WO2008032816A1 - Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof - Google Patents

Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof Download PDF

Info

Publication number
WO2008032816A1
WO2008032816A1 PCT/JP2007/067915 JP2007067915W WO2008032816A1 WO 2008032816 A1 WO2008032816 A1 WO 2008032816A1 JP 2007067915 W JP2007067915 W JP 2007067915W WO 2008032816 A1 WO2008032816 A1 WO 2008032816A1
Authority
WO
WIPO (PCT)
Prior art keywords
toughness
tool steel
temperature strength
steel
work tool
Prior art date
Application number
PCT/JP2007/067915
Other languages
French (fr)
Japanese (ja)
Inventor
Kouta Kataoka
Hideshi Nakatsu
Yasushi Tamura
Masayuki Nagasawa
Original Assignee
Hitachi Metals, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to EP07807322.8A priority Critical patent/EP2065483A4/en
Priority to KR1020137006463A priority patent/KR20130036076A/en
Priority to US12/440,406 priority patent/US20100193089A1/en
Publication of WO2008032816A1 publication Critical patent/WO2008032816A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation

Definitions

  • the present invention relates to a hot tool steel with improved toughness and high-temperature strength that is optimal for various hot tools such as press dies, forging dies, die casting dies, and extrusion tools, and a method for producing the same. It is about the law.
  • a hot tool Since a hot tool is used while being in contact with a high-temperature work material or a hard work material, it must have both strength and toughness that can withstand thermal fatigue and impact. For this reason, for example, SKD61-based alloy tool steel, which is a JIS steel type, has been used in the field of hot tools. More recently, if the manufacturing time of products manufactured using hot tools has been shortened, the temperature of workpieces has increased due to the formation of complex shapes, and the number of products has increased due to simultaneous simultaneous production of products. As hot tools such as molds have become larger! /, Etc., hot tool materials are required to have high high-temperature strength and high toughness even at large sizes.
  • Patent Document 1 For the purpose of improving the toughness and high-temperature strength of alloy tool steel, a method of improving high-temperature strength while maintaining toughness by determining the chemical composition range (see Patent Document 1), residual A technique for improving toughness and high-temperature strength by regulating the amount of carbide has been proposed (see Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2-179848
  • Patent Document 2 JP 2000-328196 A
  • Patent Document 1 cannot evaluate the level of toughness because there is no specific measurement value of toughness.
  • the range of chemical composition is insufficiently limited.
  • toughness and high temperature strength are hardened. Since it is greatly influenced by structures such as the martensite structure and bainite structure after this, it is not sufficient to specify the amount of residual carbide to control toughness and high-temperature strength at a high level.
  • An object of the present invention is to provide a hot work tool steel having more reliably superior toughness and high temperature strength, and a method for producing the same.
  • the present invention is, by mass%, C: 0.34-0.40%, Si: 0.3-0. 5%, Mn: 0.4 5-0. 75%, Ni: 0 to less than 0.5%, Cr: 4.9 to 5.5%, Mo and W are single or composite (Mo + l / 2W): 2.5 ⁇ 2.9%, V: 0.5 ⁇ 0.7%, balance Fe and inevitable impurities
  • the hot work tool steel of the present invention may be used after its hardness is adjusted to 40 HRC or higher, but it has excellent toughness and high temperature strength in a high hardness range of 43 HRC or higher, particularly 45 HRC or higher. Demonstrate the effect. 49HRC or less is desired!
  • the hot work tool steel of the present invention is preferably C, Si, Mn, Ni, Cr,
  • the present invention is a hot tool steel having the above component composition, the cross-sectional structure at the time of quenching includes a massive structure and a needle-like structure,
  • tempering hardness characterized by tempering the above hot tool steel so that the relationship value X between the tempering hardness (HRC) and the structure ratio represented by the following formula is 40 or more This is an excellent method for producing hot work tool steel.
  • the tempering hardness may be set to 40 to 49 HRC, but the preferable tempering hardness is 43 to 49 HRC, more preferably 45 to 49 HRC.
  • the present invention it is possible to combine the toughness and high-temperature strength of hot tool steel at a very high level. This effect is maximized not only in the hardness range of 40HRC or higher, but also when tempered in a high hardness range of 43HRC or higher, or even 45HRC or higher and 46HRC or higher. Therefore, it is an effective technology for the practical application of hot tool steel that can be applied to various environments.
  • the content of each element is controlled within an optimum range.
  • the content of each element is controlled to a limited range, and more preferably, by recognizing the quenching structure described later, the manufacturing method remains the same as before, for example, a wide range of quenching cooling rates.
  • Part of C is an essential element important for hot work tool steel, partly forming a solid solution in the base to give strength, and partly forming carbides to increase wear resistance and seizure resistance. It is.
  • C which is a solid interstitial atom, co-added with a substitution atom having a high affinity for C, such as Cr, has an I (interstitial atom) S (substitution atom) effect; Bow I Acts as a scratch resistance and is expected to increase strength.
  • the content is less than 0.34 mass%, sufficient hardness and wear resistance as a tool member cannot be secured.
  • the upper limit is made 0.40% by mass. It is preferably 0.35-0.39%, more preferably 0.36-0.38%.
  • Si is an element for improving machinability as well as a deoxidizer during steelmaking. In order to obtain these effects, it is necessary to add 0.3% by mass or more. However, if it is too much, a needle-like structure described later is developed and toughness is lowered. In addition, by suppressing the precipitation of cementite carbides in the bainite structure during quenching and cooling, the precipitation of carbides during alloying during tempering-aggregation and coarsening can be indirectly promoted to reduce high-temperature strength. Therefore, it should be 0.5% by mass or less. Preferably, it is 0.35–0.45%.
  • Mn has an effect of improving hardenability, suppressing the formation of ferrite, and obtaining appropriate quenching and tempering hardness. Moreover, if it exists in the structure as non-metallic inclusions MnS, it has a great effect on improving machinability. In order to obtain these effects, a force S that requires addition of 0.45% by mass or more is required S, and if it is too much, the viscosity of the base is increased and machinability is lowered, so the content is made 0.75% by mass or less. Preferably it is 0.5 to 0.7%.
  • Ni is an element that suppresses the formation of ferrite. Also, together with C, Cr, Mn, Mo, W, etc., it imparts excellent hardenability to the steel of the present invention, and suppresses the formation of needle-like structures described later even at moderate quenching and cooling rates. It is an effective additive element in order to form a martensite-based structure and prevent toughness deterioration. Furthermore, since it provides the essential toughness improvement effect of the base, it is a preferable element to be added, for example, 0.01% or more. The most important thing for the present invention is that the upper limit is strictly controlled even when Ni is added.
  • the amount is too large, the viscosity of the base is increased to reduce machinability, the high temperature strength is decreased, or the massive structure described later is developed to reduce toughness. It is necessary to make it less than 0.5% by mass. Preferably, the amount is restricted to 0.3% by mass or less.
  • Cr is an element that has the effect of enhancing hardenability and forming carbides to improve the base and strengthening wear resistance, and contributes to the improvement of temper softening resistance and high-temperature strength. It is an essential element for the hot work tool steel of the present invention. In order to obtain these effects, it is necessary to add 4.9% by mass or more. However, excessive addition causes a decrease in hardenability and high-temperature strength, so the upper limit is made 5.5% by mass. Preferably it is 5.0 to 5 ⁇ 4%, more preferably 5 ⁇ ;! to 5 ⁇ 3%.
  • Mo and W can be added singly or in combination in order to enhance hardenability and to give strength by precipitating fine carbides by tempering and to improve softening resistance. Since W is about twice the atomic weight of Mo, it can be defined as Mo + 1 / 2W (Of course,! /, Either one of them can be added, or both can be added together) . In order to obtain the above effect, it is necessary to add 2.5% by mass or more in terms of (Mo + 1 / 2W). Since lowering the toughness due to the development of too large a decrease in machinability described later acicular structure, a 2-9 mass 0/0 or less (Mo + 1 / 2W). Preferably, (Mo + 1 / 2W) is 2 ⁇ 6 to 2 ⁇ 8%.
  • V forms carbides and has the effect of enhancing the wear resistance of the base. It also increases resistance to temper softening and suppresses coarsening of crystal grains, contributing to improved toughness. In order to obtain this effect, it is necessary to add 0.5% by mass or more, but if it is too much, the machinability is reduced toughness. Preferably it is 0.55-0.65%.
  • the main elements that may remain as unavoidable impurities are P, S, Co, Cu, Al, Ca, Mg, 0, N, and the like. In order to achieve the maximum effect of the present invention, these should be as low as possible, but on the other hand, such as the form control of inclusions, other mechanical properties, or the improvement of production efficiency, Some inclusions and / or additions may be made for the purpose of obtaining additional effects. In this case, in mass%, P ⁇ 0.03%, S ⁇ 0.01%, Co ⁇ 0.05%, Cu ⁇ 0.25%, A1 ⁇ 0.025%, Ca ⁇ 0.01%, Mg If it is ⁇ 0.01%, O ⁇ 0.01%, N ⁇ 0.03%, it is considered that the basic characteristics of the hot work tool steel of the present invention are not particularly affected!
