JPH1017985A - High strength steel excellent in hydrogen embrittlement resistance and its production - Google Patents

High strength steel excellent in hydrogen embrittlement resistance and its production

Info

Publication number
JPH1017985A
JPH1017985A JP16798796A JP16798796A JPH1017985A JP H1017985 A JPH1017985 A JP H1017985A JP 16798796 A JP16798796 A JP 16798796A JP 16798796 A JP16798796 A JP 16798796A JP H1017985 A JPH1017985 A JP H1017985A
Authority
JP
Japan
Prior art keywords
less
compounds
steel
strength steel
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16798796A
Other languages
Japanese (ja)
Other versions
JP4031068B2 (en
Inventor
Yuuichi Namimura
裕一 並村
Toyofumi Hasegawa
豊文 長谷川
Hiroshi Kakou
浩 家口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16798796A priority Critical patent/JP4031068B2/en
Publication of JPH1017985A publication Critical patent/JPH1017985A/en
Application granted granted Critical
Publication of JP4031068B2 publication Critical patent/JP4031068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high strength steel showing improved delayed fracture resistance by making the hydrogen embrittlement resistance excellent even in the case of a high strength steel and to provide a method for producing the same. SOLUTION: Fine compounds with <=50nm dimension are largely dispersed into a steel. Concretely, by allowing them to exist by >=20 pieces/(599nm)<2> in the steel, the high strength steel excellent in hydrogen embrittlement resistance can be obtd. As the fine compounds, any of Mo base compounds, Ti base compounds, V base compounds and composite compounds contg. >= two kinds of elements selected from Mo, Ti and V can be adopted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐水素脆化特性が
優れることによって耐遅れ破壊特性が改善された高強度
鋼及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having improved delayed fracture resistance due to excellent hydrogen embrittlement resistance and a method for producing the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】鉄鋼
材料に応力が与えられてからある時間を経過した後に発
生する遅れ破壊の原因については、種々の要因が複雑に
絡み合っていると考えられるので、その原因を特定する
ことは難しい。しかし一般的には、水素脆化現象が関与
しているという点で共通の認識が持たれている。一方、
水素脆化現象を左右する因子としては、焼もどし温度、
組織、材料硬さ、結晶粒度、各種合金元素の影響等が一
応認められているものの、水素脆化の防止手段が確立さ
れている訳ではなく、種々の方法が試行錯誤的に提案さ
れているに過ぎないのが実状である。
2. Description of the Related Art Various causes are considered to be complicatedly intertwined with respect to the cause of delayed fracture which occurs after a certain period of time has passed since stress was applied to a steel material. , It is difficult to determine the cause. However, in general, there is a common understanding that hydrogen embrittlement is involved. on the other hand,
Factors affecting the hydrogen embrittlement phenomenon include tempering temperature,
Although the structure, material hardness, crystal grain size, and the effects of various alloying elements have been recognized for some time, means for preventing hydrogen embrittlement have not been established, and various methods have been proposed by trial and error. The fact is that it is only a matter of fact.

【0003】また、特開昭60−114551、特開平
2−267243、特開平3−243745などには、
各種の主要な合金元素を調整することにより、引張強さ
が140kgf/mm2 以上でも耐遅れ破壊性の優れた
高強度ボルト用鋼とすることが開示されている。しかし
遅れ破壊が発生する危険を完全に払拭し得ている訳では
なく、それらの適用範囲は限定されている。
[0003] Also, JP-A-60-114551, JP-A-2-267243, JP-A-3-243745, etc.
It is disclosed that by adjusting various main alloying elements, a high strength bolt steel having excellent delayed fracture resistance even if the tensile strength is 140 kgf / mm 2 or more. However, the danger of delayed failure has not been completely eliminated and their scope is limited.

【0004】[0004]

【課題を解決するための手段】そこで本発明者らは、従
来の高強度鋼について、鋼中の各種化合物と耐水素脆化
特性の関係を詳細に調査した。その結果、微細化合物の
量と遅れ破壊特性との間には良好な相関が見られるこ
と、及び極めて微細な化合物に注目してその数を規定す
れば遅れ破壊の発生を真に防止できること等を見出し
た。つまり遅れ破壊特性を劣化させる原因の一つとして
は、鋼中を動き回る水素(拡散性水素)が悪影響を及ぼ
していることが挙げられるが、この拡散性水素を低減す
るには、鋼中に種々の化合物を積極的に析出させて該化
合物により水素をトラップすることが有効である。この
とき、どんな大きさの化合物でも水素のトラップ能力を
発揮する様であるが、本発明者らの研究によれば、水素
のトラップ能力は小さい化合物の方が優れていることが
明らかになった。即ち今まで全く注目されていなかった
50nm以下の微細な化合物は、50nmより大きいも
のに比べて耐遅れ破壊性の改善に対して極めて有効であ
り、その数を多くすることにより始めて遅れ破壊発生の
防止効果が顕著なものとなるのである。特に合金鋼の焼
入焼もどし材の場合は、焼入れ後、高温焼もどしをする
ことにより微細な合金系化合物が数多く析出し、遅れ破
壊改善に効果を発揮する。
Accordingly, the present inventors have investigated in detail the relationship between various compounds in the steel and the resistance to hydrogen embrittlement of conventional high-strength steels. As a result, a good correlation can be seen between the amount of fine compounds and delayed fracture characteristics, and the fact that the occurrence of delayed fracture can be truly prevented by focusing on extremely fine compounds and defining the number thereof. I found it. In other words, one of the causes of the deterioration of delayed fracture characteristics is that hydrogen (diffusible hydrogen) moving around in the steel has an adverse effect. It is effective to positively precipitate the compound and trap hydrogen by the compound. At this time, it seems that compounds of any size exhibit hydrogen trapping ability, but according to the study of the present inventors, it has been revealed that compounds having smaller hydrogen trapping ability are superior. . That is, a fine compound of 50 nm or less, which has not been noticed at all up to now, is extremely effective in improving delayed fracture resistance as compared with a compound larger than 50 nm. The prevention effect becomes remarkable. In particular, in the case of a quenched and tempered material of an alloy steel, after quenching, high-temperature tempering precipitates a large number of fine alloy-based compounds, which is effective in improving delayed fracture.

