When the above parts are used outdoors, especially in an environment where salt such as seawater and snowmelt flies, the pH under the rust layer decreases, the amount of hydrogen penetration increases, and the risk of delayed fracture increases. .

そこで、従来から、遅れ破壊などの水素脆化を考慮した鋼あるいは鋼部品が検討されている。例えば、特許文献1には、水素トラップサイトとなる(Mo、V)2Cを活用した耐水素疲労破壊特性に優れた鋼、特許文献2には、水素トラップと高強度化のために合金炭化物の最適化を図った耐遅れ破壊特性に優れた鋼、特許文献3には、鋼材の化学成分に加えてミクロ組織を制御した耐遅れ破壊特性に優れたボルトが開示されている。 Therefore, steel or steel parts in consideration of hydrogen embrittlement such as delayed fracture have been studied. For example, Patent Literature 1 discloses a steel having excellent hydrogen fatigue fracture resistance utilizing (Mo, V) 2 C serving as a hydrogen trap site, and Patent Literature 2 discloses a hydrogen trap and an alloy carbide for high strength. Patent Document 3 discloses a steel excellent in delayed fracture resistance in which the microstructure is controlled in addition to the chemical composition of the steel material.

特開2002−327235号公報JP 2002-327235 A 特開2006−045670号公報JP-A-2006-045670 特開2007−031734号公報JP 2007-031734 A

斉藤明夫、徳広祐之輔、吉沢四郎、山川宏二、中尾和敏:防食技術、26(1977)、pp.503−508Akio Saito, Yunosuke Tokuhiro, Shiro Yoshizawa, Koji Yamakawa, Kazutoshi Nakao: Anticorrosion Technology, 26 (1977), pp. 503-508

特許文献1で開示された鋼は、耐水素疲労破壊特性に優れ、特許文献2で開示された鋼は、耐遅れ破壊特性に優れている。さらに、特許文献3で開示されたボルトもまた、確かに耐遅れ破壊特性に優れている。しかしながら、上記の各特許文献では、特に、使用中の環境が大きく影響する腐食によって生じる水素(以下、「使用中の環境からの水素」という。)の侵入を抑制する手段についての検討が十分ではない。このため、特許文献1〜3で開示された技術は、使用中の環境からの水素侵入量の抑制という観点から、改善の余地がある。   The steel disclosed in Patent Document 1 is excellent in hydrogen fatigue fracture resistance, and the steel disclosed in Patent Document 2 is excellent in delayed fracture resistance. Further, the bolt disclosed in Patent Document 3 also has excellent delayed fracture resistance. However, in each of the above-mentioned patent documents, it is not sufficient to particularly study means for suppressing intrusion of hydrogen (hereinafter, referred to as “hydrogen from the environment in use”) generated by corrosion that greatly affects the environment in use. Absent. Therefore, the technologies disclosed in Patent Documents 1 to 3 have room for improvement from the viewpoint of suppressing the amount of hydrogen entering from the environment in use.

本発明は、化学組成を最適化することにより使用中の環境からの水素侵入量を抑制して、耐遅れ破壊特性に優れた高強度の機械構造用部品を提供することを目的とする。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-strength component for mechanical structure having excellent delayed fracture resistance by suppressing the amount of hydrogen entering from the environment in use by optimizing the chemical composition.

本発明者らは、前記の課題を解決するために、種々の化学組成を有する低合金鋼鋼材を焼入れ−焼戻し処理して、機械構造用部品の遅れ破壊の原因となる水素量、中でも、使用中の環境からの水素侵入量について詳細な調査を行った。その結果、後述の実施例に一例を示すように、使用中の環境からの水素侵入量の抑制には、固溶Moが存在することが特に重要であるという全く新たな知見を得た。   In order to solve the above-mentioned problems, the present inventors have quenched and tempered low alloy steel materials having various chemical compositions to obtain a hydrogen content which causes delayed fracture of a machine structural component, among others, A detailed investigation was conducted on the amount of hydrogen intrusion from the environment. As a result, as shown in an example in Examples described later, a completely new finding has been obtained that the presence of dissolved Mo is particularly important for suppressing the amount of hydrogen entering from the environment during use.

本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記に示す機械構造用部品にある。   The present invention has been completed based on the above findings, and the gist of the present invention resides in the following components for machine structure.

(1)化学組成が、質量%で、
C:0.21〜0.34%、
Mn:0.10〜1.0%、
Mo:1.50〜4.0%、
V:0.10〜0.35%、
Al:0.01〜0.10%、
N:0.001〜0.015%、
Nb:0〜0.04%、
Ti:0〜0.04%、
Cr:0〜1.0%、
B:0〜0.0060%、
Ca:0〜0.005%、
Mg:0〜0.005%、
Zr:0〜0.005%、
残部がFeおよび不純物で、
不純物としてのSi、PおよびSが、Si:0.15%以下、P:0.015%以下およびS:0.015%以下であり、
さらに、下記の[1]式で表されるFn1が0を超え、
鋼中のMC型炭化物の平均サイズが1〜30nmであり、
引張強さが1200MPa以上である、
機械構造用部品。
Fn1=(Mo/96)+(V/51)−(C/12)・・・[1]
但し、[1]式中のMo、VおよびCは、それぞれの元素の鋼中含有量(質量%)を意味する。
(1) The chemical composition is expressed in mass%
C: 0.21-0.34%,
Mn: 0.10 to 1.0%,
Mo: 1.50 to 4.0%,
V: 0.10 to 0.35%,
Al: 0.01 to 0.10%,
N: 0.001 to 0.015%,
Nb: 0 to 0.04%,
Ti: 0 to 0.04%,
Cr: 0 to 1.0%,
B: 0 to 0.0060%,
Ca: 0 to 0.005%,
Mg: 0 to 0.005%,
Zr: 0 to 0.005%,
The balance is Fe and impurities,
Si, P and S as impurities are Si: 0.15% or less, P: 0.015% or less, and S: 0.015% or less;
Further, Fn1 represented by the following equation [1] exceeds 0,
The average size of MC type carbide in steel is 1 to 30 nm,
A tensile strength of 1200 MPa or more;
Parts for machine structure.
Fn1 = (Mo / 96) + (V / 51)-(C / 12) ... [1]
However, Mo, V and C in the formula [1] mean the contents (% by mass) of the respective elements in the steel.

(2)質量%で、Nb:0.005〜0.04%およびTi:0.005〜0.04%から選択される1種以上を含有する、上記(1)に記載の機械構造用部品。   (2) The component for a machine structure according to the above (1), which contains at least one selected from 0.005 to 0.04% of Nb and 0.005 to 0.04% of Ti in mass%. .

(3)質量%で、Cr:0.1〜1.0%を含有する、上記(1)または(2)に記載の機械構造用部品。   (3) The component for a machine structure according to the above (1) or (2), containing Cr: 0.1 to 1.0% by mass%.

(4)質量%で、B:0.0003〜0.0060%を含有する、上記(1)から(3)までのいずれかに記載の機械構造用部品。   (4) The component for a machine structure according to any one of the above (1) to (3), which contains B: 0.0003 to 0.0060% by mass%.

(5)質量%で、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%およびZr::0.0002〜0.005%から選択される1種以上を含有する、上記(1)から(4)までのいずれかに記載の機械構造用部品。   (5) In mass%, it contains one or more kinds selected from Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005% and Zr :: 0.0002 to 0.005%. The component for machine structure according to any one of (1) to (4).

(6)亜鉛めっき層によって全表面が被覆された上記(1)から(5)までのいずれかに記載の機械構造用部品。   (6) The component for a machine structure according to any one of (1) to (5), wherein the entire surface is covered with a galvanized layer.

本発明によれば、使用中の環境からの水素の侵入を抑制することで耐遅れ破壊特性に優れた高強度の機械構造用部品の提供が可能になる。このため、本発明は、産業上の貢献が極めて顕著である。   Advantageous Effects of Invention According to the present invention, it is possible to provide a high-strength component for a mechanical structure having excellent delayed fracture resistance by suppressing intrusion of hydrogen from the environment in use. Therefore, the present invention has a remarkable industrial contribution.

