JP5815946B2 - Hardening method of steel - Google Patents

Hardening method of steel Download PDF

Info

Publication number
JP5815946B2
JP5815946B2 JP2010544046A JP2010544046A JP5815946B2 JP 5815946 B2 JP5815946 B2 JP 5815946B2 JP 2010544046 A JP2010544046 A JP 2010544046A JP 2010544046 A JP2010544046 A JP 2010544046A JP 5815946 B2 JP5815946 B2 JP 5815946B2
Authority
JP
Japan
Prior art keywords
steel
quenching
temperature
cooling
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010544046A
Other languages
Japanese (ja)
Other versions
JPWO2010074017A1 (en
Inventor
公太 片岡
公太 片岡
中津 英司
英司 中津
政幸 長澤
政幸 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010544046A priority Critical patent/JP5815946B2/en
Publication of JPWO2010074017A1 publication Critical patent/JPWO2010074017A1/en
Application granted granted Critical
Publication of JP5815946B2 publication Critical patent/JP5815946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt

Description

本発明は、プレス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間工具に最適な、高い靭性を有する熱間工具鋼を得るための焼入方法に関するものである。   The present invention relates to a quenching method for obtaining hot tool steel having high toughness that is optimal for various hot tools such as a press die, a forging die, a die casting die, and an extrusion tool.

熱間工具は、高温の被加工材や硬質な被加工材と接触しながら使用されるため、熱疲労や衝撃に耐えうる強度と靭性を兼ね備えている必要がある。そのため、従来熱間工具の分野には、例えばJIS鋼種であるSKD61系の熱間工具鋼が用いられていた。そして最近では、熱間工具を使用して製造される製品の製造時間の短縮や、その複雑形状への成形のためには被加工材が高温化してきていること、そして製品の複数同時加工に伴って金型等の熱間工具も大型化してきていることなどから、熱間工具材料には、更なる高い高温強度と、大型サイズでも内部まで高い靭性を確保できることが求められている。   Since a hot tool is used while being in contact with a high-temperature work material or a hard work material, it must have both strength and toughness that can withstand thermal fatigue and impact. Therefore, for example, SKD61 series hot tool steel, which is a JIS steel type, has been used in the field of hot tools. In recent years, the production time of products manufactured using hot tools has been shortened, and the material to be processed has become hot for molding into complex shapes, and multiple products can be processed simultaneously. Along with this, hot tools such as molds are becoming larger, and therefore, hot tool materials are required to be able to ensure even higher high-temperature strength and high toughness even in large sizes.

そこで、熱間工具鋼の高温強度と靭性を改善するためには、SKD61を基本成分として、さらに焼戻し時の2次硬化に寄与する炭化物を形成する元素を増加させたり、焼入性を高める元素を増加・添加したりして高性能化した改良鋼種が開発されている(特許文献1、2参照)。   Therefore, in order to improve the high-temperature strength and toughness of the hot work tool steel, an element that uses SKD61 as a basic component and further increases the elements that form carbides that contribute to secondary hardening during tempering, or that enhances hardenability. Improved steel types have been developed that have increased performance by increasing or adding (see Patent Documents 1 and 2).

また、熱間工具鋼の靭性を改善することを目的として、焼入冷却時の熱伝達係数を徐々に高めて冷却し、ベイナイト組織およびマルテンサイト組織を微細にする等の、焼入冷却速度を調整した手法が提案されている(特許文献3〜5参照)。   In order to improve the toughness of hot work tool steel, the heat transfer coefficient during quenching cooling is gradually increased to cool down, and the quenching cooling rate, such as making the bainite structure and martensite structure finer, is improved. An adjusted method has been proposed (see Patent Documents 3 to 5).

特許第3191008号公報Japanese Patent No. 3191008 特開2008−095181号公報JP 2008-095181 A 特開2008−088532号公報JP 2008-088532 A 特開2006−342377号公報JP 2006-342377 A 特開2005−171305号公報JP 2005-171305 A

特許文献3、4の焼入方法は、SKD61などのベイナイト変態、中でも特に上部ベイナイトのような粗い組織が生じやすい基本鋼種に対してこそ、その基地組織を微細にできる点や、パーライト組織の抑制ができる点で優れる。また、耐摩耗性を向上すべくWやMoを高めたSKD61の類似鋼に対しても、結晶粒内組織を微細化する特許文献5の焼入方法は、その靱性の維持に有効である。しかし、上述の特許文献1や2に示すような、更に多くの炭化物形成元素を含む改良鋼種に対しては、その靱性改善の作用効果は確実には発揮され難い。   The quenching methods of Patent Documents 3 and 4 are based on the bainite transformation such as SKD61, in particular, the basic steel type in which a rough structure such as upper bainite is likely to be formed, and the base structure can be made fine and the pearlite structure is suppressed. Excellent in that it can. In addition, the quenching method of Patent Document 5 that refines the grain internal structure is effective for maintaining the toughness of similar steel of SKD61 in which W and Mo are increased in order to improve wear resistance. However, the effect of improving the toughness is not surely exerted on the improved steel types including more carbide-forming elements as shown in Patent Documents 1 and 2 described above.

つまり、上記の改良鋼種は、元来、焼入性が高く、図1の連続冷却変態線図(CCT曲線)に示すようにベイナイト変態がSKD61に比べて低温、長時間側へ移行していることから、SKD61ほど低温域での冷却速度を速める必要はない。むしろ問題は、焼入温度から500℃程度までの間の高温域であって、その冷却中に粒界炭化物が析出および成長しやすく、それらが靭性へおよぼす影響が極めて大きい。よって、SKD61を対象とした特許文献3などの焼入手法を、改良鋼種に適用したとしても、その高温域での冷却速度の検討が不十分であることから、靱性の改善が確実に期待し難い。靭性が低いと、高温強度などの他の特性が優れていたとしても、熱間工具には利用できなくなることも多い。   In other words, the above-mentioned improved steel types are inherently high in hardenability, and as shown in the continuous cooling transformation diagram (CCT curve) in FIG. 1, the bainite transformation has shifted to a lower temperature and longer time side than SKD61. Therefore, it is not necessary to increase the cooling rate in the low temperature region as much as SKD61. Rather, the problem is in the high temperature range from the quenching temperature to about 500 ° C., and during the cooling, grain boundary carbides are likely to precipitate and grow, and their influence on toughness is extremely large. Therefore, even if the method for obtaining SKD61, such as Patent Document 3, is applied to the improved steel grade, the examination of the cooling rate in the high temperature range is insufficient, and therefore the improvement in toughness is surely expected. hard. If the toughness is low, even if other properties such as high temperature strength are excellent, it is often impossible to use for hot tools.

