JP2006342377A - Method for quenching large-sized die - Google Patents

Method for quenching large-sized die Download PDF

Info

Publication number
JP2006342377A
JP2006342377A JP2005167356A JP2005167356A JP2006342377A JP 2006342377 A JP2006342377 A JP 2006342377A JP 2005167356 A JP2005167356 A JP 2005167356A JP 2005167356 A JP2005167356 A JP 2005167356A JP 2006342377 A JP2006342377 A JP 2006342377A
Authority
JP
Japan
Prior art keywords
cooling
quenching
temperature
die
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167356A
Other languages
Japanese (ja)
Inventor
Koichiro Inoue
幸一郎 井上
Masamichi Kono
正道 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005167356A priority Critical patent/JP2006342377A/en
Publication of JP2006342377A publication Critical patent/JP2006342377A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where the large-sized die for hot forging, hot pressing, die casting or hot extrusion, e.g., made of SKD61 steel is quenched while avoiding quench cracks so as to obtain a die combining low heat treatment strain and high toughness. <P>SOLUTION: Cooling continued to heating to a quenching temperature is performed in such a manner that the cooling rate at a position in which the cooling is latest, i.e., the center of the thickest part in the die is controlled to 20 to 5°C/min in a high temperature region from a quenching temperature to 600°C, and is controlled to 1 to 15°C/min in a low temperature region from 400 to 200°C. It is preferable that, in the meanwhile where the surface temperature of the die lies in a middle temperature region from 400 to 600°C, the die is temporarily held to the temperature in the region, or is annealed, thus the cooling is progressed in such a manner that the temperature difference does not exceed 300°C between the surface and the inside of the die. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、大物金型の焼入れ方法の改良に関する。ここで「大物金型」とは、代表的にはJIS−SKD61鋼で製造する熱間鍛造金型、熱間プレス金型、ダイカスト金型、熱間押出し金型のような、大型で重量が数百キログラム〜数トンに及ぶ金型を指す。「冷却が最も遅い部分」は、金型の最も肉厚が厚い部分の中心と考えられる。 The present invention relates to an improvement in a quenching method for a large mold. Here, “large molds” are typically large and heavy, such as hot forging dies, hot press dies, die casting dies, hot extrusion dies made of JIS-SKD61 steel. This refers to molds ranging from several hundred kilograms to several tons. The “slowest cooling part” is considered to be the center of the thickest part of the mold.

上記のような熱間で使用される金型は、焼入れ・焼戻しのような熱処理を施してから使用に供されるが、加熱された被鍛造材や金属溶湯との接触および分離により、金型表面が繰り返し加熱冷却されるため、ヒートチェックが発生することが多い。このようなヒートチェックの防止策としては、金型の硬さを増すことが効果的であるが、硬すぎる金型は靱性が低く耐衝撃性に劣るため、ヒートチェック部や金型形状に伴う切り欠き部を起点として、大割れが生じることがある。そこで、硬さを高くしても高い耐衝撃性が得られるような熱処理方法が望まれている。このような見地から、金型の焼入れ時の冷却速度と耐衝撃性との関係を調べた結果、冷却速度が速い方が、耐衝撃性が良好であることがわかった。 The molds used in the above hot condition are used after being subjected to heat treatment such as quenching and tempering, but the molds are brought into contact with and separated from the heated forging material or molten metal. Since the surface is repeatedly heated and cooled, a heat check often occurs. As a measure to prevent such heat check, it is effective to increase the hardness of the mold, but the mold that is too hard has low toughness and poor impact resistance, so it accompanies the heat check part and the mold shape. Large cracks may occur starting from the notch. Therefore, a heat treatment method is desired that can provide high impact resistance even when the hardness is increased. From such a viewpoint, as a result of investigating the relationship between the cooling rate at the time of quenching the mold and the impact resistance, it was found that the faster the cooling rate, the better the impact resistance.