  • the present invention preferably has a great feature also when a solution approach from the organization is attempted.
  • the hot tool steel of the present invention satisfying the above component composition includes a massive structure and a needle-like structure in a cross-sectional structure at the time of quenching,
  • the quenched structure is a structure mainly composed of martensite and / or bainite obtained by cooling from the austenite temperature range, as is usually used.
  • the hardened structure of the present invention is substantially composed of the above-mentioned martensite and / or bainite and the remaining austenite in an appropriate amount, and the above-mentioned massive structure and acicular structure are the martensite. And / or part of bainite.
  • the massive structure and the acicular structure defined in the hardened structure of the present invention are feathered bainite (upper bainite) and acicular bainite (lower part) used for ordinary bainite fractionation. It is different from what follows the definition of (Bainite).
  • the massive structure of the present invention is a structure in which a large number of fine carbides having several kinds of orientations have grown inside the structure. And in the cross-sectional structure of steel, the block structure of the present invention is pushed and arranged in a “bulk shape” as shown. Since this massive structure is generated even at a cooling rate that is fast enough to air-cool a small sample of about 10 mm square, it is still difficult to reduce the massive structure when quenching a practical steel ingot, but it accounts for most of the entire structure. And toughness reduction. Therefore, in the present invention, it is preferable that the massive structure occupying in the quenched structure be 45% by area or less. More preferably, it is 40 area% or less, and further preferably 30 area% or less.
  • the needle-like structure of the present invention is a structure in which a large number of carbides have grown in the structure in comparison with the carbides in the massive structure having one direction. And then In the surface structure, the needle-like structure of the present invention has a “needle-like” shape.
  • This acicular structure is a force generated at a cooling rate slower than the cooling rate at which the massive structure begins to form. Again, it is difficult to reduce this acicular structure when quenching a practical steel ingot. However, if it accounts for most of the entire structure, the toughness is greatly degraded. Therefore, in the present invention, it is preferable that the acicular structure occupying the hardened structure be 40 area% or less. More preferably, it is 25 area% or less.
  • the massive tissue and the acicular tissue of the present invention can be visually sorted and quantified by cross-sectional observation by utilizing the difference in shape.
  • any cross section of the structure for example, by performing corrosion by the controlled potential electrolytic etching method (SPEED method), both structures having inferior corrosion resistance as compared with the martensite base with no precipitation of carbide are preferentially corroded.
  • the Fig. 1 shows a structure photograph of the corroded surface observed with a scanning electron microscope (X5000).
  • Figs. 2 and 3 as supplemental schematic diagrams, It is possible to quantitatively determine the acicular tissue.
  • FIG. 1 shows one field of view corresponding to the steel 6 of the present invention of Example 3 to be described later, in which the block structure is 27 area% and the acicular structure force is 0 area%.
  • FIG. 4 shows one field of view corresponding to the conventional steel 31 of Example 3 to be described later, in which the massive structure is 44 area% and the acicular structure is 16 area%.
  • the quenched structure structure of the present invention another important force is retained austenite.
  • this structure is a preferable structure for reduction as a deterioration factor of strength characteristics, an appropriate residual amount contributes to improvement of toughness in the present invention. Therefore, in the present invention, the retained austenite in the quenched structure is preferably 5 to 20% by volume. More preferably, it is 10% by volume or more.
  • volume ratio measurement using the diffraction intensity by X-ray diffractometry may be performed according to a conventional method, for example, using an electropolished sample.
  • the target tempering hardness is determined by tempering in the next step. Therefore, a hot tool with excellent toughness can be obtained by performing tempering so that X in the following relational expression is 40 or more. Steel is formed.
  • A% block structure area%
  • B% needle structure area%
  • C% residual austenite volume%
  • the above formula clarifies the specific influence parameters by studying the influence of the structure at the time of quenching and the tempering hardness on the toughness after tempering.
  • it is effective to reduce the massive structure and the needle-like structure.
  • it is particularly effective to reduce the needle-like structure that has a large coefficient on the negative side. It is.
  • the formula has a large coefficient on the positive side, it can be seen that an appropriate amount of retained austenite works to secure toughness.
  • the target hardness for example, 40HRC or more established as hot tool steel may be set, but it is even higher if it is hot tool steel satisfying the composition of composition and the quenching structure of the present invention.
  • Table 1 shows chemical compositions of the steels of the present invention, comparative steels and conventional steels.
  • the comparative steel is a steel having a chemical composition that is outside the limited narrow component range of the present invention
  • the conventional steel is a hot-work tool steel that is, of course, currently in general use, outside the component range of the present invention. .
  • time for example, it takes 10 minutes to cool from 1030 ° C to 525 ° C, it is expressed as “semi-cooled 10 minutes”). It was cooled in about 40 minutes semi-cooling to correspond to the part where the cooling rate was slow, such as the central part of steel. Then tempered at different temperatures, and adjusted to the hardness of 46HRC Bruno 0
  • Conventional steel 31 not only has a low Mo content, but also has a low C content and Ni, which has no added iron. The impact value tends to be low with a large amount of Mo
  • the inventive steels 1 to 13 having the optimum chemical composition maintain excellent toughness even when quenched at a slow cooling rate.
  • the comparative steel 23 is a composition in which only Ni, which is an element that enhances toughness as compared with the optimum composition according to the present invention, deviates from a high level. Therefore, the toughness is good even when the cooling rate is slow.
  • Comparative Steel 23 which is out of the narrow range of the optimum composition of the present invention, was excellent in toughness but inferior in high-temperature strength due to its excessive Ni content.
  • the steel of the present invention Yes It can be seen that the deviation is high and has high temperature strength.
  • the steel of the present invention 6, the comparative steels 21 to 23 and 26, and the conventional steels 31 and 32 produced in Example 1 are targeted for steel materials quenched at a slow cooling rate of about 40 minutes.
  • the following preliminary tissue observation was performed. First, 10 mm square tissue observation samples were collected from these steel materials, and the samples corroded by the S, PEED method were used and observed 5000 times with a scanning electron microscope.
  • images obtained from steel 6 of the present invention and conventional steel 31 are shown in FIGS. Using these images, the area ratio of the massive tissue and needle-like tissue was measured by image analysis.
  • Fig. 2 and Fig. 5 show the schematic diagrams of the massive structure of Invention Steel 6 and Conventional Steel 31 and Fig.
  • FIG. 3 shows the schematic diagram of the measurement of the acicular structure of Invention Steel 6 and Conventional Steel 31 (mark X). And is shown in FIG.
  • the average was taken as the area ratio.
  • the amount of retained austenite was measured by the X-ray diffraction method for the sample finished by electropolishing after repolishing the sample. Table 4 summarizes the above results.
  • Example 1 Although disclosed in Example 1, the result of the Charpy impact test is obtained together with the tempering hardness of the test piece and the value X derived from the relationship between the hardness and the tissue ratio of the present invention. Table 5 shows.
  • Comparative Steel 22 and Comparative Steel 26 with a low Mo content have a low impact value because a massive structure develops because the Ni content is too large. In both samples, the comparative steel 26 also has a high Si content, so a tendency to form a needle-like structure is also observed.
  • the quenched structure of the steel 6 of the present invention with the optimum chemical composition adjusted is evaluated, the needle-like braid develops, but the bulk structure is small, and above all, the toughness is improved. A lot of effective retained austenite remains. It is also excellent in the balance (ie, X value) of the above organization. Note that the hardened structure of comparative steel 23, which has good toughness because it contains a large amount of Ni, satisfies the X value force O or more even though it has a lot of massive structure. As described above, the high-temperature strength is inferior, though the strength is low.
  • FIG. 1 is a cross-sectional microphotograph showing an example of a quenched structure of the hot tool steel of the present invention.
  • FIG. 2 is a schematic diagram in which a massive structure is selected in the quenched structure of FIG.
  • FIG. 3 is a schematic diagram in which a needle-like structure is selected in the quenched structure of FIG.
  • FIG. 4 is a cross-sectional micrograph showing an example of a quenched structure of a hot work tool steel of a comparative example.
  • FIG. 5 is a schematic diagram in which a massive structure is selected for the quenched structure of FIG.
  • FIG. 6 A schematic diagram in which a needle-like structure is selected in the quenched structure of FIG.

Abstract

Disclosed is a hot-working tool steel having improved stiffness and high-temperature strength. Also disclosed is a method for producing the hot-working tool steel. The hot-working tool steel comprises the following components (by mass): C: 0.34-0.40%, Si: 0.3-0.5%, Mn: 0.45-0.75%, Ni: 0-0.5% (exclusive), Cr: 4.9-5.5%, (Mo+1/2W): 2.5-2.9% (provided that Mo and W are contained singly or in combination), and V: 0.5-0.7%, with the remainder being Fe and unavoidable impurities. Preferably, the cross-sectional structure of the hot-working tool steel upon quenching contains a bulk structure and a needle-like structure, wherein the bulk structure (A%) accounts for 45 area% or less, the needle-like structure (B%) accounts for 40 area% or less, and the remaining austenite (C%) accounts for 5 to 20 volume%. Also disclosed is a method for producing a hot-working tool steel, which comprises tempering the above-mentioned hot-working tool steel so that a value X determined by the following relational expression between a tempered hardness (HRC) and the percentages of the tissues becomes 40 or greater. X = [-0.36×(HRC)-1.47×(A%)-1.67×(B%)+6.55×(C%)+72.91]

Description

明 細 書  Specification
靭性および高温強度に優れた熱間工具鋼およびその製造方法 技術分野  Hot work tool steel with excellent toughness and high temperature strength and its manufacturing method
[0001] 本発明は、プレス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間 工具に供して最適な、靭性および高温強度を向上させた熱間工具鋼と、その製造方 法に関するものである。  [0001] The present invention relates to a hot tool steel with improved toughness and high-temperature strength that is optimal for various hot tools such as press dies, forging dies, die casting dies, and extrusion tools, and a method for producing the same. It is about the law.
背景技術  Background art
[0002] 熱間工具は、高温の被加工材ゃ硬質な被加工材と接触しながら使用されるため、 熱疲労や衝撃に耐えうる強度と靭性を兼ね備えている必要がある。そのため、従来 熱間工具の分野には、例えば JIS鋼種である SKD61系の合金工具鋼が用いられて いた。さらに最近では、熱間工具を使用して製造される製品の製造時間の短縮ゃ複 雑形状の成形のために被加工材が高温化してきていることや、製品の複数同時カロェ に伴って金型等の熱間工具も大型化してきて!/、ることなどから、熱間工具材料にはさ らに高い高温強度と大型サイズでも内部まで高い靭性を確保できることが求められて いる。  [0002] Since a hot tool is used while being in contact with a high-temperature work material or a hard work material, it must have both strength and toughness that can withstand thermal fatigue and impact. For this reason, for example, SKD61-based alloy tool steel, which is a JIS steel type, has been used in the field of hot tools. More recently, if the manufacturing time of products manufactured using hot tools has been shortened, the temperature of workpieces has increased due to the formation of complex shapes, and the number of products has increased due to simultaneous simultaneous production of products. As hot tools such as molds have become larger! /, Etc., hot tool materials are required to have high high-temperature strength and high toughness even at large sizes.
[0003] 合金工具鋼の靭性と高温強度を改善することを目的として、化学組成の範囲を定 めることにより靭性を維持しつつ高温強度を改善する手法や (特許文献 1参照)、残 留炭化物の量を規定することにより靭性および高温強度を改善する手法が提案され ている(特許文献 2参照)。  [0003] For the purpose of improving the toughness and high-temperature strength of alloy tool steel, a method of improving high-temperature strength while maintaining toughness by determining the chemical composition range (see Patent Document 1), residual A technique for improving toughness and high-temperature strength by regulating the amount of carbide has been proposed (see Patent Document 2).
特許文献 1:特開平 2— 179848号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-179848
特許文献 2 :特開 2000— 328196号公報  Patent Document 2: JP 2000-328196 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、上述の特許文献 1は、靭性の具体的な測定値が無いことから靭性のレベル を評価することはできないが、本発明者が行った検討結果から判断するに、靭性およ び高温強度を十分に高いレベルで兼備するためには化学組成の範囲の限定が不十 分である。また、上述の特許文献 2の方法においても、靭性および高温強度は焼入 れ後のマルテンサイト組織やべイナイト組織などの組織の影響を大きく受けるため、 靭性および高温強度を高いレベルで制御するためには残留炭化物量を規定するだ けでは不十分である。 [0004] However, the above-mentioned Patent Document 1 cannot evaluate the level of toughness because there is no specific measurement value of toughness. In order to combine high-temperature strength at a sufficiently high level, the range of chemical composition is insufficiently limited. Also in the method of Patent Document 2 described above, toughness and high temperature strength are hardened. Since it is greatly influenced by structures such as the martensite structure and bainite structure after this, it is not sufficient to specify the amount of residual carbide to control toughness and high-temperature strength at a high level.
[0005] 本発明の目的は、より確実に優れた靭性および高温強度を有する熱間工具鋼と、 その製造方法を提供することである。  [0005] An object of the present invention is to provide a hot work tool steel having more reliably superior toughness and high temperature strength, and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者が鋭意研究を行った結果、靭性および高温強度には焼入れ後の組織が 大きく影響することを突き止め、優れた靭性および高温強度を兼ね備えるために好 適な焼入れ後の組織を明らかにした。そして、好適な焼入れ後の組織を得るために は、各元素の含有量を最適な範囲に制御することによってこそ得られる、その極めて 狭レ、好組成域が存在することを見出し、本発明に到達した。 [0006] As a result of intensive studies by the present inventors, it has been found that the structure after quenching has a great influence on toughness and high-temperature strength, and a structure after quenching suitable for combining excellent toughness and high-temperature strength has been found. Revealed. In order to obtain a suitable quenched structure, it is found that there is an extremely narrow and favorable composition range that can be obtained by controlling the content of each element within the optimum range. Reached.
[0007] すなわち本発明は、質量%で、 C:0.34—0.40%、 Si:0.3〜0· 5%、 Mn:0.4 5〜0· 75%、Ni:0〜0.5%未満、 Cr:4.9〜5· 5%、 Moおよび Wは単独または複 合で(Mo+l/2W) :2.5〜2.9%、V:0.5〜0· 7%、残部 Feおよび不可避的不 純物からなることを特徴とする靭性および高温強度に優れた熱間工具鋼である。本 発明の熱間工具鋼は、例えばその硬さを 40HRC以上に調質して使用すればよいが 、 43HRC以上、特に 45HRC以上の高硬さ域において、その優れた靭性および高 温強度の兼備効果を発揮する。 49HRC以下が望まし!/、。 [0007] That is, the present invention is, by mass%, C: 0.34-0.40%, Si: 0.3-0. 5%, Mn: 0.4 5-0. 75%, Ni: 0 to less than 0.5%, Cr: 4.9 to 5.5%, Mo and W are single or composite (Mo + l / 2W): 2.5 ~ 2.9%, V: 0.5 ~ 0.7%, balance Fe and inevitable impurities It is a hot work tool steel with excellent toughness and high temperature strength. For example, the hot work tool steel of the present invention may be used after its hardness is adjusted to 40 HRC or higher, but it has excellent toughness and high temperature strength in a high hardness range of 43 HRC or higher, particularly 45 HRC or higher. Demonstrate the effect. 49HRC or less is desired!
[0008] ここで、本発明の熱間工具鋼に好ましくは、それを構成する C, Si, Mn, Ni, Cr,[0008] Here, the hot work tool steel of the present invention is preferably C, Si, Mn, Ni, Cr,
Mo, W、 Vの各元素のうちの 1種または 2種以上力 S、さらに下記の狭組成域を満たす ことである。これにおいては、勿論、その全てを満たすことが望ましい。 One or more of the elements of Mo, W, and V, force S, and the following narrow composition range. In this, of course, it is desirable to satisfy all of them.
C:0.35—0.39%、  C: 0.35-0.39%,
Si:0.35—0.45%、  Si: 0.35-0.45%,
Μη:0.5〜0· 7%、  Μη: 0.5 to 7%,
Ni:0.01—0.3%、  Ni: 0.01—0.3%,
Cr:5.0—5.4%、  Cr: 5.0—5.4%,
Moおよび Wは単独または複合で(Mo+l/2W) :2· 6〜2· 8%、  Mo and W alone or in combination (Mo + l / 2W): 2 · 6 to 2 · 8%
V:0.55—0.65% [0009] また、本発明は、上記の成分組成を有する熱間工具鋼であって、その焼入れ時の 断面組織は、塊状組織および針状組織を含み、 V: 0.55-0.65% [0009] Further, the present invention is a hot tool steel having the above component composition, the cross-sectional structure at the time of quenching includes a massive structure and a needle-like structure,
塊状組織 (A%) : 45面積%以下、  Bulk texture (A%): 45 area% or less,
針状組織 (B%) : 40面積%以下、  Needle-like tissue (B%): 40 area% or less,
残留オーステナイト(C%) : 5〜20体積0 /0 It retained austenite (C%): 5~20 volume 0/0
であることを特徴とする靭性および高温強度に優れた熱間工具鋼である。  It is a hot work tool steel excellent in toughness and high temperature strength.
[0010] そして、上記の熱間工具鋼を、下記数式で示される焼戻し硬さ(HRC)と組織割合 との関係値 Xが 40以上であるように焼戻すことを特徴とする靭性および高温強度に 優れた熱間工具鋼の製造方法である。焼戻し硬さは 40〜49HRCを設定すればよ いが、好ましい焼戻し硬さは 43〜49HRC、より好ましくは 45〜49HRCである。 [0010] And, toughness and high temperature strength characterized by tempering the above hot tool steel so that the relationship value X between the tempering hardness (HRC) and the structure ratio represented by the following formula is 40 or more This is an excellent method for producing hot work tool steel. The tempering hardness may be set to 40 to 49 HRC, but the preferable tempering hardness is 43 to 49 HRC, more preferably 45 to 49 HRC.
X= [-0. 36 X (HRC) - l . 47 X (A%)— 1 · 67 Χ (Β%) + 6. 55 Χ (C%) + 72. 91]  X = [-0. 36 X (HRC)-l. 47 X (A%) — 1 · 67 Χ (Β%) + 6. 55 Χ (C%) + 72. 91]
発明の効果  The invention's effect