(実施例2)の試験結果を、横軸と縦軸にそれぞれ、引張強さ(ただし、1200〜1600MPaの範囲で示した。)と破壊強度比をとって整理した図である。It is the figure which arranged the test result of (Example 2) on the horizontal axis | shaft and the vertical axis | shaft, respectively taking the tensile strength (it showed in the range of 1200-1600 MPa) and the breaking strength ratio. (実施例3)の試験結果を、横軸と縦軸にそれぞれ、引張強さと破壊強度比をとって整理した図である。It is the figure which arranged the test result of (Example 3) by taking the tensile strength and the breaking strength ratio on the horizontal axis and the vertical axis, respectively.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of each element means “% by mass”.

(A)化学組成について:
C:0.21〜0.34%
Cは、鋼の強度を向上させる元素であり、機械構造用部品の強度を高めるために、0.21%以上の量を含有させる必要がある。一方、Cの含有量が0.34%を超えると、冷間加工性が低下する。このため、Cの含有量は0.21〜0.34%とする。C含有量の好ましい下限は0.25%であり、また、好ましい上限は0.30%である。なお、Cの含有量は、前記のFn1〔=(Mo/96)+(V/51)−(C/12)〕が0を超える必要がある。
(A) Chemical composition:
C: 0.21 to 0.34%
C is an element that improves the strength of steel, and it is necessary to contain 0.21% or more in order to increase the strength of the component for mechanical structure. On the other hand, when the content of C exceeds 0.34%, the cold workability decreases. Therefore, the content of C is set to 0.21 to 0.34%. A preferred lower limit of the C content is 0.25%, and a preferred upper limit is 0.30%. In addition, the content of C needs to exceed 0 in the above-mentioned Fn1 [= (Mo / 96) + (V / 51)-(C / 12)].

Mn:0.10〜1.0%
Mnは、鋼の脱酸に有効であり、さらに、鋼の強度および焼入れ性を向上させる有用な元素である。上記の効果を得るためには、Mnを0.10%以上含有させる必要がある。一方、Mnの含有量が1.0%を超えると、粒界に偏析して粒界割れ型の遅れ破壊が発生したり、硬さの上昇によって部品形状に加工する際の冷間加工性が劣化したりする。したがって、Mnの含有量は0.10〜1.0%とする。Mn含有量の好ましい下限は0.20%であり、また、好ましい上限は0.70%である。
Mn: 0.10-1.0%
Mn is an effective element for deoxidizing steel and is a useful element for improving the strength and hardenability of steel. In order to obtain the above effects, it is necessary to contain Mn at 0.10% or more. On the other hand, if the content of Mn exceeds 1.0%, segregation at the grain boundaries causes delayed fracture of a grain boundary cracking type, and the cold workability at the time of working into a part shape due to an increase in hardness increases. Or deteriorate. Therefore, the content of Mn is set to 0.10 to 1.0%. A preferred lower limit of the Mn content is 0.20%, and a preferred upper limit is 0.70%.

Mo:1.50〜4.0%
Moは、本発明において重要な元素である。Moは、鋼の強度および焼入れ性を向上させ、しかも、600℃前後の高温焼戻しの際に微細な炭化物を形成して析出強化により強度を上昇させることで、強度と耐遅れ破壊特性の向上を両立させる。さらに、Moは、固溶状態において、使用中の環境からの水素の侵入量を低減する効果を通じて、耐遅れ破壊特性を向上させる。これらの効果を得るためには、Moを1.50%以上含有させる必要がある。一方、Moを4.0%を超えて含有させてもそれらの効果が飽和することに加えて、熱間圧延などの高温加工性を損なう。したがって、Moの含有量は1.50〜4.0%とする。Mo含有量の好ましい下限は2.2%であり、また、好ましい上限は2.9%である。なお、Moの含有量は、前記のFn1〔=(Mo/96)+(V/51)−(C/12)〕が0を超える必要がある。
Mo: 1.50 to 4.0%
Mo is an important element in the present invention. Mo improves the strength and delayed fracture resistance by improving the strength and hardenability of steel, and increasing the strength by precipitation strengthening by forming fine carbides at the time of high-temperature tempering around 600 ° C. Make them compatible. Further, Mo improves delayed fracture resistance in a solid solution state through an effect of reducing the amount of intrusion of hydrogen from the environment in use. In order to obtain these effects, it is necessary to contain Mo at 1.50% or more. On the other hand, even if Mo is contained in excess of 4.0%, their effects are saturated and high-temperature workability such as hot rolling is impaired. Therefore, the content of Mo is set to 1.50 to 4.0%. A preferred lower limit of the Mo content is 2.2%, and a preferred upper limit is 2.9%. The content of Mo needs to be greater than 0 in the above Fn1 [= (Mo / 96) + (V / 51)-(C / 12)].

V:0.10〜0.35%
Vは、本発明において重要な元素である。適正量のVをMoと複合して含有させることで、Moの炭化物が、Mo2Cではなく、(Mo、V)Cの微細なMC型炭化物となる。このため、Vは、固溶Moの確保による使用中の環境からの水素侵入量の低減を通じた耐遅れ破壊特性の向上に有効である。しかも、微細な(Mo、V)Cは、600℃前後の高温焼戻しの際に、析出強化により強度を上昇させることで、強度と耐遅れ破壊特性の向上を両立させる。これらの効果を得るためには、Vを0.10%以上含有させる必要がある。一方、Vの含有量が過剰になると、焼入れ加熱時など900℃前後の温度で粗大な炭窒化物を形成するため、該炭窒化物をマトリックス中に固溶させるために焼入れ加熱温度を高くする必要が生じ、製造コストが嵩む。したがって、Vの含有量は0.10〜0.35%とする。V含有量の好ましい下限は0.17%であり、また、好ましい上限は0.29%である。なお、Vの含有量は、前記のFn1〔=(Mo/96)+(V/51)−(C/12)〕が0を超える必要がある。
V: 0.10 to 0.35%
V is an important element in the present invention. By containing an appropriate amount of V in combination with Mo, the carbide of Mo is not Mo 2 C but a fine MC-type carbide of (Mo, V) C. Therefore, V is effective in improving delayed fracture resistance by reducing the amount of hydrogen entering from the environment during use by securing solid solution Mo. In addition, fine (Mo, V) C increases strength by precipitation strengthening during high-temperature tempering at around 600 ° C., thereby achieving both improvement in strength and delayed fracture resistance. In order to obtain these effects, V must be contained at 0.10% or more. On the other hand, if the content of V is excessive, coarse carbonitrides are formed at a temperature of about 900 ° C. such as during quenching heating, so that the quenching heating temperature is increased to form a solid solution of the carbonitrides in the matrix. Necessity arises and the production cost increases. Therefore, the content of V is set to 0.10 to 0.35%. A preferred lower limit of the V content is 0.17%, and a preferred upper limit is 0.29%. Note that the content of V needs to be greater than 0 in the aforementioned Fn1 [= (Mo / 96) + (V / 51)-(C / 12)].

Al:0.01〜0.10%
Alは、鋼の脱酸に必要な元素であるとともに、窒化物を形成して熱処理時のオーステナイト粒径を微細化する効果があるため、0.01%以上含有させる。一方、Alを0.10%を超えて含有させても上記の効果が飽和する。したがって、Alの含有量を0.01〜0.10%とする。Al含有量の好ましい上限は0.05%である。なお、本発明のAl含有量とはトータルAlでの含有量を指す。
Al: 0.01 to 0.10%
Al is an element necessary for the deoxidation of steel, and has an effect of forming a nitride to reduce the austenite grain size during heat treatment. Therefore, Al is contained in an amount of 0.01% or more. On the other hand, even if Al is contained in excess of 0.10%, the above effect is saturated. Therefore, the content of Al is set to 0.01 to 0.10%. A preferred upper limit of the Al content is 0.05%. In addition, the Al content of the present invention indicates the content in total Al.