【0005】すなわち本発明は、大きさが50nm以下
である微細化合物の総数を20個/(500nm)2
上と定めたのである。それらの化合物としては、Mo系
化合物、Ti系化合物、V系化合物、或はMo,Ti,
Vより選択される2種以上の金属を含む複合化合物が示
され、これらの微細化合物の存在によって、よりすぐれ
た耐水素脆化特性を有する高強度鋼となる。
That is, in the present invention, the total number of fine compounds having a size of 50 nm or less is determined to be 20 / (500 nm) 2 or more. These compounds include Mo-based compounds, Ti-based compounds, V-based compounds, or Mo, Ti,
A composite compound containing two or more metals selected from V is shown, and the presence of these fine compounds results in a high-strength steel having better hydrogen embrittlement resistance.

【0006】上記の要件を満たす本発明の高強度鋼の成
分としては、鋼中に、 Mo:2.00%以下(0%を含まない) Ti:0.20%以下(0%を含まない) V :0.20%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
ることが推奨され、更に好ましくは、他の成分として、 Cr:2.00%以下(0%を含まない) Al:0.05%以下(0%を含まない) Nb:0.20%以下(0%を含まない) W :0.20%以下(0%を含まない) B :0.003%以下(0%を含まない) よりなる群から選択される1種以上、及び/又は、更に
他の成分として、 C :0.10〜0.60% N :0.001〜0.010% O :0.005%以下(0%を含まない) S :0.025%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
ることが推奨される。
As the components of the high-strength steel of the present invention satisfying the above requirements, Mo: 2.00% or less (not including 0%) Ti: 0.20% or less (not including 0%) ) V: 0.20% or less (excluding 0%) It is recommended that the composition contains at least one member selected from the group consisting of: Cr: 2.00 % Or less (excluding 0%) Al: 0.05% or less (excluding 0%) Nb: 0.20% or less (excluding 0%) W: 0.20% or less (excluding 0%) ) B: 0.003% or less (not including 0%) One or more selected from the group consisting of: and / or as other components, C: 0.10 to 0.60% N: 0. 001 to 0.010% O: 0.005% or less (excluding 0%) S: 0.025% or less (0% It is recommended from the group consisting included not) are those containing at least one selected.

【0007】[0007]

【発明の実施の形態】次に本発明の構成について更に詳
細に説明する。 大きさが50nm以下である微細化合物の総数が、2
0個/(500nm)2以上であるという要件:耐遅れ破
壊性を劣化させる原因としては、前述の様に鋼中で動き
回る水素(拡散性水素)が悪影響を及ぼしていることが
挙げられる。この拡散性水素を低減するには、鋼中に微
細な化合物を数多く析出させることにより、水素のトラ
ップ能力を高めることが必要である。更に、これらの化
合物は鋼材自体の靭性を高め、水素に対する抵抗力を高
める効果がある。特に微細な化合物(大きさが50nm
以下)の総数が20個/(500nm)2 以上である場
合、耐水素脆性の改善効果を顕著に発揮することを見出
した。更に、好ましくは30個/(500nm)2以上で
ある。
Next, the configuration of the present invention will be described in more detail. The total number of fine compounds having a size of 50 nm or less is 2
Requirement of 0 / (500 nm) 2 or more: The cause of deterioration of delayed fracture resistance is that hydrogen (diffusible hydrogen) moving around in steel has an adverse effect as described above. To reduce this diffusible hydrogen, it is necessary to increase the ability to trap hydrogen by precipitating many fine compounds in the steel. Furthermore, these compounds have the effect of increasing the toughness of the steel itself and increasing the resistance to hydrogen. Particularly fine compounds (50 nm in size)
It has been found that, when the total number is below 20 / (500 nm) 2 , the effect of improving hydrogen embrittlement resistance is remarkably exhibited. Further, the number is preferably 30 / (500 nm) 2 or more.

【0008】尚これらより大きい化合物について述べる
と以下の通りである。 ’大きさが300nm以上の化合物 焼入焼もどし処理前に球状化焼鈍などの軟化工程が入っ
ている場合において、焼入加熱が不十分であると、球状
化組織の粗大な化合物が残留することがある。これらの
化合物の大きさは300nm以上の大きさであり、これ
らの化合物が多いと、後記表5に示す通り、鋼の靭性が
低下し、遅れ破壊強度を低下させる傾向にある。これら
の大きさの化合物はなるべく低減することが望ましい。
[0008] These larger compounds are described below.化合物 Compounds with a size of 300 nm or more If a softening step such as spheroidizing annealing is included before the quenching and tempering treatment, if the quenching heating is insufficient, a coarse compound having a spheroidized structure will remain. There is. The size of these compounds is 300 nm or more, and if these compounds are large, as shown in Table 5 below, the toughness of the steel tends to decrease, and the delayed fracture strength tends to decrease. It is desirable to reduce compounds of these sizes as much as possible.