そこで本発明の目的は、特許文献1や2に提案されるような、炭化物形成元素を多く含み、高温強度に優れた熱間工具鋼においてこそ、より確実に優れた靭性を達成できる焼入方法を提供することである。   Therefore, an object of the present invention is to provide a quenching method that can achieve excellent toughness more reliably only in a hot tool steel containing many carbide forming elements and excellent in high temperature strength as proposed in Patent Documents 1 and 2. Is to provide.

本発明者が鋭意研究を行った結果、SKD61とは異なった、上記特定の組成範囲を有した鋼の靭性には、焼入冷却時の粒界炭化物の析出および成長度合いこそが大きく影響することをつきとめた。そして、そのときの機構を解明したことで、最適な焼入条件を明確にでき、本発明に到達した。   As a result of intensive research conducted by the present inventors, the precipitation and growth degree of grain boundary carbides during quenching cooling greatly influences the toughness of steel having the above specific composition range, which is different from SKD61. I found out. And by elucidating the mechanism at that time, the optimum quenching conditions could be clarified and the present invention was achieved.

すなわち本発明は、質量%で、C:0.32〜0.45%、Si:0.01〜0.8%未満、Mn:0.1〜0.8%、Ni:0〜0.8%未満、Cr:4.5〜5.6%、MoおよびWは単独または複合で(Mo+1/2W):2.0〜3.5%、V:0.5〜1.0%、Co:0〜2.0%、残部Feおよび不可避的不純物からなる熱間工具鋼の焼入方法において、
1020〜1070℃の焼入温度から530℃までを80分以内の速い速度で急冷することを特徴とする鋼の焼入方法である。好ましくは、45分以内の速い速度である。熱間工具鋼の(Mo+1/2W)は2.5%超であることが望ましい。
That is, this invention is mass%, C: 0.32-0.45%, Si: 0.01-less than 0.8%, Mn: 0.1-0.8%, Ni: 0-0.8 %, Cr: 4.5 to 5.6%, Mo and W alone or in combination (Mo + 1 / 2W): 2.0 to 3.5%, V: 0.5 to 1.0%, Co: In the quenching method of hot tool steel consisting of 0 to 2.0%, the balance Fe and inevitable impurities,
It is a steel quenching method characterized by quenching from a quenching temperature of 1020 to 1070 ° C. to 530 ° C. at a fast rate within 80 minutes. Preferably, it is a fast speed within 45 minutes. It is desirable that (Mo + 1 / 2W) of the hot work tool steel is more than 2.5%.

そして好ましくは、上述の焼入方法に加えて、1020〜1070℃の焼入温度から530℃までを上記記載の速い速度で急冷した後には、続く150℃までの冷却は60分以上となる遅い速度で冷却する鋼の焼入方法である。このとき、250分以下の速度で冷却することが望ましい。   And preferably, in addition to the quenching method described above, after quenching from a quenching temperature of 1020 to 1070 ° C. to 530 ° C. at the fast speed described above, the subsequent cooling to 150 ° C. is slow for 60 minutes or more. It is a method of quenching steel that is cooled at a speed. At this time, it is desirable to cool at a speed of 250 minutes or less.

本発明によれば、炭化物形成元素を多く含み、高温強度に優れた熱間工具鋼に、非常に高いレベルの靱性を具備させることができる。よって、多種熱間の用途・環境に適用が可能な熱間工具鋼の実用化にとって有効な技術となる。   According to the present invention, a hot tool steel containing a large amount of carbide forming elements and excellent in high temperature strength can be provided with a very high level of toughness. Therefore, this is an effective technique for practical application of hot tool steel that can be applied to various uses and environments.

SKD61および本発明の対象とする改良鋼種のCCT曲線と、焼入冷却曲線との関係を示す概念図ある。It is a conceptual diagram which shows the relationship between the CKD curve of SKD61 and the improved steel kind made into the object of this invention, and a quenching cooling curve. 本発明の対象とする改良鋼種のCCT曲線と、本発明例および比較例の焼入冷却曲線との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the CCT curve of the improved steel type made into the object of this invention, and the quenching cooling curve of the example of this invention, and a comparative example. 本発明の対象とする改良鋼種のCCT曲線と、本発明例の焼入冷却曲線との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the CCT curve of the improved steel kind made into the object of this invention, and the quenching cooling curve of the example of this invention. 本発明の対象とする改良鋼種のCCT曲線と、本発明例および比較例の焼入冷却曲線との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the CCT curve of the improved steel type made into the object of this invention, and the quenching cooling curve of the example of this invention, and a comparative example. 本発明の対象とする改良鋼種(鋼A)に、本発明例および比較例の焼入方法を適用したときの、その焼戻し後の靱性を評価する図である。It is a figure which evaluates the toughness after the tempering when the hardening method of the example of the present invention and the comparative example is applied to the improved steel type (steel A) which is the subject of the present invention. 本発明の対象とする改良鋼種(鋼B)に、本発明例の焼入方法を適用したときの、その焼戻し後の靱性を評価する図である。It is a figure which evaluates the toughness after the tempering when the hardening method of the example of the present invention is applied to the improved steel type (steel B) which is the subject of the present invention. 本発明の対象とする改良鋼種(鋼C)に、本発明例および比較例の焼入方法を適用したときの、その焼戻し後の靱性を評価する図である。It is a figure which evaluates the toughness after the tempering when applying the hardening method of the example of the present invention and the comparative example to the improved steel type (steel C) which is the subject of the present invention. 本発明の対象とする改良鋼種(鋼D)に、本発明例および比較例の焼入方法を適用したときの、その焼戻し後の靱性を評価する図である。It is a figure which evaluates the toughness after the tempering when the hardening method of the example of the present invention and the comparative example is applied to the improved steel type (steel D) which is the subject of the present invention.