一方、近年、従来は複数の部材を組み合わせて製造していた部品を、はじめから一体に製造することにより、生産能率の向上、軽量化、コスト削減を図る傾向が高くなっている。それに伴い、部品を製造する金型もいきおい大型化してくる。そのような大物金型は、耐衝撃性を高めようとして焼入れ時の冷却を強化すると、焼割れが生じたり、熱処理歪みが大きく金型として使用できないものになったりするという問題が出てくる。このため、大物金型では、焼入れ時の冷却は比較的緩やかな条件で行なわざるを得ない。そうなると、焼入れ効果が低くなって、焼割れ防止と低歪みとは実現するものの、高靱性をこれらに両立させることは困難になる。 On the other hand, in recent years, there has been a tendency to improve production efficiency, reduce weight, and reduce costs by integrally manufacturing parts that have been conventionally manufactured by combining a plurality of members from the beginning. Along with that, molds for manufacturing parts are also becoming larger. When such a large metal mold is reinforced by quenching to improve impact resistance, there arises a problem that a fire crack is generated or a heat treatment distortion is large and the mold cannot be used as a mold. For this reason, in large dies, cooling during quenching must be performed under relatively mild conditions. In this case, the quenching effect is lowered, and it is difficult to achieve both high toughness while achieving prevention of cracking and low distortion.

このような事態を打開する手段として、焼入れ時の高温領域における冷却を緩やかにすることにより歪みを低減するが、CCT(低温域連続冷却)曲線が与えるベイナイトノーズに接触しない短い時間で焼入れを完了することにより、ベイナイトの生成を防いで耐衝撃性を向上させ、低歪みと耐衝撃性を両立させることが提案されている(特許文献1、特許文献2)。しかし、SKD61を代表とする熱間ダイス鋼のベイナイトノーズは約30〜60分のあたりに存在するため、ベイナイトの生成を避けて冷却するには、高温域の冷却速度をある程度以上に高める必要があって、熱処理歪みを十分に低くすることは望みが薄い。 As a means to overcome this situation, the distortion is reduced by gradual cooling in the high temperature region during quenching, but the quenching is completed in a short time without contact with the bainite nose given by the CCT (low temperature region continuous cooling) curve. By doing so, it has been proposed to improve the impact resistance by preventing the formation of bainite and to achieve both low distortion and impact resistance (Patent Documents 1 and 2). However, since the bainite nose of hot die steel typified by SKD61 exists around 30 to 60 minutes, it is necessary to increase the cooling rate in the high temperature range to a certain extent in order to cool it by avoiding the formation of bainite. Therefore, it is not desirable to sufficiently reduce the heat treatment strain.

焼入れ温度までの加熱を減圧された加熱室内で行ない、高温域の冷却を不活性ガス雰囲気とくに加圧雰囲気で行ない、金型表面が900〜500℃になったところで炉から出して油冷し、脱炭を防止しながら低い歪みと高い衝撃値とを両立させるという試みもある(特許文献3)。しかし、この方法は、高温で炉の雰囲気を変更する必要があり、炉体の寿命を短くする危険がある。加熱および冷却は、大気圧雰囲気炉による加熱と大気中での冷却によるか、または真空炉中での加熱と不活性ガスまたはその加圧雰囲気における冷却により、一貫して行なうことが好ましい。 Heating up to the quenching temperature is performed in a reduced pressure heating chamber, cooling in a high temperature region is performed in an inert gas atmosphere, particularly a pressurized atmosphere, and when the mold surface reaches 900 to 500 ° C., it is removed from the furnace and oil cooled. There is also an attempt to achieve both a low strain and a high impact value while preventing decarburization (Patent Document 3). However, this method requires changing the furnace atmosphere at a high temperature, and there is a risk of shortening the life of the furnace body. Heating and cooling are preferably performed consistently by heating in an atmospheric furnace and cooling in the air, or by heating in a vacuum furnace and cooling in an inert gas or its pressurized atmosphere.

高温域の冷却を衝風により行ない、低温域の冷却をポリマー液への投入によって行ない、冷却速度を高めて耐衝撃性を確保するという方策も考えられている(特許文献4)。この方策では、耐衝撃性の向上には有効であるが、その一方で、ポリマー液の冷却能は焼入れ油にくらべて大きいから、大物金型では焼割れの危険が大きくなる。
特公平6−104851 特開平8−225830 特開平2001−181735 特開平98−182948
There has also been considered a method in which the high temperature region is cooled by a blast and the low temperature region is cooled by introducing it into a polymer solution to increase the cooling rate to ensure impact resistance (Patent Document 4). This measure is effective in improving the impact resistance, but on the other hand, the cooling capacity of the polymer liquid is larger than that of the quenching oil, so that the risk of quenching cracks is increased in large molds.
JP 6-104851 JP-A-8-225830 JP 2001-181735 A JP-A 98-182948

このような技術の現状にかんがみ、発明者らは、焼入れ時の冷却速度と、衝撃値、焼入れ歪みおよび焼割れとの関係を調べて、つぎのような知見を得た。 In view of the current state of such technology, the inventors have investigated the relationship between the cooling rate during quenching and the impact value, quenching strain, and quench cracking, and obtained the following knowledge.

1)冷却速度が衝撃値に及ぼす影響は、高温領域では小さく、600℃以上の領域において、冷却が最も遅い部分の冷却速度を5℃/分以上、すなわちパーライト析出が生じない速度で冷却すれば、衝撃値の顕著な低下はみられない。しかし、低温領域では影響が大きく、冷却速度が低いと衝撃値が低く、冷却速度が高まれば衝撃値も高くなる。このとき、冷却が最も遅い部分の冷却速度が1℃/分以下になると、衝撃値が大幅に低下するので、この限界を確保する必要がある。すなわち、熱処理歪みを低減するためにCCT曲線のベイナイトノーズより遅くなるように高温域の冷却を行なっても、低温域を十分速やかに冷却することにより、高い衝撃値が得られる。 1) The effect of the cooling rate on the impact value is small in the high temperature region, and in the region of 600 ° C. or higher, the cooling rate of the slowest part is 5 ° C./min or higher, that is, at a rate at which pearlite precipitation does not occur. The impact value is not significantly reduced. However, the influence is large in the low temperature region, the impact value is low when the cooling rate is low, and the impact value is high when the cooling rate is high. At this time, if the cooling rate of the slowest part of cooling is 1 ° C./min or less, the impact value is greatly reduced, so it is necessary to ensure this limit. That is, even if the high temperature region is cooled so as to be slower than the bainite nose of the CCT curve in order to reduce heat treatment distortion, a high impact value can be obtained by sufficiently cooling the low temperature region.

2)焼割れは、大物金型で低温域の冷却速度が速いほど生じる可能性が高くなる。これは、金型の表面と内部との、マルテンサイトおよびベイナイト変態開始の時間差に起因するもので、時間差が大きいほど、すなわち焼入れ直前の表面と中心部の温度差が大きいほど割れやすくなるということである。また、金型が大物になるほど、高温域を緩やかに冷却しても、低温域の急冷直前の段階における、内外の温度差が大きくなる。さまざまな冷却パターンを実験した結果、400〜600℃の温度領域ではパーライト析出やベイナイト変態などの現象が著しく遅く、工業的に有限な時間、この温度範囲に保持しても、衝撃値には影響がないことがわかった。 2) Burn cracking is more likely to occur as the cooling speed in the low temperature region increases with a large mold. This is due to the time difference between the start and end of the martensite and bainite transformation between the mold surface and the inside. The greater the time difference, that is, the greater the temperature difference between the surface immediately before quenching and the center, the easier it is to crack. It is. Moreover, the larger the mold, the larger the temperature difference between the inside and outside in the stage immediately before the rapid cooling in the low temperature region, even if the high temperature region is gradually cooled. As a result of experiments on various cooling patterns, phenomena such as pearlite precipitation and bainite transformation are remarkably slow in the temperature range of 400 to 600 ° C, and even if kept in this temperature range for an industrially finite time, the impact value is affected. I found that there was no.

本発明の目的は、発明者が得た上述の知見を基礎とし、大物金型の焼入れ方法において、焼割れを避けて焼入れを行ない、低い熱処理歪みと高い靱性とを兼ね備えた金型を得る方法を提供することにある。 The object of the present invention is based on the above-mentioned knowledge obtained by the inventor and is a method for obtaining a mold having both low heat distortion and high toughness by performing quenching while avoiding quenching cracks in the quenching method for large molds. Is to provide.

上記の目的を達成する本発明の大物金型の焼入れ方法は、基本的には、焼入れ温度への加熱に続く冷却を、冷却が最も遅い位置、すなわち金型の最も肉厚が厚い部分の中心の冷却速度が、焼入れ温度から600℃までの高温領域は20〜5℃/分以上、400℃から200℃までの低温領域は1〜15℃/分となるように実施することにより、焼割れを避けて、低歪みかつ高靱性の金型を得ることを特徴とする焼入れ方法である。 The large mold quenching method of the present invention that achieves the above-mentioned object basically includes the cooling to the quenching temperature followed by the cooling at the slowest position, that is, at the center of the thickest part of the mold. By carrying out the cooling rate of 20 to 5 ° C./min or higher in the high temperature region from the quenching temperature to 600 ° C. and 1 to 15 ° C./min in the low temperature region from 400 ° C. to 200 ° C. Is a quenching method characterized in that a mold having a low strain and a high toughness is obtained.