【0009】”大きさが50〜300nmの化合物 これらの大きさの析出物は、Fe3 C(セメンタイト)
系および合金系の析出物(Mo2 C,Cr73 等)に
分けられる。Fe3 C系と合金系の析出物では水素トラ
ップ効果に大きな差はないが、化合物の量としてFe3
C系化合物の方が圧倒的に多い。しかるにFe3 C系化
合物は、粒界などに板状に析出する場合があり、粒界強
度をかえって低下させ遅れ破壊強度を低下させる場合が
ある。
Compounds having a size of 50 to 300 nm The precipitates having these sizes are formed of Fe 3 C (cementite).
And alloy-based precipitates (Mo 2 C, Cr 7 C 3, etc.). Although there is no significant difference in the hydrogen trapping effect between the Fe 3 C-based and alloy-based precipitates, the amount of Fe 3 C
C-based compounds predominate. However, the Fe 3 C-based compound may precipitate in a plate shape at a grain boundary or the like, and may rather decrease the grain boundary strength and decrease the delayed fracture strength.

【0010】尚このレベルの大きさの化合物について
は、遅れ破壊強度との相関は後記表6に示す通り不明確
であり、これらの量を規定しても、水素脆化を防止する
ことができない。
[0010] For compounds of this level, the correlation with delayed fracture strength is unclear as shown in Table 6 below, and even if these amounts are specified, hydrogen embrittlement cannot be prevented. .

【0011】なお、化合物の大きさの測定方法は実施例
にて説明する。 化合物の種類:鋼中に微細な化合物として効率良く析
出し、且つ高い水素トラップ能力を発揮し得る化合物と
しては、合金系化合物が挙げられ、特にMo系化合物、
Ti系化合物、V系化合物、およびMo,Ti,Vより
選ばれる2種以上の金属を含む複合化合物等である場合
は、耐水素脆化特性の改善に特に優れた効果を発揮する
ことが分かった。更にこれらの化合物は、オーステナイ
ト結晶粒の粗大化防止に有効であり、鋼の強度、靭性を
改善するのにも有効である。
The method for measuring the size of a compound will be described in Examples. Kind of compound: As a compound which can be efficiently precipitated as a fine compound in steel and exhibit a high hydrogen trapping ability, an alloy-based compound can be mentioned, in particular, a Mo-based compound,
In the case of a Ti-based compound, a V-based compound, and a composite compound containing two or more kinds of metals selected from Mo, Ti, and V, it is found that a particularly excellent effect for improving hydrogen embrittlement resistance is exhibited. Was. Further, these compounds are effective in preventing austenite crystal grains from being coarsened, and are also effective in improving the strength and toughness of steel.

【0012】本発明鋼を構成する重要な化学成分: −1 Mo:2.00%以下、Ti:0.20%以
下、V:0.20%以下よりなる群から選択される1種
以上 これらの元素は、鋼中に微細な化合物を効率良く析出さ
せるために有効な元素であり、Mo系化合物、Ti系化
合物、V系化合物、およびMo,Ti,Vより選択され
る2種以上の金属を含む複合化合物等を析出させるのに
必要な元素である。更にこれらの元素は、焼入性の向上
に有効な元素で、鋼材の強度・靭性改善に効果を発揮す
る。
Important chemical components constituting the steel of the present invention: -1 Mo: at most 2.00%, Ti: at most 0.20%, V: at least one selected from the group consisting of at most 0.20% Is an element effective for precipitating a fine compound efficiently in steel, and is a Mo compound, a Ti compound, a V compound, and two or more metals selected from Mo, Ti, and V. Is an element necessary for precipitating a complex compound or the like containing. Further, these elements are effective elements for improving hardenability and exert an effect for improving the strength and toughness of the steel material.

【0013】Moの効果は、約2.00%で飽和するば
かりでなく、それを超えて添加すると、変形抵抗の増大
により圧造工具寿命の低下をもたらす。またTiやVが
0.20%を超えて添加されると、巨大な窒化物や炭化
物を生じ、靭性が低下する。従って、Mo:2.00%
以下、Ti:0.20%以下、V:0.20%以下と定
めた。尚、それぞれの好ましい上限含有量は、Mo:
1.5%以下、Ti:0.15%以下、V:0.15%
以下であり、より好ましくは、Mo:1.05%以下、
Ti:0.1%以下、V:0.1%以下である。一方そ
れぞれの好ましい下限含有量は、Mo:0.3%以上、
Ti:0.01%以上、V:0.15%以上であり、よ
り好ましくは、Mo:0.6%以上、Ti:0.02%
以上、V:0.02%以上である。
[0013] The effect of Mo not only saturates at about 2.00%, but if it is added beyond that, the life of the forging tool is reduced due to an increase in deformation resistance. If Ti or V is added in excess of 0.20%, huge nitrides and carbides are generated, and the toughness is reduced. Therefore, Mo: 2.00%
Hereinafter, it is determined that Ti: 0.20% or less and V: 0.20% or less. In addition, each preferable upper limit content is Mo:
1.5% or less, Ti: 0.15% or less, V: 0.15%
Or less, more preferably Mo: 1.05% or less,
Ti: 0.1% or less, V: 0.1% or less. On the other hand, each preferred lower limit content is Mo: 0.3% or more,
Ti: 0.01% or more, V: 0.15% or more, more preferably Mo: 0.6% or more, Ti: 0.02%
As described above, V is 0.02% or more.

