JP2006104519A - High toughness hot tool steel and its production method - Google Patents
High toughness hot tool steel and its production method Download PDFInfo
- Publication number
- JP2006104519A JP2006104519A JP2004292746A JP2004292746A JP2006104519A JP 2006104519 A JP2006104519 A JP 2006104519A JP 2004292746 A JP2004292746 A JP 2004292746A JP 2004292746 A JP2004292746 A JP 2004292746A JP 2006104519 A JP2006104519 A JP 2006104519A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- tool steel
- crystallized
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、熱間鍛造型、熱間プレス型、ダイカスト型、熱間押出し型等の金型を製造する材料として使用される熱間工具鋼において、硬さを高くしても高い靭延性が低くならず、したがって割れが発生するおそれが小さく、長い金型寿命を得ることができる熱間工具鋼に関する。 The present invention is a hot tool steel used as a material for producing a mold such as a hot forging die, hot press die, die casting die, hot extrusion die, etc., and has high toughness even if the hardness is increased. The present invention relates to a hot work tool steel that is not low and therefore has a low risk of cracking and can obtain a long mold life.
熱間金型の使用寿命に限界を与える損傷は、摩耗やヒートチェックなどによって生じることが多く、そうした現象を低減するためには、一般に金型の硬さを増加させることが効果的であるから、鋼材の硬さを増す努力がなされている。しかし近年は、従来は複数の部品に分かれていたものを、生産効率の向上を狙って一体に製造することが多くなり、それに伴って金型が大型化し、摩耗やヒートチェックを低減するために硬さを増すことが、困難になってきている。この困難は、下記の二つの原因にもとづくものである。 Damage that limits the service life of hot molds is often caused by wear or heat check, and in order to reduce such phenomena, it is generally effective to increase the mold hardness. Efforts are being made to increase the hardness of steel. However, in recent years, what has been divided into multiple parts in the past has often been manufactured in an integrated manner with the aim of improving production efficiency. Increasing hardness has become difficult. This difficulty is based on the following two causes.
1)金型の大型化によって、素材を焼入するときの冷却速度が十分に確保できなくなり、同じ硬さでも、小型の金型に比べて衝撃値が低くなること。
2)大型の金型を製造する素材は大断面の製品でなければならず、大断面の素材を製造するためには大型の鋼塊に鋳造する必要があり、鋼塊サイズの大型化にともない凝固時の冷却速度が低下すること。冷却速度が低下すると、炭化物、とくにバナジウムの炭化物VCや、炭窒化物、とくにバナジウムの炭窒化物V(C,N)の粗大なものが晶出したり、Mn,Si,Alなどの酸化物またはこれらの複合酸化物なども粗大化したりして、撃値が大きく低下する。晶出が問題になる炭化物および炭窒化物は、主としてバナジウムのそれらであるから、以下の記述においては、それぞれ「VC」および「V(C,N)」をもって代表させる。
1) Due to the increase in size of the mold, a sufficient cooling rate cannot be secured when quenching the material, and the impact value is lower than that of a small mold even with the same hardness.
2) The material for manufacturing large molds must be a product with a large cross section, and in order to manufacture a material with a large cross section, it is necessary to cast it into a large steel ingot. The cooling rate during solidification decreases. When the cooling rate is decreased, carbides, particularly vanadium carbide VC, and carbonitrides, particularly vanadium carbonitride V (C, N), are crystallized, oxides such as Mn, Si, Al, etc. These composite oxides are also coarsened, and the hit value is greatly reduced. The carbides and carbonitrides in which crystallization is a problem are mainly those of vanadium, and therefore are represented by “VC” and “V (C, N)” in the following description, respectively.
このような理由から、大型の金型では、摩耗やヒートチェックに耐える硬さにしようとすると衝撃値が低下して、金型使用初期における「大割れ」が発生しやすくなる。そのために、実現できる硬さには限界があった。 For these reasons, in a large mold, if the hardness is to withstand wear and heat check, the impact value decreases, and a “large crack” tends to occur in the initial stage of mold use. For this reason, there is a limit to the hardness that can be realized.
こうした、大型の金型の素材においては硬さと靭性とを両立させることが困難である、という問題を解決する手段として、焼入時の冷却速度不足を補うこと、すなわち、金型材料の焼入性不足を改善することが企てられ、その手段として、MnやMoのような焼入性を向上させる元素の添加量を増すことが提案されている。しかし、その効果にはおのずから限界がある。 As a means to solve the problem that it is difficult to achieve both hardness and toughness in such a large mold material, it is necessary to compensate for the insufficient cooling rate during quenching, that is, quench the mold material. It has been proposed to improve the deficiency, and as a means for that, it has been proposed to increase the amount of elements such as Mn and Mo that improve the hardenability. However, the effect is naturally limited.
一方、鋼塊サイズの大型化にともなう、晶出炭化物VCや晶出炭窒化物V(C,N)、酸化物系介在物の粗大化と、それがひきおこす衝撃値の低下を防止する対策として、VやOの含有量の上限を規制することが提案されている。ところが、晶出するVCやV(C,N)、酸化物系介在物の大きさは、VやOの含有量だけではなく、鋼塊のサイズによっても異なること、すなわち凝固時の冷却速度にも大きく依存することから、成分だけの調整では、十分な靭性改善効果は望めない。 On the other hand, as a measure to prevent coarsening of crystallized carbide VC, crystallized carbonitride V (C, N), and oxide inclusions with the increase in the size of the steel ingot, and the reduction in impact value caused by it. It has been proposed to regulate the upper limit of the content of V and O. However, the size of VC, V (C, N), and oxide inclusions that crystallize depends not only on the V and O content but also on the size of the steel ingot, that is, the cooling rate during solidification. Therefore, a sufficient toughness improvement effect cannot be expected by adjusting only the components.
JIS−SKD61に代表される熱間工具鋼には、焼入加熱時の結晶粒粗大化防止と焼戻し軟化抵抗向上のために、1%程度のVが添加されている。このVは、平衡状態図的には1200℃以上に加熱すればすべて固溶するはずであるが、実際には、凝固時の濃化溶鋼中に非常に粗大なVCやV(C,N)が晶出し、それらは1200℃程度の加熱では、工業的に実施可能な処理時間内に固溶させることができない。VC、V(C,N)が残存すると、それを起点として破壊することにより衝撃値が低下し、金型の早期割れが起こりやすくなるので、晶出VCおよびV(C,N)は、とりわけ重大な問題を招いている。 About 1% of V is added to hot tool steel represented by JIS-SKD61 in order to prevent coarsening of grains during quenching heating and to improve resistance to temper softening. In the equilibrium diagram, this V should all dissolve when heated to 1200 ° C. or higher. However, in reality, very coarse VC or V (C, N) is present in the concentrated molten steel during solidification. However, they cannot be dissolved in an industrially feasible processing time by heating at about 1200 ° C. If VC and V (C, N) remain, the impact value is reduced by breaking from the starting point, and early cracking of the mold is likely to occur. Therefore, crystallization VC and V (C, N) Inviting serious problems.