本発明の焼入れ方法により大物金型の焼入れを行なえば、焼入れ時に焼割れが生じることはなく、かつ、熱処理歪みを最小限に抑えて、高い靱性をもった大物金型を得ることができる。 When a large mold is quenched by the quenching method of the present invention, no cracking occurs during quenching, and a large mold having high toughness can be obtained with minimal heat treatment distortion.

以下に、上記した焼入れの条件について説明する。まず、高温領域すなわち焼入れ温度から600℃までの範囲では20〜5℃/分以上としたのは、前述のように、この温度域では冷却速度が衝撃値にあまり影響を与えないが、パーライトが析出する5℃/分未満になると衝撃値の低下が顕著になるから、この冷却速度が下限となる一方、熱処理歪みに関しては、あまり急冷すると歪みが大きくなるため、なるべく遅く冷却することが好ましく、20℃/分がこの観点からの上限となる、という理由に基づく限定である。 Hereinafter, the above-described quenching conditions will be described. First, in the high temperature region, that is, in the range from the quenching temperature to 600 ° C., 20 to 5 ° C./min or more is the reason that the cooling rate does not significantly affect the impact value in this temperature region as described above. Since the decrease in impact value becomes significant when the deposition rate is less than 5 ° C./min, this cooling rate is the lower limit.On the other hand, regarding the heat treatment strain, it is preferable to cool as late as possible because the strain increases when cooled too quickly. This is a limitation based on the reason that 20 ° C./min is the upper limit from this viewpoint.

つぎに、低温領域すなわち400℃から200℃までの間の冷却速度を1〜15℃/分としたのは、これも前述のように、この領域では冷却速度の大小に衝撃値の大小が比例するから、なるべく速やかに冷却したいが、一方であまり大きい冷却速度では金型の表面と内部との温度差にもとづく焼き割れが生じるから、それを避けるため15℃/分を上限とし、下限側は、衝撃値が低すぎない限界という観点から、1℃/分を下限とした。5℃/分以上あることが好ましい。 Next, the cooling rate between 400 ° C. and 200 ° C. is set to 1 to 15 ° C./min. As described above, the magnitude of the impact value is proportional to the cooling rate in this region. Therefore, we want to cool as quickly as possible, but on the other hand, if the cooling rate is too high, cracks will occur based on the temperature difference between the surface of the mold and the inside, so in order to avoid it, the upper limit is 15 ° C./min. From the viewpoint of the limit that the impact value is not too low, 1 ° C./min was set as the lower limit. It is preferably 5 ° C./min or more.

冷却の過程において、金型の表面温度が600℃より低いが400℃より高い中温領域にある間に、金型をこの領域の温度に一時的に保持するか、または徐冷することにより、金型の表面と冷却が最も遅い部分との温度差が300℃を超えないようにして冷却を進めることが好ましい。400〜600℃では、パーライト変態およびベイナイト変態の開始時間が非常に遅く、この温度領域に保持することにより、組織の変化を生じることなく金型の表面と内部との温度差を低減することが可能である。 In the course of cooling, while the mold surface temperature is in the intermediate temperature region lower than 600 ° C. but higher than 400 ° C., the mold is temporarily held at the temperature of this region or slowly cooled, It is preferable to proceed with cooling so that the temperature difference between the mold surface and the slowest cooling portion does not exceed 300 ° C. At 400 to 600 ° C., the start time of the pearlite transformation and the bainite transformation is very slow, and holding in this temperature region can reduce the temperature difference between the surface and the inside of the mold without causing a change in structure. Is possible.