上述したように、本発明の特徴の1つは、今回の焼入対象とすべき鋼種を、その焼入冷却時に粒界析出が起こりやすく、靭性の低下が著しくなる成分組成を有したものに限定したことにある。すなわち、焼入方法によって靭性に大きな影響を受ける鋼種について、後述の条件が特定された焼入方法を適用すれば、靭性を高いレベルで具備でき、高温強度に代表される、その他の優れた特性を存分に発揮できるようになる。以下、本発明に供される、狭組成域で構成される鋼の成分限定の理由について述べる。   As described above, one of the features of the present invention is that the steel type to be quenched this time has a component composition in which grain boundary precipitation is likely to occur during quenching and cooling, and the toughness is significantly reduced. It is limited. That is, for steel types that are greatly affected by toughness by the quenching method, if a quenching method in which the conditions described below are applied is applied, the toughness can be provided at a high level, and other excellent characteristics represented by high-temperature strength. Can be fully utilized. Hereinafter, the reason for limiting the components of the steel composed of a narrow composition range used in the present invention will be described.

Cは、一部が基地中に固溶して強度を付与し、一部は炭化物を形成することで耐摩耗性や耐焼付き性を高める、熱間工具鋼には重要な必須元素である。また、固溶した侵入型原子であるCは、CrなどのCと親和性の大きい置換型原子と共添加した場合、I(侵入型原子)−S(置換型原子)効果;溶質原子の引きずり抵抗として作用し高強度化する効果も期待される。ただし、含有量が0.32質量%未満では工具部材として十分な硬さ、耐摩耗性を確保できなくなる。他方、過度の添加は靭性や熱間強度の低下を招くため上限を0.45質量%(以下、単に%で記す)とする。好ましくは0.34%以上および/または0.42%以下である。さらに好ましくは0.40%以下である。   C is an essential essential element for hot work tool steel, part of which is dissolved in the matrix to give strength, and part of it forms carbides to improve wear resistance and seizure resistance. Further, when C, which is a solid interstitial atom, is co-added with a substitution atom having a high affinity with C, such as Cr, the I (interstitial atom) -S (substitution atom) effect; solute atom dragging The effect of increasing the strength by acting as a resistance is also expected. However, if the content is less than 0.32% by mass, sufficient hardness and wear resistance as a tool member cannot be secured. On the other hand, excessive addition causes a decrease in toughness and hot strength, so the upper limit is set to 0.45 mass% (hereinafter simply referred to as%). Preferably it is 0.34% or more and / or 0.42% or less. More preferably, it is 0.40% or less.

Siは、製鋼時の脱酸剤であるとともに被削性を高める元素である。これらの効果を得るためには0.01%以上の添加が必要であるが、多過ぎるとベイナイト組織を発達させて靭性を低下させる。また、焼入冷却時のベイナイト組織中ではセメンタイト系の炭化物の析出を抑制することにより、間接的に焼戻し時の合金炭化物の析出・凝集・粗大化を促進して高温強度を低下させる。よって、0.8%未満とする。好ましくは0.1%以上および/または0.6%以下である。   Si is an element that enhances machinability as well as a deoxidizer during steelmaking. In order to obtain these effects, addition of 0.01% or more is necessary, but if too much, a bainite structure is developed and toughness is lowered. Further, by suppressing the precipitation of cementite-based carbides in the bainite structure during quenching and cooling, precipitation, agglomeration and coarsening of alloy carbides during tempering are indirectly promoted to lower the high temperature strength. Therefore, it is less than 0.8%. Preferably they are 0.1% or more and / or 0.6% or less.

Mnは、焼入性を高め、フェライトの生成を抑制し、適度の焼入れ焼戻し硬さを得る効果がある。また、非金属介在物MnSとして組織中に存在すれば、被削性の向上に大きな効果がある。これらの効果を得るためには0.1%以上の添加が必要であるが、多過ぎると基地の粘さを上げて被削性を低下させるので0.8%以下とする。好ましくは0.3%以上および/または0.7%以下である。   Mn has the effect of improving hardenability, suppressing the formation of ferrite, and obtaining appropriate quenching and tempering hardness. Moreover, if it exists in a structure | tissue as nonmetallic inclusion MnS, there exists a big effect in the improvement of a machinability. In order to obtain these effects, addition of 0.1% or more is necessary, but if it is too much, the viscosity of the base is raised and machinability is lowered, so the content is made 0.8% or less. Preferably they are 0.3% or more and / or 0.7% or less.

Niは、フェライトの生成を抑制する元素である。また、C、Cr、Mn、Mo、Wなどとともに本発明鋼に優れた焼入性を付与し、緩やかな焼入冷却速度の場合にもベイナイト組織の生成を抑制する効果がある。よって、マルテンサイト主体の組織を形成させ、靭性の低下を防ぐためには有効である。さらに、基地の本質的な靭性改善効果を与えることから、添加の好ましい元素である。Niの添加は任意であるが、多過ぎると基地の粘さを上げて被削性を低下させたり、高温強度を低下させたりするので、0.8%未満とする必要がある。好ましくは0.5%以下である。   Ni is an element that suppresses the formation of ferrite. Moreover, it has the effect of giving excellent hardenability to the steel of the present invention together with C, Cr, Mn, Mo, W, etc., and suppressing the formation of a bainite structure even at a moderate quenching cooling rate. Therefore, it is effective for forming a martensite-based structure and preventing a decrease in toughness. Furthermore, it is a preferable element to be added because it provides the essential toughness improving effect of the base. The addition of Ni is optional, but if it is too much, it will increase the base viscosity and lower the machinability or lower the high temperature strength, so it needs to be less than 0.8%. Preferably it is 0.5% or less.

Crは、焼入性を高め、また、炭化物を形成して基地の強化や耐摩耗性を向上させる効果を有する元素である。そして、焼戻し軟化抵抗および高温強度の向上にも寄与する、本発明の熱間工具鋼には必須の元素である。これらの効果を得るため4.5%以上を添加する必要がある。ただし、過度の添加は返って焼入性や高温強度の低下を招くため、上限を5.6%とする。好ましくは4.9%以上および/または5.4%以下である。   Cr is an element that has an effect of enhancing hardenability and forming carbides to improve the strengthening of the base and the wear resistance. And it is an indispensable element for the hot work tool steel of this invention which contributes also to the improvement of temper softening resistance and high temperature strength. In order to obtain these effects, it is necessary to add 4.5% or more. However, excessive addition causes a decrease in hardenability and high temperature strength, so the upper limit is made 5.6%. Preferably it is 4.9% or more and / or 5.4% or less.