粗大な晶出VC、V(C,N)に起因する衝撃値の低下を防ぐためには、上記の理由で、1200℃よりも高い温度で長時間の加熱を行なって、晶出物を固溶させる熱処理が必要になる。さらにこの晶出VC、V(C,N)の大きさは、鋼塊の大きさが大きいほど、すなわち凝固時の冷却速度が遅いほど大きくなるから、鋼塊サイズが大きいほど、より高い温度で、より長い時間の固溶化熱処理が必要となる。 In order to prevent a drop in impact value due to coarse crystallized VC, V (C, N), for the above reasons, heating is performed at a temperature higher than 1200 ° C. for a long time, so that the crystallized product is dissolved. Heat treatment is required. Furthermore, the size of the crystallization VC, V (C, N) increases as the size of the steel ingot increases, that is, as the cooling rate during solidification decreases, so that the larger the steel ingot size, the higher the temperature. Therefore, a longer time for solution heat treatment is required.
結局、凝固時に実現できる冷却速度には実際上の上限があるので、それを前提にし、ある限度内ではあるが、凝固時の冷却速度に対応する晶出VC、V(C,N)の大きさに応じて、その固溶化のための熱処理条件を決定することが実際的であって、不相当に高温かつ長時間の固溶化熱処理を施すことなく、したがってコストを高くすることなく、靭性の高い熱間工具鋼を得ることが賢明である、という結論に至る。 In the end, there is a practical upper limit on the cooling rate that can be achieved during solidification, and it is assumed that it is within a certain limit, but the crystallization VC, V (C, N) corresponding to the cooling rate during solidification is large. Accordingly, it is practical to determine the heat treatment conditions for the solid solution, and the toughness of the toughness is not increased without performing the solution heat treatment for a relatively high temperature and for a long time, and thus without increasing the cost. The conclusion is reached that it is wise to obtain high hot tool steel.
このような見地から、発明者らは、凝固時の冷却速度(液相線から固相線までの平均冷却速度)と晶出炭化物VC、炭窒化物V(C,N)のサイズとの関係、およびそれら晶出物のサイズと固溶化熱処理の温度および時間との関係を詳細に調査し、凝固時の冷却速度に応じた最適な固溶化熱処理の条件を見出した。それに立脚して、大型の金型素材を製造しても、従来製品に比べて高い衝撃値が得られる熱間工具鋼と、その製造方法を確立した。 From such a viewpoint, the inventors have found that the cooling rate during solidification (average cooling rate from the liquidus to the solidus) and the size of the crystallized carbide VC and carbonitride V (C, N). In addition, the relationship between the size of the crystallized products and the temperature and time of the solution heat treatment was investigated in detail, and the optimum solution heat treatment conditions were found according to the cooling rate during solidification. Based on this, we have established a hot work tool steel that can produce a high impact value compared to conventional products, even when a large mold material is manufactured, and its manufacturing method.
本発明の目的は、上記した発明者らの知見にもとづき、熱間加工用の金型を製造する材料とする熱間工具鋼において、大型の金型素材としても、高い硬さをもたせることにより長い金型寿命を享受するとともに、高い靭延性を確保して、金型使用中に割れが発生する危険を低減した高靭性熱間工具鋼と、その製造方法を提供することにある。 The object of the present invention is based on the knowledge of the above-described inventors, in hot tool steel as a material for manufacturing a hot working mold, by providing high hardness even as a large mold material. An object of the present invention is to provide a high toughness hot tool steel that enjoys a long mold life, secures high toughness and reduces the risk of cracking during use of the mold, and a method for producing the same.
本発明の高靭性熱間工具鋼は、鋼中に晶出した炭化物および炭窒化物、ならびに酸化物系の介在物を合わせた存在密度が、鋼の断面積1mm2あたり、1)円相当径が50μmを超える大型のものは0.01個以下であり、かつ、2)円相当径1〜50μmの小型のものは100個以下であることを特徴とする。 In the high toughness hot work tool steel of the present invention, the abundance density of carbides and carbonitrides crystallized in the steel and oxide inclusions is 1) equivalent circle diameter per 1 mm 2 of the cross-sectional area of the steel. The number of large ones exceeding 50 μm is 0.01 or less, and 2) the number of small ones having an equivalent circle diameter of 1 to 50 μm is 100 or less.
本発明の高靭性熱間工具鋼を製造する方法は、造塊に当たって、凝固時の固相線温度から液相線温度までの平均冷却速度が0.025℃/秒以上であり、造塊後に、鋼塊のまま、または分塊鍛造後、1240〜1360℃の温度範囲に加熱することにより、晶出した炭化物および炭窒化物の固溶化処理を施すことを特徴とする。 In the method of producing the high toughness hot tool steel of the present invention, in the ingoting, the average cooling rate from the solidus temperature during solidification to the liquidus temperature is 0.025 ° C./second or more, It is characterized by subjecting the crystallized carbides and carbonitrides to a solid solution treatment by heating to a temperature range of 1240 to 1360 ° C. with the steel ingot or after the forging.
本発明の高靭性熱間工具鋼は、これまで製造されてきた大型の金型素材においても、小型の金型素材において実現していた高い硬さと高い靭性とがバランスして得られるから、この鋼で製造した金型は、割れ発生の危険が低く、かつ、摩耗やヒートチェックに耐えて長寿命を享受することができる。本発明の製造方法は、こうした特性をもつ高靭性熱間工具鋼を、確実に製造することを可能にしたものである。 The high toughness hot work tool steel of the present invention can be obtained by balancing the high hardness and high toughness realized in the small mold material even in the large mold material that has been manufactured so far. A mold made of steel has a low risk of cracking and can withstand a wear and heat check and enjoy a long life. The production method of the present invention makes it possible to reliably produce a high toughness hot tool steel having such characteristics.