【0014】−2 Cr:2.00%以下、Al:
0.05%以下、Nb:0.20%以下、W:0.20
%以下、B:0.003%以下よりなる群から選択され
る1種以上 これらの元素もまた、鋼中に微細な化合物を効率良く析
出させる上で有効な元素であり、更にこれらの元素を含
む化合物は、オーステイナイト結晶粒の粗大化防止作用
も示すので、鋼の強度及び靭性を改善する上で有効であ
る。更にCrは、耐食性の向上に寄与して耐水素脆性を
高める作用も発揮し、またBは粒界に集散して鋼の焼入
れ性を高める。
-2 Cr: 2.00% or less, Al:
0.05% or less, Nb: 0.20% or less, W: 0.20
% Or less, B: at least one element selected from the group consisting of 0.003% or less. These elements are also effective elements for efficiently precipitating fine compounds in steel. The containing compound also has an effect of preventing austenite crystal grains from being coarsened, and is therefore effective in improving the strength and toughness of steel. Further, Cr contributes to the improvement of corrosion resistance and also has an effect of increasing hydrogen embrittlement resistance, and B also diffuses at grain boundaries to enhance the hardenability of steel.

【0015】Crの効果は約2.0%で飽和し、Al、
Nb、W、Bは、多量に添加すると巨大な窒化物や炭化
物を生じ、靭性が低下する。従ってCr:2.00%以
下、Al:0.05%以下、Nb:0.20%以下、
W:0.20%以下、B:0.003%以下と定めた。
尚、夫々の好ましい上限含有量は、Cr:1.5%以
下、Al:0.045%以下、Nb:0.15%以下、
W:0.15%以下、B:0.0025%以下であり、
より好ましくは、Cr:1.05%以下、Al:0.0
4%以下、Nb:0.1%以下、W:0.1%以下、
B:0.0020%以下である。一方好ましい下限含有
量は、Cr:0.3%以上、Al:0.01%以上、N
b:0.01%以上、W:0.01%以上、B:0.0
005%以上であり、より好ましくは、Cr:0.5%
以上、Al:0.02%以上、Nb:0.02%以上、
W:0.02%以上、B:0.001%以上である。
The effect of Cr saturates at about 2.0%,
When Nb, W, and B are added in a large amount, a large amount of nitride or carbide is generated, and the toughness is reduced. Therefore, Cr: 2.00% or less, Al: 0.05% or less, Nb: 0.20% or less,
W: 0.20% or less, B: 0.003% or less.
In addition, each preferable upper limit content is Cr: 1.5% or less, Al: 0.045% or less, Nb: 0.15% or less,
W: 0.15% or less, B: 0.0025% or less,
More preferably, Cr: 1.05% or less, Al: 0.0
4% or less, Nb: 0.1% or less, W: 0.1% or less,
B: 0.0020% or less. On the other hand, preferable lower limit contents are Cr: 0.3% or more, Al: 0.01% or more, and N:
b: 0.01% or more, W: 0.01% or more, B: 0.0
005% or more, and more preferably, Cr: 0.5%.
Above, Al: 0.02% or more, Nb: 0.02% or more,
W: 0.02% or more, B: 0.001% or more.

【0016】−3 C:0.10〜0.60%、N:
0.001〜0.010%、O:0.005%以下、
S:0.025%以下 これらの元素は鋼中に化合物を析出させるのに必要な元
素であり、炭化物、窒化物、酸化物、硫化物を生成させ
る。Cは、炭化物を形成するとともに、高強度鋼として
必要な引張強さを確保する上で欠くことのできない元素
であり、0.10%以上含有する必要がある。一方0.
60%を超えるCは、炭化物の粗大化を招くとともに、
靭性低下を招いて耐遅れ破壊性を劣化させる。よってC
の含有量は0.10〜0.60%と定めた。尚好ましい
下限C量は、0.20%であり、更に好ましい下限C量
は0.30%である。一方好ましい上限C量は、0.4
5%であり、更に好ましい上限C量は0.40%であ
る。
-3 C: 0.10-0.60%, N:
0.001 to 0.010%, O: 0.005% or less,
S: 0.025% or less These elements are necessary for precipitating a compound in steel, and form carbides, nitrides, oxides, and sulfides. C is an element that forms carbides and is indispensable for securing the tensile strength necessary for high-strength steel, and must be contained in an amount of 0.10% or more. On the other hand, 0.
C exceeding 60% causes coarsening of carbides,
It causes a decrease in toughness and deteriorates delayed fracture resistance. Therefore C
Was determined to be 0.10 to 0.60%. Note that a preferable lower limit C amount is 0.20%, and a more preferable lower limit C amount is 0.30%. On the other hand, the preferable upper limit C amount is 0.4
5%, and a more preferable upper limit C amount is 0.40%.

【0017】Nは、窒化物を形成し、結晶粒の微細化ひ
いては耐遅れ破壊性の向上に好影響を与え、これらの効
果を得るには0.001%以上の添加が必要である。一
方N量が0.010%を超えると固溶N量が増大し、耐
遅れ破壊性に有害となる。よってNの含有量は、0.0
01〜0.010%と定めた。尚好ましい下限N量は
0.002%であり、更に好ましい下限N量は0.00
4%である。好ましい上限N量は0.007%であり、
更に好ましい上限N量は0.006%である。
N forms nitrides and has a favorable effect on the refinement of crystal grains and the improvement in delayed fracture resistance. To obtain these effects, it is necessary to add 0.001% or more. On the other hand, if the N content exceeds 0.010%, the amount of solid solution N increases, which is detrimental to delayed fracture resistance. Therefore, the content of N is 0.0
It was determined as 01 to 0.010%. Note that a preferable lower limit N amount is 0.002%, and a more preferable lower limit N amount is 0.002%.
4%. A preferred upper limit N amount is 0.007%,
A more preferred upper limit N amount is 0.006%.