N:0.001〜0.015%
Nは、オーステナイト粒径の微細化に有効な窒化物や炭窒化物の形成のために、0.001%以上含有させる。一方、Nの含有量が0.015%を超えると、粗大な窒化物が生成することで延性が低下する。このため、Nの含有量は0.001〜0.015%とする。N含有量の好ましい下限は0.003%であり、また、好ましい上限は0.008%である。
N: 0.001 to 0.015%
N is contained in an amount of 0.001% or more in order to form a nitride or a carbonitride which is effective in reducing the austenite grain size. On the other hand, if the content of N exceeds 0.015%, coarse nitrides are formed, and the ductility is reduced. Therefore, the content of N is set to 0.001 to 0.015%. A preferred lower limit of the N content is 0.003%, and a preferred upper limit is 0.008%.

Nb:0〜0.04%
Nbは、微細な炭化物、窒化物、炭窒化物を形成し、結晶粒の粗大化を抑制する有用な元素である。このため、必要に応じてNbを含有させてもよい。しかしながら、Nbの含有量が多くなって0.04%を超えると、粗大な炭窒化物を形成するため、必要な強度が得られなくなる。したがって、含有させる場合のNb含有量の上限を0.04%とする。なお、前記の効果を安定して得るためには、Nb含有量の下限は、0.005%であることが好ましい。
Nb: 0 to 0.04%
Nb is a useful element that forms fine carbides, nitrides, and carbonitrides and suppresses coarsening of crystal grains. Therefore, Nb may be contained as needed. However, when the content of Nb is increased and exceeds 0.04%, a coarse carbonitride is formed, so that necessary strength cannot be obtained. Therefore, the upper limit of the Nb content when it is contained is set to 0.04%. In order to stably obtain the above effects, the lower limit of the Nb content is preferably 0.005%.

Ti:0〜0.04%
Tiは、微細な炭化物、窒化物、炭窒化物を形成し、結晶粒の粗大化を抑制する有用な元素である。このため、必要に応じてTiを含有させてもよい。しかしながら、Tiの含有量が多くなって0.04%を超えると、粗大な炭窒化物を形成するため、必要な強度が得られなくなる。したがって、含有させる場合のTi含有量の上限を0.04%とする。なお、前記の効果を安定して得るためには、Ti含有量の下限は、0.005%であることが好ましい。
Ti: 0 to 0.04%
Ti is a useful element that forms fine carbides, nitrides, and carbonitrides and suppresses coarsening of crystal grains. For this reason, you may make it contain Ti as needed. However, if the content of Ti exceeds 0.04%, coarse carbonitrides are formed, and the required strength cannot be obtained. Therefore, the upper limit of the Ti content when it is contained is set to 0.04%. In order to stably obtain the above effects, the lower limit of the Ti content is preferably 0.005%.

上記のTiおよびNbを複合して含有させる場合の合計量は、0.05%以下であることが好ましい。   It is preferable that the total amount when the above-mentioned Ti and Nb are combined and contained is 0.05% or less.

Cr:0〜1.0%
Crは、焼入れ性の向上および焼戻し処理時の軟化抵抗を増加させるために有効な元素である。このため、必要に応じてCrを含有させてもよい。しかしながら、1.0%を超えてCrを含有させても上記の効果が飽和する。したがって、含有させる場合のCr含有量の上限を1.0%とする。Cr含有量の上限は、0.6%であることが好ましい。なお、前記の効果を安定して得るためには、Cr含有量の下限は、0.1%であることが好ましい。
Cr: 0 to 1.0%
Cr is an element effective for improving hardenability and increasing softening resistance during tempering. Therefore, Cr may be contained as necessary. However, even if the content of Cr exceeds 1.0%, the above effect is saturated. Therefore, the upper limit of the Cr content when it is contained is set to 1.0%. The upper limit of the Cr content is preferably 0.6%. In order to stably obtain the above effects, the lower limit of the Cr content is preferably 0.1%.

B:0〜0.0060%
Bは、鋼の焼入れ性を顕著に向上させる有用な元素である。このため、必要に応じてBを含有させてもよい。しかしながら、Bの含有量が0.0060%を超えると、その効果が飽和する。したがって、含有させる場合のB含有量の上限を0.0060%とする。なお、前記の効果を安定して得るためには、B含有量の下限は、0.0003%であることが好ましい。
B: 0 to 0.0060%
B is a useful element that significantly improves the hardenability of steel. Therefore, B may be contained as necessary. However, when the content of B exceeds 0.0060%, the effect is saturated. Therefore, the upper limit of the B content when it is contained is set to 0.0060%. In order to stably obtain the above effects, the lower limit of the B content is preferably 0.0003%.

Ca:0〜0.005%
Caは、硫化物の形態制御に有効な元素である。すなわち、Caには、MnSの圧延方向への伸長化を防止する形態制御効果があって、加工性および靱性の劣化を抑制する。さらに、Caには、脱酸作用もある。このため、必要に応じてCaを含有させてもよい。しかしながら、Caを0.005%を超えて含有させると、粗大な介在物を生成し、かえって靱性を低下させる。したがって、含有させる場合のCa含有量の上限を0.005%とする。なお、前記の効果を安定して得るためには、Ca含有量の下限は、0.0002%であることが好ましい。
Ca: 0 to 0.005%
Ca is an element effective for controlling the form of sulfide. That is, Ca has a form control effect of preventing elongation of MnS in the rolling direction, and suppresses deterioration of workability and toughness. Further, Ca also has a deoxidizing effect. For this reason, Ca may be contained as necessary. However, when Ca is contained in excess of 0.005%, coarse inclusions are formed, and on the contrary, the toughness is reduced. Therefore, the upper limit of the Ca content when it is contained is set to 0.005%. In order to stably obtain the above effects, the lower limit of the Ca content is preferably 0.0002%.

Mg:0〜0.005%
Mgは、Caと同様に硫化物の形態制御に有効な元素である。このため、必要に応じてMgを含有させてもよい。しかしながら、Mgを0.005%を超えて含有させてもその効果が飽和する。したがって、含有させる場合のMg含有量の上限を0.005%とする。なお、前記の効果を安定して得るためには、Mg含有量の下限は、0.0002%であることが好ましい。
Mg: 0 to 0.005%
Mg is an element effective for controlling the form of the sulfide, like Ca. Therefore, Mg may be contained as necessary. However, even if Mg is contained in excess of 0.005%, the effect is saturated. Therefore, the upper limit of the Mg content when it is contained is set to 0.005%. In order to stably obtain the above effects, the lower limit of the Mg content is preferably 0.0002%.

Zr:0〜0.005%
Zrは、CaおよびMgと同様に硫化物の形態制御に有効な元素である。このため、必要に応じてZrを含有させてもよい。しかしながら、Zrを0.005%を超えて含有させてもその効果が飽和する。したがって、含有させる場合のZr含有量の上限を0.005%とする。なお、前記の効果を安定して得るためには、Zr含有量の下限は、0.0002%であることが好ましい。
Zr: 0 to 0.005%
Zr, like Ca and Mg, is an effective element for controlling the form of sulfide. Therefore, Zr may be contained as necessary. However, even if Zr is contained in excess of 0.005%, the effect is saturated. Therefore, the upper limit of the Zr content when it is contained is set to 0.005%. In order to stably obtain the above effects, the lower limit of the Zr content is preferably 0.0002%.

上記のCa、MgおよびZrを複合して含有させる場合の合計量は、0.006%以下であることが好ましい。   When Ca, Mg and Zr are combined and contained, the total amount is preferably 0.006% or less.

本発明の機械構造用部品は、上述の各元素と、残部がFeおよび不純物とからなり、不純物としてのSi、PおよびSが、Si:0.15%以下、P:0.015%以下およびS:0.015%以下で、さらに、前記の[1]式で表されるFn1が0を超える化学組成を有する。   The mechanical structural component of the present invention is composed of the above-described elements and the balance of Fe and impurities. Si, P, and S as impurities are as follows: Si: 0.15% or less; P: 0.015% or less; S: 0.015% or less, and Fn1 represented by the above formula [1] has a chemical composition exceeding 0.