上述のように、粗大な晶出炭化物および炭窒化物、ならびに酸化物系介在物は、破壊の起点として作用することにより、金型の衝撃値を大幅に低下させる。このため、これらの粗大な晶出物はできるだけ低減することが好ましい。発明者らは、所望の衝撃値が得られるしきい値を決定するため、金型から切り出した衝撃試験片で衝撃値が低いものの破面を観察し、起点として作用する粗大晶出物を確認した結果、円相当径で50μmを超える大型のもの、または1〜50μmの比較的微細な炭化物、炭窒化物であってもクラスター状に存在しているものが、破壊の起点となっており、したがってその存在密度は厳重に規制すべきこと、また円相当径で1μm未満の大きさの晶出物は、実質的に破壊の起点として作用せず、衝撃値を低下させないことを確認した。以上の知見にもとづき、金型の衝撃値を低下させないために、円相当径が50μm以上の、および1〜50μmの、晶出した炭窒物および炭窒化物、ならびに酸化物系介在物の存在密度の上限を、それぞれ0.01個/mm2と100個/mm2に規定した。 As described above, coarse crystallized carbides and carbonitrides and oxide inclusions act as starting points for fracture, thereby greatly reducing the impact value of the mold. For this reason, it is preferable to reduce these coarse crystallization products as much as possible. In order to determine the threshold value at which the desired impact value can be obtained, the inventors observed the fracture surface of the impact test piece cut out from the mold with a low impact value, and confirmed the coarse crystallized product acting as a starting point. As a result, a large one having an equivalent circle diameter of more than 50 μm, or a relatively fine carbide or carbonitride of 1 to 50 μm, which is present in a cluster shape, is the starting point of destruction, Therefore, it was confirmed that the existence density should be strictly controlled, and a crystallized material having an equivalent circle diameter of less than 1 μm does not substantially act as a starting point of fracture and does not lower the impact value. Based on the above knowledge, the presence of crystallized carbonitrides and carbonitrides and oxide inclusions having an equivalent circle diameter of 50 μm or more and 1 to 50 μm so as not to lower the impact value of the mold the upper limit of the density, defined 0.01 pieces / mm 2 respectively into 100 / mm 2.
本発明の高靭性熱間工具鋼を構成する合金の代表的な組成は、重量基準で、C:0.3〜0.5%、Si:0.05〜1.5%、Mn:0.3〜2%、Cr:3〜6%、Mo+0.5W:0.5〜3.5%、V:0.5〜1.5%、Al:0.001〜0.025%およびN:0. 005〜0.025%を含有し、P:0.05%以下、S:0.015%以下、O:0.0025%以下であって、残部Feおよび不純物からなる合金組成を有する。 The typical composition of the alloy constituting the high toughness hot tool steel of the present invention is C: 0.3 to 0.5%, Si: 0.05 to 1.5%, and Mn: 0.00 on the basis of weight. 3-2%, Cr: 3-6%, Mo + 0.5W: 0.5-3.5%, V: 0.5-1.5%, Al: 0.001-0.025% and N: 0 . 005 to 0.025%, P: 0.05% or less, S: 0.015% or less, O: 0.0025% or less, and has an alloy composition consisting of the balance Fe and impurities.
本発明の高靭性熱間工具鋼はまた、上記の合金成分に加えて、Ni:2%以下、Co:5%以下、Cu:1%以下、Ti:0.2%以下、Zr:0.2%以下およびNb:0.2%以下の1種または2種以上を含有することができる。 In addition to the above alloy components, the high toughness hot work tool steel of the present invention is also Ni: 2% or less, Co: 5% or less, Cu: 1% or less, Ti: 0.2% or less, Zr: 0.00%. 1 type or 2 types or less of 2% or less and Nb: 0.2% or less can be contained.
上記の合金組成を選択した理由を、以下に説明する。 The reason for selecting the above alloy composition will be described below.
C:0.3〜0.5%
Cは、金型性能として重要な硬さ、耐摩耗性を確保するために必要な元素である。熱間工具鋼として十分な硬さ、耐摩耗性を確保するためには、0.3%以上のCの存在が必要である。0.5%を超えて過度に添加した場合は、焼入時に固溶しない炭化物が増加することが原因となって、衝撃値の低下を招く。
C: 0.3-0.5%
C is an element necessary for securing hardness and wear resistance important for mold performance. In order to ensure sufficient hardness and wear resistance as hot tool steel, the presence of 0.3% or more of C is necessary. When it exceeds 0.5% and is added excessively, it causes a decrease in impact value due to an increase in carbides that do not dissolve at the time of quenching.
Si:0.05〜1.5%
Siは、製鋼時に脱酸元素として必要であり、また、その含有量を高めると、被削性および焼戻し軟化抵抗性が向上するという利益もあるから、少なくとも0.05%のSiを添加する。ただし、添加量が多くなると靭性が低下するから、1.5%を上限とする。
Si: 0.05 to 1.5%
Si is necessary as a deoxidizing element during steelmaking, and increasing its content also has the benefit of improving machinability and temper softening resistance, so at least 0.05% Si is added. However, since the toughness decreases as the amount added increases, the upper limit is 1.5%.
Mn:0.3〜2%
Mnは焼入性および硬さの確保のために必要な成分であり、この目的で、添加量を0.3%以上とした。過剰に添加すると焼入れ性が高くなりすぎて、焼入れ時に残留γ相が多量に生成し、衝撃値が低下したり、焼きなまししても硬さが低下しなくなったりすることがあるため、その上限を2%とした。
Mn: 0.3-2%
Mn is a component necessary for ensuring hardenability and hardness, and for this purpose, the addition amount is set to 0.3% or more. If added in excess, the hardenability becomes too high, and a large amount of residual γ phase is produced during quenching, and the impact value may decrease, or the hardness may not decrease even after annealing. 2%.
P:0.05%以下、好ましくは0.015%以下
Pは衝撃値を低下させるため、一般には低減することが好ましい元素であるが、不可避的に存在する。0.05%が許容限度であり、好ましくは0.015%以下である。
P: 0.05% or less, preferably 0.015% or less P is an element that is generally preferably reduced because it lowers the impact value, but is unavoidably present. 0.05% is an allowable limit, and preferably 0.015% or less.
S:0.015%以下
SはMnSを形成して衝撃値を低下させるため、やはり低減することが好ましいが、鋼中には不可避的に入ってくる。含有する場合も、0.015%以下に低減することが好ましい。
S: 0.015% or less Since S forms MnS and lowers the impact value, it is preferably reduced, but it inevitably enters steel. Also when it contains, it is preferable to reduce to 0.015% or less.
Cr:3〜6%
Crは炭化物および炭窒化物を形成して、基地を強化するとともに、耐摩耗性を向上させる。焼入性を確保するためにも、Crは必要である。このような効果を得るため、3%以上の添加が必要である。ただし、Cr含有量の増加は焼戻し軟化抵抗を弱めて、金型性能を低下させる。このため、Cr量の上限を6%とした。
Cr: 3-6%
Cr forms carbides and carbonitrides to strengthen the matrix and improve wear resistance. In order to ensure hardenability, Cr is necessary. In order to obtain such an effect, addition of 3% or more is necessary. However, an increase in Cr content weakens the temper softening resistance and lowers the mold performance. For this reason, the upper limit of the Cr amount is set to 6%.