【0018】Oは、酸化物を形成し、鋼中に微細分散さ
せる。しかしO量が0.005%を超えると粗大な酸化
物が析出し、靭性低下を招いて耐遅れ破壊性を劣化させ
る。よって、Oの含有量は0.005%以下と定めた。
尚、好ましいO量は、0.003%以下であり、更に好
ましいO量は0.001%以下である。
O forms oxides and is finely dispersed in steel. However, if the O content exceeds 0.005%, coarse oxides are precipitated, leading to a decrease in toughness and deterioration in delayed fracture resistance. Therefore, the content of O is determined to be 0.005% or less.
In addition, a preferable O amount is 0.003% or less, and a more preferable O amount is 0.001% or less.

【0019】Sは、硫化物を形成し、鋼中に微細分散さ
せる。しかし、S量が0.025%を超えると粗大なM
nSなどを形成して応力集中箇所となり、耐遅れ破壊性
を劣化させる。よって、Sの含有量は0.025%以下
と定めた。尚、好ましいS量は、0.010%以下であ
り、更に好ましいO量は0.005%以下である。な
お、本発明鋼には製造上、不可避的不純物が含まれ得る
が、それらは本発明の効果を損なわない限度で許容され
る。また鋼材の製造条件を下記の様に調整してやれば、
上記有用化合物を効率良く微細析出させることができ、
耐水素脆化特性に優れた高強度鋼が得られやすい。
S forms sulfide and is finely dispersed in steel. However, when the amount of S exceeds 0.025%, coarse M
By forming nS or the like, it becomes a stress concentration point, and deteriorates delayed fracture resistance. Therefore, the content of S is determined to be 0.025% or less. In addition, a preferable S amount is 0.010% or less, and a more preferable O amount is 0.005% or less. The steel of the present invention may contain unavoidable impurities in production, but these are allowed as long as the effects of the present invention are not impaired. Also, if the manufacturing conditions of steel materials are adjusted as follows,
The useful compound can be finely precipitated efficiently,
High strength steel with excellent hydrogen embrittlement resistance is easily obtained.

【0020】即ちその条件として好ましいのは、鋼材を
製造する際の凝固過程における冷却速度を規定すること
である。即ち、凝固過程(1500℃から1300℃へ
の冷却中)において、10℃/分以上の速さで冷却する
ことにより、粗大な化合物の析出が抑制され、微細な化
合物が多く析出する。より好ましい冷却速度は20℃/
分以上であり、更に、好ましい冷却速度は30℃/分以
上である。次に本発明の実施例を示す。
That is, a preferable condition is to define a cooling rate in a solidification process in producing a steel material. That is, in the solidification process (during cooling from 1500 ° C. to 1300 ° C.), by cooling at a rate of 10 ° C./min or more, the precipitation of coarse compounds is suppressed, and many fine compounds are precipitated. A more preferred cooling rate is 20 ° C /
Min or more, and a preferable cooling rate is 30 ° C./min or more. Next, examples of the present invention will be described.

【0021】[0021]

【実施例】表1に示す成分組成の鋼材を150kg真空
溶解炉にて溶製し、150kgのインゴットに鋳造し冷
却した。また一部、凝固過程の冷却速度を変化させるた
め、50〜150kgのインゴットに鋳造し、一部保温
しながら冷却した。その後25mmφに鍛造し、120
0℃×30分の容体化処理を施した後、焼ならし処理
し、引張強度が約1000〜2000N/mm2 になる
ように最終熱処理を施した。
EXAMPLE A steel material having the composition shown in Table 1 was melted in a 150 kg vacuum melting furnace, cast into a 150 kg ingot, and cooled. In order to change the cooling rate during the solidification process, a part was cast into an ingot of 50 to 150 kg and cooled while keeping the temperature partially. Then forged to 25mmφ, 120
After performing a soaking process at 0 ° C. for 30 minutes, a normalizing process was performed, and a final heat treatment was performed so that the tensile strength became about 1000 to 2000 N / mm 2 .

【0022】[0022]

【表1】 [Table 1]

【0023】得られた鋼材について、化合物の数を測定
するとともに、引張強さおよび遅れ破壊強度を測定し、
後記の表2〜6に示す結果を得た。尚、化合物測定およ
び、遅れ破壊強度の測定は下記の方法によって測定し
た。
With respect to the obtained steel material, the number of compounds was measured, and at the same time, the tensile strength and the delayed fracture strength were measured.
The results shown in Tables 2 to 6 below were obtained. In addition, the compound measurement and the measurement of delayed fracture strength were measured by the following methods.

【0024】<化合物数の測定> :通常の抽出レプリカ法により抽出した化合物を、走
査型電子顕微鏡(TEM)にて、加速電圧200KV、
15万倍の写真撮影をする。
<Measurement of number of compounds>: Compounds extracted by the ordinary extraction replica method were subjected to a scanning electron microscope (TEM) at an accelerating voltage of 200 KV and a voltage of 200 KV.
Take a 150,000x photo.

【0025】:500nm×500nm(15万倍で
75mm×75mm)の視野の中で観察される50nm
以下の微細な化合物を数える。図2,図3,図4の各上
側には撮影した写真の一例(一辺の長さは500nm)
を示し、各下側には、その視野及び化合物の大きさを忠
実に転写し、その数(何れも図から明らかな様に50n
m以下の大きさ)を数えたところ、図2では36個、図
3では24個、図4では10個であった。更に図4,図
5には、EDXにより組成分析した結果を併せて示す。
図4は析出物組成がMo−Ti−V複合の場合、図5は
析出物組成がMo−Ti−V−Cr−Al複合の場合を
夫々示す。
50 nm observed in a visual field of 500 nm × 500 nm (75 mm × 75 mm at 150,000 times)
The following fine compounds are counted. An example of a photograph taken on each upper side of FIGS. 2, 3 and 4 (the length of one side is 500 nm)
Is shown on the lower side, the field of view and the size of the compound are faithfully transferred, and the number thereof (both 50 n as apparent from the figure)
When measured, the number was 36 in FIG. 2, 24 in FIG. 3, and 10 in FIG. 4 and 5 also show the results of composition analysis by EDX.
FIG. 4 shows the case where the precipitate composition is the Mo—Ti—V composite, and FIG. 5 shows the case where the precipitate composition is the Mo—Ti—V—Cr—Al composite.