MoおよびWは、焼入性を高めるとともに、焼戻しにより微細炭化物を析出させて強度を付与し、軟化抵抗を向上させるために、単独または複合で添加できる。このとき、WはMoの約2倍の原子量であることから、これらの添加量は(Mo+1/2W)で規定することができる。そして、前記した効果を得るためには(Mo+1/2W)で2.0%以上の添加が必要である。多過ぎると被削性の低下や、後述の粒界炭化物の析出・成長の促進および量の増加による靭性の低下を招くので、(Mo+1/2W)で3.5%以下とする。好ましくは(Mo+1/2W)で2.2%以上および/または3.0%以下である。そして、炭化物形成元素を多く含んだ熱間工具鋼を対象とすることに意味がある点では、上記のCrに同様、(Mo+1/2W)の下限も2.5%超に限定すること、さらには2.6%以上に限定することが望ましい。   Mo and W can be added singly or in combination in order to enhance hardenability and to precipitate fine carbides by tempering to give strength and improve softening resistance. At this time, since W has an atomic weight about twice that of Mo, the amount of addition can be defined by (Mo + 1 / 2W). And in order to acquire the above-mentioned effect, addition of 2.0% or more is required at (Mo + 1 / 2W). If the amount is too large, the machinability deteriorates, and the precipitation / growth of grain boundary carbides, which will be described later, is promoted and the toughness is lowered due to the increase in the amount. Therefore, (Mo + 1 / 2W) is 3.5% or less. Preferably it is 2.2% or more and / or 3.0% or less in (Mo + 1 / 2W). And, in that it is meaningful to target hot tool steel containing a large amount of carbide forming elements, the lower limit of (Mo + 1 / 2W) is limited to more than 2.5%, as in the case of the above Cr. Is preferably limited to 2.6% or more.

Vは、炭化物を形成し、基地の強化や耐摩耗性を向上させる効果を有する。また、焼戻し軟化抵抗を高めるとともに結晶粒の粗大化を抑制し、靭性の向上に寄与する。この効果を得るためには0.5%以上を添加する必要があるが、多過ぎると、MoやWと同様、被削性や靭性の低下を招くので1.0%以下とする。好ましくは0.55%以上および/または0.85%以下である。   V has the effect of forming carbides and improving the strengthening of the base and the wear resistance. In addition, it increases resistance to temper softening and suppresses coarsening of crystal grains, thereby contributing to improvement of toughness. In order to acquire this effect, it is necessary to add 0.5% or more, but when it is too much, it will reduce machinability and toughness like Mo and W, so 1.0% or less. Preferably it is 0.55% or more and / or 0.85% or less.

Coは、工具使用中の昇温時に極めて緻密で密着性の良い保護酸化被膜を形成する。これにより、相手材との間の金属接触を防いで、金型表面の温度上昇を防ぐとともに優れた耐摩耗性をもたらすため、添加の好ましい元素である。Coの添加は任意であるが、多過ぎると靭性を低下させるので上限を2.0%以下とする。好ましくは、1.0%以下である。   Co forms a very dense and protective oxide film with good adhesion when the temperature rises during tool use. This is a preferable element for addition because it prevents metal contact with the counterpart material, prevents temperature rise on the mold surface, and provides excellent wear resistance. The addition of Co is optional, but if it is too much, the toughness is lowered, so the upper limit is made 2.0% or less. Preferably, it is 1.0% or less.

不可避的不純物としては、残留する可能性のある主な元素は、P、S、Cu、Al、Ca、Mg、O、N等である。本発明の作用効果を最大限に達成するためには、これらはできるだけ低い方が望ましいが、一方では、介在物の形態制御や、その他の機械的特性、あるいは製造効率の向上などの、付加的な作用効果を得る目的のもとでは、多少の含有および/または添加することもできる。この場合、P≦0.03%、S≦0.01%、Cu≦0.25%、Al≦0.025%、Ca≦0.01%、Mg≦0.01%、O≦0.01%、N≦0.03%であれば、本発明の焼入方法で得られる熱間工具鋼の靭性には特に大きな影響を及ぼさないと考えられるので、この範囲であれば許容でき、好ましい規制上限である。   As unavoidable impurities, the main elements that may remain are P, S, Cu, Al, Ca, Mg, O, N, and the like. In order to achieve the maximum effect of the present invention, these should be as low as possible. However, on the other hand, there are additional features such as inclusion shape control, other mechanical properties, and improvement in production efficiency. Some contents and / or additions may be added for the purpose of obtaining various effects. In this case, P ≦ 0.03%, S ≦ 0.01%, Cu ≦ 0.25%, Al ≦ 0.025%, Ca ≦ 0.01%, Mg ≦ 0.01%, O ≦ 0.01 %, N ≦ 0.03%, it is considered that there is no significant influence on the toughness of the hot work tool steel obtained by the quenching method of the present invention. It is an upper limit.

そして、本発明の最大の特徴こそが、上述の成分組成の改良鋼に固有の熱処理特性に応じて見いだされた、該改良鋼のための焼入方法である。つまり、従来のSKD61とは成分組成の異なる上記の改良鋼にとっては、その靭性に影響を及ぼす「焼入組織的要因」もSKD61とは異なる。だからこそ、その焼入組織的要因を研究することで、本発明の成分範囲鋼(以下、改良鋼とも記す)に対して、最適な焼入方法を特定することが必要であった。すなわちそれが、上記の成分組成を満たす熱間工具鋼を、1020〜1070℃の焼入温度から530℃までを80分以内の速い速度で急冷することを特徴とする鋼の焼入方法である。好ましくは60分以内、さらには45分以内である。そして、この速い速度で急冷した後には、続く150℃までの冷却は60分以上となる遅い速度で冷却することが好ましい焼入方法である。より好ましくは80分以上である。   The greatest feature of the present invention is the quenching method for the improved steel, which has been found according to the heat treatment characteristics unique to the improved steel having the above-mentioned composition. In other words, for the above-described improved steel having a different composition from that of the conventional SKD61, the “quenched structure factor” affecting the toughness is also different from that of the SKD61. Therefore, it has been necessary to identify an optimum quenching method for the component range steel of the present invention (hereinafter also referred to as improved steel) by studying the quenching structural factors. That is, it is a steel quenching method characterized by quenching hot tool steel satisfying the above component composition from a quenching temperature of 1020 to 1070 ° C. to 530 ° C. at a fast rate within 80 minutes. . Preferably, it is within 60 minutes, and further within 45 minutes. And after quenching at this high speed, it is a preferable quenching method that the subsequent cooling to 150 ° C. is performed at a slow speed of 60 minutes or more. More preferably, it is 80 minutes or more.