Mo+0.5W:0.5〜3.5%
MoもWも、炭化物および炭窒化物を形成して基地を強化し、耐摩耗性を向上させる。焼入性確保のためにも、必要な成分である。添加は、どちらか一方単独でもよいし、複合してもよい。MoとWとは同等の効果を有し、Wの原子量ははMoの約2倍であることから、よく知られているように、両者の添加量をMo当量(Mo+1/2W)で規定する。上記の効果を得るためには、Mo当量にして0.5%以上の添加が必要である。過剰に添加してもその効果は飽和し、経済的に不利となるため、上限値として3.5%を定めた。
Mo + 0.5W: 0.5-3.5%
Both Mo and W form carbides and carbonitrides to strengthen the base and improve wear resistance. It is a necessary component for ensuring hardenability. Either one of them may be added alone or in combination. Since Mo and W have the same effect and the atomic weight of W is about twice that of Mo, as is well known, the addition amount of both is defined by Mo equivalent (Mo + 1 / 2W). . In order to obtain the above effect, it is necessary to add 0.5% or more in terms of Mo equivalent. Even if it is added excessively, the effect is saturated and economically disadvantageous, so 3.5% was set as the upper limit.
熱間工具鋼の晶出炭化物および炭窒化物、ならびに酸化物系介在物の存在密度は、炭窒化物形成元素であるV含有量と、O含有量の増加によって増加するため(Vのほかに、Ti,NbおよびZrも炭化物、炭窒化物の形成に寄与するから、それらの含有量も問題であるが、重要なのはV含有量である。)、VおよびOの含有量を規定する必要がある。また、その他の合金含有量についても、以下の理由で、その範囲を規定した。 Since the abundance density of crystallization carbides and carbonitrides and oxide inclusions in hot tool steel increases with the increase in the V content, which is a carbonitride-forming element, and the O content (in addition to V Ti, Nb and Zr also contribute to the formation of carbides and carbonitrides, so their content is also a problem, but what is important is the V content.) It is necessary to define the content of V and O is there. Moreover, the range was prescribed | regulated about the other alloy content for the following reasons.
V:0.5〜1.5%
Vは、焼戻し時に炭化物および炭窒化物を形成して析出することにより、基地の強化や耐摩耗性の向上に役立つ元素である。それに加えて、焼入れ加熱時には微細な炭化物および炭窒化物を形成することにより、結晶粒の粗大化を抑制して、衝撃値の低下を抑制する効果を有する。このような効果を得るためには0.5%以上のVを添加することが必要である。一方、上限の1.5%を超える過剰量を添加すると、再三述べたように、凝固時に炭化物や炭窒化物として粗大な晶出物を生成し、前述した(晶出炭化物・炭窒化物+酸化物系介在物)の存在密度に関する限定条件を満たすことができず、靭性を低下させる。
V: 0.5 to 1.5%
V is an element useful for strengthening the base and improving wear resistance by forming and precipitating carbides and carbonitrides during tempering. In addition, the formation of fine carbides and carbonitrides during quenching heating has the effect of suppressing the coarsening of the crystal grains and suppressing the reduction in impact value. In order to obtain such an effect, it is necessary to add 0.5% or more of V. On the other hand, when an excess amount exceeding the upper limit of 1.5% is added, as described again, coarse crystallized products are generated as solidified carbides and carbonitrides during solidification, and the above-described (crystallized carbide / carbonitride + The limiting condition regarding the density of oxide inclusions) cannot be satisfied, and the toughness is lowered.
Al:0.001〜0.025%
Alは製鋼時に脱酸元素として作用するほか、鋼中のNと結合し窒化物となって微細に分散し、焼入れ加熱時の結晶粒粗大化を抑制するはたらきがある。このような効果を得るためには、少なくとも0.001%のAlの添加が必要である。多量に添加してもその効果が飽和するため、上限を0.025%とした。
Al: 0.001 to 0.025%
In addition to acting as a deoxidizing element during steelmaking, Al combines with N in the steel to form a nitride and finely disperse, thereby suppressing the grain coarsening during quenching heating. In order to obtain such an effect, it is necessary to add at least 0.001% Al. Even if added in a large amount, the effect is saturated, so the upper limit was made 0.025%.
N:0.005〜0.025%
Nは鋼中のAlやVと結合して窒化物を形成し、それが微細に分散することにより焼入れ加熱時の結晶粒粗大化を抑制し、衝撃値低下を防止するのに効果のある元素である。このような効果を得るためには、0.005%以上の添加が必要である。多量に加えてもその効果が飽和するので、0.025%の上限値以内の添加に止める。
N: 0.005 to 0.025%
N combines with Al and V in the steel to form a nitride, which finely disperses to suppress coarsening of the crystal grains during quenching heating and is effective in preventing a drop in impact value It is. In order to obtain such an effect, addition of 0.005% or more is necessary. Even if added in a large amount, the effect is saturated, so the addition is limited to within the upper limit of 0.025%.
O:0.0025%以下
Oは酸化物系介在物を形成し、衝撃値を低下させる。前述した(晶出炭化物・炭窒化物+酸化物系介在物)の存在密度の条件を満たして衝撃低の低下を抑制するためには、O含有量を0.0025%以下にする必要がある。
O: 0.0025% or less O forms oxide inclusions and lowers the impact value. In order to satisfy the above-described condition of the density of existence of (crystallized carbide / carbonitride + oxide inclusion) and to suppress a decrease in impact low, the O content needs to be 0.0025% or less. .
Ni:2%以下、Cu:1%以下
NiもCuも、焼入れ性を高めるとともに基地の強靭化にとって有効であり、必要に応じて添加することができる。過度に添加しても、効果が飽和するとともに経済的に不利となるため、それぞれの上限を2%と1%とした。
Ni: 2% or less, Cu: 1% or less Both Ni and Cu are effective for enhancing the hardenability and strengthening the base, and can be added as necessary. Even if added excessively, the effect is saturated and disadvantageous economically, so the upper limit of each was made 2% and 1%.
Co:5%以下
固溶強化により強度を向上させる元素であり、必要に応じて添加することができる。過度に添加してもその効果が飽和し、経済的に不利になるため、上限値5%を設けた。
Co: An element that improves the strength by solid solution strengthening of 5% or less, and can be added as necessary. Even if excessively added, the effect is saturated and economically disadvantageous, so an upper limit of 5% was set.