【0026】図5の析出物の組成は主にMo−Ti−V
系の複合化合物であり、図6の析出物の組成は主にMo
−Ti−V−Cr−Al系の複合化合物である。但し、
Cuのピークが高いのは測定に当たってサンプルを固定
する際に、Cuメッシュを使用したためである。
The composition of the precipitate in FIG. 5 is mainly Mo-Ti-V
6 is mainly composed of Mo.
-A Ti-V-Cr-Al-based composite compound. However,
The reason why the peak of Cu is high is that a Cu mesh was used when fixing the sample in the measurement.

【0027】:写真撮影は1サンプルにつき、任意の
5箇所とし、測定した5箇所の平均値を化合物の総数と
定義し、○○個/(500nm)2 で表わす。
Photographing was performed at arbitrary five locations per sample, and the average value of the measured five locations was defined as the total number of compounds, and represented by ○ / (500 nm) 2 .

【0028】<遅れ破壊強度の測定>ループ型定歪み遅
れ破壊試験機を用いて、図1に示す遅れ破壊試験片を水
中で応力負荷し100時間の遅れ破壊強さを測定した。
結果は表2、表3、表4に示す通りであり、微細化合物
の数が多い鋼で種は、いずれも高い遅れ破壊強さを示し
ている。
<Measurement of Delayed Fracture Strength> Using a loop-type constant strain delayed fracture tester, a stress load was applied to the delayed fracture test specimen shown in FIG. 1 in water, and the delayed fracture strength for 100 hours was measured.
The results are as shown in Tables 2, 3 and 4, and all the steels having a large number of fine compounds show high delayed fracture strength.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】表2,3,4に示す様に、微細化合物は5
0nm以下の化合物が特に有効であるが、特に表2に示
す様に、30nm以下、更に10nm以下と小さくなる
ほど耐遅れ破壊特性の改善に有効であることが分かる。
一方50nm以上の大きさの化合物については、50〜
300nmの大きさの化合物は表6に示す様に耐遅れ破
壊特性の良否との間に良好な相関を見出すことはでき
ず、300nm以上化合物については、表5に示す様に
その数を減少させることが耐遅れ破壊特性の向上に有効
で有ることが分かる。この様に化合物の大きさ(及び
数)と耐遅れ破壊特性との間の相関については、極めて
特異な様相を示すものであることが本発明によって明ら
かとなった。一方50nm以下の化合物を多く微細析出
させる手段としては、表4に示す様に、凝固速度を制御
することが有効であることが分かった。
As shown in Tables 2, 3 and 4, the fine compound was 5
A compound having a thickness of 0 nm or less is particularly effective, and as shown in Table 2, it can be seen that a smaller value of 30 nm or less, and further 10 nm or less, is more effective in improving delayed fracture resistance.
On the other hand, for a compound having a size of 50 nm or more, 50 to
As shown in Table 6, no good correlation between the compound having a size of 300 nm and the quality of delayed fracture resistance can be found, and the number of compounds having a size of 300 nm or more is reduced as shown in Table 5. This is effective for improving delayed fracture resistance. Thus, the present invention has revealed that the correlation between the size (and the number) of the compound and the delayed fracture resistance shows a very unique aspect. On the other hand, as shown in Table 4, it was found that controlling the solidification rate was effective as a means for precipitating a large number of compounds having a size of 50 nm or less.

【0035】[0035]

【発明の効果】本発明は以上の様に構成されており、1
200N/mm2 レベル以上で且つ耐水素脆化特性に優
れた高強度ボルト鋼が提供されることとなった。
The present invention is configured as described above.
A high-strength bolt steel having a level of 200 N / mm 2 or more and having excellent hydrogen embrittlement resistance has been provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】遅れ破壊強度測定に用いた試験片の寸法、形状
を示す図である。
FIG. 1 is a diagram showing dimensions and shapes of test pieces used for delayed fracture strength measurement.

【図2】化合物の大きさ及び数の測定例を示す写真及び
析出物表示図である[析出物は36個/(500nm)
2 ]。
FIG. 2 is a photograph showing a measurement example of the size and number of compounds and a display diagram of precipitates [36 precipitates / (500 nm)
2 ].

【図3】化合物の大きさ及び数の測定例を示す写真及び
析出物表示図である[析出物は24個/(500nm)
2 ]。
FIG. 3 is a photograph showing a measurement example of the size and number of compounds and a display diagram of precipitates [24 precipitates / (500 nm)
2 ].

【図4】化合物の大きさ及び数の測定例を示す写真及び
析出物表示図である[析出物は10個/(500nm)
2 ]。
FIG. 4 is a photograph showing a measurement example of the size and number of compounds and a display diagram of precipitates [10 precipitates / (500 nm)
2 ].

【図5】図2中の1について、EDXによる化合物組成
を分析した例を示す写真である(析出物組成:Mo−T
i−V複合)。
FIG. 5 is a photograph showing an example of analyzing the compound composition by EDX with respect to 1 in FIG. 2 (precipitate composition: Mo-T).
i-V composite).

【図6】図2中の2について、EDXによる化合物組成
を分析した例を示す写真である(析出物組成:Mo−T
i−V−Cr−Al複合)。
6 is a photograph showing an example of analyzing a compound composition by EDX for 2 in FIG. 2 (precipitate composition: Mo-T).
i-V-Cr-Al composite).