ここで「不純物」とは、鉄鋼材料を工業的に製造する際に、鉱石、スクラップなどの原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。   Here, “impurities” are components that are mixed in due to various factors in the ore, scrap and other raw materials and the production process when the steel material is industrially produced, and are allowable as long as they do not adversely affect the present invention. Means what is done.

Si:0.15%以下
Siは、鋼の製造過程で不純物として混入する元素である。Si含有量が0.15%を超えると、硬さの上昇によって部品形状に加工する際の冷間加工性が劣化する。このため、Siの含有量を0.15%以下とする。Siの含有量は、好ましくは0.10%以下、より好ましくは0.07%以下であり、極力低いことが好ましい。
Si: 0.15% or less Si is an element mixed as an impurity in the steel manufacturing process. When the Si content exceeds 0.15%, the cold workability when working into a part shape is deteriorated due to an increase in hardness. Therefore, the content of Si is set to 0.15% or less. The content of Si is preferably 0.10% or less, more preferably 0.07% or less, and is preferably as low as possible.

P:0.015%以下
Pは、不純物として含有され、焼入れ−焼戻し後の機械構造用部品の結晶粒界を脆化させ、耐遅れ破壊特性を低下させる。このため、Pの含有量を0.015%以下とする。Pの含有量は極力低いことが好ましい。
P: 0.015% or less P is contained as an impurity, and embrittles the crystal grain boundaries of the mechanical structure component after quenching and tempering, thereby reducing delayed fracture resistance. Therefore, the content of P is set to 0.015% or less. It is preferable that the content of P is as low as possible.

S:0.015%以下
Sは、不純物であり、通常はMn硫化物として鋼中に存在し、中性および酸性水溶液中で溶解することにより水素侵入を促進し、耐遅れ破壊特性を低下させる。このため、Sの含有量を0.015%以下とする。Sの含有量は極力低いことが好ましい。
S: 0.015% or less S is an impurity, usually present in steel as Mn sulfide, and promotes hydrogen penetration by dissolving in neutral and acidic aqueous solutions, thereby deteriorating delayed fracture resistance. . Therefore, the content of S is set to 0.015% or less. The S content is preferably as low as possible.

Fn1:0を超える
本発明の機械構造用部品は、下記[1]式で表されるFn1が0を超えるものである。
Fn1=(Mo/96)+(V/51)−(C/12)・・・[1]
但し、[1]式中のMo、VおよびCは、それぞれの元素の鋼中含有量(質量%)を意味する。
Fn1 exceeds 0 In the mechanical structure component of the present invention, Fn1 represented by the following formula [1] exceeds 0.
Fn1 = (Mo / 96) + (V / 51)-(C / 12) ... [1]
However, Mo, V and C in the formula [1] mean the contents (% by mass) of the respective elements in the steel.

Fn1は、本発明の機械構造用部品が、固溶Moを確保できて、使用中の環境からの水素侵入量が低減されて良好な耐遅れ破壊特性を得るための指標である。既に述べたように、MoとVを複合して含有させることで、600℃前後の高温焼戻しによって、(Mo、V)Cの微細なMC型炭化物が形成される。このMC型炭化物は、耐遅れ破壊特性の向上に有効な高温焼戻しを行った際の強度確保に有効である。一方で、該MC型炭化物であっても、使用中の環境からの水素侵入量を抑制するのに有効な固溶Moを消費するので、固溶Moが確保できなければ耐遅れ破壊特性の低下を招くことになる。しかし、Fn1が0を超える場合には、該MC型炭化物が形成されても固溶Moが確保されるため、使用中の環境からの水素侵入量が低減して良好な耐遅れ破壊特性が得られる。Fn1の好ましい下限は0.01である。なお、Fn1の上限は、Mo、VおよびCの含有量がそれぞれ、4.0%、0.35%および0.21%である場合の0.031に近い値であってもよいが、0.020であることが好ましい。   Fn1 is an index by which the mechanical structural component of the present invention can secure solid solution Mo, reduce the amount of hydrogen entering from the environment in use, and obtain good delayed fracture resistance. As described above, by adding Mo and V in combination, a fine MC-type carbide of (Mo, V) C is formed by high-temperature tempering at around 600 ° C. This MC type carbide is effective in ensuring strength when high-temperature tempering is performed, which is effective in improving delayed fracture resistance. On the other hand, even if the MC type carbide is used, solid solution Mo is consumed which is effective in suppressing the amount of hydrogen entering from the environment in use. Will be invited. However, when Fn1 exceeds 0, solid solution Mo is ensured even when the MC-type carbide is formed, so that the amount of hydrogen penetration from the environment in use is reduced and good delayed fracture resistance is obtained. Can be A preferred lower limit of Fn1 is 0.01. Note that the upper limit of Fn1 may be a value close to 0.031 when the contents of Mo, V, and C are 4.0%, 0.35%, and 0.21%, respectively. 0.020.

(B)MC型炭化物について:
上記(A)項で述べた化学組成を有する本発明の機械構造用部品は、鋼中のMC型炭化物の平均サイズが1〜30nmである。なお、MC型炭化物は円板形状であるため、MC型炭化物の平均サイズとは、倍率40万倍程度のTEM像で観察した炭化物の長径を測定し、観察対象の炭化物の個数で平均して求めた値を指す。なお、長径が1nm以上のMC型炭化物を観察対象とした。
(B) MC type carbide:
In the mechanical structural component of the present invention having the chemical composition described in the above section (A), the average size of MC type carbide in steel is 1 to 30 nm. Since the MC-type carbide has a disc shape, the average size of the MC-type carbide is measured by measuring the major axis of the carbide observed in a TEM image at a magnification of about 400,000 times, and averaging the number of carbides to be observed. Indicates the calculated value. Note that MC-type carbide having a major axis of 1 nm or more was used as an observation target.

MC型炭化物の平均サイズが1nmを下回ると、析出強化量が不足するために耐遅れ破壊特性が低下する。一方、MC型炭化物の平均サイズが30nmを上回ると、かえって析出強化量が低下するとともにマトリックス中のCを消費するため、機械構造用部品に求められる強度が得られなくなる。   If the average size of the MC type carbide is less than 1 nm, the amount of precipitation strengthening is insufficient, so that the delayed fracture resistance deteriorates. On the other hand, if the average size of the MC-type carbide exceeds 30 nm, the amount of precipitation strengthening is rather reduced and C in the matrix is consumed, so that the strength required for a machine structural component cannot be obtained.

本発明の機械構造用部品における上記のMC型炭化物とは、MC型のMoおよびVの複合炭化物を指し、本発明の機械構造用部品がその化学組成に任意元素としてのNbおよび/またはTiを含有する場合には、MC型のNbおよび/またはTiを含有する炭化物をも含む。   The above-mentioned MC-type carbide in the machine structural component of the present invention refers to an MC-type composite carbide of Mo and V. The mechanical structural component of the present invention includes Nb and / or Ti as an optional element in its chemical composition. When contained, it also includes carbides containing Nb and / or Ti of the MC type.

(C)機械構造用部品の引張強さについて:
本発明の機械構造用部品は、引張強さが1200MPa以上である。引張強さが1200MPa以上であれば、近年において高強度化が進められている分野の機械構造用部品として、例えば、自動車、各種産業機械、土木・建築構造物などの用途に、好適に用いることができる。
(C) Regarding tensile strength of machine structural parts:
The mechanical structure component of the present invention has a tensile strength of 1200 MPa or more. If the tensile strength is 1200 MPa or more, it can be suitably used as a machine structural part in a field where high strength is being promoted in recent years, for example, in applications such as automobiles, various industrial machines, and civil engineering / building structures. Can be.