[0011] 本発明によれば熱間工具鋼の靭性および高温強度を非常に高いレベルで兼備す ること力 Sできる。そして、この効果は、 40HRC以上の硬さ域においては勿論のこと、 例えば 43HRC以上、更には 45HRC以上、 46HRC以上の高硬さ域に調質した時 において、最大限に発揮される。よって、多種熱間の用途 '環境に適用が可能な熱 間工具鋼の実用化にとって有効な技術となる。  [0011] According to the present invention, it is possible to combine the toughness and high-temperature strength of hot tool steel at a very high level. This effect is maximized not only in the hardness range of 40HRC or higher, but also when tempered in a high hardness range of 43HRC or higher, or even 45HRC or higher and 46HRC or higher. Therefore, it is an effective technology for the practical application of hot tool steel that can be applied to various environments.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 上述したように、本発明の重要な特徴の 1つは、各元素の含有量を最適な範囲に 制御したことにある。すなわち、各元素の含有量を限定的な範囲に制御し、更に望ま しくは、後述の焼入組織をも認識することで、製造方法は従来のままで、例えば広い 範囲の焼入冷却速度の他、任意の焼入方法でも靭性および高温強度を高!、レベル で兼備できる組織を得ることができる狭組成域が存在するのであって、それを特定で きたところに特徴を有する。すなわち、基本元素においては、 C Cr量の関係は従 来のバランスを踏襲しながらも、これに相互関係する他の炭化物形成元素の Mo, W , Vの最適調整と、そして、これら基本元素の調整による結果特性には多大な影響を 及ぼす Siや Niの調整こそが重要なのである。以下、本発明鋼の狭組成域で構成さ れる成分限定の理由につ!/、て述べる。 [0012] As described above, one of the important features of the present invention is that the content of each element is controlled within an optimum range. In other words, the content of each element is controlled to a limited range, and more preferably, by recognizing the quenching structure described later, the manufacturing method remains the same as before, for example, a wide range of quenching cooling rates. In addition, there is a narrow composition range in which a toughness and high-temperature strength can be obtained by any quenching method, and a structure that can be combined at a level can be obtained. That is, in the basic elements, while the relationship of C Cr content follows the conventional balance, the optimum adjustment of Mo, W, V of other carbide forming elements that are related to this, and the basic elements It is important to adjust Si and Ni, which have a great influence on the resulting characteristics of the adjustment. Hereinafter, it is composed of a narrow composition range of the steel of the present invention. The reasons for limiting the ingredients are described!
[0013] Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩 耗性ゃ耐焼付き性を高める、熱間工具鋼には重要な必須元素である。また、固溶し た侵入型原子である Cは、 Crなどの Cと親和性の大きい置換型原子と共添加した場 合、 I (侵入型原子) S (置換型原子)効果;溶質原子の弓 Iきずり抵抗として作用し高 強度化する効果も期待される。ただし、含有量が 0. 34質量%未満では工具部材とし て十分な硬さ、耐摩耗性を確保できなくなる。他方、過度の添加は靭性ゃ熱間強度 の低下を招くため上限を 0. 40質量%とする。好ましくは 0. 35-0. 39%、更に好ま しくは 0. 36—0. 38%である。  [0013] Part of C is an essential element important for hot work tool steel, partly forming a solid solution in the base to give strength, and partly forming carbides to increase wear resistance and seizure resistance. It is. In addition, C, which is a solid interstitial atom, co-added with a substitution atom having a high affinity for C, such as Cr, has an I (interstitial atom) S (substitution atom) effect; Bow I Acts as a scratch resistance and is expected to increase strength. However, if the content is less than 0.34 mass%, sufficient hardness and wear resistance as a tool member cannot be secured. On the other hand, excessive addition causes toughness and a decrease in hot strength, so the upper limit is made 0.40% by mass. It is preferably 0.35-0.39%, more preferably 0.36-0.38%.
[0014] Siは、製鋼時の脱酸剤であるとともに被削性を高める元素である。これらの効果を 得るためには 0. 3質量%以上の添加が必要であるが、多過ぎると後述の針状組織を 発達させて靭性を低下させる。また、焼入冷却時のベイナイト組織中のセメンタイト系 の炭化物の析出を抑制することにより、間接的に焼戻し時の合金炭化物の析出'凝 集-粗大化を促進して高温強度を低下させたりするので 0. 5質量%以下とする。好ま しくは 0. 35—0. 45%である。  [0014] Si is an element for improving machinability as well as a deoxidizer during steelmaking. In order to obtain these effects, it is necessary to add 0.3% by mass or more. However, if it is too much, a needle-like structure described later is developed and toughness is lowered. In addition, by suppressing the precipitation of cementite carbides in the bainite structure during quenching and cooling, the precipitation of carbides during alloying during tempering-aggregation and coarsening can be indirectly promoted to reduce high-temperature strength. Therefore, it should be 0.5% by mass or less. Preferably, it is 0.35–0.45%.
[0015] Mnは、焼入性を高め、フェライトの生成を抑制し、適度の焼入れ焼戻し硬さを得る 効果がある。また、非金属介在物 MnSとして組織中に存在すれば、被削性の向上に 大きな効果がある。これらの効果を得るためには 0. 45質量%以上の添加が必要で ある力 S、多過ぎると基地の粘さを上げて被削性を低下させるので 0. 75質量%以下と する。好ましくは 0. 5〜0· 7%である。  [0015] Mn has an effect of improving hardenability, suppressing the formation of ferrite, and obtaining appropriate quenching and tempering hardness. Moreover, if it exists in the structure as non-metallic inclusions MnS, it has a great effect on improving machinability. In order to obtain these effects, a force S that requires addition of 0.45% by mass or more is required S, and if it is too much, the viscosity of the base is increased and machinability is lowered, so the content is made 0.75% by mass or less. Preferably it is 0.5 to 0.7%.
[0016] Niは、フェライトの生成を抑制する元素である。また、 C、 Cr、 Mn、 Mo、 Wなどとと もに本発明鋼に優れた焼入性を付与し、緩やかな焼入冷却速度の場合にも、後述の 針状組織の生成を抑制する効果があり、マルテンサイト主体の組織を形成させ、靭性 の低下を防ぐために重要な添加元素である。さらに、基地の本質的な靭性改善効果 を与えることから、例えば 0. 01 %以上といった添加の好ましい元素である。そして、 本発明にとって何よりも重要なことは、この Niを添加した場合であっても、上限を厳重 に規制管理することである。つまり、多過ぎると基地の粘さを上げて被削性を低下さ せたり、高温強度を低下させたり、また、後述の塊状組織を発達させて靭性を低下さ せたりするので、 0. 5質量%未満とする必要がある。好ましくは、 0. 3質量%以下に 規制することである。 [0016] Ni is an element that suppresses the formation of ferrite. Also, together with C, Cr, Mn, Mo, W, etc., it imparts excellent hardenability to the steel of the present invention, and suppresses the formation of needle-like structures described later even at moderate quenching and cooling rates. It is an effective additive element in order to form a martensite-based structure and prevent toughness deterioration. Furthermore, since it provides the essential toughness improvement effect of the base, it is a preferable element to be added, for example, 0.01% or more. The most important thing for the present invention is that the upper limit is strictly controlled even when Ni is added. In other words, if the amount is too large, the viscosity of the base is increased to reduce machinability, the high temperature strength is decreased, or the massive structure described later is developed to reduce toughness. It is necessary to make it less than 0.5% by mass. Preferably, the amount is restricted to 0.3% by mass or less.
[0017] Crは焼入性を高めて、また、炭化物を形成して基地の強化ゃ耐摩耗性を向上させ る効果を有する元素であり、焼戻し軟化抵抗および高温強度の向上にも寄与する、 本発明の熱間工具鋼には必須の元素である。これらの効果を得るため 4. 9質量%以 上添加する必要がある。ただし、過度の添加は焼入性や高温強度の低下を招くため 、上限を 5· 5質量%とする。好ましくは 5. 0〜5· 4%、更に好ましくは 5·;!〜 5· 3% である。  [0017] Cr is an element that has the effect of enhancing hardenability and forming carbides to improve the base and strengthening wear resistance, and contributes to the improvement of temper softening resistance and high-temperature strength. It is an essential element for the hot work tool steel of the present invention. In order to obtain these effects, it is necessary to add 4.9% by mass or more. However, excessive addition causes a decrease in hardenability and high-temperature strength, so the upper limit is made 5.5% by mass. Preferably it is 5.0 to 5 · 4%, more preferably 5 · ;! to 5 · 3%.
[0018] Moおよび Wは、焼入性を高めるとともに、焼戻しにより微細炭化物を析出させて強 度を付与し、軟化抵抗を向上させるために単独または複合で添加できる。 Wは Moの 約 2倍の原子量であることから Mo + 1/2Wで規定することができる(当然、!/、ずれか 一方のみの添加としても良いし、双方を共添加することもできる)。そして、前記した効 果を得るためには(Mo+ l/2W)で 2. 5質量%以上の添加が必要である。多過ぎる と被削性の低下や後述の針状組織の発達による靭性の低下を招くので、(Mo+ 1/ 2W)で 2· 9質量0 /0以下とする。好ましくは(Mo+ l/2W)で 2· 6〜2· 8%である。 [0018] Mo and W can be added singly or in combination in order to enhance hardenability and to give strength by precipitating fine carbides by tempering and to improve softening resistance. Since W is about twice the atomic weight of Mo, it can be defined as Mo + 1 / 2W (Of course,! /, Either one of them can be added, or both can be added together) . In order to obtain the above effect, it is necessary to add 2.5% by mass or more in terms of (Mo + 1 / 2W). Since lowering the toughness due to the development of too large a decrease in machinability described later acicular structure, a 2-9 mass 0/0 or less (Mo + 1 / 2W). Preferably, (Mo + 1 / 2W) is 2 · 6 to 2 · 8%.
[0019] Vは、炭化物を形成し、基地の強化ゃ耐摩耗性向上の効果を有する。また、焼戻し 軟化抵抗を高めるとともに結晶粒の粗大化を抑制し、靭性向上に寄与する。この効 果を得るためには 0. 5質量%以上を添加する必要があるが、多過ぎると被削性ゃ靭 性の低下を招くので 0· 7質量%以下とする。好ましくは 0. 55-0. 65%である。  [0019] V forms carbides and has the effect of enhancing the wear resistance of the base. It also increases resistance to temper softening and suppresses coarsening of crystal grains, contributing to improved toughness. In order to obtain this effect, it is necessary to add 0.5% by mass or more, but if it is too much, the machinability is reduced toughness. Preferably it is 0.55-0.65%.
[0020] なお、不可避的不純物として、残留する可能性のある主な元素は、 P、 S、 Co、 Cu、 Al、 Ca、 Mg、 0、 N等である。本発明の作用効果を最大限に達成するためには、こ れらはできるだけ低い方が望ましいが、一方では、介在物の形態制御や、その他の 機械的特性、あるいは製造効率の向上などの、付加的な作用効果を得る目的のもと では、多少の含有および/または添加することもできる。この場合、質量%で、 P≤0 . 03%, S≤0. 01 %, Co≤0. 05%, Cu≤0. 25%, A1≤0. 025%, Ca≤0. 01 %、 Mg≤0. 01 %、 O≤0. 01 %、 N≤0. 03%であれば、本発明の熱間工具鋼の 基本特性に特に大きな影響を及ぼさな!/、と考えられるので、この範囲であれば許容 でき、好ましい規制上限である。 [0021] そして、上述の成分組成の重要性に加えて好ましくは、本発明は、その組織からの 解決アプローチを試みたところにも、大きな特徴を有する。つまり、合金工具鋼の機 械的特性に影響を及ぼす「組織的要因」をも研究することで、本発明の極狭域でなる 最適な成分範囲に併せては、最適な組織をも特定したものである。すなわち、上記の 成分組成を満たす本発明の熱間工具鋼は、その焼入れ時の断面組織において、塊 状組織および針状組織を含み、 [0020] The main elements that may remain as unavoidable impurities are P, S, Co, Cu, Al, Ca, Mg, 0, N, and the like. In order to achieve the maximum effect of the present invention, these should be as low as possible, but on the other hand, such as the form control of inclusions, other mechanical properties, or the improvement of production efficiency, Some inclusions and / or additions may be made for the purpose of obtaining additional effects. In this case, in mass%, P≤0.03%, S≤0.01%, Co≤0.05%, Cu≤0.25%, A1≤0.025%, Ca≤0.01%, Mg If it is ≤0.01%, O≤0.01%, N≤0.03%, it is considered that the basic characteristics of the hot work tool steel of the present invention are not particularly affected! Is acceptable and is the preferred upper limit of regulation. [0021] In addition to the importance of the above-described component composition, the present invention preferably has a great feature also when a solution approach from the organization is attempted. In other words, by studying the “structural factors” that affect the mechanical properties of alloy tool steels, we have identified the optimum structure in addition to the optimum component range in the extremely narrow range of the present invention. Is. That is, the hot tool steel of the present invention satisfying the above component composition includes a massive structure and a needle-like structure in a cross-sectional structure at the time of quenching,
塊状組織 (A%) : 45面積%以下、  Bulk texture (A%): 45 area% or less,
針状組織 (B%) : 40面積%以下、  Needle-like tissue (B%): 40 area% or less,
残留オーステナイト(C%) : 5〜20体積0 /0 It retained austenite (C%): 5~20 volume 0/0
である。  It is.
[0022] 最初に、焼入組織とは、通常用いられている通りの、オーステナイト温度域からの冷 却により得られた、マルテンサイトおよび/またはべイナイトを主体に構成された組織 である。そして、本発明の焼入組織は、実質、上記のマルテンサイトおよび/または ベイナイトと、あとは適少量の残留オーステナイトで構成されているところ、上記の塊 状組織および針状組織は、このマルテンサイトおよび/またはべイナイトの一部で構 成されているものである。ここで、本発明の焼入組織中にて定義される塊状組織およ び針状組織とは、通常のベイナイト分別に用いられる羽毛状べイナイト(上部べイナ イト)や針状べイナイト(下部べイナイト)の定義に則するものとは異なる。  [0022] First, the quenched structure is a structure mainly composed of martensite and / or bainite obtained by cooling from the austenite temperature range, as is usually used. The hardened structure of the present invention is substantially composed of the above-mentioned martensite and / or bainite and the remaining austenite in an appropriate amount, and the above-mentioned massive structure and acicular structure are the martensite. And / or part of bainite. Here, the massive structure and the acicular structure defined in the hardened structure of the present invention are feathered bainite (upper bainite) and acicular bainite (lower part) used for ordinary bainite fractionation. It is different from what follows the definition of (Bainite).
[0023] つまり、本発明の塊状組織とは、その組織内部に数種類の方向性を持った微細な 炭化物が多数成長した組織である。そして、鋼の断面組織において、本発明の塊状 組織は、その表記の通り、押し並べて「塊状」を呈している。この塊状組織は、 10mm 角程度の小さな試料を空冷するくらいの速い冷却速度でも生成するため、実用鋼塊 の焼入れ時においては、なおさら塊状組織を低減することは難しいが、全組織の多く を占めると、靱性の低下をもたらす。よって、本発明においては、焼入組織中に占め る塊状組織を 45面積%以下とすることが好ましい。より好ましくは 40面積%以下、更 に好ましくは 30面積%以下である。  That is, the massive structure of the present invention is a structure in which a large number of fine carbides having several kinds of orientations have grown inside the structure. And in the cross-sectional structure of steel, the block structure of the present invention is pushed and arranged in a “bulk shape” as shown. Since this massive structure is generated even at a cooling rate that is fast enough to air-cool a small sample of about 10 mm square, it is still difficult to reduce the massive structure when quenching a practical steel ingot, but it accounts for most of the entire structure. And toughness reduction. Therefore, in the present invention, it is preferable that the massive structure occupying in the quenched structure be 45% by area or less. More preferably, it is 40 area% or less, and further preferably 30 area% or less.
[0024] 次に、本発明の針状組織とは、その組織内部に、 1つの方向性を持った上記の塊 状組織中の炭化物と比較して長い炭化物が、多数成長した組織である。そして、断 面組織において、本発明の針状組織は「針状」を呈している。この針状組織は、塊状 組織が生成し始める冷却速度よりも遅い冷却速度で生成する力 やはり実用鋼塊の 焼入れ時においては、この針状組織も低減することは難しい。しかし、全組織の多く を占めると、靱性が大きく劣化する。よって、本発明においては、焼入組織中に占め る針状組織を 40面積%以下とすることが好ましい。より好ましくは、 25面積%以下で ある。 [0024] Next, the needle-like structure of the present invention is a structure in which a large number of carbides have grown in the structure in comparison with the carbides in the massive structure having one direction. And then In the surface structure, the needle-like structure of the present invention has a “needle-like” shape. This acicular structure is a force generated at a cooling rate slower than the cooling rate at which the massive structure begins to form. Again, it is difficult to reduce this acicular structure when quenching a practical steel ingot. However, if it accounts for most of the entire structure, the toughness is greatly degraded. Therefore, in the present invention, it is preferable that the acicular structure occupying the hardened structure be 40 area% or less. More preferably, it is 25 area% or less.
[0025] ここで、本発明の塊状組織および針状組織は、その形状の差異を利用することで、 断面観察による視覚的な分別'定量をすることができる。すなわち、任意の組織断面 においては、例えば定電位電解エッチング法(SPEED法)による腐食を行うことで、 炭化物が無析出のマルテンサイト基地に比しては耐食性の劣る両組織は優先的に 腐食される。そして、その腐食面を走査型電子顕微鏡(X 5000倍)にて観察した組 織写真が図 1であるが、補足の模式図として図 2、図 3にも示す通り、本発明の塊状 組織および針状組織の分別定量が可能である。なお、この場合、本発明では、最大 長さで 0. 5 in程度以上の両組織を観察対象として、任意 3視野の観察を行えば、 その作用効果を特定するのに十分である。図 1は、塊状組織が 27面積%、針状組織 力 ¾0面積%の、後述の実施例 3の本発明鋼 6に相当するもののうちの 1視野である。 そして、図 4は、塊状組織が 44面積%、針状組織が 16面積%の、後述の実施例 3の 従来鋼 31に相当するもののうちの 1視野である。  [0025] Here, the massive tissue and the acicular tissue of the present invention can be visually sorted and quantified by cross-sectional observation by utilizing the difference in shape. In other words, in any cross section of the structure, for example, by performing corrosion by the controlled potential electrolytic etching method (SPEED method), both structures having inferior corrosion resistance as compared with the martensite base with no precipitation of carbide are preferentially corroded. The Fig. 1 shows a structure photograph of the corroded surface observed with a scanning electron microscope (X5000). As shown in Figs. 2 and 3 as supplemental schematic diagrams, It is possible to quantitatively determine the acicular tissue. In this case, in the present invention, observation of three arbitrary fields of view with both tissues having a maximum length of about 0.5 in or more is sufficient to identify the action and effect. FIG. 1 shows one field of view corresponding to the steel 6 of the present invention of Example 3 to be described later, in which the block structure is 27 area% and the acicular structure force is 0 area%. FIG. 4 shows one field of view corresponding to the conventional steel 31 of Example 3 to be described later, in which the massive structure is 44 area% and the acicular structure is 16 area%.
[0026] また、本発明の焼入組織構成においては、もう 1つ重要となるの力 残留オーステ ナイトである。この組織は、強度特性の劣化要因として、低減の好ましい組織であると ころ、本発明においては、適当な残留量が靭性の向上に寄与する。よって、本発明 では、焼入組織中に占める残留オーステナイトを 5〜20体積%とすることが好ましい 。より好ましくは、 10体積%以上である。なお、残留オースナイトの定量は、常法に従 つて、例えば電解研磨した試料を用いて X線回折法による回折強度を利用した体積 率測定を行えばいよい。  [0026] Further, in the quenched structure structure of the present invention, another important force is retained austenite. Although this structure is a preferable structure for reduction as a deterioration factor of strength characteristics, an appropriate residual amount contributes to improvement of toughness in the present invention. Therefore, in the present invention, the retained austenite in the quenched structure is preferably 5 to 20% by volume. More preferably, it is 10% by volume or more. For determination of retained austenite, volume ratio measurement using the diffraction intensity by X-ray diffractometry may be performed according to a conventional method, for example, using an electropolished sample.
[0027] そして、本発明の熱間工具鋼の製造方法においては、上記の成分組成および焼 入組織構成を満たした上では、次工程の焼戻しにて目標とする調質硬さを定めた上 で、以下の関係式の Xが 40以上となる焼戻しを行うことで、靱性に優れた熱間工具 鋼が成立する。 [0027] Then, in the method for producing a hot work tool steel of the present invention, after satisfying the above component composition and quenching structure configuration, the target tempering hardness is determined by tempering in the next step. Therefore, a hot tool with excellent toughness can be obtained by performing tempering so that X in the following relational expression is 40 or more. Steel is formed.
X=[— 0. 36X (HRC)-l.47X (A%)-1. 67X (B%)+6. 55X (C%)+72. 91]  X = [— 0. 36X (HRC) -l.47X (A%)-1. 67X (B%) + 6.55X (C%) + 72. 91]
A%:塊状組織面積%, B%:針状組織面積%, C%:残留オーステナイト体積%  A%: block structure area%, B%: needle structure area%, C%: residual austenite volume%
[0028] つまり、上式は、焼戻し後の靱性に及ぼす、焼入れ時の組織と、焼戻し硬さの影響 度を研究したことで、その具体的な影響パラメータを明確にしたものである。焼戻し後 の靱性を確保するには、塊状組織および針状組織の低減が有効であり、両者のうち でも、数式にぉレ、て負側に大きな係数を有した針状組織の低減が特に有効である。 一方では、数式において正側に大きな係数を有していることから、適量の残留オース テナイトが靱性の確保に有利に働くことがわかる。そして、狙い硬さとしては、例えば 熱間工具鋼として成立する 40HRC以上を設定しても良いが、本発明の成分組成と 焼入組織構成を満たした熱間工具鋼であればこそ、さらに高い硬さ、例えば 43HRC 以上、そして 45HRC以上もの硬さを狙っても、十分な靱性を確保できるのである。し 力、しながら、顕著な靱性向上効果を保持しておく上では、 49HRC以下の焼戻し硬さ にとどめておくのが好ましい。 [0028] That is, the above formula clarifies the specific influence parameters by studying the influence of the structure at the time of quenching and the tempering hardness on the toughness after tempering. In order to secure toughness after tempering, it is effective to reduce the massive structure and the needle-like structure. Among them, it is particularly effective to reduce the needle-like structure that has a large coefficient on the negative side. It is. On the other hand, since the formula has a large coefficient on the positive side, it can be seen that an appropriate amount of retained austenite works to secure toughness. And as the target hardness, for example, 40HRC or more established as hot tool steel may be set, but it is even higher if it is hot tool steel satisfying the composition of composition and the quenching structure of the present invention. Sufficient toughness can be secured even when aiming for hardness, for example, 43HRC or more, and hardness of 45HRC or more. However, in order to maintain a remarkable toughness improving effect, it is preferable to keep the tempering hardness below 49 HRC.
実施例 1  Example 1
[0029] 表 1に本発明鋼、比較鋼および従来鋼の化学成分を示す。比較鋼は本発明の限ら れた狭成分範囲から外れている化学組成の鋼、従来鋼は現在一般的に使用されて いる、当然のことながら本発明の成分範囲外の熱間工具鋼である。  [0029] Table 1 shows chemical compositions of the steels of the present invention, comparative steels and conventional steels. The comparative steel is a steel having a chemical composition that is outside the limited narrow component range of the present invention, and the conventional steel is a hot-work tool steel that is, of course, currently in general use, outside the component range of the present invention. .
[0030] [表 1] [0030] [Table 1]
(質量 °/。)
Figure imgf000011_0001
(Mass ° /.)
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0002
※不純物を含む * Contains impurities
これらの本発明鋼、比較鋼および従来鋼は、真空誘導溶解炉にて 10kgずつ溶製 した鋼塊に、 1250°Cで 5時間の均質化熱処理を施した後、 1150°Cで熱間鍛造する ことによって 30mm厚さ X 60mm幅の鋼材を作製した。その後、 860°Cで焼なまし処 理したのち、 1030°Cで焼入処理した。焼入れは加圧ガス冷却にて行い、焼入温度( 1030°C)から焼入温度と室温(20°C)との中間の温度(525°C)まで冷却するのに要 する時間を半冷時間と定義した場合 (例えば、 1030°Cから 525°Cまで冷却するのに 10分力かる場合「半冷 10分」と表す)、急冷に対応するものとして半冷 3分程度、大 型サイズの鋼材の中心部のように冷却速度が遅くなる部分に対応するものとして半冷 40分程度で冷却した。その後、種々の温度で焼戻し処理して、 46HRCの硬さに調 しノ 0 These steels of the present invention, comparative steels, and conventional steels were subjected to homogenization heat treatment at 1250 ° C for 5 hours on steel ingots that were melted by 10kg each in a vacuum induction melting furnace, and then hot forged at 1150 ° C. As a result, a steel material 30 mm thick x 60 mm wide was produced. Then, after annealing at 860 ° C, it was quenched at 1030 ° C. Quenching is performed by pressurized gas cooling, and the time required for cooling from the quenching temperature (1030 ° C) to the intermediate temperature (525 ° C) between the quenching temperature and room temperature (20 ° C) is semi-cooled. If it is defined as time (for example, it takes 10 minutes to cool from 1030 ° C to 525 ° C, it is expressed as “semi-cooled 10 minutes”). It was cooled in about 40 minutes semi-cooling to correspond to the part where the cooling rate was slow, such as the central part of steel. Then tempered at different temperatures, and adjusted to the hardness of 46HRC Bruno 0
差替え用紙(規逝 26》 [0032] 上記のようにして作製した表 1の本発明鋼、比較鋼および従来鋼から、鍛造後の鋼 材の幅方向に試験片の長手方向、鋼材の長手方向に試験片のノッチ方向がくるよう に(すなわち T方向力、ら採取)して作製した 2mmUノッチシャルピー衝撃試験片を用 いて、室温でシャルピー衝撃試験した結果を表 2に示す。この T方向力、ら採取し、比 較的高硬度である 46HRCに調質した試験片でシャルピー衝撃試験を行った場合、 鍛造組織の影響を受けて衝撃値が低くなりやす!/、ため、 34 a/cm2)を越える衝撃 値が得られれば優れた靭性を有すると言える。特に 40 a/cm2)を越える衝撃値が 得られればその靭性は極めて優れて!/、る。 Replacement paper (Regulation 26) [0032] From the steel of the present invention, the comparative steel and the conventional steel produced as described above, the longitudinal direction of the test piece is in the width direction of the steel material after forging, and the notch direction of the test piece is in the longitudinal direction of the steel material. Table 2 shows the results of a Charpy impact test at room temperature using a 2 mm U-notch Charpy impact test piece prepared in such a way (ie, T direction force). When a Charpy impact test is performed on a specimen that has been sampled from this T-direction force and tempered to 46HRC, which is a relatively high hardness, the impact value tends to be low due to the influence of the forged structure! If an impact value exceeding 34 a / cm 2 ) is obtained, it can be said to have excellent toughness. In particular, if an impact value exceeding 40 a / cm 2 ) is obtained, its toughness is extremely excellent!
[0033] [表 2] [0033] [Table 2]
2 m m Uノッチシャルピー衝撃値 ( J / c m 2 ) i5式料 2 mm U-notch Charpy impact value (J / cm 2 ) i5 formula fee
半冷 3分焼入れ 半冷 4 0分焼入れ  Semi-cold 3 minutes quench Semi-cold 4 0 minutes quench
本発明鋼 1 49. 8 37. 5  Invention steel 1 49. 8 37.5
本発明鋼 2 52. 5 36. 2  Invention steel 2 52. 5 36. 2
本発明鋼 3 57. 2 43. 3  Invention steel 3 57. 2 43. 3
本発明鋼 4 53. 9 34. 4  Invention steel 4 53. 9 34.4
本発明鋼 5 53. 0 40. 6  Invention steel 5 53. 0 40. 6
本発明鋼 6 52. 5 41 . 1  Invention steel 6 52. 5 41.1
本発明鋼 7 52. 5 47. 9  Invention steel 7 52. 5 47. 9
本発明鋼 8 54. 9 41 . 1  Invention steel 8 54. 9 41.1
本発明鋼 9 48. 4 41 . 5  Invention Steel 9 48. 4 41.5
本発明鋼 1 0 42. 4 36. 6  Invention steel 1 0 42. 4 36. 6
本発明鋼 1 1 47. 0 34. 4  Invention steel 1 1 47. 0 34.4
本発明鋼 1 2 49. 3 39. 7  Invention steel 1 2 49. 3 39. 7
本発明鋼 1 3 43. 8 34. 4  Invention steel 1 3 43. 8 34. 4
比較鋼 2 1 38. 0 29. 8  Comparative steel 2 1 38. 0 29. 8
比較鋼 2 2 52. 1 32. 3  Comparative steel 2 2 52. 1 32. 3
比較鋼 2 3 54. 9 43. 8  Comparative steel 2 3 54. 9 43. 8
比較鋼 2 4 44. 3 - 31 . 4  Comparative steel 2 4 44. 3-31.4
比較鋼 2 5 37. 5 33. 6  Comparative steel 2 5 37. 5 33. 6
比較鋼 2 6 5 1 . 6 30. 1  Comparative steel 2 6 5 1. 6 30. 1
比較鋼 2 7 47. 9 33. 6  Comparative steel 2 7 47. 9 33. 6
従来鋼 3 1 42. 4 21 . 6  Conventional steel 3 1 42. 4 21.6
従来鋼 3 2 41 . 1 34. 4  Conventional steel 3 2 41.1 43.4
[0034] 表 2の結果より、急冷による焼入れを行えば、本発明の組成外である比較鋼や従来 鋼であっても、 T方向から採取した試験片でも比較的高い衝撃値が得られる。しかし ながら、半冷 40分程度の遅い冷却速度で焼入れした場合、比較鋼 21はもとより Mo 量が低レ、ことに加えて、 Niも無添カ卩であるため、比較鋼 22は Mo量が低いために、そ れぞれ焼入れ性が劣り、そして衝擊値も低くなる。また、 Si量が多すぎる比較鋼 24〜 27も、衝擊値が低くなる。 ' [0034] From the results shown in Table 2, if quenching by quenching is performed, a comparatively high impact value can be obtained even for a test piece taken from the T direction, whether it is a comparative steel or a conventional steel outside the composition of the present invention. However, when quenching at a slow cooling rate of about 40 minutes semi-cooled, the amount of Mo in the comparative steel 21 is low as well as the comparative steel 21, and in addition, Ni is also an additive-free metal. Each of them has a low hardenability and a low impact value. Also, comparative steels 24-27 with too much Si content have low impact values. '
[0035] 従来鋼 31は、もとより Mo量が低いことに加えて、低めの C量と Niも無添カ卩であるた めに焼入れ性がかなり劣り、衝撃値が最も低い。 Mo量が多ぐ衝撃値が低い傾向に  [0035] Conventional steel 31 not only has a low Mo content, but also has a low C content and Ni, which has no added iron. The impact value tends to be low with a large amount of Mo
差替え用紙( 2 ある従来鋼 32は、 Siも非常に低いことにより、被削性が不十分である。 Replacement paper (2 One conventional steel 32 has poor machinability due to its very low Si.
[0036] これらに対して、化学組成を最適に調整した本発明鋼 1〜13は、遅い冷却速度で の焼入れであっても、優れた靭性を維持している。なお、比較鋼 23は、本発明による 最適組成と比べて靭性を高める元素である Niのみが高く外れた組成のため、冷却速 度が遅くなつても靭性は良好である。 [0036] On the other hand, the inventive steels 1 to 13 having the optimum chemical composition maintain excellent toughness even when quenched at a slow cooling rate. The comparative steel 23 is a composition in which only Ni, which is an element that enhances toughness as compared with the optimum composition according to the present invention, deviates from a high level. Therefore, the toughness is good even when the cooling rate is slow.
実施例 2  Example 2
[0037] 次に、表 1の本発明鋼および、比較鋼の中で衝擊値が良好だった比較鋼 23を用い て高温強度を比較した。引張試験片は、鍛造後の鋼材の長手方向に試験片の長手 方向がくるように採取し (すなわち、 L方向力 採取し)、 650°Cで高温引張試験した 際の引張強さで評価した。引張試験は、試験片が 650°Cに達した後 10分保持してか ら開始した。結果を表 3に示す。  [0037] Next, the high-temperature strength was compared using the steel of the present invention in Table 1 and comparative steel 23, which had a good impact value among the comparative steels. Tensile test specimens were sampled so that the longitudinal direction of the test specimen was aligned with the longitudinal direction of the steel material after forging (ie, L direction force was sampled), and evaluated by the tensile strength when a high temperature tensile test was performed at 650 ° C. . The tensile test was started after the specimen had been held for 10 minutes after reaching 650 ° C. The results are shown in Table 3.
[0038] [表 3]  [0038] [Table 3]
差 え 則 26 6 5 0 °Cでの引張強さ(M P a ) Difference rule 26 6 Tensile strength at 50 ° C (MP a)
試料  Sample
半冷 3分焼入れ 半冷 4 0分焼入れ 本発明鋼 1 645 603  Semi-cooled 3 minutes quenching Semi-cold 4 0 minutes quenching Invention steel 1 645 603
本発明鋼 2 656 606  Invention steel 2 656 606
本発明鋼 3 675 621 本発明鋼 4 638 632 本発明鋼 5 650 635  Invention Steel 3 675 621 Invention Steel 4 638 632 Invention Steel 5 650 635
本発明鋼 6 678 641  Invention steel 6 678 641
本発明鋼 7 664 628 本発明鋼 8 657 638 本発明鋼 9 661 621 本発明鋼 1 ό 648 622 本発明鋼 1 1 667 614 本発明鋼 1 2 638 596 本発明鋼 1 3 675 636 比較鋼 2 3 603 589  Invention Steel 7 664 628 Invention Steel 8 657 638 Invention Steel 9 661 621 Invention Steel 1 ό 648 622 Invention Steel 1 1 667 614 Invention Steel 1 2 638 596 Invention Steel 1 3 675 636 Comparison Steel 2 3 603 589
本発明の最適組成の狭範囲から外れている比較鋼 23は、 Ni含有量が多すぎるこ とにより、靭性には優れていたが高温強度が劣ることが分かる。一方、本発明鋼はい ずれも高レ、高温強度を有してレ、ることが分かる。 It can be seen that Comparative Steel 23, which is out of the narrow range of the optimum composition of the present invention, was excellent in toughness but inferior in high-temperature strength due to its excessive Ni content. On the other hand, the steel of the present invention Yes It can be seen that the deviation is high and has high temperature strength.
実施例 3  Example 3
[0040] 実施例 1で作製した本発明鋼 6、比較鋼 21〜23、 26および、従来鋼 31、 32につ いては、その半冷 40分程度の遅い冷却速度で焼入れした鋼材を対象にして、焼戻 し前には、以下の事前の組織観察を行った。まず、これらの鋼材から、 10mm角の組 織観察用試料を採取し、 S,PEED法にて腐食した試料を用レ、て走查型電子顕微鏡 による 5000倍の観察を行った。一例として本発明鋼 6および従来鋼 31から得られた 画像を図 1および図 4に示す。このような画像を用いて、塊状組織および針状組織を 画像解析によって面積率測定した。やはり一例として本発明鋼 6および従来鋼 31の 塊状組織を測定した模式図を図 2および図 5、同じく本発明鋼 6および従来鋼 31の 針状組織を測定した模式図を図 3 (X印は除かれる)および図 6に示す。このような測 定を各試料の各組織について 3視野ずつ行うことで、その平均を面積率とした。また 、上記試料を再研磨後、電解研磨で仕上げた試料について X線回折法による残留 オーステナイト量 測定を行った。以上の結果をまとめたものを表 4に示す。  [0040] The steel of the present invention 6, the comparative steels 21 to 23 and 26, and the conventional steels 31 and 32 produced in Example 1 are targeted for steel materials quenched at a slow cooling rate of about 40 minutes. Before the tempering, the following preliminary tissue observation was performed. First, 10 mm square tissue observation samples were collected from these steel materials, and the samples corroded by the S, PEED method were used and observed 5000 times with a scanning electron microscope. As an example, images obtained from steel 6 of the present invention and conventional steel 31 are shown in FIGS. Using these images, the area ratio of the massive tissue and needle-like tissue was measured by image analysis. As an example, Fig. 2 and Fig. 5 show the schematic diagrams of the massive structure of Invention Steel 6 and Conventional Steel 31 and Fig. 3 shows the schematic diagram of the measurement of the acicular structure of Invention Steel 6 and Conventional Steel 31 (mark X). And is shown in FIG. By performing such measurements for each tissue of each sample in three fields, the average was taken as the area ratio. Further, the amount of retained austenite was measured by the X-ray diffraction method for the sample finished by electropolishing after repolishing the sample. Table 4 summarizes the above results.
[0041] [表 4]  [0041] [Table 4]
Figure imgf000017_0001
Figure imgf000017_0001
[0042] そして、実施例 1では開示済みではあるが、シャルピー衝撃試験の結果を、試験片 の焼戻し硬さ、そして、本発明の硬さと組織割合の関係式から導き出される値 Xととも に、表 5に示す。 [0042] Although disclosed in Example 1, the result of the Charpy impact test is obtained together with the tempering hardness of the test piece and the value X derived from the relationship between the hardness and the tissue ratio of the present invention. Table 5 shows.
[0043] [表 5]  [0043] [Table 5]
差 2 2 m m Uノツチ Difference 2 2 mm U notch
シャルピー衝撃試験片  Charpy impact test piece
試料 シャルピー衝搫値 X  Sample Charpy impact value X
の硬さ (H R C )  Hardness (H R C)
( J / c m 2 ) (J / cm 2 )
本発明鋼 6 41. 1 45. 2 41. 3 比較鋼 2 1 29. 8 45. 1 30. 7 比較鋼 2 2 32. 3 46. 0 37. 8 比較鋼 2 3 43. 8 45. 3 49. 0 比較鋼 2 6 30. 1 45. 6 26. 2 従来鋼 3 1 ' 21. 6 46. 2 24. 5 従来鋼 3 2 34. 4 46. 5 ' 31. 3 Invention steel 6 41. 1 45. 2 41.3 Comparative steel 2 1 29. 8 45. 1 30.7 Comparative steel 2 2 32. 3 46. 0 37. 8 Comparative steel 2 3 43. 8 45. 3 49 0 Comparative steel 2 6 30. 1 45. 6 26. 2 Conventional steel 3 1 '21. 6 46. 2 24. 5 Conventional steel 3 2 34. 4 46. 5' 31. 3
※X=[— 0.36*(HRC) - 1.47*(A%)— 1.67*(B%)+6.55*(C%) +72.91] * X = [— 0.36 * (HRC)-1.47 * (A%) — 1.67 * (B%) + 6.55 * (C%) +72.91]
[0044] これらの結果より、半冷 40分程度の遅レ、冷却速度で焼入れした場合、衝撃値の低 ,. い比較鋼 21および従来鋼 31の焼入組織を評価すれば、比較的、塊状組織が多くか つ、残留オーステナイトも低い状態では、靱性への悪影響度が高い針状組織が発達 して、—しかも X値も力なり低い。衝撃値が低い従来銅 32も、その焼入組織は比較鋼 2 1および従来鋼 31に近いが、各構成組織のパランス改善 (つまり、 X値の上昇)により 、靱性が向上傾向にある。 . [0044] From these results, if the quenching structure of the comparative steel 21 and the conventional steel 31 is evaluated with a low impact value when quenching at a slow rate of about 40 minutes and a cooling rate, the comparative steel 21 and the conventional steel 31 are relatively When there are many massive structures and low retained austenite, acicular structures with a high negative impact on toughness develop—and the X value is also low. Conventional copper 32, which has a low impact value, has a hardened structure similar to that of comparative steel 21 and conventional steel 31, but tends to improve toughness due to improved balance of each structural structure (that is, an increase in X value). .
[0045] Mo量が低い比較鋼 22および比較鋼 26は、 Ni量が多すぎることから、塊状組織が 発達するため、衝撃値が低い。なお、両試料においては、比較鋼 26は、加えて Si量 も多いことから、針状組織の生成傾向も見られる。  [0045] Comparative Steel 22 and Comparative Steel 26 with a low Mo content have a low impact value because a massive structure develops because the Ni content is too large. In both samples, the comparative steel 26 also has a high Si content, so a tendency to form a needle-like structure is also observed.
[0046] これらに対して、化学組成を最適に調整した本発明鋼 6の焼入組織を評価すれば 、針状組攀が発達するも、塊状組織が少なぐまた、何よりも靱性の向上に有効な残 留オーステナイトが多く残存している。そして、上記構成組織のパランス(つまり、 X値 )にも優れている。なお、多量の Niを含むため靱性が良好である比較鋼 23の焼入組 織は、塊状組織が多いながらも、 X値力 O以上を満たしている。し力もながら、高温 強度が劣ることは上述の通りである。  [0046] On the other hand, if the quenched structure of the steel 6 of the present invention with the optimum chemical composition adjusted is evaluated, the needle-like braid develops, but the bulk structure is small, and above all, the toughness is improved. A lot of effective retained austenite remains. It is also excellent in the balance (ie, X value) of the above organization. Note that the hardened structure of comparative steel 23, which has good toughness because it contains a large amount of Ni, satisfies the X value force O or more even though it has a lot of massive structure. As described above, the high-temperature strength is inferior, though the strength is low.
産業上の利用可能性' 本発明を適用して熱間工具鋼の靭性および高温強度を向上させることによって、プ レス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間工具への適用 はもちろんのこと、さらに使用負荷が大きい金型等の熱間工具部材にも適用できる。 Industrial applicability ' By applying the present invention to improve the toughness and high temperature strength of hot work tool steel, it can be applied to various hot tools such as press dies, forging dies, die casting dies, extrusion tools, Furthermore, it is applicable also to hot tool members, such as a metal mold | die with a heavy use load.
差替え用紙(規則 2® 図面の簡単な説明 Replacement paper (Rule 2® Brief Description of Drawings
[図 1]本発明の熱間工具鋼の、焼入組織の一例を示す断面ミクロ写真である。 FIG. 1 is a cross-sectional microphotograph showing an example of a quenched structure of the hot tool steel of the present invention.
[図 2]図 1の焼入組織において、塊状組織を選択した模式図である。 FIG. 2 is a schematic diagram in which a massive structure is selected in the quenched structure of FIG.
[図 3]図 1の焼入組織において、針状組織を選択した模式図である。 FIG. 3 is a schematic diagram in which a needle-like structure is selected in the quenched structure of FIG.
[図 4]比較例の熱間工具鋼の、焼入組織の一例を示す断面ミクロ写真である。 FIG. 4 is a cross-sectional micrograph showing an example of a quenched structure of a hot work tool steel of a comparative example.
[図 5]図 4の焼入組織にお!/、て、塊状組織を選択した模式図である。 FIG. 5 is a schematic diagram in which a massive structure is selected for the quenched structure of FIG.
[図 6]図 4の焼入組織にお!/、て、針状組織を選択した模式図である。 [FIG. 6] A schematic diagram in which a needle-like structure is selected in the quenched structure of FIG.

Claims

請求の範囲 The scope of the claims
質量0 /oで、 C:0.34—0.40%、 Si:0.3—0.5%、 Mn:0.45—0.75%、 Ni:0〜 0.5%未満、 Cr:4.9〜5· 5%、 Moおよび Wは単独または複合で(Mo+ 1/2W): 2.5〜2.9%、V:0.5〜0.7%、残部 Feおよび不可避的不純物からなることを特徴 とする靭性および高温強度に優れた熱間工具鋼。 Mass: 0 / o, C: 0.34—0.40%, Si: 0.3—0.5%, Mn: 0.45—0.75%, Ni: 0 to less than 0.5%, Cr: 4.9 to 5.5%, Mo and W alone or Composite (Mo + 1 / 2W): 2.5 to 2.9%, V: 0.5 to 0.7%, balance Fe and inevitable impurities, hot tool steel with excellent toughness and high temperature strength.
質量%で、 C:0.35-0.39%であることを特徴とする請求項 1に記載の靭性および 高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that C: 0.35-0.39% in mass%.
質量%で、 Si:0.35-0.45%であることを特徴とする請求項 1に記載の靭性および 高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that, in mass%, Si: 0.35-0.45%.
質量%で、 Mn:0.5〜0.7%であることを特徴とする請求項 1に記載の靭性および 高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that, in mass%, Mn: 0.5 to 0.7%.
質量%で、 Ni:0.01-0.3%であることを特徴とする請求項 1に記載の靭性および 高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that Ni: 0.01-0.3% in mass%.
質量%で、 Cr:5.0〜5.4%であることを特徴とする請求項 1に記載の靭性および高 温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, wherein Cr: 5.0 to 5.4% in mass%.
質量%で、 Moおよび Wは単独または複合で(Mo+l/2W) :2.6〜2.8%である ことを特徴とする請求項 1に記載の靭性および高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high-temperature strength according to claim 1, characterized in that Mo and W are each alone or in combination of (Mo + l / 2W): 2.6 to 2.8%.
質量%で、 V:0.55-0.65%であることを特徴とする請求項 1に記載の靭性および 高温強度に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high-temperature strength according to claim 1, characterized in that, in mass%, V: 0.55-0.65%.
硬さ力 S、 40HRC以上であることを特徴とする請求項 1に記載の靭性および高温強度 に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that the hardness force is S, 40HRC or more.
硬さ力 S、 43HRC以上であることを特徴とする請求項 1に記載の靭性および高温強度 に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that the hardness force is S, 43HRC or more.
硬さ力 S、 45HRC以上であることを特徴とする請求項 1に記載の靭性および高温強度 に優れた熱間工具鋼。 The hot work tool steel excellent in toughness and high temperature strength according to claim 1, characterized in that the hardness force is S, 45HRC or more.
硬さが、 49HRC以下であることを特徴とする請求項 9な!/、し 11の!/、ずれかに記載の 靭性および高温強度に優れた熱間工具鋼。 The hot work tool steel with excellent toughness and high temperature strength according to claim 9, wherein the hardness is 49 HRC or less.
焼入れ時の断面組織は、塊状組織および針状組織を含み、 塊状組織 (A%) :45面積%以下、 The cross-sectional structure at the time of quenching includes massive structure and acicular structure, Bulk tissue (A%): 45 area% or less,
針状組織 (B%) :40面積%以下、  Needle-like tissue (B%): 40 area% or less,
残留オーステナイト(C%) :5〜20体積0 /0 It retained austenite (C%): 5~20 volume 0/0
であることを特徴とする請求項 1に靭性および高温強度に優れた熱間工具鋼。  2. The hot work tool steel having excellent toughness and high temperature strength according to claim 1.
[14] 請求項 13に記載の熱間工具鋼を、下記数式で示される焼戻し硬さ(HRC)と組織割 合との関係値 Xが 40以上であるように焼戻すことを特徴とする靭性および高温強度 に優れた熱間工具鋼の製造方法。 [14] A toughness characterized by tempering the hot work tool steel according to claim 13 so that the relationship value X between the tempering hardness (HRC) and the structural ratio represented by the following formula is 40 or more. And a method for producing hot work tool steel with excellent high temperature strength.
X=[-0.36X (HRC)-l.47X (A%)— 1· 67Χ (Β%)+6.55Χ (C%)+72. 91]  X = [-0.36X (HRC) -l.47X (A%) — 1 · 67Χ (Β%) + 6.55Χ (C%) + 72. 91]
[15] 40〜49HRCに焼戻すことを特徴とする請求項 14に記載の靭性および高温強度に 優れた熱間工具鋼の製造方法。  [15] The method for producing hot work tool steel excellent in toughness and high temperature strength according to claim 14, characterized by tempering to 40 to 49HRC.
[16] 43〜49HRCに焼戻すことを特徴とする請求項 14に記載の靭性および高温強度に 優れた熱間工具鋼の製造方法。 [16] The method for producing hot work tool steel excellent in toughness and high-temperature strength according to claim 14, characterized by tempering to 43 to 49HRC.
[17] 45〜49HRCに焼戻すことを特徴とする請求項 14に記載の靭性および高温強度に 優れた熱間工具鋼の製造方法。 [17] The method for producing hot work tool steel excellent in toughness and high-temperature strength according to claim 14, characterized by tempering to 45 to 49HRC.
PCT/JP2007/067915 2006-09-15 2007-09-14 Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof WO2008032816A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07807322.8A EP2065483A4 (en) 2006-09-15 2007-09-14 Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
KR1020137006463A KR20130036076A (en) 2006-09-15 2007-09-14 Hot-working tool steel having excellent toughness and high-temperature strength and method for production thereof
US12/440,406 US20100193089A1 (en) 2006-09-15 2007-09-14 Hot-working tool steel having excellent toughness and high-temperature strength and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006251003 2006-09-15
JP2006-251003 2006-09-15

Publications (1)

Publication Number Publication Date
WO2008032816A1 true WO2008032816A1 (en) 2008-03-20

Family

ID=39183868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067915 WO2008032816A1 (en) 2006-09-15 2007-09-14 Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof

Country Status (5)

Country Link
US (1) US20100193089A1 (en)
EP (1) EP2065483A4 (en)
KR (3) KR20120006091A (en)
CN (2) CN101517114A (en)
WO (1) WO2008032816A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100150772A1 (en) * 2008-11-20 2010-06-17 Boehler Edelstahl Gmbh & Co. Kg Hot-forming steel alloy
KR20160104028A (en) 2014-05-28 2016-09-02 히타치 긴조쿠 가부시키가이샤 Hot work tool material and method for manufacturing hot work tool
KR20170020879A (en) 2014-07-23 2017-02-24 히타치 긴조쿠 가부시키가이샤 Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515442B2 (en) * 2009-06-16 2014-06-11 大同特殊鋼株式会社 Hot tool steel and steel products using the same
CN103403209B (en) * 2011-03-03 2016-01-13 日立金属株式会社 The hot work tool steel of tenacity excellent and manufacture method thereof
EP2662460A1 (en) * 2012-05-07 2013-11-13 Valls Besitz GmbH Tough bainitic heat treatments on steels for tooling
EP2994547A1 (en) * 2013-03-01 2016-03-16 Rovalma, S.A. High thermal diffusivity, high toughness and low crack risk during heat treatment tool steel
WO2018182480A1 (en) * 2017-03-29 2018-10-04 Uddeholms Ab Hot work tool steel
CN112601832B (en) * 2018-10-05 2022-03-01 日立金属株式会社 Hot-work tool steel and hot-work tool
US11535917B2 (en) 2019-12-03 2022-12-27 Daido Steel Co., Ltd. Steel for mold, and mold
CN113604730A (en) * 2021-07-05 2021-11-05 昆山东大特钢制品有限公司 High-temperature-resistant and high-toughness hot-work die steel and production process thereof
CN114535944B (en) * 2021-12-15 2022-11-29 河北工业职业技术学院 Short-process bainite hot working die and preparation method thereof
KR20240029270A (en) 2022-08-26 2024-03-05 현대자동차주식회사 Hot-working tool steel and method for manufacturing thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02179848A (en) * 1988-12-30 1990-07-12 Aichi Steel Works Ltd Hot tool steel
JPH0260748B2 (en) * 1982-01-18 1990-12-18 Daido Steel Co Ltd
JPH08188852A (en) * 1995-01-04 1996-07-23 Kobe Steel Ltd Forging die and its production
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511758C2 (en) * 1998-03-27 1999-11-22 Uddeholm Tooling Ab Steel material for hot work tools
JP2003268500A (en) * 2002-03-15 2003-09-25 Daido Steel Co Ltd Tool steel for hot working excellent in machinability and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260748B2 (en) * 1982-01-18 1990-12-18 Daido Steel Co Ltd
JPH02179848A (en) * 1988-12-30 1990-07-12 Aichi Steel Works Ltd Hot tool steel
JPH08188852A (en) * 1995-01-04 1996-07-23 Kobe Steel Ltd Forging die and its production
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2065483A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100150772A1 (en) * 2008-11-20 2010-06-17 Boehler Edelstahl Gmbh & Co. Kg Hot-forming steel alloy
US20150292067A1 (en) * 2008-11-20 2015-10-15 Boehler Edelstahl Gmbh & Co. Kg Hot-forming steel alloy
KR20160104028A (en) 2014-05-28 2016-09-02 히타치 긴조쿠 가부시키가이샤 Hot work tool material and method for manufacturing hot work tool
US10119174B2 (en) 2014-05-28 2018-11-06 Hitachi Metals, Ltd. Hot work tool material and method for manufacturing hot work tool
KR20170020879A (en) 2014-07-23 2017-02-24 히타치 긴조쿠 가부시키가이샤 Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool
US10533235B2 (en) 2014-07-23 2020-01-14 Hitachi Metals, Ltd. Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool

Also Published As

Publication number Publication date
KR20090043556A (en) 2009-05-06
CN102994902A (en) 2013-03-27
EP2065483A4 (en) 2016-03-23
KR20130036076A (en) 2013-04-09
KR20120006091A (en) 2012-01-17
EP2065483A1 (en) 2009-06-03
CN101517114A (en) 2009-08-26
US20100193089A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JP4709944B2 (en) Case-hardened steel, carburized parts, and method for producing case-hardened steel
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
US20120018063A1 (en) Case-hardened steel superiorin cold workability, machinability, and fatigue characteristics after carburized quenching and method of production of same
JP5929963B2 (en) Hardening method of steel
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
KR100740414B1 (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP2011236452A (en) Bainite steel
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP2006299296A (en) Rolled bar steel for case hardening having excellent fatigue property and crystal grain coarsening resistance, and method for producing the same
JP5212774B2 (en) Hot tool steel excellent in toughness and high temperature strength and method for producing the same
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP6620490B2 (en) Age-hardening steel
JP5600502B2 (en) Steel for bolts, bolts and methods for producing bolts
JP6156670B2 (en) Hot tool and manufacturing method thereof
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP2010163648A (en) Cold work die steel and die
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
US20050205168A1 (en) Crankshaft
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP2009221594A (en) Hot-working tool steel having excellent toughness
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP7220750B1 (en) Hot work tool steel with excellent high-temperature strength and toughness
JP5907416B2 (en) Method for producing hot work tool steel with excellent toughness

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780034059.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807322

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007807322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007807322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12440406

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097005031

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 1020117031362

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137006463

Country of ref document: KR