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月23日[Submission date] August 23, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 遅れ破壊強度測定に用いた試験片の寸法、形
状を示す図である。
FIG. 1 is a view showing dimensions and shapes of test pieces used for delayed fracture strength measurement.

【図2】 化合物の大きさ及び数の測定例を示す顕微鏡
写真(TEM像)及び当該写真から読み取ることのでき
析出物表示図である[析出物は36個/(500n
m)2 ]。
FIG. 2 is a photomicrograph (TEM image) showing an example of measuring the size and number of compounds, and can be read from the photo.
That [precipitate is a display diagram of the precipitates 36 / (500n
m) 2 ].

【図3】 化合物の大きさ及び数の測定例を示す顕微鏡
写真(TEM像)及び当該写真から読み取ることのでき
析出物表示図である[析出物は24個/(500n
m)2 ]。
FIG. 3 is a photomicrograph (TEM image) showing a measurement example of the size and number of compounds and can be read from the photo.
It is a display diagram of that precipitates [precipitates 24 / (500n
m) 2 ].

【図4】 化合物の大きさ及び数の測定例を示す顕微鏡
写真(TEM像)及び当該写真から読み取ることのでき
析出物表示図である[析出物は10個/(500n
m)2 ]。
FIG. 4 is a photomicrograph (TEM image) showing a measurement example of the size and number of compounds and can be read from the photo.
It is a display diagram of that precipitates [precipitates 10 / (500n
m) 2 ].

【図5】 図2中の1について、EDXによる化合物組
成を分析して得たスペクトル像の一例を示す写真である
(析出物組成:Mo−Ti−V複合)。
5 is a photograph showing an example of a spectrum image obtained by analyzing a compound composition by EDX for 1 in FIG. 2 (precipitate composition: Mo—Ti—V composite).

【図6】 図2中の2について、EDXによる化合物組
成を分析して得たスペクトル像の一例を示す写真である
(析出物組成:Mo−Ti−V−Cr−Al複合)。
FIG. 6 is a photograph showing an example of a spectrum image obtained by analyzing the compound composition by EDX for 2 in FIG. 2 (precipitate composition: Mo—Ti—V—Cr—Al composite).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 大きさ:50nm以下の化合物が、鋼中
に20個/(500nm)2 以上存在することを特徴と
する耐水素脆化特性に優れた高強度鋼。
1. A high-strength steel excellent in hydrogen embrittlement resistance, characterized in that compounds having a size of 50 nm or less are present in the steel in an amount of 20 pieces / (500 nm) 2 or more.
【請求項2】 大きさ:50nm以下の化合物が、Mo
系化合物、Ti系化合物、V系化合物、並びにMo,T
i,Vより選択される2種以上の元素を含む複合化合物
のいずれかである請求項1に記載の高強度鋼。
2. A compound having a size of 50 nm or less is Mo
Compounds, Ti compounds, V compounds, Mo, T
The high-strength steel according to claim 1, wherein the high-strength steel is any one of a composite compound containing two or more elements selected from i and V.
【請求項3】 鋼が、 Mo:2.00%以下(0%を含まない) Ti:0.20%以下(0%を含まない) V :0.20%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項1または2に記載の高強度鋼。
3. Steel: Mo: 2.00% or less (excluding 0%) Ti: 0.20% or less (excluding 0%) V: 0.20% or less (excluding 0%) The high-strength steel according to claim 1, comprising one or more selected from the group consisting of:
【請求項4】 鋼が、更に他の成分として、 Cr:2.00%以下(0%を含まない) Al:0.05%以下(0%を含まない) Nb:0.20%以下(0%を含まない) W :0.20%以下(0%を含まない) B :0.003%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項3に記載の高強度鋼。
4. The steel further contains Cr: 2.00% or less (not including 0%) Al: 0.05% or less (not including 0%) Nb: 0.20% or less (not including 0%) W: 0.20% or less (excluding 0%) B: 0.003% or less (excluding 0%) Contains one or more selected from the group consisting of: The high-strength steel according to claim 3.
【請求項5】 鋼が、更に他の成分として、 C :0.10〜0.60% N :0.001〜0.010% O :0.005%以下(0%を含まない) S :0.025%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項3または4に記載の高強度鋼。
5. The steel further contains, as another component, C: 0.10 to 0.60% N: 0.001 to 0.010% O: 0.005% or less (excluding 0%) S: The high-strength steel according to claim 3 or 4, comprising at least one selected from the group consisting of 0.025% or less (excluding 0%).
【請求項6】 請求項1〜5に記載された高強度鋼を製
造するに際し、鋳造時の1500℃から1300℃への
冷却過程における冷却速度を10℃/分以上に調整して
冷却することを特徴とする耐水素脆化特性に優れた高強
度鋼の製造方法。
6. The method of manufacturing a high-strength steel according to claim 1, wherein a cooling rate during cooling from 1500 ° C. to 1300 ° C. during casting is adjusted to 10 ° C./min or more for cooling. The method for producing a high-strength steel excellent in hydrogen embrittlement resistance characterized by the following.
JP16798796A 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance Expired - Fee Related JP4031068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16798796A JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16798796A JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Publications (2)

Publication Number Publication Date
JPH1017985A true JPH1017985A (en) 1998-01-20
JP4031068B2 JP4031068B2 (en) 2008-01-09

Family

ID=15859710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16798796A Expired - Fee Related JP4031068B2 (en) 1996-06-27 1996-06-27 High strength steel for bolts with excellent hydrogen embrittlement resistance

Country Status (1)