400〜600℃の温度域における一時的な保持または徐冷を、上記のように、金型の表面と冷却が最も遅い部分との温度差が300℃を超えないようにするのは、この温度差が大きいと、後続の工程である急冷により表面がマルテンサイトまたはベイナイトに変態して、著しく脆くなったのちに中心部がマルテンサイトまたはベイナイト変態して膨張する現象が起こるまでの時間差が大きくなり、焼割れが避けがたくなるからである。 Temporary holding or gradual cooling in the temperature range of 400 to 600 ° C., as described above, prevents the temperature difference between the mold surface and the slowest part of cooling from exceeding 300 ° C. If the difference is large, the time difference until the phenomenon that the center portion is transformed into martensite or bainite by the subsequent cooling process and becomes extremely brittle and then the center portion is transformed into martensite or bainite and expands is increased. This is because burning cracks are difficult to avoid.

本発明の焼入れ方法を実施するひとつの態様は、焼入れ温度への加熱を大気圧の雰囲気炉を用いて行ない、冷却は、高温領域においては大気中の空冷または衝風冷却により、低温領域においては40〜200℃の油に投入することにより1〜15℃/分の冷却速度を確保するようにしたものである。低温域の冷却速度をこの1〜15℃/分にするには、焼入れ油の温度を40〜200℃の範囲内で、適切に調節することが必要である。焼入れ油の温度が40℃未満では、冷却が急激になって焼割れを生じやすくなるし、200℃を超える高温にすると、必要な冷却速度が得られなくなる可能性がある。 One aspect of carrying out the quenching method of the present invention is that heating to a quenching temperature is performed using an atmospheric furnace at atmospheric pressure, and cooling is performed by air cooling or blast cooling in the atmosphere in a high temperature region, and in a low temperature region. A cooling rate of 1 to 15 ° C./min is ensured by introducing the oil into 40 to 200 ° C. oil. In order to set the cooling rate in the low temperature range to 1 to 15 ° C./min, it is necessary to appropriately adjust the temperature of the quenching oil within the range of 40 to 200 ° C. If the temperature of the quenching oil is less than 40 ° C., the cooling becomes abrupt and the cracking is likely to occur. If the temperature is higher than 200 ° C., the required cooling rate may not be obtained.

焼入れ温度への加熱は、上記した大気圧の不活性ガス雰囲気の炉を用いて行なってもよいし、真空中で行なってもよい。冷却は、大気中や上述の油焼入れなどを選択できるが、それ以外にも、大気圧の、または加圧下の不活性ガス雰囲気で実施してもよい。 Heating to the quenching temperature may be performed using the above-described furnace in an inert gas atmosphere at atmospheric pressure, or may be performed in a vacuum. Cooling can be selected in the air or the above-described oil quenching, but may be performed in an inert gas atmosphere under atmospheric pressure or under pressure.

SKD61鋼の球状化焼鈍し材を、図1に示すように、300mm×300mm×300mmの立方体に切り出し、その一面に幅が50mmで深さも50mmの溝を機械加工により設けた試験片を用意し、1030℃に加熱後、種々の条件で焼入れした。このとき、試験片の表面と中心部との温度を、それぞれ熱電対で測定した。冷却の条件を、表1に掲げる As shown in Fig. 1, the SKD61 steel spheroidized annealing material is cut into a cube of 300mm x 300mm x 300mm, and a test piece is prepared by machining a groove with a width of 50mm and a depth of 50mm on one side. After heating to 1030 ° C., quenching was performed under various conditions. At this time, the temperatures of the surface and the center of the test piece were measured with thermocouples. The cooling conditions are listed in Table 1.

その後、48HRCに焼戻しして、焼割れの有無(溝の隅を観察)、中心部のシャルピー衝撃値および焼入れ歪みの量を測定した。シャルピー試験片は、鍛伸方向と直角方向に、2mmのUノッチを設けたものである。焼入れ歪み量の測定方法は、図2に示すとおりである。測定結果を、熱処理の方法とともに、表1に示す。熱処理の方法は、下記の2種である。
A:真空中または不活性ガス雰囲気中で焼入れ温度まで加熱し、つづいて不活性ガス雰囲気またはその加圧雰囲気中で冷却。
B:大気圧の不活性ガス雰囲気中で焼入れ温度まで加熱し、加熱炉から出して大気中で空冷または衝風冷却。低温域は200〜40℃の油に焼入れ。
Then, it tempered to 48HRC, and the presence or absence of a tempering crack (observation of the corner of a groove | channel), the Charpy impact value of the center part, and the amount of quenching distortion were measured. The Charpy test piece is provided with a 2 mm U-notch in a direction perpendicular to the forging direction. The method for measuring the quenching strain is as shown in FIG. The measurement results are shown in Table 1 together with the heat treatment method. There are the following two heat treatment methods.
A: Heating to a quenching temperature in a vacuum or an inert gas atmosphere, followed by cooling in an inert gas atmosphere or its pressurized atmosphere.
B: Heated to quenching temperature in an inert gas atmosphere at atmospheric pressure, removed from heating furnace, air cooled or blast cooled in air. The low temperature range is quenched in oil at 200-40 ° C.