Ti:0.2%以下、Zr:0.2%以下、Nb:0.2%以下
これらの成分はいずれも、TiC,ZrCおよびNbCのような炭化物、ならびに、Ti(C,N),Zr(C,N)およびNb(C,N)のような炭窒化物、さらにはそれらの複合炭化物ないし炭窒化物を形成して微細に析出し、焼入れ加熱時の結晶粒粗大化を防止する。したがって、結晶粒を微細化して靭性を確保するという効果を高く得たい場合には、添加するとよい。ただし、過剰に添加すると凝固時に粗大な炭化物や炭窒化物として晶出し、前記した(晶出炭化物・炭窒化物+酸化物系介在物)の存在密度の限定条件を守ることができなくなり、かえって衝撃値を低下させるため、その上限をそれぞれ0.2%とした。2成分以上を複合して添加する場合には、合計量が0.5%を超えないようにすることが好ましい。
Ti: 0.2% or less, Zr: 0.2% or less, Nb: 0.2% or less All of these components are carbides such as TiC, ZrC and NbC, and Ti (C, N), Zr. Carbonitrides such as (C, N) and Nb (C, N), and their composite carbides or carbonitrides are formed and finely precipitated to prevent grain coarsening during quenching heating. Therefore, when it is desired to obtain a high effect of ensuring the toughness by refining the crystal grains, it is preferable to add it. However, excessive addition causes crystallization as coarse carbides and carbonitrides during solidification, making it impossible to comply with the above-mentioned limiting conditions for the existence density of (crystallized carbides / carbonitrides + oxide inclusions). In order to reduce the impact value, the upper limit was made 0.2%. When two or more components are added in combination, it is preferable that the total amount does not exceed 0.5%.
本発明の高靭性熱間工具鋼の製造方法を実施するに当たっては、凝固時の固相線温度から液相線温度までの平均冷却速度v(℃/秒)と晶出炭化物、炭窒化物の固溶化処理の温度T(絶対温度K)および時間t(秒)とが、下記の式(1)の条件を満たすように実施することが好ましい。
0≦{2×10-14×exp(0.019×T)×t0.54}−{117×exp(−35×v)}
・・・(1)
In carrying out the manufacturing method of the high toughness hot tool steel of the present invention, the average cooling rate v (° C./second) from the solidus temperature to the liquidus temperature during solidification and the crystallization carbide and carbonitride It is preferable to carry out so that the temperature T (absolute temperature K) and the time t (second) of the solution treatment satisfy the condition of the following formula (1).
0 ≦ {2 × 10 −14 × exp (0.019 × T) × t 0.54 } − {117 × exp (−35 × v)}
... (1)
この条件は、晶出する炭化物や炭窒化物の好ましい分布を得る上で、重要である。凝固時の冷却速度、ここでは固相線から液相線温度までの平均冷却速度が0.025℃/秒以上であれば、晶出炭化物・炭窒化物の大きさが、粗大であるといっても、1240〜1360℃の加熱温度で固溶させることが可能な程度のものになる。これよりさらに加熱温度を高めれば、より遅い冷却速度で冷却した鋼塊でも晶出炭化物・炭窒化物を固溶させることが可能であるが、加熱温度1360℃は工業的に連続して処理することができる限界の温度であり、これ以上の温度に加熱することは、経済的に不利になる。一方で、加熱温度1240℃以下では、冷却速度が0.025℃/秒以上であった場合でも、粗大な晶出炭化物・炭窒化物を固溶させるまでには、非常に長い加熱時間を要する。このため、凝固時の冷却速度を0.025℃/秒以上に規定した。ここで凝固時の冷却速度を0.025℃/秒以上にすることにより、晶出炭化物・炭窒化物と同様に、酸化物系晶出物も、規定の分布状態を確保することが可能である。 This condition is important for obtaining a preferable distribution of crystallized carbides and carbonitrides. If the cooling rate during solidification, here the average cooling rate from the solidus to the liquidus temperature is 0.025 ° C./sec or more, the size of the crystallized carbide / carbonitride is said to be coarse. However, it becomes a thing which can be made to solid-solve with the heating temperature of 1240-1360 degreeC. If the heating temperature is further increased, the crystallized carbide / carbonitride can be dissolved in a steel ingot cooled at a slower cooling rate, but the heating temperature of 1360 ° C. is processed industrially continuously. It is the limit temperature that can be achieved, and heating to higher temperatures is economically disadvantageous. On the other hand, at a heating temperature of 1240 ° C. or lower, even if the cooling rate is 0.025 ° C./sec or higher, it takes a very long heating time to dissolve the coarse crystallized carbide / carbonitride. . For this reason, the cooling rate at the time of solidification was specified to be 0.025 ° C./second or more. Here, by setting the cooling rate at the time of solidification to 0.025 ° C./second or more, it is possible to ensure the prescribed distribution state of the oxide-based crystallized substance as well as the crystallized carbide / carbonitride. is there.
大型品向けの金型素材を製造する場合、鋼塊サイズがやむを得ず大きくなるため、通常の造塊方法では0.025℃/秒以上の冷却速度を得ることが困難な場合がある。このような場合には、通常の造塊後に、ESR、VARなどの二次溶解法を実施して、所定の速い冷却速度を確保することが望ましい。ESR、VARは精錬効果も有するため、固溶化処理では消滅させることのできない酸化物系晶出物を大幅に減少させる効果を有する。 When manufacturing a die material for a large product, the steel ingot size is inevitably increased, and it may be difficult to obtain a cooling rate of 0.025 ° C./second or more by a normal ingot forming method. In such a case, it is desirable to perform a secondary melting method such as ESR or VAR after normal ingot forming to ensure a predetermined fast cooling rate. Since ESR and VAR also have a refining effect, they have an effect of greatly reducing oxide-based crystallized substances that cannot be eliminated by solution treatment.
表1に示す組成の鋼を溶製し、一方向凝固炉を使用して種々の冷却速度で凝固させることにより、Φ100×80mmの円柱状鋼塊を準備した。これらの鋼塊を1200〜1320℃の範囲の温度に加熱し、保持時間を変化させて固溶化処理を行なった。固溶化処理後、1180℃に加熱して1/2アップセットにより据え込み、Φ140×40mmの円盤に加工した。さらにこれを1180℃に加熱し、60×60×170mmの直方体に熱間鍛造した。この鍛造材を、970℃×1時間・空冷の焼ならし処理をした後、750℃×1時間・空冷の低温焼きなましを施し、さらに870℃に2時間保持後、600℃まで冷却速度15℃/時間で冷却する、球状化焼きなましを施した。 Steel having the composition shown in Table 1 was melted and solidified at various cooling rates using a unidirectional solidification furnace to prepare a columnar steel ingot of Φ100 × 80 mm. These ingots were heated to a temperature in the range of 1200 to 1320 ° C., and the solution treatment was performed by changing the holding time. After the solution treatment, it was heated to 1180 ° C., placed by 1/2 upset, and processed into a disk of Φ140 × 40 mm. This was further heated to 1180 ° C. and hot forged into a 60 × 60 × 170 mm rectangular parallelepiped. This forged material was subjected to a normalizing treatment of 970 ° C. × 1 hour / air cooling, then subjected to low-temperature annealing of 750 ° C. × 1 hour / air cooling, further maintained at 870 ° C. for 2 hours, and then cooled to 600 ° C. at a cooling rate of 15 ° C. Spheroidizing annealing was performed, cooling at a time.
この球状化焼きなまし材の心部から、11×11×55mmのJIS3号シャルピー衝撃試験片用の素材(ノッチ方向はT方向)と、光学顕微鏡による組織観察用の素材とを切り出した。組織観察用の素材は、#1500までのエメリー紙による研磨とバフ研磨とを行なって鏡面とし、10mm2の範囲を撮影倍率400倍で写真撮影し、この領域に存在する晶出炭化物・炭窒化物および酸化物系介在物のすべてを、画像解析した。具体的には、個々の炭化物・炭窒化物および酸化物系介在物の面積を測定し、同じ面積を有する円の直径を算出してこれを「円相当径」とすることにより、(晶出炭化物・炭窒化物および酸化物系介在物)の存在密度を調査した。 From the core of this spheroidized annealing material, a material for 11 × 11 × 55 mm JIS No. 3 Charpy impact test piece (notch direction is T direction) and a material for observing the structure with an optical microscope were cut out. Material for tissue observation, the mirror surface by performing the polishing and buffing by emery paper up to # 1500, and photographed the range of 10 mm 2 at imaging magnification 400 times, crystallization carbide-carbonitrides present in this region All of the inclusions and oxide inclusions were image analyzed. Specifically, by measuring the area of individual carbides / carbonitrides and oxide inclusions, calculating the diameter of a circle having the same area and setting it as the “equivalent circle diameter”, The existence density of carbides, carbonitrides and oxide inclusions was investigated.
衝撃試験片用の素材は、1030℃×l時間・油冷の焼き入れ後、620℃×2時間・空冷で2回焼き戻した後に、JIS3号衝撃試験片に加工して、室温で試験に供した。試験は各条件で6本実施し、それらの中の最低値を採用した。結果を表2に示す。
The material for the impact test piece was tempered twice at 630 ° C. for 2 hours and air cooling after quenching at 1030 ° C. for 1 hour and oil cooling, then processed into a JIS No. 3 impact test piece and tested at room temperature Provided. Six tests were carried out under each condition, and the lowest value among them was adopted. The results are shown in Table 2.
比較例1−11〜15の各鋼において衝撃値が低いのは、いずれも(晶出した炭化物、炭窒化物および酸化物系介在物)の存在密度が本発明の条件を満たしていないためであって、その理由は、それぞれつぎのとおりである。
1−11鋼:V含有量が多すぎる。
1−12鋼:O含有量が多すぎる。
1−13鋼:Ti含有量が多すぎる。
1−14鋼:Zr含有量が多すぎる。
1−15鋼:Nb含有量が多すぎる。
The reason why the impact value is low in each of the steels of Comparative Examples 1-11 to 15 is that the density of existence (crystallized carbide, carbonitride, and oxide inclusions) does not satisfy the conditions of the present invention. The reasons are as follows.
1-11 steel: V content is too high.
1-12 steel: O content is too high.
1-13 steel: Ti content is too high.
1-14 steel: Zr content is too much.
1-15 steel: Nb content is too much.
表3に示す組成のJIS−SKD61を溶製し、一方向凝固装置で凝固させ、そのときの冷却速度と固溶化処理条件とを変化させて、(晶出炭化物、炭窒化物および酸化物系介在物)の存在密度と衝撃値とを測定した。その結果を表4に示す。試験法は、実施例1と同じである。
A JIS-SKD61 having the composition shown in Table 3 was melted and solidified by a unidirectional solidification apparatus, and the cooling rate and the solution treatment conditions were changed (crystallized carbide, carbonitride and oxide system). Inclusion density) and impact value were measured. The results are shown in Table 4. The test method is the same as in Example 1.
表4の比較例において衝撃値が低かったのは、それぞれつぎの理由である。
比較例2−11の条件:凝固時の平均冷却速度が遅かったので、高温で長時間炭化物の固溶化処理を施しても所定の炭化物・炭窒化物の分布を得ることができなかった。
比較例2−12の条件:固溶化処理の保持温度が低すぎたため、所定の炭化物・炭窒化物の分布を得ることができなかった。
比較例2−13,14の条件:固溶化処理の保持時間が短すぎたため、所定の炭化物・炭窒化物の分布を得ることができなかった。
The reason why the impact value was low in the comparative example of Table 4 is as follows.
Condition of Comparative Example 2-11: Since the average cooling rate during solidification was slow, a predetermined carbide / carbonitride distribution could not be obtained even if the carbide solution treatment was performed for a long time at a high temperature.
Condition of Comparative Example 2-12: Since the retention temperature of the solution treatment was too low, a predetermined carbide / carbonitride distribution could not be obtained.
Conditions of Comparative Examples 2-13 and 14: Since the retention time of the solution treatment was too short, a predetermined carbide / carbonitride distribution could not be obtained.
表5に示す合金組成の鋼を一次溶解後、ESR装置を用いて再溶解し、Φ1000×800mmの鋼塊に鋳造した。この鋼塊を、1280℃×20hの炭化物・炭窒化物固溶化処理を施した後、1180℃で鍛伸し、一辺400mmの角材とした。この角材の中心部から、組織観察用の素材と衝撃試験用の素材とを切り出し、前述した方法と同様にして、(晶出炭化物・炭窒化物および酸化物系介在物)の存在密度および衝撃値を測定した。その結果を、表6に示す。ESR鋼塊の凝固時の冷却速度は、同じ操業条件の鋼塊から光学顕微鏡により組織の観察をする試験片を採取し、二次デンドライトアームの間隔から算出した。
Steels having the alloy compositions shown in Table 5 were primarily melted, then remelted using an ESR apparatus, and cast into a steel ingot of Φ1000 × 800 mm. The steel ingot was subjected to carbide / carbonitride solution treatment at 1280 ° C. × 20 h, and then forged at 1180 ° C. to obtain a square member having a side of 400 mm. From the central part of this square, a material for observing the structure and a material for impact test are cut out, and in the same way as described above, the existence density and impact of (crystallized carbide / carbonitride and oxide inclusions) The value was measured. The results are shown in Table 6. The cooling rate during solidification of the ESR steel ingot was calculated from the interval between the secondary dendrite arms after collecting a test piece for observing the structure with an optical microscope from the steel ingot under the same operating conditions.