熱間工具鋼を焼入れする場合、10mm角程度の小ブロックサイズで油焼入れするのであれば、それはマルテンサイトの単一組織が得られ、靭性はその鋼の最も高いレベルを示すであろう。しかし、実用鋼となれば、焼入れする鋼のサイズが大きくなるなどによって焼入冷却速度は遅くなるとともに、その焼入温度から通常600℃程度までの高温域ではオーステナイト粒界に炭化物が析出および成長し、通常500℃程度以下の低温域ではベイナイト組織が形成され、靭性のレベルが低下する。これについては、本発明の対象とする特別な改良鋼であっても、その図1のCCT曲線の通り、同様である。よって、本発明の焼入方法は、その冷却管理を高温域と低温域に別けて行うものとした。   When quenching hot tool steel, if it is oil quenched with a small block size on the order of 10 mm square, it will give a martensitic single structure and the toughness will be the highest level of that steel. However, if it becomes a practical steel, the quenching cooling rate becomes slow due to the size of the steel to be quenched, and carbide precipitates and grows at the austenite grain boundary in the high temperature range from the quenching temperature to about 600 ° C. However, a bainite structure is usually formed in a low temperature range of about 500 ° C. or lower, and the toughness level is lowered. About this, even if it is the special improved steel made into the object of this invention, it is the same as the CCT curve of the FIG. Therefore, in the quenching method of the present invention, the cooling management is performed separately for the high temperature region and the low temperature region.

そして上記に従っては、その高温域および低温域の具体的な冷却条件を検討することになるが、本発明の作用効果を最大かつ再現性よく達成するためには、その条件は簡便であって、取扱いが容易であることが望ましい。つまり、冷却中に通過する“一点”の温度を基準とした冷却速度の管理にあっては、その基準温度を境界とした上下冷却域の個々で必要な冷却条件は制御が容易なものに設定できる「最適な基準温度」の特定である。そして、本発明の改良鋼の場合、この基準温度が530℃である。   And according to the above, specific cooling conditions for the high temperature region and low temperature region will be studied, but in order to achieve the maximum effect and reproducibility of the present invention, the conditions are simple, It is desirable that it is easy to handle. In other words, when managing the cooling rate based on the temperature of a “single point” that passes during cooling, the required cooling conditions for each of the upper and lower cooling zones with the reference temperature as a boundary are set to be easily controlled. This is the identification of the “optimal reference temperature” that can be made. And in the case of the improved steel of this invention, this reference temperature is 530 degreeC.

そして、焼入性や高温強度を高めるために合金元素量をSKD61よりも高めている本発明の改良鋼は、高温域での粒界炭化物の析出・成長が速くかつ多くなり、靭性低下に及ぼす影響が大きい(前出の図1を参照)。よって、該改良鋼を焼入れの対象とする本発明においては、1020〜1070℃の焼入温度から530℃までの高温域こそを速い速度で急冷しなくてはならない。それが具体的には80分以内の速い速度である。好ましくは60分以内、そして45分以内、さらに好ましくは30分以内の速い速度で急冷するものとする。   The improved steel of the present invention, which has an alloying element amount higher than SKD61 in order to increase hardenability and high temperature strength, causes faster precipitation and growth of grain boundary carbides in the high temperature range, which affects toughness reduction. The impact is significant (see Figure 1 above). Therefore, in the present invention where the improved steel is subject to quenching, the high temperature range from a quenching temperature of 1020 to 1070 ° C. to 530 ° C. must be rapidly cooled. Specifically, it is a fast speed within 80 minutes. The quenching is preferably performed at a fast rate within 60 minutes, and within 45 minutes, and more preferably within 30 minutes.

次に、本発明の改良鋼は530℃以下の低温域ではマルテンサイト変態やベイナイト変態が生じる。よって、高温域では上記した本発明の速い冷却速度のままで、これらの変態域に突入すると、素材表面側と内部で大きな温度差が生じて、変態が生じるタイミングも素材表面側と内部で大きくずれることとなり、結果、大きな応力が発生して変形や割れの原因となる場合がある。また、上述の改良鋼は、焼入性に優れ、靭性を大きく低下させるような粗いベイナイト組織は形成され難い成分設計となっているため、低温域では極端に速い冷却速度は必要としない。   Next, in the improved steel of the present invention, martensitic transformation and bainite transformation occur in a low temperature range of 530 ° C. or lower. Therefore, when entering the transformation zone while maintaining the above-described fast cooling rate of the present invention in the high temperature range, a large temperature difference occurs between the material surface side and the inside, and the timing at which transformation occurs is also large on the material surface side and inside. As a result, a large stress is generated, which may cause deformation or cracking. Moreover, since the above-mentioned improved steel has a hardened property and has a component design in which a rough bainite structure that greatly reduces toughness is hardly formed, an extremely fast cooling rate is not required in a low temperature range.

したがって、上述の高温域を速い速度で急冷した後には、それ以降の冷却は、上述の問題が発生し難い遅い速度で冷却することが好ましい。そして、このときの冷却は、マルテンサイト変態やベイナイト変態がほぼ完了して素材内外での変態時期のずれによる大きな応力発生の問題が解消される150℃までであれば十分である。具体的には530℃から150℃までの冷却に要する時間が60分以上の遅い冷却速度である。より好ましくは80分以上である。   Therefore, after the above-described high temperature region is rapidly cooled at a high speed, the subsequent cooling is preferably performed at a low speed at which the above-described problems are unlikely to occur. The cooling at this time is sufficient up to 150 ° C. at which the martensitic transformation and the bainite transformation are almost completed and the problem of large stress generation due to the shift of the transformation time inside and outside the material is solved. Specifically, the time required for cooling from 530 ° C. to 150 ° C. is a slow cooling rate of 60 minutes or more. More preferably, it is 80 minutes or more.

しかしそれであっても、冷却速度が遅すぎると、粗いベイナイト組織が形成される懸念があるので、低温域の冷却時間の上限も決めておくことが望ましい。この場合、530℃から150℃までの冷却に要する時間が250分となる速度より速ければ、靭性を大きく低下させるような粗いベイナイト組織形成の懸念防止に有効である。   However, even if the cooling rate is too slow, there is a concern that a coarse bainite structure may be formed. Therefore, it is desirable to determine the upper limit of the cooling time in the low temperature region. In this case, if the time required for cooling from 530 ° C. to 150 ° C. is faster than the speed at which it takes 250 minutes, it is effective in preventing the concern about the formation of a coarse bainite structure that greatly reduces toughness.