Country Link
JP (1) JP4031068B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293392A (en) * 1998-04-09 1999-10-26 Sanyo Special Steel Co Ltd High strength, long life carburizing steel excellent in delayed fracture resistance, and its production
EP1598437A1 (en) * 2003-02-20 2005-11-23 Nippon Steel Corporation High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
JP2007032834A (en) * 2005-06-24 2007-02-08 Nippon Steel Corp High-strength bolt joint part
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part
WO2015045951A1 (en) 2013-09-25 2015-04-02 株式会社神戸製鋼所 Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
WO2016031528A1 (en) * 2014-08-29 2016-03-03 日産自動車株式会社 Steel for high-strength bolt, and high-strength bolt
WO2016052093A1 (en) * 2014-09-30 2016-04-07 株式会社神戸製鋼所 Steel for bolts, and bolt
JP2017002354A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 STEEL PLATE HAVING TENSILE STRENGTH OF 1,180MPa AND EXCELLENT IN DELAYED FRACTURE RESISTANCE
CN115449705A (en) * 2015-09-17 2022-12-09 杰富意钢铁株式会社 Steel structure for hydrogen having excellent hydrogen embrittlement resistance in high-pressure hydrogen gas, and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5674620B2 (en) 2011-10-07 2015-02-25 株式会社神戸製鋼所 Steel wire for bolt and bolt, and manufacturing method thereof
KR101604938B1 (en) 2012-01-11 2016-03-18 가부시키가이샤 고베 세이코쇼 Steel for bolts, bolt, and method for producing bolt

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293392A (en) * 1998-04-09 1999-10-26 Sanyo Special Steel Co Ltd High strength, long life carburizing steel excellent in delayed fracture resistance, and its production
US8557060B2 (en) 2003-02-20 2013-10-15 Nippon Steel & Sumitomo Metal Corporation High-strength steel material with excellent hydrogen embrittlement resistance
EP1598437A1 (en) * 2003-02-20 2005-11-23 Nippon Steel Corporation High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
EP1598437A4 (en) * 2003-02-20 2006-11-22 Nippon Steel Corp High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
EP1832666A3 (en) * 2003-02-20 2007-12-12 Nippon Steel Corporation High-strength steel material with excellent hydrogen embrittlement resistance
US8016953B2 (en) 2003-02-20 2011-09-13 Nippon Steel Corporation High-strength steel material with excellent hydrogen embrittlement resistance
JP2007032834A (en) * 2005-06-24 2007-02-08 Nippon Steel Corp High-strength bolt joint part
JP4705525B2 (en) * 2005-06-24 2011-06-22 新日本製鐵株式会社 High strength bolt joint
JP2007031736A (en) * 2005-07-22 2007-02-08 Nippon Steel Corp Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP4485424B2 (en) * 2005-07-22 2010-06-23 新日本製鐵株式会社 Manufacturing method of high-strength bolts with excellent delayed fracture resistance
JP2007270293A (en) * 2006-03-31 2007-10-18 Nippon Steel Corp High strength bearing joint part having excellent delayed fracture resistance characteristic and method for manufacturing the same, and steel for high strength bearing jointing part
WO2015045951A1 (en) 2013-09-25 2015-04-02 株式会社神戸製鋼所 Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
EP3050987A4 (en) * 2013-09-25 2017-05-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
US10060015B2 (en) 2013-09-25 2018-08-28 Kobe Steel, Ltd. Steel for high-strength bolts which has excellent delayed fracture resistance and bolt formability, and bolt
WO2016031528A1 (en) * 2014-08-29 2016-03-03 日産自動車株式会社 Steel for high-strength bolt, and high-strength bolt
JP2016050329A (en) * 2014-08-29 2016-04-11 日産自動車株式会社 Steel for high strength bolt and high strength bolt
WO2016052093A1 (en) * 2014-09-30 2016-04-07 株式会社神戸製鋼所 Steel for bolts, and bolt
JP2016069705A (en) * 2014-09-30 2016-05-09 株式会社神戸製鋼所 Steel for bolt and bolt
KR20170041917A (en) * 2014-09-30 2017-04-17 가부시키가이샤 고베 세이코쇼 Steel for bolts, and bolt
JP2017002354A (en) * 2015-06-09 2017-01-05 Jfeスチール株式会社 STEEL PLATE HAVING TENSILE STRENGTH OF 1,180MPa AND EXCELLENT IN DELAYED FRACTURE RESISTANCE
CN115449705A (en) * 2015-09-17 2022-12-09 杰富意钢铁株式会社 Steel structure for hydrogen having excellent hydrogen embrittlement resistance in high-pressure hydrogen gas, and method for producing same

Also Published As

Publication number Publication date
JP4031068B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
EP1340825A2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
US5648044A (en) Graphite steel for machine structural use exhibiting excellent free cutting characteristic, cold forging characteristic and post-hardening/tempering fatigue resistance
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JPH1017985A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPWO2020158357A1 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP2004503677A (en) Steel alloys, plastic forming tools and tough hardened blanks for plastic forming tools
JP2020070457A (en) Hot work tool steel having excellent thermal conductivity
CN109790602B (en) Steel
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP2019077911A (en) Steel member and manufacturing method of steel member
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP2834654B2 (en) High toughness hot work tool steel
JPH1161351A (en) High hardness martensite-based stainless steel superior in workability and corrosion resistance
JP3946684B2 (en) Hot work tool steel
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP3754658B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP4302480B2 (en) High hardness steel with excellent cold workability
JP3283768B2 (en) High strength Cr-Mo steel TIG weld metal and TIG welding method
JP3075139B2 (en) Coarse-grained case hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
TWI806526B (en) Steel wire for mechanical structural parts and manufacturing method thereof
JP7141944B2 (en) Non-tempered forged parts and steel for non-tempered forgings
JPH0569884B2 (en)
JP7499691B2 (en) Bolt steel and bolts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070307

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070717

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees