JP2009074155A - Method for quenching die - Google Patents

Method for quenching die Download PDF

Info

Publication number
JP2009074155A
JP2009074155A JP2007246693A JP2007246693A JP2009074155A JP 2009074155 A JP2009074155 A JP 2009074155A JP 2007246693 A JP2007246693 A JP 2007246693A JP 2007246693 A JP2007246693 A JP 2007246693A JP 2009074155 A JP2009074155 A JP 2009074155A
Authority
JP
Japan
Prior art keywords
quenching
temperature
cooling
transformation point
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007246693A
Other languages
Japanese (ja)
Other versions
JP5105235B2 (en
Inventor
Junichi Nishida
純一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2007246693A priority Critical patent/JP5105235B2/en
Priority to CN2008101617041A priority patent/CN101397603B/en
Publication of JP2009074155A publication Critical patent/JP2009074155A/en
Application granted granted Critical
Publication of JP5105235B2 publication Critical patent/JP5105235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for quenching a die with which even in the case of being a die having complicated shape, uniform crystal grain can be obtained. <P>SOLUTION: In the method for quenching the die, after the quenching temperature raising process, in which the die is heated in the temperature range from A1 transforming point to the A3 transforming point at ≥100°C/H heating rate, a holding process for holding the die in the temperature range of A3 transforming point to <1150°C, is performed and successively, a quenching-cooling process, in which the die is cooled in the temperature range from A3 transforming point to 600°C at 5-20°C/min cooling rate, is performed, and after passing through an interrupting holding process in the temperature range of 500-400°C for 0.5-5 hr, a low temperature quenching-cooling process, in which the die is cooled in the temperature range of 400-200°C at 1-15°C/min cooling rate, is performed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金型の焼入れ方法に関するものであり、特に低歪、高靭性に加えて、結晶粒を微細化できる金型の焼入れ方法に関するものである。   The present invention relates to a mold quenching method, and more particularly to a mold quenching method capable of refining crystal grains in addition to low strain and high toughness.

金型には高硬度、高靭性が要求されており、その特性は熱処理の焼入れ方法により大きく影響される。
焼入加熱では、合金元素を最大限固溶させるため、結晶粒が粗大化しない範囲で高めの焼入温度が選定される。また、高靭性を得るためには、結晶粒を微細化するのと同時に、焼入冷却において、結晶粒界への炭化物析出を抑え、ベイナイト変態も防止する必要がある。この時、焼入冷却は急冷する必要があるが、一方、急冷すると金型の歪、変形が大きくなるため、冷却速度を適度にコントロールする必要がある。このため、従来から種々の提案がなされている。
低歪、高靭性の両立が求められる金型を得るための方法として、従来から種々の提案がなされている。従来から提案されている方法は、焼入れ温度からの冷却条件を調整して低歪、高靭性の両立を達成するといった方法が殆どである。
例えば、最近では特開2006−342377号公報(特許文献1)に、焼入れ温度への加熱に続く冷却を、冷却が最も遅い部分の冷却速度が、焼入れ温度から600℃までの高温領域は20〜5℃/分以上、400℃から200℃までの低温領域は1〜15℃/分となるように実施することにより、焼き割れを避けて、低歪みかつ高靱性の金型を得ることができるとするマルクエンチ法が提案されている。
マルクエンチ法は、焼入れ冷却時の冷却を、急冷による焼割れを防止するためにマルテンサイト変態の上部または、それよりやや高い温度で等温に保持して、各部の温度が均一化した後に冷却する処理である。
特開2006−342377号公報
Molds are required to have high hardness and high toughness, and their characteristics are greatly influenced by the heat treatment quenching method.
In the quenching heating, a high quenching temperature is selected within a range in which the crystal grains do not become coarse in order to dissolve the alloy elements to the maximum. In order to obtain high toughness, it is necessary to suppress carbide precipitation at the crystal grain boundary and prevent bainite transformation in quenching and cooling at the same time as crystal grains are refined. At this time, quenching / cooling needs to be rapidly cooled, but on the other hand, if the metal is rapidly cooled, distortion and deformation of the mold increase, and therefore the cooling rate needs to be controlled appropriately. For this reason, various proposals have been conventionally made.
Conventionally, various proposals have been made as methods for obtaining a mold that requires both low strain and high toughness. Most of the conventionally proposed methods are to achieve both low strain and high toughness by adjusting the cooling conditions from the quenching temperature.
For example, recently, in Japanese Patent Application Laid-Open No. 2006-342377 (Patent Document 1), the cooling following the heating to the quenching temperature is performed. The cooling rate of the slowest part of the cooling is 20 to 20 in the high temperature region from the quenching temperature to 600 ° C. By implementing the low temperature region from 5 ° C / min to 400 ° C to 200 ° C at 1 to 15 ° C / min, it is possible to obtain a mold having low strain and high toughness by avoiding cracks. A marquenching method has been proposed.
The marquenching method is a process in which the cooling during quenching cooling is held at the upper part of the martensite transformation or isothermally at a temperature slightly higher than that in order to prevent quench cracking due to rapid cooling, and then cooled after the temperature of each part has become uniform. It is.
JP 2006-342377 A