本発明では、例えば上記の基準温度および、該基準温度を挟んだ上下各20℃の温度域においては、その高温域から低温域に亘る冷却過程で冷却速度を調整するための「等温保持」が許容される。この際の等温保持温度や時間等の条件は、本発明の冷却条件そのものによる作用効果に極力影響を及ぼさない範囲(つまり、焼入対象鋼にとっては相変態の起こり難い範囲)で設定することが望ましい。等温保持時間は、本発明の各冷却に要した時間には加えない。   In the present invention, for example, in the above reference temperature and in the temperature range of 20 ° C. above and below the reference temperature, “isothermal holding” for adjusting the cooling rate in the cooling process from the high temperature range to the low temperature range is performed. Permissible. The conditions such as the isothermal holding temperature and time at this time may be set within a range that does not affect the effects of the cooling conditions of the present invention as much as possible (that is, a range in which phase transformation is unlikely to occur for the steel to be quenched). desirable. The isothermal holding time is not added to the time required for each cooling of the present invention.

表1に、今回の実施例で用いた熱間工具鋼の化学成分を示す。つまり、表1の熱間工具鋼は、いずれも本発明の成分範囲内にある“公知の”改良鋼であって、本発明の焼入方法による靱性向上効果を評価するには最適な試料である。これら試料(鋼A〜D)のCCT曲線は図2の通りである。   Table 1 shows the chemical components of the hot work tool steel used in this example. In other words, all of the hot tool steels in Table 1 are “known” improved steels within the range of the composition of the present invention, and are optimum samples for evaluating the effect of improving toughness by the quenching method of the present invention. is there. The CCT curves of these samples (steel A to D) are as shown in FIG.

Figure 0005815946
Figure 0005815946

これらの素材には、鋼Aは40トン、鋼Bは15トンのアーク溶解炉で一次溶解して造塊した電極を、エレクトロスラグ再溶解して製造した鋼塊を準備した。そして、この鋼塊に1200℃以上の所定の温度で均質化熱処理を施した後、熱間鍛造と焼なまし処理を繰り返しておよそ150mm厚さ×500mm幅の鋼材とした。そして、860℃で焼なまし処理した後に、鍛造後の厚さ方向が試験片の長手方向となるよう、その鋼材からシャルピー衝撃試験片サイズよりも一辺が約1mm大きいサイズの試験片粗加工材を採取して、これに1030℃の焼入処理を行った。   For these materials, steel ingots were prepared by remelting an electrode that was primarily melted and agglomerated in an arc melting furnace of 40 tons for steel A and 15 tons for steel B. The steel ingot was subjected to homogenization heat treatment at a predetermined temperature of 1200 ° C. or higher, and then hot forging and annealing were repeated to obtain a steel material having a thickness of about 150 mm × 500 mm. Then, after annealing at 860 ° C., the test piece roughened material having a size about 1 mm larger than the Charpy impact test piece size from the steel material so that the thickness direction after forging becomes the longitudinal direction of the test piece Was collected and subjected to quenching treatment at 1030 ° C.

鋼C、Dの素材には、真空誘導溶解炉にて10kgずつ溶解して製造した鋼塊を準備した。そして、この鋼塊に1200℃以上の所定の温度で均質化熱処理を施した後、熱間鍛造することで30mm厚さ×60mm幅の鋼材とした。そして、860℃で焼なまし処理した後に、鍛造後の幅方向が試験片の長手方向となるよう、その鋼材からシャルピー衝撃試験片サイズよりも一辺が約1mm大きいサイズの試験片粗加工材を採取して、これに1030℃の焼入処理を行った。   Steel ingots prepared by melting 10 kg each in a vacuum induction melting furnace were prepared for the steel C and D materials. And after giving homogenization heat processing to this steel ingot at the predetermined temperature of 1200 degreeC or more, it was set as the steel material of 30 mm thickness x 60 mm width by hot forging. Then, after annealing at 860 ° C., a rough test piece with a size about 1 mm larger than the Charpy impact test piece size from the steel material so that the width direction after forging is the longitudinal direction of the test piece. The sample was collected and subjected to quenching treatment at 1030 ° C.

上記の焼入れは、表2に示す方法で行った。焼入冷媒には所定の圧力の窒素ガス、大気から選択して用いた(いずれの焼入冷媒も約30℃の室温環境であった)。本発明例3〜5においては、その高温域と低温域の冷却速度を調整するために、530℃で1時間前後の等温保持を行った(焼入冷却曲線は図3の通り)。鋼A〜Dにとって該温度は相変態の起こらない温度域(CCT曲線図における入り江)であるため、表2の各冷却に要した時間には加えない。   The above quenching was performed by the method shown in Table 2. The quenching refrigerant used was selected from nitrogen gas at a predetermined pressure and the atmosphere (all quenching refrigerants had a room temperature environment of about 30 ° C.). In Invention Examples 3 to 5, in order to adjust the cooling rate in the high temperature region and the low temperature region, isothermal holding was performed at about 530 ° C. for about 1 hour (the quenching cooling curve is as shown in FIG. 3). For steels A to D, the temperature is a temperature range where no phase transformation occurs (cove in the CCT curve diagram), so it is not added to the time required for each cooling in Table 2.

Figure 0005815946
Figure 0005815946

実際の焼入作業においては、その焼入中にある対象物の温度変化は、焼入温度と焼入冷媒温度を必須因子とした下式で定義される自然放冷曲線におおむね従い、極端に遅い場合を除いて等速冷却にはならない。そこで、本発明では下式の自然放冷曲線を基にして、焼入温度から530℃までを冷却するために必要な時間を、半冷時間とも呼んで冷却速度を区別する。例えば半冷時間が40分の時は、単に半冷40分と呼ぶ。   In actual quenching work, the temperature change of the target object during the quenching is generally in accordance with the natural cooling curve defined by the following equation with quenching temperature and quenching refrigerant temperature as essential factors. It is not constant-speed cooling unless it is slow. Therefore, in the present invention, based on the natural cooling curve of the following formula, the time required for cooling from the quenching temperature to 530 ° C. is also called a semi-cooling time, and the cooling rate is distinguished. For example, when the semi-cold time is 40 minutes, it is simply called semi-cold 40 minutes.