(D)機械構造用部品の防錆のためのめっきについて:
本発明の機械構造用部品は亜鉛めっきによって全表面を防錆処理することができる。引張強さが1200MPa以上である部品は、通常、亜鉛めっきによって防錆処理すると、部品に傷が入って鉄地が露出した際は、鉄地がカソードとなって水素発生サイトとなる。したがって、従来の高強度機械構造用の鋼部品は亜鉛めっきによって耐遅れ破壊特性が低下する。しかし、引張強さが1200MPa以上である本発明の機械構造用部品は耐遅れ破壊特性に優れており、亜鉛めっきによって防錆処理して鉄地が露出した際も、耐遅れ破壊特性が低下することがない。亜鉛めっき層の厚さは2〜50μm程度であればよい。
(D) About plating for rust prevention of machine structural parts:
The entire surface of the machine structural component of the present invention can be rust-proofed by zinc plating. When a component having a tensile strength of 1200 MPa or more is subjected to rust prevention treatment by zinc plating, when the component is damaged and the iron base is exposed, the iron base becomes a cathode and becomes a hydrogen generation site. Therefore, the delayed fracture resistance of conventional steel parts for high-strength mechanical structures is reduced by galvanization. However, the mechanical structural component of the present invention having a tensile strength of 1200 MPa or more is excellent in delayed fracture resistance, and the delayed fracture resistance is deteriorated even when the rust-proofing treatment is performed by zinc plating to expose the iron base. Nothing. The thickness of the galvanized layer may be about 2 to 50 μm.

本発明の機械構造用部品は、例えば、以下の方法により製造することができるが、この方法には限定されない。   The component for a mechanical structure of the present invention can be manufactured, for example, by the following method, but is not limited to this method.

(A)項で述べた化学組成を有する鋼を溶製した後、鋳造によりインゴットまたは鋳片とする。鋳造されたインゴットまたは鋳片は、熱間圧延、熱間押出、熱間鍛造などの熱間加工によって、鋼板、丸棒など所要の粗形状を有する鋼材に仕上げる。その後、該鋼材に熱間鍛造、切削加工などを施して、所定の機械構造用部品形状に成形する。なお、冷間鍛造などの冷間加工工程が必要な部品については、冷間加工性を向上させるために、熱間加工後の鋼材に焼鈍または球状化焼鈍処理を施してもよい。また、寸法精度が必要とされるボルトなどの場合には、冷間鍛造の前に伸線を行ってもよい。   After melting the steel having the chemical composition described in the section (A), it is cast into an ingot or a slab. The cast ingot or slab is finished into a steel material having a required rough shape such as a steel plate or a round bar by hot working such as hot rolling, hot extrusion, and hot forging. Thereafter, the steel material is subjected to hot forging, cutting, or the like, and formed into a predetermined machine structural component shape. For parts requiring a cold working process such as cold forging, the steel material after hot working may be subjected to annealing or spheroidizing annealing in order to improve cold workability. In the case of a bolt or the like that requires dimensional accuracy, drawing may be performed before cold forging.

所定の部品形状に成形した後、強度を付与するため、鋼のAc3点以上の温度に加熱した後、水冷または油冷によって焼入れ処理を行う。なお、焼入れのための加熱温度(以下、「焼入れ加熱温度」という。)が低すぎると、Mo、V、NbおよびTiの炭窒化物のマトリックス中への固溶が不十分となり、MC型炭化物の平均サイズが30nmを超えるため、機械構造用部品に求められる強度を得ることができない。一方、操業面からは熱処理炉の炉体および付属部品の損傷が顕著になり、製造コストが上昇するため、あまり高い温度に加熱するのは好ましくない。このため、焼入れ加熱温度は870〜950℃とするのが好ましい。 After forming into a predetermined part shape, in order to impart strength, the steel is heated to a temperature of three or more Ac and then quenched by water cooling or oil cooling. If the heating temperature for quenching (hereinafter referred to as “quenching heating temperature”) is too low, the solid solution of Mo, V, Nb and Ti in the matrix of the carbonitride becomes insufficient and the MC-type carbide Has an average size of more than 30 nm, it is not possible to obtain the strength required for a machine structural component. On the other hand, from the viewpoint of operation, the furnace body and the accessory parts of the heat treatment furnace are significantly damaged, and the production cost is increased. Therefore, the quenching heating temperature is preferably set to 870 to 950 ° C.

耐遅れ破壊特性を向上させるためには、上記の焼入れ処理を行った後に焼戻しを行う必要がある。焼戻しの温度は、500〜650℃が好適である。焼戻し温度が500℃未満では、MC型炭化物の平均サイズが1nmを下回って、十分な耐遅れ破壊特性が得られないことがある。一方、650℃以上で焼戻しする場合は、MC型炭化物がオストワルド成長してその平均サイズが30nmを超えて、強度が低下してしまうことがある。   In order to improve the delayed fracture resistance, it is necessary to perform tempering after performing the above quenching treatment. The tempering temperature is preferably 500 to 650 ° C. If the tempering temperature is lower than 500 ° C., the average size of the MC-type carbide is less than 1 nm, so that sufficient delayed fracture resistance may not be obtained. On the other hand, when tempering is performed at 650 ° C. or higher, the MC type carbide may grow Ostwald and its average size exceeds 30 nm, and the strength may be reduced.

また、防錆のための全表面を被覆する亜鉛めっき処理は、電気めっきや溶融亜鉛めっき等の一般的な方法で行えば良い。例えば、塩化アンモン浴を用いてバレルめっき法にて行い、三価クロメート処理を施す方法で実施し、めっき層の厚さを2〜50μm程度とすればよい。   The galvanizing process for covering the entire surface for rust prevention may be performed by a general method such as electroplating or hot-dip galvanizing. For example, the plating may be performed by a barrel plating method using an ammonium chloride bath and a method of performing a trivalent chromate treatment, and the thickness of the plating layer may be about 2 to 50 μm.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
表1に示す化学組成を有する鋼A〜Eを溶製し、鋳型に鋳込んで得たインゴットを1250℃に加熱した後、熱間鍛造により直径70mmの丸棒とした。
(Example 1)
Steels A to E having the chemical compositions shown in Table 1 were melted, and the ingot obtained by casting in a mold was heated to 1250 ° C., and then formed into a round bar having a diameter of 70 mm by hot forging.

表1中の鋼Aおよび鋼Bは、化学組成が本発明で規定する範囲内にある鋼であり、一方、鋼C〜Eは、化学組成が本発明で規定する条件から外れた鋼である。   Steels A and B in Table 1 are steels whose chemical compositions are within the range specified by the present invention, while steels C to E are steels whose chemical compositions deviate from the conditions specified by the present invention. .

Figure 0006648659
Figure 0006648659

上記のようにして得た直径70mmの丸棒から、直径70mmで長さ20mmの円板を切り出し、焼入れ−焼戻しの熱処理を行った。なお、焼入れ加熱温度は900℃、焼戻し温度は500〜600℃とした。   From the round bar having a diameter of 70 mm obtained as described above, a disk having a diameter of 70 mm and a length of 20 mm was cut out and subjected to heat treatment of quenching and tempering. The quenching heating temperature was 900 ° C and the tempering temperature was 500 to 600 ° C.

焼入れ−焼戻し後、上記の直径70mmで長さ20mmの円板に機械加工およびエメリー紙による研磨を行って、直径70mmで厚さ0.5mmの円板に仕上げ、片側の面に厚さ約0.5μmのNiめっきを施した。   After quenching and tempering, the disc having a diameter of 70 mm and a length of 20 mm is machined and polished with emery paper to finish the disc with a diameter of 70 mm and a thickness of 0.5 mm. Ni plating of 0.5 μm was applied.

次いで、非特許文献1に準拠したダブルセル型の陰極チャージ水素透過試験装置を用いた方法で、各鋼種の水素透過係数を求めた。上記のようにして求めた水素透過係数を表1に併せて示す。   Next, the hydrogen permeation coefficient of each steel type was determined by a method using a double cell type cathode charge hydrogen permeation test apparatus based on Non-Patent Document 1. Table 1 also shows the hydrogen permeability coefficients determined as described above.

表1から、前記のFn1〔=(Mo/96)+(V/51)−(C/12)〕が0を超えて(正の値となって)固溶Moが確保される鋼Aおよび鋼Bの水素透過係数は、Fn1が負となる鋼C〜Eの水素透過係数よりも小さい、すなわち侵入水素量が小さいことが明らかである。   From Table 1, the steel A in which the above-mentioned Fn1 [= (Mo / 96) + (V / 51)-(C / 12)] exceeds 0 (becomes a positive value) and solid solution Mo is secured, and It is clear that the hydrogen permeability coefficient of steel B is smaller than the hydrogen permeability coefficient of steels C to E where Fn1 is negative, that is, the amount of invading hydrogen is small.