上述した特許文献1に開示される方法も一般的なマルクエンチ法であり、マルクエンチ法で得られる、低歪の金型の焼入れ方法である。
本発明者においても、マルクエンチ法を利用して、低歪と高靭性を両立する金型の焼入れ方法を検討してきた所、確かにマルクエンチ法を適用することで低歪と高靭性の両立がはかれることが分った。しかしながら、形状の複雑な金型では、冷却速度のみを調整しても例えば金型の表面近傍と中心部では結晶粒のばらつきが存在し、これに伴い、靭性においてもばらつきが存在することを知見した。
本発明の目的は、形状の複雑な金型であっても、均一な結晶粒に調整することが可能な金型の焼入れ方法を提供することである。
The method disclosed in Patent Document 1 described above is also a general marquenching method, which is a low-distortion mold quenching method obtained by the marquenching method.
The present inventor has also studied a mold quenching method that achieves both low strain and high toughness by utilizing the marquenching method. Certainly, by applying the marquenching method, both low strain and high toughness can be achieved. I found out. However, it has been found that in a mold having a complicated shape, even if only the cooling rate is adjusted, for example, there is a variation in crystal grains near the center and the center of the mold, and accordingly, there is also a variation in toughness. did.
An object of the present invention is to provide a method for quenching a mold that can be adjusted to uniform crystal grains even if the mold has a complicated shape.

本発明者は、優れた靭性を得つつ、そのばらつきを抑制する一つの手法として、複雑な形状を持つ金型の金属組織を均一とすべく、種々の熱処理条件を検討した。その結果、金型を焼入れするにあたり、冷却条件だけではなく、加熱時の条件が重要であることをつきとめ、本発明に到達した。
即ち本発明は、金型の焼入れ方法において、A1変態点からA3変態点の温度域を100℃/H以上の加熱速度で加熱する焼入れ昇温工程の後、A3変態点以上で1150℃を超えない温度域で保持をする保持工程を行い、次いでA3変態点から600℃までの温度域を5〜20℃/minの冷却速度で焼入れ冷却工程を行い、500〜400℃までの温度域にて0.5〜5時間の中断保持工程を経た後、400〜200℃の温度域を1〜15℃/minの冷却速度で冷却する低温側焼入れ冷却工程を経る金型の焼入れ方法である。
本発明において、A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程を、150℃/H以上の加熱速度で加熱すると生産性が向上し、好ましい。また結晶粒もより微細になり、安定した品質が得られる。
また、本発明において、好ましくは、A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程前に行う低温側焼入れ昇温工程の加熱は、150℃/H以下の加熱速度で加熱する金型の焼入れ方法である。
更に好ましくは、A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程前に、少なくとも1回以上の保持を行う焼入れ昇温予熱工程を行う金型の焼入れ方法である。
The present inventor examined various heat treatment conditions as a technique for suppressing the variation while obtaining excellent toughness in order to make the metal structure of a mold having a complicated shape uniform. As a result, it was found that not only the cooling conditions but also the heating conditions are important in quenching the mold, and the present invention has been achieved.
That is, according to the present invention, in the mold quenching method, after the quenching and heating step in which the temperature range from the A1 transformation point to the A3 transformation point is heated at a heating rate of 100 ° C./H or higher, the temperature exceeds the A3 transformation point and exceeds 1150 ° C. A holding process for holding in a non-temperature range is performed, and then a quenching cooling process is performed in a temperature range from the A3 transformation point to 600 ° C. at a cooling rate of 5 to 20 ° C./min, and in a temperature range from 500 to 400 ° C. This is a mold quenching method through a low temperature side quenching cooling process in which a temperature range of 400 to 200 ° C. is cooled at a cooling rate of 1 to 15 ° C./min after an interruption and holding step of 0.5 to 5 hours.
In the present invention, it is preferable that the quenching temperature raising step of heating the temperature range from the A1 transformation point to the A3 transformation point is heated at a heating rate of 150 ° C./H or more, thereby improving productivity. Also, the crystal grains become finer and stable quality can be obtained.
In the present invention, preferably, the heating in the low temperature side quenching temperature raising step performed before the quenching temperature raising step for heating the temperature range from the A1 transformation point to the A3 transformation point is performed at a heating rate of 150 ° C./H or less. This is a quenching method for molds.
More preferably, it is a mold quenching method in which a quenching temperature rise preheating step of holding at least once is performed before the quenching temperature raising step of heating the temperature range from the A1 transformation point to the A3 transformation point.

本発明の金型の焼入れ方法によれば、結晶粒が焼入温度を高めても微細なまま維持されるため、高靭性が得られ、金型に大きな負荷がかかった時の大割れを防止できる。また、焼入温度も高めることができるので、硬さ、高温硬さも高く、ヒートクラック等の抑制に効果がある。また熱処理歪みの低減により、熱処理後の手直し工数を低減に効果を奏するものである。   According to the mold quenching method of the present invention, since the crystal grains remain fine even when the quenching temperature is increased, high toughness is obtained and large cracks are prevented when a large load is applied to the mold. it can. In addition, since the quenching temperature can be increased, the hardness and the high temperature hardness are also high, which is effective in suppressing heat cracks and the like. In addition, the reduction in heat treatment strain is effective in reducing the number of repairs after heat treatment.

上述したように、本発明の重要な特徴は金型の焼入れ方法において、焼入れ温度に昇温する速度を最適化したことにある。以下に本発明を説明する。
本発明において、焼入れ昇温工程(図1(2),図2(2))をA1変態点からA3変態点の温度域を100℃/H以上の加熱速度で加熱するとしたのは以下の理由によるものである。
本発明では、焼入れ温度に加熱する条件が特に重要となる。結晶粒を微細化し、結晶粒の大きさのバラツキを抑制するには、A1変態点からA3変態点の温度域にて変態により生成するオーステナイトの発生と成長を制御する必要がある。
そのための条件として、A1変態点からA3変態点の温度域を100℃/H以上の加熱速度で加熱することが必要となる。これは、フェライトから新しいオーステナイトの結晶粒が生成する時に、加熱速度が速いと平衡温度からの過熱効果により、オーステナイトの核生成密度が高く、結晶粒を微細化する作用が得られるためである。
As described above, an important feature of the present invention is that the speed at which the temperature is raised to the quenching temperature is optimized in the mold quenching method. The present invention will be described below.
In the present invention, the reason for heating the quenching temperature raising step (FIGS. 1 (2) and 2 (2)) from the A1 transformation point to the A3 transformation point at a heating rate of 100 ° C./H or more is as follows. Is due to.
In the present invention, the condition of heating to the quenching temperature is particularly important. In order to refine crystal grains and suppress variation in crystal grain size, it is necessary to control the generation and growth of austenite generated by transformation in the temperature range from the A1 transformation point to the A3 transformation point.
As a condition for this, it is necessary to heat the temperature range from the A1 transformation point to the A3 transformation point at a heating rate of 100 ° C./H or more. This is because when new austenite crystal grains are produced from ferrite, if the heating rate is high, the nucleation density of austenite is high due to the overheating effect from the equilibrium temperature, and the effect of refining the crystal grains is obtained.

本発明の焼入れ昇温工程の加熱速度が100℃/H未満である場合や、或いは、A1変態点とA3変態点の間で予熱保持を行うと、オーステナイトの発生する核が少なく、一つ一つの結晶粒が大きく成長し、オーステナイト変態完了後に結晶粒が粗大になり、結晶粒径のばらつきが生じ易くなる。そのため、本発明では、A1変態点からA3変態点の温度域を100℃/H以上の加熱速度で加熱するとした。被熱処理材の形状や重量にも依存するが、150℃/H以上の加熱速度で昇温することもでき、生産性を高めることができ、また結晶粒が微細となり更に好ましい。
なお、加熱速度の上限は、加熱炉の性能や被熱処理材の重量や形状によって変化するため、一概に定めることはできないが、過度に加熱速度を高めると、被熱処理材の加熱ムラにより歪が発生し易くなるため、経験上、400℃を加熱速度の上限とするのが良く、好ましくは300℃/H、更に好ましくは280℃/H、更に好ましくは250℃/Hである。
When the heating rate in the quenching temperature raising step of the present invention is less than 100 ° C./H, or when preheating is held between the A1 transformation point and the A3 transformation point, there are few nuclei generating austenite, one by one. One crystal grain grows large, and after the austenite transformation is completed, the crystal grain becomes coarse and the crystal grain size tends to vary. Therefore, in the present invention, the temperature range from the A1 transformation point to the A3 transformation point is heated at a heating rate of 100 ° C./H or more. Although it depends on the shape and weight of the material to be heat-treated, the temperature can be increased at a heating rate of 150 ° C./H or more, productivity can be improved, and crystal grains are finer, which is further preferable.
The upper limit of the heating rate varies depending on the performance of the heating furnace and the weight and shape of the material to be heat treated, so it cannot be determined unconditionally, but if the heating rate is excessively increased, distortion due to heating unevenness of the material to be heat treated will occur. Since it becomes easy to generate | occur | produce, it is good to make 400 degreeC into the upper limit of a heating rate from experience, Preferably it is 300 degreeC / H, More preferably, it is 280 degreeC / H, More preferably, it is 250 degreeC / H.

上述したように本発明では焼入れ温度まで加熱する条件が重要である。
本発明の更に好ましい焼入れ温度に加熱する条件として、上述の焼入れ昇温工程前に行う低温側焼入れ昇温工程(図1(1),図2(1))の昇温条件も併せて調整すると更に好ましい。
低温側焼入れ昇温工程の条件は、150℃/H以下の昇温速度とするのが良い。これは、被熱処理材に歪が生じたり、被熱処理材の表層部と内部との温度差が大きくなってしまい、部位による結晶粒のバラツキが生じる可能性が高くなるためである。
好ましい低温側焼入れ昇温工程の昇温速度は50〜150℃/Hの範囲である。更に好ましくは75℃±25℃/Hの範囲であり、更に好ましくは75℃±15℃/Hの範囲である。
As described above, in the present invention, the conditions for heating to the quenching temperature are important.
As a condition for heating to a more preferable quenching temperature of the present invention, the temperature rising condition of the low temperature side quenching temperature rising process (FIG. 1 (1), FIG. 2 (1)) performed before the above-described quenching temperature rising process is also adjusted. Further preferred.
The condition of the low temperature side quenching temperature raising step is preferably a temperature rising rate of 150 ° C./H or less. This is because the heat-treated material is distorted, or the temperature difference between the surface layer portion and the inside of the heat-treated material is increased, which increases the possibility of crystal grain variation depending on the site.
A preferable temperature increase rate in the low temperature side quenching temperature increasing step is in the range of 50 to 150 ° C./H. More preferably, it is in the range of 75 ° C. ± 25 ° C./H, and more preferably in the range of 75 ° C. ± 15 ° C./H.

また本発明では、上述の焼入れ昇温工程(図1(2),図2(2))の低温側の温度域で、少なくとも1回以上の保持を行う焼入れ昇温予熱工程を行ってもよい(図2(1A))。
焼入れ昇温予熱工程(図2(1A))を行うことにより、被熱処理材を加熱した時の温度ムラが軽減されるため変形が少なくなる。また金型製作時に発生した加工残留応力も予熱することで、歪が除去され、その後の加熱で変態点を通過する時に残留歪を駆動力にした結晶粒の異常成長も抑制する効果もある。
この効果をより確実に得るには、A1変態点−15℃〜−200℃の温度範囲で昇温予熱工程を行うとよい。より好ましくはA1変態点−20℃〜−70℃の温度範囲である。
なお、焼入れ昇温予熱工程の保持時間は、上述のように被熱処理材を加熱した時の温度ムラを軽減させることを目的とするため、余りに短時間とすると温度ムラを軽減させる効果が得難くなる。そのため、温度ムラを軽減させるに十分な時間とするのが良い。但し、被熱処理材の重量や形状によって変化するため、一概に定めることはできないが、経験上、0.5〜5時間程度保持するのが好ましい。0.75時間以上保持すると、表層温度と内部の温度差を30℃以内とすることが可能となるため、好ましくは0.75時間(45分)以上保持するのが良い。
なお、例えば、実際に本発明方法を適用する場合、例えば400〜500℃程度に予熱した加熱炉に被焼入れ材を入材して、予熱炉の温度に等温保持して被熱処理材の表層と内部との温度差を軽減する方法を選択するのが生産性の点から好ましい。この低温予熱をする場合でも、上記のA1変態点−15℃〜−200℃の温度範囲で焼入れ昇温予熱工程を適用するとよい。
Moreover, in this invention, you may perform the quenching temperature rising preheating process which hold | maintains at least 1 time in the low temperature side temperature range of the above-mentioned quenching temperature rising process (FIG.1 (2), FIG.2 (2)). (FIG. 2 (1A)).
By performing the quenching temperature increase preheating step (FIG. 2 (1A)), the temperature unevenness when the heat-treated material is heated is reduced, so that deformation is reduced. Further, by preheating the processing residual stress generated at the time of manufacturing the mold, the strain is removed, and there is also an effect of suppressing abnormal growth of crystal grains using the residual strain as a driving force when passing through the transformation point by subsequent heating.
In order to obtain this effect more reliably, the temperature rise preheating step is preferably performed in the temperature range of A1 transformation point −15 ° C. to −200 ° C. More preferably, it is the temperature range of A1 transformation point -20 degreeC--70 degreeC.
In addition, since the holding time of the quenching temperature rising preheating step is intended to reduce the temperature unevenness when the heat-treated material is heated as described above, it is difficult to obtain the effect of reducing the temperature unevenness if the time is too short. Become. Therefore, it is preferable that the time is sufficient to reduce temperature unevenness. However, since it varies depending on the weight and shape of the material to be heat-treated, it cannot be determined unconditionally, but from experience, it is preferable to hold for about 0.5 to 5 hours. If held for 0.75 hours or longer, the difference between the surface layer temperature and the internal temperature can be kept within 30 ° C., so it is preferable to hold it for 0.75 hours (45 minutes) or longer.
For example, when the method of the present invention is actually applied, for example, the material to be hardened is placed in a heating furnace preheated to about 400 to 500 ° C., and is kept isothermally at the temperature of the preheating furnace. It is preferable from the viewpoint of productivity to select a method for reducing the temperature difference from the inside. Even when this low temperature preheating is performed, it is preferable to apply the quenching temperature rising preheating step in the temperature range of −15 ° C. to −200 ° C. of the A1 transformation point.

次に焼入温度での保持工程(図1(3),図2(3))について説明する。
本発明の焼入温度での保持工程の温度は、A3変態点以上で1150℃を超えない温度域に設定する。
この理由は、焼入温度保持温度がA3変態点温度未満であると、炭化物や合金元素の固溶が不十分で、硬さが低く、また高温強度も低いためヒートクラックが発生しやすい。また焼入加熱温度が1150℃を超える温度となると、結晶粒をピンニングしている炭化物も固溶し、結晶粒が異常成長する。
これらの問題の発生を抑制し、結晶粒の微細化を達成するには、A3変態点〜1150℃の温度範囲が必要となる。好ましくは1010〜1050℃である。
Next, the holding process at the quenching temperature (FIGS. 1 (3) and 2 (3)) will be described.
The temperature of the holding step at the quenching temperature of the present invention is set to a temperature range not lower than 1150 ° C. above the A3 transformation point.
This is because if the quenching temperature holding temperature is lower than the A3 transformation point temperature, the solid solution of carbide and alloy elements is insufficient, the hardness is low, and the high temperature strength is also low, so heat cracks are likely to occur. When the quenching heating temperature exceeds 1150 ° C., the carbide pinning the crystal grains also dissolves and the crystal grains grow abnormally.
In order to suppress the occurrence of these problems and achieve the refinement of crystal grains, a temperature range of A3 transformation point to 1150 ° C. is required. Preferably it is 1010-1050 degreeC.

次に、本発明の焼入れ冷却工程について説明する。
本発明では、焼入温度での保持工程の後、焼入れ冷却工程として、A3変態点から600℃までの温度域を5〜20℃/minの冷却速度で冷却を行う。(図1(4),図2(4))
この温度域は冷却速度が遅くなると、結晶粒界に炭化物が析出し、粒界破壊が起こり易く、靭性や耐応力腐食割れ性が低くなる。これを防止するために最低でも5℃/min以上の冷却速度が必要となる。20℃/minを越えると冷却バラツキが大きくなり、被熱処理材の表層部と内部との温度ムラが拡大し、冷却時の熱応力差で歪、形が大きくなる。
従って、保持工程までの工程にて調整した、結晶粒を均一化する効果をそのまま維持し、冷却時の熱応力差の歪を緩和し、変形も防止することができる冷却条件として、A3変態点から600℃までの温度域を5〜20℃/minの冷却速度で冷却を行うと規定した。好ましくは10〜15℃/minの冷却条件である。
Next, the quenching and cooling process of the present invention will be described.
In the present invention, after the holding step at the quenching temperature, as the quenching cooling step, the temperature range from the A3 transformation point to 600 ° C. is cooled at a cooling rate of 5 to 20 ° C./min. (Fig. 1 (4), Fig. 2 (4))
In this temperature range, when the cooling rate is slow, carbides are precipitated at the crystal grain boundaries, the grain boundary fracture is likely to occur, and the toughness and the stress corrosion cracking resistance are lowered. In order to prevent this, a cooling rate of at least 5 ° C./min is required. When the temperature exceeds 20 ° C./min, the variation in cooling increases, the temperature unevenness between the surface layer portion and the inside of the heat-treated material increases, and the distortion and shape increase due to the difference in thermal stress during cooling.
Accordingly, the A3 transformation point is a cooling condition that can be maintained as it is in the process up to the holding process, maintaining the effect of homogenizing the crystal grains, relaxing the distortion of the thermal stress difference during cooling, and preventing deformation. To 600 ° C. was defined as cooling at a cooling rate of 5 to 20 ° C./min. The cooling condition is preferably 10 to 15 ° C./min.

続いて本発明では、中断保持工程を経る。(図1(5),図2(5))
中断保持工程は、焼入れ冷却工程の段階で発生した熱応力を実質的に等温保持することにより温度ムラを無くし、内外の温度差を少なくすることを目的とする。
中断保持工程の温度を500〜400℃としたのは、この温度域がオーステナイトが準安定な領域であるためである。500℃よりも高い温度で保持するとパーライト変態する場合があり、一方、400℃より低ければベイナイト変態が始まる。よって、本発明の中断保持工程の温度を500〜400℃の範囲に限定した。好ましくは425〜475℃の温度域である。
この中断保持工程の時間は、被熱処理材の温度均一化の効果を得るには、最低0.5時間は必要である。長時間ほど温度均一化に有利ではあるが、5時間以上保持しても、温度均一化の効果が飽和状態になっていることから、実用上の生産性を考慮して上限を5時間とした。0.75時間以上保持すると、表層温度と内部の温度差を30℃以内とすることが可能となるため、好ましくは0.75時間(45分)以上保持するのが良い。
Subsequently, in the present invention, an interruption holding process is performed. (Fig. 1 (5), Fig. 2 (5))
The interruption holding process aims to eliminate temperature unevenness and reduce the temperature difference between inside and outside by holding the thermal stress generated in the quenching cooling process substantially isothermally.
The reason why the temperature of the interruption holding process is set to 500 to 400 ° C. is that this temperature region is a region in which austenite is metastable. When held at a temperature higher than 500 ° C., pearlite transformation may occur, whereas when it is lower than 400 ° C., bainite transformation starts. Therefore, the temperature of the interruption holding process of the present invention is limited to the range of 500 to 400 ° C. Preferably it is a temperature range of 425-475 degreeC.
The time for this interruption holding step is at least 0.5 hours in order to obtain the effect of uniformizing the temperature of the heat-treated material. The longer the time is, the better the temperature is, but even if it is kept for 5 hours or more, the effect of temperature uniformity is saturated, so the upper limit is set to 5 hours in consideration of practical productivity. . If held for 0.75 hours or longer, the difference between the surface layer temperature and the internal temperature can be kept within 30 ° C., so it is preferable to hold it for 0.75 hours (45 minutes) or longer.