自然放冷曲線の式
T=(Te−Tr)×exp(−t/C)+Tr
ここで、Te;初期温度(焼入温度)、Tr;焼入冷媒の温度、
t;時間、C;定数、T;時間tにおける温度
Natural cooling curve formula T = (Te−Tr) × exp (−t / C) + Tr
Where Te: initial temperature (quenching temperature), Tr: temperature of quenching refrigerant,
t: time, C: constant, T: temperature at time t

図3の焼入方法については、本発明例3を例に挙げて詳細に説明しておく。まず試験片を、1030℃から530℃までを半冷5分程度で急冷した後、これを530℃の炉で35分間等温保持した(本発明例4は約65分間保持、本発明例5は約85分間保持)。そして、この保持以降の冷却域(すなわち、ベイナイト変態域)は、大気中で、半冷時間が40分となる自然放冷曲線に従った遅い速度(つまり、図2に示す「半冷40分程度」の焼入冷却曲線)で冷却した。   The quenching method of FIG. 3 will be described in detail by taking Example 3 of the present invention as an example. First, the test piece was rapidly cooled from 1030 ° C. to 530 ° C. in about a half-cooled period of about 5 minutes, and then held isothermally in a furnace at 530 ° C. for 35 minutes (Invention Example 4 was held for about 65 minutes, Invention Example 5 was Hold for about 85 minutes). And the cooling zone after this holding | maintenance (namely, bainite transformation zone) is the slow speed (namely, "semi-cooling 40 minutes shown in FIG. It was cooled by a quenching cooling curve).

一方、図4の焼入方法の詳細を本発明例6を例に挙げて説明すると、それは1030℃から530℃までは半冷時間が40分の自然放冷曲線に従った速度で冷却して、それ以降の低温域は、加圧ガスにより、半冷時間が5分程度になる自然放冷曲線に従った速度で急冷した。   On the other hand, the details of the quenching method of FIG. 4 will be described by taking Example 6 of the present invention as an example. It is cooled from 1030 ° C. to 530 ° C. at a rate according to the natural cooling curve for 40 minutes. The subsequent low temperature region was rapidly cooled by the pressurized gas at a speed according to a natural cooling curve in which the semi-cooling time was about 5 minutes.

次に、上記の焼入処理した試験片粗加工材を種々の温度で焼戻し処理して、40〜50HRCの狙い硬さに調質した。そして、鋼A、Bについては、その鍛造後の鋼材における幅方向にシャルピー試験片のノッチ方向が一致するようにし(すなわち、ASTM E399−90におけるS−T方向)、また鋼C、Dについては、同長さ方向にシャルピー試験片のノッチ方向が一致するようにして(すなわち、同T−L方向)、2mmUノッチシャルピー衝撃試験片を加工作製した。   Next, the test piece rough processed material subjected to the quenching treatment was tempered at various temperatures and tempered to a target hardness of 40 to 50 HRC. And about steel A and B, it is made for the notch direction of a Charpy test piece to correspond with the width direction in the steel material after the forge (namely, ST direction in ASTM E399-90), and about steel C and D A 2 mm U-notch Charpy impact test piece was fabricated by making the notch direction of the Charpy test piece coincide with the same length direction (that is, the TL direction).

本発明例および比較例の、室温(22〜26℃)でのシャルピー衝撃試験結果を、鋼毎に別けて、図5(鋼A)、図6(鋼B)、図7(鋼C)および図8(鋼D)に示す。本発明の焼入対象とする、炭化物形成元素を多く含んだ改良鋼にとっては、その高温域においての粒界析出を抑えるように焼入れした本発明例の衝撃値は、高温域を本発明の範囲から外れるほど遅く冷却した比較例の衝撃値と比べて、かなり高いことがわかる。   The Charpy impact test results at room temperature (22 to 26 ° C.) of the inventive example and the comparative example are separated for each steel, and FIG. 5 (steel A), FIG. 6 (steel B), FIG. 7 (steel C) and It shows in FIG. 8 (steel D). For the improved steel containing a large amount of carbide-forming elements, which is the subject of quenching of the present invention, the impact value of the present invention example quenched to suppress grain boundary precipitation in the high temperature range is within the scope of the present invention. It can be seen that it is considerably higher than the impact value of the comparative example that was cooled late enough to deviate from the range.

本発明の焼入方法であれば、炭化物形成元素を多く含んだ熱間工具鋼の靭性を高位維持させることができる。よって、プレス金型や鍛造金型、ダイカスト金型、押出工具といった多種の熱間工具への適用はもちろんのこと、使用温度域が高く、さらなる高温強度が要求される大型の熱間工具であっても、その内部にまで高い靭性を付与することが可能である。


If it is the hardening method of this invention, the toughness of the hot tool steel containing many carbide forming elements can be maintained high. Therefore, it is not only applicable to various types of hot tools such as press dies, forging dies, die casting dies, and extrusion tools, but it is also a large hot tool that requires a high temperature range and high temperature strength. However, high toughness can be imparted to the inside.


Claims (4)

質量%で、C:0.32〜0.45%、Si:0.01〜0.8%未満、Mn:0.1〜0.8%、Ni:0〜0.8%未満、Cr:4.5〜5.6%、MoおよびWは単独または複合で(Mo+1/2W):2.0〜3.5%、V:0.5〜1.0%、Co:0〜2.0%、残部Feおよび不可避的不純物からなる熱間工具鋼の焼入方法において、
1020〜1070℃の焼入温度から530℃の基準温度までの高温域を45分以内の速い冷却速度で急冷し、前記基準温度から150℃までの低温域を60分以上となる遅い冷却速度で冷却し、前記基準温度の上下各20℃の温度域において前記高温域と前記低温域の冷却速度を調整するための等温保持を行うことを特徴とする鋼の焼入方法。
In mass%, C: 0.32 to 0.45%, Si: 0.01 to less than 0.8%, Mn: 0.1 to 0.8%, Ni: 0 to less than 0.8%, Cr: 4.5 to 5.6%, Mo and W are used alone or in combination (Mo + 1 / 2W): 2.0 to 3.5%, V: 0.5 to 1.0%, Co: 0 to 2.0 %, In the quenching method of hot tool steel consisting of the balance Fe and inevitable impurities,
A high temperature range from a quenching temperature of 1020 to 1070 ° C. to a reference temperature of 530 ° C. is rapidly cooled at a fast cooling rate within 45 minutes, and a low temperature range from the reference temperature to 150 ° C. is set at a slow cooling rate of 60 minutes or more. A steel quenching method comprising cooling and performing isothermal holding for adjusting the cooling rate of the high temperature region and the low temperature region in a temperature range of 20 ° C. above and below the reference temperature.
質量%で、熱間工具鋼の(Mo+1/2W)を2.5%超とすることを特徴とする請求項1に記載の鋼の焼入方法。   The method of quenching steel according to claim 1, characterized in that (Mo + 1 / 2W) of the hot work tool steel exceeds 2.5% by mass%. 前記基準温度から150℃までを250分以内の冷却速度で冷却することを特徴とする請求項1または2に記載の鋼の焼入方法。 The method of quenching steel according to claim 1 or 2 , wherein the temperature from the reference temperature to 150 ° C is cooled at a cooling rate within 250 minutes. 前記基準温度から150℃までを80分以上となる遅い冷却速度で冷却することを特徴とする請求項1ないしのいずれかに記載の鋼の焼入方法。 The steel quenching method according to any one of claims 1 to 3 , wherein the steel is cooled from the reference temperature to 150 ° C at a slow cooling rate of 80 minutes or more.
JP2010544046A 2008-12-25 2009-12-21 Hardening method of steel Active JP5815946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010544046A JP5815946B2 (en) 2008-12-25 2009-12-21 Hardening method of steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008329088 2008-12-25
JP2008329088 2008-12-25
PCT/JP2009/071217 WO2010074017A1 (en) 2008-12-25 2009-12-21 Steel tempering method
JP2010544046A JP5815946B2 (en) 2008-12-25 2009-12-21 Hardening method of steel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014103206A Division JP5929963B2 (en) 2008-12-25 2014-05-19 Hardening method of steel