(実施例2)
表2に示す化学組成を有する鋼1〜33を溶製し、鋳型に鋳込んで得たインゴットを1250℃に加熱した後、熱間鍛造により直径20mmの丸棒とした。
(Example 2)
Steels 1 to 33 having the chemical compositions shown in Table 2 were melted and cast into a mold, and the obtained ingot was heated to 1250 ° C., and then formed into a round bar having a diameter of 20 mm by hot forging.

Figure 0006648659
Figure 0006648659

表2中の鋼1〜26および鋼33は、化学組成が本発明で規定する範囲内にある鋼であり、一方、鋼27〜32は、化学組成が本発明で規定する条件から外れた鋼である。   Steels 1 to 26 and steel 33 in Table 2 are steels whose chemical compositions are within the range specified in the present invention, while steels 27 to 32 are steels whose chemical compositions are out of the conditions specified in the present invention. It is.

上記の直径20mmの丸棒は、900〜960℃で焼ならし処理を行った後、切削加工して直径14mmの丸棒に仕上げた。   The above-mentioned round bar having a diameter of 20 mm was subjected to normalizing treatment at 900 to 960 ° C., and thereafter, was cut into a round bar having a diameter of 14 mm.

次いで、直径14mmに仕上げた丸棒に、表3に示す条件で焼入れおよび焼戻しを行った。なお、焼入れ加熱の保持時間は60分とし、また、焼戻しの際の保持時間は90分とした。   Next, the round bar finished to 14 mm in diameter was quenched and tempered under the conditions shown in Table 3. The holding time for quenching and heating was set to 60 minutes, and the holding time for tempering was set to 90 minutes.

Figure 0006648659
Figure 0006648659

各鋼について、上記の焼入れ−焼戻し処理した丸棒を用いて、以下に示す各種の調査を行った。   For each steel, the following various investigations were performed using the quenched and tempered round bars.

〈1〉引張特性:
JIS Z 2241に準拠して、上記の焼入れ−焼戻し処理した直径が14mmの各丸棒の中心部から、長手方向に、平行部直径が6mmの14A号の丸棒引張試験片を採取し、室温の大気中で引張試験して、引張強さを求めた。
<1> Tensile properties:
In accordance with JIS Z 2241, from the center of each of the quenched and tempered round bars having a diameter of 14 mm, a round bar tensile test piece of No. 14A having a parallel portion diameter of 6 mm was sampled in the longitudinal direction. Was subjected to a tensile test in the air to determine the tensile strength.

〈2〉MC型炭化物の平均サイズ:
上記〈1〉の調査で1200MPa以上の引張強さが得られた試験番号について、焼入れ−焼戻し処理後の直径14mmの丸棒のD/4の位置(「D」は丸棒の直径を表す。)を含むように薄膜試験片を作製し、TEMを用いて合計100000nm2の視野について倍率40万倍で撮影した写真を用いて、前述したように測定して、MC型炭化物の平均サイズを求めた。また、MC型炭化物の確認には、TEM−EDSを用いた。
<2> Average size of MC type carbide:
For the test numbers for which a tensile strength of 1200 MPa or more was obtained in the investigation of <1> above, the position of D / 4 of the round bar having a diameter of 14 mm after the quenching-tempering treatment ("D" represents the diameter of the round bar). ) Was prepared, and the average size of MC type carbide was determined by measuring as described above using a photograph taken at a magnification of 400,000 times using a TEM with a total visual field of 100,000 nm 2 using TEM. Was. TEM-EDS was used to confirm MC type carbide.

〈3〉耐遅れ破壊特性:
上記〈1〉の調査で1200MPa以上の引張強さが得られた試験番号について、焼入れ−焼戻し処理後の直径14mmの丸棒の中心部から、長手方向に、平行部直径が7mmで、中央部に1.4mm深さの環状切欠きを付与した試験片を採取した。切欠きは60゜のV型で、切欠き底の曲率半径は0.175mmとした。この試験片を用いて、室温にて、質量%濃度で、0.005%HCl+3%NaClの水溶液に24時間浸漬した後、その浸漬状態で、0.006mm/分の低速で引張試験を実施し、上記水溶液中での破断応力(T1)を求めた。同様に、室温の大気中にて、上記0.006mm/分の速度で引張試験を実施し、大気中での破断応力(T2)を求めた。上記の、水溶液中での破断応力(T1)と大気中での破断応力(T2)から、破壊強度比であるT1/T2を算出して、耐遅れ破壊特性を評価した。なお、破壊強度比が1に近いほど耐遅れ破壊特性が良好と判断される。
<3> Delayed fracture resistance:
Regarding the test number for which a tensile strength of 1200 MPa or more was obtained in the investigation of <1> above, the parallel part diameter was 7 mm in the longitudinal direction from the center of the round bar having a diameter of 14 mm after quenching-tempering, and the center was A test piece having an annular notch with a depth of 1.4 mm was sampled. The notch was a V-shaped 60 °, and the radius of curvature at the bottom of the notch was 0.175 mm. Using this test piece, at room temperature, it was immersed in an aqueous solution of 0.005% HCl + 3% NaCl at a concentration of mass% for 24 hours, and then a tensile test was performed at a low speed of 0.006 mm / min in the immersion state. The breaking stress (T1) in the aqueous solution was determined. Similarly, a tensile test was performed in the air at room temperature at the above-mentioned speed of 0.006 mm / min, and the breaking stress (T2) in the air was determined. From the rupture stress (T1) in the aqueous solution and the rupture stress (T2) in the atmosphere, T1 / T2 as a fracture strength ratio was calculated to evaluate the delayed fracture resistance. The closer the fracture strength ratio is to 1, the better the delayed fracture resistance is.

表3に、上記の各調査結果を併せて示す。さらに、図1に、横軸と縦軸にそれぞれ、引張強さ(ただし、1200〜1600MPaの範囲で示した。)と破壊強度比をとって、各鋼の耐遅れ破壊特性を比較して示す。   Table 3 also shows the results of each of the above surveys. Further, in FIG. 1, the horizontal axis and the vertical axis respectively show the tensile strength (shown in the range of 1200 to 1600 MPa) and the fracture strength ratio, and compare the delayed fracture resistance of each steel. .

表3および図1から、本発明で規定する化学組成とMC型炭化物の平均サイズの条件を満たす本発明例の試験番号1〜26は、いずれも1200MPaを超える引張強さが得られ、しかも、同一引張強さレベルの比較例の試験番号28〜33に比べて、耐遅れ破壊特性に優れていることが明らかである。   From Table 3 and FIG. 1, all of the test numbers 1 to 26 of the examples of the present invention satisfying the conditions of the chemical composition and the average size of MC type carbide specified in the present invention can obtain a tensile strength exceeding 1200 MPa, and It is clear that the sample has excellent delayed fracture resistance as compared with Test Nos. 28 to 33 of Comparative Examples having the same tensile strength level.

比較例の試験番号27〜33の場合は、1200MPa以上という引張強さが得られていないか、同一引張強さレベルの本発明例の試験番号1〜26に比べて、耐遅れ破壊特性に劣っている。以下、試験番号27以降の比較例について個々に説明する。   In the case of the test numbers 27 to 33 of the comparative examples, the tensile strength of 1200 MPa or more was not obtained or the inferior in the delayed fracture resistance as compared with the test numbers 1 to 26 of the present invention example having the same tensile strength level. ing. Hereinafter, comparative examples after the test number 27 will be individually described.

試験番号27は、用いた鋼27のC含有量が0.15%と少なく、本発明で規定する条件から外れるので、引張強さが1200MPaに満たなかった。   In Test No. 27, since the C content of the steel 27 used was as small as 0.15%, which was outside the conditions specified in the present invention, the tensile strength was less than 1200 MPa.

試験番号28は、用いた鋼28のFn1が−0.0069であり、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 28, the Fn1 of the steel 28 used was -0.0069, which was out of the conditions specified in the present invention, and thus the steel 28 was inferior in delayed fracture resistance.