Claims (6)
0≦{2×10-14×exp(0.019×T)×t0.54}−{117×exp(−35×v)} Average cooling rate v (° C./second) from solidus temperature to liquidus temperature during solidification, temperature T (absolute temperature K) and time t (second) of crystallizing carbide and carbonitride solution treatment 5) The manufacturing method according to claim 4, wherein the relationship is satisfied so as to satisfy the following formula.
0 ≦ {2 × 10 −14 × exp (0.019 × T) × t 0.54 } − {117 × exp (−35 × v)}
The production method according to claim 4 or 5, comprising a step of performing ingot formation by secondary melting by ESR or VAR.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004292746A JP2006104519A (en) | 2004-10-05 | 2004-10-05 | High toughness hot tool steel and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004292746A JP2006104519A (en) | 2004-10-05 | 2004-10-05 | High toughness hot tool steel and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006104519A true JP2006104519A (en) | 2006-04-20 |
Family
ID=36374591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004292746A Pending JP2006104519A (en) | 2004-10-05 | 2004-10-05 | High toughness hot tool steel and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006104519A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008032816A1 (en) * | 2006-09-15 | 2008-03-20 | Hitachi Metals, Ltd. | Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof |
JP2008095190A (en) * | 2006-09-15 | 2008-04-24 | Hitachi Metals Ltd | Hot-working tool steel having superior toughness and high-temperature strength, and production method therefor |
JP2008095181A (en) * | 2006-09-15 | 2008-04-24 | Hitachi Metals Ltd | Hot-working tool steel having superior toughness and high-temperature strength |
WO2010074017A1 (en) * | 2008-12-25 | 2010-07-01 | 日立金属株式会社 | Steel tempering method |
KR101007417B1 (en) * | 2007-04-27 | 2011-01-12 | 다이도 토쿠슈코 카부시키가이샤 | Hot working die steel for die-casting |
JP2012193451A (en) * | 2011-03-03 | 2012-10-11 | Hitachi Metals Ltd | Hot work tool steel having excellent toughness |
CN103045831A (en) * | 2012-12-05 | 2013-04-17 | 燕山大学 | Method for improving cold-work die steel hardness |
EP2662460A1 (en) * | 2012-05-07 | 2013-11-13 | Valls Besitz GmbH | Tough bainitic heat treatments on steels for tooling |
JP2014512456A (en) * | 2011-03-04 | 2014-05-22 | ウッデホルムス アーベー | Hot working tool steel and method for producing hot working tool steel |
WO2014131907A1 (en) * | 2013-03-01 | 2014-09-04 | Rovalma, S.A. | High thermal diffusivity, high toughness and low crack risk during heat treatment tool steel |
CN104911484A (en) * | 2014-03-15 | 2015-09-16 | 紫旭盛业(昆山)金属科技有限公司 | Die steel |
JP2015193867A (en) * | 2014-03-31 | 2015-11-05 | 山陽特殊製鋼株式会社 | high toughness hot work tool steel |
JP6004142B2 (en) * | 2014-07-23 | 2016-10-05 | 日立金属株式会社 | Hot tool material, hot tool manufacturing method and hot tool |
CN106244930A (en) * | 2016-08-01 | 2016-12-21 | 四川六合锻造股份有限公司 | A kind of improve the method that steel alloy D class is carefully inclusion behavior |
JP2018031045A (en) * | 2016-08-23 | 2018-03-01 | 株式會社三共合金鑄造所 | Liner material for red-hot coke transportation buckets and method for producing the same |
JP2018165400A (en) * | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | Annealed steel material preventing generation of coarse crystal grains during quenching, and method for manufacturing the same |
CN109868411A (en) * | 2019-01-28 | 2019-06-11 | 舞阳钢铁有限责任公司 | A kind of electroslag type low-alloy structural steel plate and its production method |
JP2020026567A (en) * | 2018-08-17 | 2020-02-20 | 日立金属株式会社 | Hot stamp die steel, hot stamp die and method for producing the same |
WO2020070917A1 (en) | 2018-10-05 | 2020-04-09 | 日立金属株式会社 | Hot work tool steel and hot work tool |
CN111549284A (en) * | 2020-06-18 | 2020-08-18 | 北京机科国创轻量化科学研究院有限公司 | H13 matrix steel and preparation method thereof |
JP2021031695A (en) * | 2019-08-19 | 2021-03-01 | 山陽特殊製鋼株式会社 | Hot work-tool steel excellent in toughness |
CN113604730A (en) * | 2021-07-05 | 2021-11-05 | 昆山东大特钢制品有限公司 | High-temperature-resistant and high-toughness hot-work die steel and production process thereof |
-
2004
- 2004-10-05 JP JP2004292746A patent/JP2006104519A/en active Pending
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095190A (en) * | 2006-09-15 | 2008-04-24 | Hitachi Metals Ltd | Hot-working tool steel having superior toughness and high-temperature strength, and production method therefor |
JP2008095181A (en) * | 2006-09-15 | 2008-04-24 | Hitachi Metals Ltd | Hot-working tool steel having superior toughness and high-temperature strength |
WO2008032816A1 (en) * | 2006-09-15 | 2008-03-20 | Hitachi Metals, Ltd. | Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof |
KR101007417B1 (en) * | 2007-04-27 | 2011-01-12 | 다이도 토쿠슈코 카부시키가이샤 | Hot working die steel for die-casting |
JP2014177710A (en) * | 2008-12-25 | 2014-09-25 | Hitachi Metals Ltd | Hardening method for steel |
CN102264921A (en) * | 2008-12-25 | 2011-11-30 | 日立金属株式会社 | Steel tempering method |
WO2010074017A1 (en) * | 2008-12-25 | 2010-07-01 | 日立金属株式会社 | Steel tempering method |
JP5815946B2 (en) * | 2008-12-25 | 2015-11-17 | 日立金属株式会社 | Hardening method of steel |
JP2012193451A (en) * | 2011-03-03 | 2012-10-11 | Hitachi Metals Ltd | Hot work tool steel having excellent toughness |
JP2014512456A (en) * | 2011-03-04 | 2014-05-22 | ウッデホルムス アーベー | Hot working tool steel and method for producing hot working tool steel |
EP2662460A1 (en) * | 2012-05-07 | 2013-11-13 | Valls Besitz GmbH | Tough bainitic heat treatments on steels for tooling |
WO2013167628A1 (en) * | 2012-05-07 | 2013-11-14 | Valls Besitz Gmbh | Tough bainitic heat treatments on steels for tooling |