Figure 2006342377
Figure 2006342377

表1のデータは、下記の事実を示している。すなわち、本発明の条件に従う焼入れを行なった実施例においては、焼割れが生じることなく、衝撃値が高く、歪みも小さい結果が得られた。比較例Aは、高温域の冷却速度が速すぎたために熱処理歪みが大きく、かつ、低温域急冷直前(400℃で測定)の表面と内部の温度差が大きいため、焼入れ中に焼割れを生じた。比較例Bは、高温域の冷却速度が遅すぎため、冷却中にパーライトが析出して、衝撃値が低下した。比較例Cは、低温域の冷却速度が遅すぎたために、十分な衝撃値が確保できていない。 The data in Table 1 shows the following facts. That is, in the example in which quenching according to the conditions of the present invention was performed, the result that the impact value was high and the distortion was small was obtained without causing any cracking. In Comparative Example A, the heat treatment strain is large because the cooling rate in the high temperature region is too fast, and the temperature difference between the surface and the interior immediately before the low temperature region quenching (measured at 400 ° C.) is large. It was. In Comparative Example B, since the cooling rate in the high temperature region was too slow, pearlite was precipitated during cooling, and the impact value was lowered. In Comparative Example C, since the cooling rate in the low temperature region is too slow, a sufficient impact value cannot be secured.

本発明の実施例において使用した試験片の形状を示す図であって、Aは平面図、Bはその下方から視た側面図。It is a figure which shows the shape of the test piece used in the Example of this invention, Comprising: A is a top view, B is the side view seen from the downward direction. 図1の試験片を用いた熱処理歪み量の測定方法を示す説明図。Explanatory drawing which shows the measuring method of the heat processing distortion amount using the test piece of FIG.

Claims (4)

大物金型の焼入れ方法であって、焼入れ温度への加熱に続く冷却を、冷却が最も遅い部分の冷却速度が、焼入れ温度から600℃までの高温領域は20〜5℃/分以上、400℃から200℃までの低温領域は1〜15℃/分となるように実施することにより、焼き割れを避けて、低歪みかつ高靱性の金型を得ることを特徴とする焼入れ方法。 It is a quenching method for large molds, and the cooling following the heating to the quenching temperature is performed, the cooling rate of the slowest part of the cooling is 20 to 5 ° C / min or more, 400 ° C in the high temperature region from the quenching temperature to 600 ° C A quenching method characterized in that a low distortion and high toughness die is obtained by avoiding quenching cracks by carrying out so that the low temperature range from 1 to 200 ° C. is 1 to 15 ° C./min. 冷却の過程において、金型の表面温度が600℃より低いが400℃より高い中温領域にある間に、金型をこの領域の温度に一時的に保持するか、または徐冷することにより、金型の表面と冷却が最も遅い部分との温度差が300℃を超えないようにして冷却を進める請求項1の焼入れ方法。 In the course of cooling, while the mold surface temperature is in the intermediate temperature region lower than 600 ° C. but higher than 400 ° C., the mold is temporarily held at the temperature of this region or slowly cooled, The quenching method according to claim 1, wherein the cooling is advanced such that the temperature difference between the mold surface and the slowest cooling portion does not exceed 300 ° C. 焼入れ温度への加熱を大気圧の雰囲気炉を用いて行ない、冷却は、高温領域においては大気中の空冷または衝風冷却により、低温領域においては40〜200℃の油に投入することにより1〜15℃/分の冷却速度を確保するように実施する請求項1または2の焼入れ方法。 Heating to the quenching temperature is performed using an atmospheric furnace at atmospheric pressure, and cooling is performed by air cooling or air blast cooling in the air in the high temperature region, and by adding to oil at 40 to 200 ° C. in the low temperature region. The hardening method of Claim 1 or 2 implemented so that the cooling rate of 15 degree-C / min may be ensured. 焼入れ温度への加熱を真空または不活性ガス雰囲気の炉を用いて行ない、冷却は、大気圧の、または加圧下の不活性ガス雰囲気において実施する請求項1または2の焼入れ方法。
The quenching method according to claim 1 or 2, wherein heating to a quenching temperature is performed using a furnace in a vacuum or an inert gas atmosphere, and cooling is performed in an inert gas atmosphere at atmospheric pressure or under pressure.
JP2005167356A 2005-06-07 2005-06-07 Method for quenching large-sized die Pending JP2006342377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167356A JP2006342377A (en) 2005-06-07 2005-06-07 Method for quenching large-sized die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167356A JP2006342377A (en) 2005-06-07 2005-06-07 Method for quenching large-sized die