試験番号29は、用いた鋼29のMo含有量が1.13%と少なく、Fn1も−0.0101であって、いずれも本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 29, the Mo content of Steel 29 used was as low as 1.13%, and Fn1 was -0.0101, which was out of the conditions specified in the present invention. I have.

試験番号30は、用いた鋼30の不純物中のPとSの含有量がそれぞれ、0.046%および0.036%と多く、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 30, the contents of P and S in the impurities of the steel 30 used were as high as 0.046% and 0.036%, respectively, and deviated from the conditions specified in the present invention. ing.

試験番号31は、用いた鋼31のV含有量が0.05%と少なく、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   Test No. 31 is inferior in the delayed fracture resistance because the V content of the steel 31 used is as small as 0.05%, which is out of the conditions specified in the present invention.

試験番号32は、用いた鋼32のMn含有量が1.44%と多く、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 32, since the Mn content of the steel 32 used was as large as 1.44%, which was out of the conditions specified in the present invention, the delayed fracture resistance was inferior.

試験番号33は、用いた鋼33の化学組成は本発明で規定する範囲内にあるものの、観察対象である長径が1nm以上のMC型炭化物が認められなかった。このため、MC型炭化物の平均サイズは1nm未満であって、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 33, although the chemical composition of the steel 33 used was within the range specified in the present invention, no MC-type carbide having a major axis of 1 nm or more, which was an observation target, was found. For this reason, the average size of the MC type carbide is less than 1 nm, which is out of the conditions specified in the present invention, and is inferior in delayed fracture resistance.

(実施例3)
表4に示す化学組成を有する鋼34〜45を溶製し、鋳型に鋳込んで得たインゴットを1250℃に加熱した後、熱間鍛造により直径20mmの丸棒とした。
(Example 3)
Steels 34 to 45 having the chemical compositions shown in Table 4 were melted, and the ingot obtained by casting in a mold was heated to 1250 ° C., and then formed into a round bar having a diameter of 20 mm by hot forging.

Figure 0006648659
Figure 0006648659

表4中の鋼34〜41および鋼45は、化学組成が本発明で規定する範囲内にある鋼であり、一方、鋼42〜44は、化学組成が本発明で規定する条件から外れた鋼である。   Steels 34 to 41 and steel 45 in Table 4 are steels whose chemical compositions are within the range specified in the present invention, while steels 42 to 44 are steels whose chemical compositions are out of the conditions specified in the present invention. It is.

上記の直径20mmの丸棒は、900〜960℃で焼ならし処理を行った後、切削加工して直径14mmの丸棒に仕上げた。   The above-mentioned round bar having a diameter of 20 mm was subjected to normalizing treatment at 900 to 960 ° C., and thereafter, was cut into a round bar having a diameter of 14 mm.

次いで、直径14mmに仕上げた丸棒に、表5に示す条件で焼入れおよび焼戻しを行った。なお、焼入れ加熱の保持時間は60分とし、また、焼戻しの際の保持時間は90分とした。   Next, the round bar finished to a diameter of 14 mm was quenched and tempered under the conditions shown in Table 5. The holding time for quenching and heating was set to 60 minutes, and the holding time for tempering was set to 90 minutes.

Figure 0006648659
Figure 0006648659

各鋼について、上記の焼入れ−焼戻し処理した丸棒を用いて、前記(実施例2)と同じ方法によって、「引張特性」および「MC型炭化物の平均サイズ」を調査し、また、下記の〈4〉に示す方法で「耐遅れ破壊特性」の調査を行った。   For each steel, "tensile properties" and "average size of MC type carbide" were investigated by the same method as in the above (Example 2) using the above-mentioned quenched and tempered round bar. An investigation of “delay resistance to fracture” was conducted by the method shown in 4>.

〈4〉耐遅れ破壊特性:
焼入れ−焼戻し処理後の直径14mmの丸棒の中心部から、長手方向に、平行部直径が7mmの試験片を採取した。その試験片に10μmの厚さの亜鉛めっきを付与した。亜鉛めっきは、塩化アンモン浴を用いてバレルめっき法にて行い、三価クロメート処理を施した。その後、試験片の中央部に1.4mm深さの環状切欠きを付与した。切欠きは60゜のV型で、切欠き底の曲率半径は0.175mmとした。この試験片を用いて、室温にて、質量%濃度で、5%NaClの水溶液に24時間浸漬した後、その浸漬状態で、0.006mm/分の低速で引張試験を実施し、上記水溶液中での破断応力(T3)を求めた。同様に、室温の大気中にて、上記0.006mm/分の速度で引張試験を実施し、大気中での破断応力(T2)を求めた。上記の、水溶液中での破断応力(T3)と大気中での破断応力(T2)から、破壊強度比であるT3/T2を算出して、耐遅れ破壊特性を評価した。破壊強度比が1に近いほど耐遅れ破壊特性が良好と判断される。なお、めっきに傷が入った時に露出する鉄地部がカソードになって、そこから水素が侵入する現象を模擬するために、上述のように切欠き底はめっきのない露出状態で調査を行った。
<4> Delayed fracture resistance:
From the center of the round bar having a diameter of 14 mm after the quenching and tempering treatment, a test piece having a parallel portion diameter of 7 mm was sampled in the longitudinal direction. The test piece was provided with a zinc plating having a thickness of 10 μm. The zinc plating was performed by a barrel plating method using an ammonium chloride bath, and a trivalent chromate treatment was performed. Thereafter, an annular notch having a depth of 1.4 mm was provided at the center of the test piece. The notch was a V-shaped 60 °, and the radius of curvature at the bottom of the notch was 0.175 mm. This test piece was immersed in a 5% NaCl aqueous solution at a concentration of 5% by mass at room temperature for 24 hours, and then a tensile test was performed at a low speed of 0.006 mm / min in the immersed state. At (3) was determined. Similarly, a tensile test was performed in the air at room temperature at the above-mentioned speed of 0.006 mm / min, and the breaking stress (T2) in the air was determined. From the above-described fracture stress (T3) in the aqueous solution and the fracture stress (T2) in the atmosphere, T3 / T2, which is a fracture strength ratio, was calculated, and the delayed fracture resistance was evaluated. The closer the fracture strength ratio is to 1, the better the delayed fracture resistance. In addition, in order to simulate the phenomenon in which the iron base exposed when the plating is damaged becomes a cathode and hydrogen enters from there, the notch bottom was examined in the exposed state without plating as described above. Was.

表5に、上記の各調査結果を併せて示す。さらに、図2に、横軸と縦軸にそれぞれ、引張強さと破壊強度比をとって、各鋼の耐遅れ破壊特性を比較して示す。   Table 5 also shows the results of each of the above surveys. Further, in FIG. 2, the horizontal axis and the vertical axis respectively show the tensile strength and the fracture strength ratio, and show the delayed fracture resistance of each steel in comparison.

表5および図2から、本発明で規定する化学組成とMC型炭化物の平均サイズの条件を満たす本発明例の試験番号34〜41は、いずれも1200MPaを超える引張強さが得られ、しかも、同一引張強さレベルの比較例の試験番号42〜45に比べて、耐遅れ破壊特性に優れていることが明らかである。   From Table 5 and FIG. 2, the test numbers 34 to 41 of the examples of the present invention satisfying the conditions of the chemical composition and the average size of the MC type carbide specified in the present invention can all obtain a tensile strength exceeding 1200 MPa, and It is clear that the samples have excellent delayed fracture resistance as compared with Test Nos. 42 to 45 of Comparative Examples having the same tensile strength level.

比較例の試験番号42〜45の場合は、同一引張強さレベルの本発明例の試験番号34〜41に比べて、耐遅れ破壊特性に劣っている。以下、試験番号42以降の比較例について個々に説明する。   In the case of the test numbers 42 to 45 of the comparative examples, the delayed fracture resistance is inferior to those of the test numbers 34 to 41 of the examples of the present invention having the same tensile strength level. Hereinafter, comparative examples after the test number 42 will be individually described.