CN103045831A (en) * | 2012-12-05 | 2013-04-17 | 燕山大学 | Method for improving cold-work die steel hardness |
WO2014131907A1 (en) * | 2013-03-01 | 2014-09-04 | Rovalma, S.A. | High thermal diffusivity, high toughness and low crack risk during heat treatment tool steel |
CN104911484A (en) * | 2014-03-15 | 2015-09-16 | 紫旭盛业(昆山)金属科技有限公司 | Die steel |
JP2015193867A (en) * | 2014-03-31 | 2015-11-05 | 山陽特殊製鋼株式会社 | high toughness hot work tool steel |
EP3173500A4 (en) * | 2014-07-23 | 2018-01-03 | Hitachi Metals, Ltd. | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
US10533235B2 (en) | 2014-07-23 | 2020-01-14 | Hitachi Metals, Ltd. | Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool |
JP6004142B2 (en) * | 2014-07-23 | 2016-10-05 | 日立金属株式会社 | Hot tool material, hot tool manufacturing method and hot tool |
CN106244930B (en) * | 2016-08-01 | 2018-06-29 | 四川六合锻造股份有限公司 | It is a kind of to improve the method that steel alloy D classes are carefully inclusion behavior |
CN106244930A (en) * | 2016-08-01 | 2016-12-21 | 四川六合锻造股份有限公司 | A kind of improve the method that steel alloy D class is carefully inclusion behavior |
JP2018031045A (en) * | 2016-08-23 | 2018-03-01 | 株式會社三共合金鑄造所 | Liner material for red-hot coke transportation buckets and method for producing the same |
JP2018165400A (en) * | 2017-03-28 | 2018-10-25 | 大同特殊鋼株式会社 | Annealed steel material preventing generation of coarse crystal grains during quenching, and method for manufacturing the same |
JP7062961B2 (en) | 2017-03-28 | 2022-05-09 | 大同特殊鋼株式会社 | Annealed steel and its manufacturing method |
JP2020026567A (en) * | 2018-08-17 | 2020-02-20 | 日立金属株式会社 | Hot stamp die steel, hot stamp die and method for producing the same |
JP7172275B2 (en) | 2018-08-17 | 2022-11-16 | 日立金属株式会社 | Hot stamping die steel, hot stamping die and manufacturing method thereof |
CN114000059A (en) * | 2018-10-05 | 2022-02-01 | 日立金属株式会社 | Hot-work tool steel and hot-work tool |
WO2020070917A1 (en) | 2018-10-05 | 2020-04-09 | 日立金属株式会社 | Hot work tool steel and hot work tool |
EP4230759A1 (en) | 2018-10-05 | 2023-08-23 | Proterial, Ltd. | Hot work tool steel and hot work tool |
KR20210035238A (en) | 2018-10-05 | 2021-03-31 | 히다찌긴조꾸가부시끼가이사 | Hot tool steel and hot tool |
CN112601832A (en) * | 2018-10-05 | 2021-04-02 | 日立金属株式会社 | Hot-work tool steel and hot-work tool |
CN109868411A (en) * | 2019-01-28 | 2019-06-11 | 舞阳钢铁有限责任公司 | A kind of electroslag type low-alloy structural steel plate and its production method |
JP2021031695A (en) * | 2019-08-19 | 2021-03-01 | 山陽特殊製鋼株式会社 | Hot work-tool steel excellent in toughness |
JP7305483B2 (en) | 2019-08-19 | 2023-07-10 | 山陽特殊製鋼株式会社 | Hot work tool steel with excellent toughness |
CN111549284B (en) * | 2020-06-18 | 2021-04-20 | 北京机科国创轻量化科学研究院有限公司 | H13 matrix steel and preparation method thereof |
CN111549284A (en) * | 2020-06-18 | 2020-08-18 | 北京机科国创轻量化科学研究院有限公司 | H13 matrix steel and preparation method thereof |
CN113604730A (en) * | 2021-07-05 | 2021-11-05 | 昆山东大特钢制品有限公司 | High-temperature-resistant and high-toughness hot-work die steel and production process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006104519A (en) | High toughness hot tool steel and its production method | |
JP4179024B2 (en) | High speed tool steel and manufacturing method thereof | |
JP3257649B2 (en) | High toughness high speed steel member and method of manufacturing the same | |
CN110172641B (en) | Fine-grain high-toughness hot-work die steel and preparation method thereof | |
JP4252837B2 (en) | Steel material with excellent rolling fatigue life and method for producing the same | |
CN110129678B (en) | Economical fine-grain high-toughness hot-work die steel and preparation method thereof | |
JP6925781B2 (en) | Hot tool steel with excellent high temperature strength and toughness | |
EP3050986B1 (en) | High-speed-tool steel and method for producing same | |
JP6366326B2 (en) | High toughness hot work tool steel and manufacturing method thereof | |
JP5576785B2 (en) | Steel material excellent in cold forgeability and manufacturing method thereof | |
JP2010216008A (en) | Stock steel sheet for high strength machine component, method for producing the same, and method for producing high strength machine component | |
JP5376302B2 (en) | Die steel with excellent machinability | |
JP4922971B2 (en) | Composite roll for hot rolling and manufacturing method thereof | |
JP2022130746A (en) | Non-heat-treated forged component and non-heat-treated forging steel | |
JP7149250B2 (en) | Hot work tool steel with excellent high temperature strength and toughness | |
JPH093604A (en) | High speed tool steel for precision casting | |
JP2005307242A (en) | Prehardened steel for die casting mold | |
JP2002003988A (en) | Cold working tool steel having excellent machinability | |
JP2001123247A (en) | Cold tool steel excellent in machinability | |
JP2001234278A (en) | Cold tool steel excellent in machinability | |
JP3417922B2 (en) | Cast iron for sizing press die | |
JPH09227990A (en) | Hot tool steel excellent in high temperature strength and fracture toughness | |
JP4016449B2 (en) | High speed tool steel with improved hot workability and manufacturing method thereof | |
JP3499425B2 (en) | Manufacturing method of cold tool steel | |
CN112912526B (en) | High manganese steel material with excellent oxygen cutting performance and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090821 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090908 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091109 |
|
A02 | Decision of refusal |
Effective date: 20100727 Free format text: JAPANESE INTERMEDIATE CODE: A02 |