Publications (2)

Publication Number Publication Date
JPWO2010074017A1 JPWO2010074017A1 (en) 2012-06-14
JP5815946B2 true JP5815946B2 (en) 2015-11-17

Family

ID=42287626

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010544046A Active JP5815946B2 (en) 2008-12-25 2009-12-21 Hardening method of steel
JP2014103206A Active JP5929963B2 (en) 2008-12-25 2014-05-19 Hardening method of steel

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2014103206A Active JP5929963B2 (en) 2008-12-25 2014-05-19 Hardening method of steel

Country Status (3)

Country Link
JP (2) JP5815946B2 (en)
CN (1) CN102264921B (en)
WO (1) WO2010074017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177710A (en) * 2008-12-25 2014-09-25 Hitachi Metals Ltd Hardening method for steel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515442B2 (en) * 2009-06-16 2014-06-11 大同特殊鋼株式会社 Hot tool steel and steel products using the same
ES2710098T3 (en) 2012-03-30 2019-04-23 Hitachi Metals Ltd Hot forging matrix
SE539646C2 (en) 2015-12-22 2017-10-24 Uddeholms Ab Hot work tool steel
WO2018182480A1 (en) * 2017-03-29 2018-10-04 Uddeholms Ab Hot work tool steel
EP4230759A1 (en) * 2018-10-05 2023-08-23 Proterial, Ltd. Hot work tool steel and hot work tool
WO2020203226A1 (en) * 2019-03-29 2020-10-08 アイシン・エィ・ダブリュ株式会社 Quenching method
CN112095045B (en) * 2019-06-18 2022-03-22 大同特殊钢株式会社 Powder for additive manufacturing and die casting die component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308059A (en) * 1991-04-04 1992-10-30 Hitachi Metals Ltd Tool steel for hot working
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2006342377A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Method for quenching large-sized die
JP2008095190A (en) * 2006-09-15 2008-04-24 Hitachi Metals Ltd Hot-working tool steel having superior toughness and high-temperature strength, and production method therefor
JP2008095181A (en) * 2006-09-15 2008-04-24 Hitachi Metals Ltd Hot-working tool steel having superior toughness and high-temperature strength

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3300500B2 (en) * 1993-10-12 2002-07-08 新日本製鐵株式会社 Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability
JP4179024B2 (en) * 2003-04-09 2008-11-12 日立金属株式会社 High speed tool steel and manufacturing method thereof
JP2007308784A (en) * 2006-05-22 2007-11-29 Daido Steel Co Ltd Alloy steel
WO2010074017A1 (en) * 2008-12-25 2010-07-01 日立金属株式会社 Steel tempering method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04308059A (en) * 1991-04-04 1992-10-30 Hitachi Metals Ltd Tool steel for hot working
JP2006104519A (en) * 2004-10-05 2006-04-20 Daido Steel Co Ltd High toughness hot tool steel and its production method
JP2006342377A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Method for quenching large-sized die
JP2008095190A (en) * 2006-09-15 2008-04-24 Hitachi Metals Ltd Hot-working tool steel having superior toughness and high-temperature strength, and production method therefor
JP2008095181A (en) * 2006-09-15 2008-04-24 Hitachi Metals Ltd Hot-working tool steel having superior toughness and high-temperature strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177710A (en) * 2008-12-25 2014-09-25 Hitachi Metals Ltd Hardening method for steel

Also Published As

Publication number Publication date
WO2010074017A1 (en) 2010-07-01
CN102264921A (en) 2011-11-30
CN102264921B (en) 2015-09-09
JPWO2010074017A1 (en) 2012-06-14
JP5929963B2 (en) 2016-06-08
JP2014177710A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
JP5929963B2 (en) Hardening method of steel
WO2018182480A1 (en) Hot work tool steel
JP2013213255A (en) Hot working die steel
WO2008032816A1 (en) Hot-working tool steel having excellent stiffness and high-temperature strength and method for production thereof
JP6366326B2 (en) High toughness hot work tool steel and manufacturing method thereof
JP2011236452A (en) Bainite steel
WO2007123164A1 (en) Piston ring material for internal combustion engine
WO2012118053A1 (en) Hot work tool steel having excellent toughness, and process of producing same
JP3535112B2 (en) Hot tool steel excellent in erosion resistance and high temperature strength and high temperature member made of the hot tool steel
JP2012214833A (en) Cold tool steel
JP4123618B2 (en) Hot work tool steel with excellent high temperature strength and toughness
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JP2007224418A (en) Hot tool steel having excellent toughness
JP2017066460A (en) Age hardening steel
JP5212772B2 (en) Hot work tool steel with excellent toughness and high temperature strength
JP6913291B2 (en) Hot tools Steel and hot tools
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JP2009221594A (en) Hot-working tool steel having excellent toughness
JPH06256897A (en) Steel for hot forging die
JP3191008B2 (en) Hot tool steel
JP5907416B2 (en) Method for producing hot work tool steel with excellent toughness
JP2014210941A (en) Powder high-speed tool steel excellent in high-temperature temper hardness
JP5907415B2 (en) Hot work tool steel with excellent toughness
JP2004315840A (en) Cold working tool steel superior in machinability, and manufacturing method therefor

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20110218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140612

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150925

R150 Certificate of patent or registration of utility model

Ref document number: 5815946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350