Publications (1)

Publication Number Publication Date
JP2006342377A true JP2006342377A (en) 2006-12-21

Family

ID=37639553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167356A Pending JP2006342377A (en) 2005-06-07 2005-06-07 Method for quenching large-sized die

Country Status (1)

Country Link
JP (1) JP2006342377A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074155A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Method for quenching die
JP2012007221A (en) * 2010-06-28 2012-01-12 Daido Steel Co Ltd Method for manufacturing steel for plastic molding die
JP2014177710A (en) * 2008-12-25 2014-09-25 Hitachi Metals Ltd Hardening method for steel
CN106119502A (en) * 2016-08-30 2016-11-16 芜湖三联锻造有限公司 A kind of die quenching conditioning treatment technique
CN114354680A (en) * 2021-12-08 2022-04-15 东风汽车集团股份有限公司 PAG quenching medium cooling performance analysis method
CN117587217A (en) * 2024-01-18 2024-02-23 安百拓(张家口)建筑矿山设备有限公司 Drill rod heat treatment air cooling device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074155A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Method for quenching die
JP2014177710A (en) * 2008-12-25 2014-09-25 Hitachi Metals Ltd Hardening method for steel
JP5815946B2 (en) * 2008-12-25 2015-11-17 日立金属株式会社 Hardening method of steel
JP2012007221A (en) * 2010-06-28 2012-01-12 Daido Steel Co Ltd Method for manufacturing steel for plastic molding die
CN106119502A (en) * 2016-08-30 2016-11-16 芜湖三联锻造有限公司 A kind of die quenching conditioning treatment technique
CN114354680A (en) * 2021-12-08 2022-04-15 东风汽车集团股份有限公司 PAG quenching medium cooling performance analysis method
CN117587217A (en) * 2024-01-18 2024-02-23 安百拓(张家口)建筑矿山设备有限公司 Drill rod heat treatment air cooling device and method
CN117587217B (en) * 2024-01-18 2024-05-07 安百拓(张家口)建筑矿山设备有限公司 Drill rod heat treatment air cooling device and method

Similar Documents

Publication Publication Date Title
KR20220052354A (en) Steel for ball screw bearings and manufacturing method thereof
JP5105235B2 (en) Mold quenching method
US20230332261A1 (en) Method for manufacturing equal-hardness cr5 back up roll
TWI586814B (en) Steel wire for mechanical structure parts
JP2006342377A (en) Method for quenching large-sized die
CN114410893B (en) Ultra-fine grain structure heat treatment process for annealed hot work die steel
JP6998015B2 (en) Manufacturing method of mold casting of spheroidal graphite cast iron
JP5034583B2 (en) Heat treatment method for duplex stainless steel pieces
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
JP3159372B2 (en) Mold and quenching method
JP5075293B2 (en) Mold quenching method
JP2008202078A (en) Hot-working die steel
KR101537158B1 (en) Plastic die steel and method of manufacturing the same
JP3897274B2 (en) Hardening method for steel
JP5447770B2 (en) Soaking annealing method for high carbon steel
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JP5050436B2 (en) Alloy steel manufacturing method
JP2009280869A (en) Method for producing steel product
JP6795112B1 (en) Manufacturing method of tool steel for molds
JP2006213990A (en) Manufacturing method of hot working die
JPH09182948A (en) Die and its quenching
JP6241721B2 (en) Mold quenching method
JP5760757B2 (en) Soaking annealing method for Cr-containing high carbon steel
JPH06277819A (en) Production of die casting die having water cooling hole
RU2405840C1 (en) Hardening method of austenitic non-magnetic steel