試験番号42は、用いた鋼42のMo含有量が1.14%と少なく、Fn1も−0.0097であって、いずれも本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 42, the Mo content of Steel 42 used was as low as 1.14%, and Fn1 was also −0.0097, which was out of the conditions specified in the present invention. I have.

試験番号43は、用いた鋼43のMn含有量が1.44%と高く、Fn1も−0.0014であって、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 43, the Mn content of the steel 43 used was as high as 1.44%, and Fn1 was also −0.0014, which was out of the conditions specified in the present invention, and thus was inferior in delayed fracture resistance.

試験番号44は、用いた鋼44のFn1が−0.0032であって、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 44, Fn1 of the steel 44 used was -0.0032, which is out of the conditions specified in the present invention, and thus the steel 44 is inferior in delayed fracture resistance.

試験番号45は、用いた鋼45の化学組成は本発明で規定する範囲内にあるものの、観察対象である長径が1nm以上のMC型炭化物が認められなかった。このため、MC型炭化物の平均サイズは1nm未満であって、本発明で規定する条件から外れるので、耐遅れ破壊特性に劣っている。   In Test No. 45, although the chemical composition of the steel 45 used was within the range specified in the present invention, no MC type carbide having a major axis of 1 nm or more, which was the observation target, was found. For this reason, the average size of the MC type carbide is less than 1 nm, which is out of the conditions specified in the present invention, and is inferior in delayed fracture resistance.

本発明によれば、使用中の環境からの水素の侵入を抑制することで耐遅れ破壊特性に優れた高強度の機械構造用部品の提供が可能になる。このため、本発明は、産業上の貢献が極めて顕著である。

Advantageous Effects of Invention According to the present invention, it is possible to provide a high-strength component for a mechanical structure having excellent delayed fracture resistance by suppressing intrusion of hydrogen from the environment in use. Therefore, the present invention has a remarkable industrial contribution.

Claims (6)

化学組成が、質量%で、
C:0.21〜0.34%、
Mn:0.10〜1.0%、
Mo:1.50〜4.0%、
V:0.10〜0.35%、
Al:0.01〜0.10%、
N:0.001〜0.015%、
Nb:0〜0.04%、
Ti:0〜0.04%、
Cr:0〜1.0%、
B:0〜0.0060%、
Ca:0〜0.005%、
Mg:0〜0.005%、
Zr:0〜0.005%、
残部がFeおよび不純物で、
不純物としてのSi、PおよびSが、Si:0.15%以下、P:0.015%以下およびS:0.015%以下であり、
さらに、下記の[1]式で表されるFn1が0を超え、
鋼中のMC型炭化物の平均サイズが1〜30nmであり、
引張強さが1200MPa以上である、
機械構造用部品。
Fn1=(Mo/96)+(V/51)−(C/12)・・・[1]
但し、[1]式中のMo、VおよびCは、それぞれの元素の鋼中含有量(質量%)を意味する。
Chemical composition in mass%
C: 0.21-0.34%,
Mn: 0.10 to 1.0%,
Mo: 1.50 to 4.0%,
V: 0.10 to 0.35%,
Al: 0.01 to 0.10%,
N: 0.001 to 0.015%,
Nb: 0 to 0.04%,
Ti: 0 to 0.04%,
Cr: 0 to 1.0%,
B: 0 to 0.0060%,
Ca: 0 to 0.005%,
Mg: 0 to 0.005%,
Zr: 0 to 0.005%,
The balance is Fe and impurities,
Si, P and S as impurities are Si: 0.15% or less, P: 0.015% or less, and S: 0.015% or less;
Further, Fn1 represented by the following equation [1] exceeds 0,
The average size of MC type carbide in steel is 1 to 30 nm,
A tensile strength of 1200 MPa or more;
Parts for machine structure.
Fn1 = (Mo / 96) + (V / 51)-(C / 12) ... [1]
However, Mo, V and C in the formula [1] mean the contents (% by mass) of the respective elements in the steel.
質量%で、Nb:0.005〜0.04%およびTi:0.005〜0.04%から選択される1種以上を含有する、請求項1に記載の機械構造用部品。   The component for a mechanical structure according to claim 1, comprising at least one member selected from the group consisting of 0.005 to 0.04% by mass of Nb and 0.005 to 0.04% by mass of Ti. 質量%で、Cr:0.1〜1.0%を含有する、請求項1または2に記載の機械構造用部品。   The component for machine structural use according to claim 1 or 2, which contains 0.1 to 1.0% of Cr by mass%. 質量%で、B:0.0003〜0.0060%を含有する、請求項1から3までのいずれかに記載の機械構造用部品。   The component for a machine structure according to any one of claims 1 to 3, which contains 0.0003 to 0.0060% of B by mass%. 質量%で、Ca:0.0002〜0.005%、Mg:0.0002〜0.005%およびZr::0.0002〜0.005%から選択される1種以上を含有する、請求項1から4までのいずれかに記載の機械構造用部品。   The composition contains at least one selected from the group consisting of Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, and Zr :: 0.0002 to 0.005% by mass%. The component for a machine structure according to any one of 1 to 4. 亜鉛めっき層によって全表面が被覆された請求項1から5までのいずれかに記載の機械構造用部品。
The machine structural part according to any one of claims 1 to 5, wherein the entire surface is covered with a galvanized layer.
JP2016183730A 2015-09-28 2016-09-21 Machine structural parts Active JP6648659B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189441 2015-09-28
JP2015189441 2015-09-28

Publications (2)

Publication Number Publication Date
JP2017066521A JP2017066521A (en) 2017-04-06
JP6648659B2 true JP6648659B2 (en) 2020-02-14

Family

ID=58491932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183730A Active JP6648659B2 (en) 2015-09-28 2016-09-21 Machine structural parts

Country Status (1)

Country Link
JP (1) JP6648659B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464832B2 (en) 2019-05-14 2024-04-10 日本製鉄株式会社 Bolts and bolt steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332446B2 (en) * 2004-02-25 2009-09-16 株式会社神戸製鋼所 High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
JP4381355B2 (en) * 2005-07-22 2009-12-09 新日本製鐵株式会社 Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP5449925B2 (en) * 2009-08-27 2014-03-19 株式会社神戸製鋼所 High strength bolt with improved delayed fracture resistance and method for manufacturing the same
EA025937B1 (en) * 2012-06-20 2017-02-28 Ниппон Стил Энд Сумитомо Метал Корпорейшн Steel for oil country tubular goods and method of producing the same

Also Published As

Publication number Publication date
JP2017066521A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6245386B2 (en) High-strength steel sheet material, hot-rolled steel sheet for high-strength steel sheet, hot-rolled annealed material for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength electroplated steel sheet, and production methods thereof
JP4903915B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
JP7188466B2 (en) Bolts and steel materials for bolts
MX2010010989A (en) High-strength steel sheets which are extremely excellent in the balance between burring workability and ductility and excellent in fatigue endurance, zinc-coated steel sheets, and processes for production of both.
WO2015125915A1 (en) Steel material for induction hardening
JP6468365B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP5741379B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP5741378B2 (en) High tensile steel plate with excellent toughness and method for producing the same
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
KR20180072778A (en) Steel, carburizing steel parts and manufacturing method of carburizing steel parts
JP6460239B2 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP5692002B2 (en) High-tensile steel plate with excellent weldability and manufacturing method thereof
JP6460238B2 (en) Steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and methods for producing them
WO2017131077A1 (en) Spring steel
WO2019180499A1 (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP6648659B2 (en) Machine structural parts
JP7464832B2 (en) Bolts and bolt steel
JP7164032B2 (en) Bolts and steel materials for bolts
JP6601140B2 (en) High strength bolt and steel for high strength bolt
JP6453140B2 (en) High strength steel sheet with excellent delayed fracture resistance of cut end face and method for producing the same
JP7273295B2 (en) Steel for bolts, bolts, and method for manufacturing bolts
JP2018035421A (en) Case hardening steel excellent in coarse grain prevention property upon carburization and fatigue property and production method therefor
JP6682886B2 (en) High strength low alloy steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R151 Written notification of patent or utility model registration

Ref document number: 6648659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151