次いで、前記中断保持工程の保持温度から400〜200℃の温度域を1〜15℃/minの冷却速度で冷却する低温側焼入れ冷却工程を行う。(図1(6),図2(6))
この低温側焼入れ冷却工程の冷却速度は、冷却中の被熱処理材のベイナイトの生成を抑制し、また、急冷による温度ムラを抑制し、靭性と焼入歪み、割れを制御するのに必要な冷却速度である。
1℃/min未満の冷却速度ではベイナイトの生成が大きく、靭性が低下する。15℃/minを越えるとマルテンサイト変態中の製品の温度差が大きくなり、冷却中の温度ムラにより、歪が大きくなり易く、焼割れのリスクも大きくなる。
好ましい冷却速度は10〜15℃/minである。
Next, a low-temperature side quenching cooling step is performed in which the temperature range of 400 to 200 ° C. is cooled from the holding temperature in the interruption holding step at a cooling rate of 1 to 15 ° C./min. (Fig. 1 (6), Fig. 2 (6))
The cooling rate of this low-temperature side quenching cooling process suppresses the generation of bainite of the material to be heat-treated during cooling, suppresses temperature unevenness due to rapid cooling, and is necessary to control toughness, quenching distortion, and cracking. Speed.
At a cooling rate of less than 1 ° C./min, the formation of bainite is large and the toughness is reduced. If it exceeds 15 ° C./min, the temperature difference of the product during the martensitic transformation increases, and due to temperature unevenness during cooling, distortion tends to increase and the risk of burning cracks also increases.
A preferable cooling rate is 10 to 15 ° C./min.

以上、説明する本発明の焼入れ方法を適用すると、形状の複雑な金型であっても、均一な結晶粒に調整することが可能となる。
例えば、上述の焼入れ冷却工程の条件に調整するには、被熱処理材の最高表面温度が600℃以下になるまでファンにより回転させながら均一に冷却した後に、予め500〜400℃に保持された加熱炉に保持し、冷却を一旦中断して中断保持工程とし、所定時間保持した後、冷却を再開し、焼入油に投入し急冷するか、或いは、ファンや焼入油以外に加圧された不活性ガスを強制対流させて冷却して低温側焼入れ冷却工程としても良い。
As described above, when the quenching method of the present invention described above is applied, even a mold having a complicated shape can be adjusted to uniform crystal grains.
For example, in order to adjust to the conditions of the quenching and cooling step described above, after the uniform cooling while rotating with a fan until the maximum surface temperature of the material to be heat-treated becomes 600 ° C. or less, the heating previously maintained at 500 to 400 ° C. Hold in the furnace, temporarily stop cooling and hold it for an interrupted holding process, hold for a predetermined time, then restart cooling, quench into quenching oil, or pressurize other than fan or quenching oil It is good also as a low-temperature side quenching cooling process by forcedly convection with an inert gas and cooling.

以下の実施例で本発明を更に詳しく説明する。
まず、表1に示す組成の熱間ダイス用金型材料から、それぞれ300mm(w)×300mm(l)×300mm(t)厚さのブロックを切り出し、その1面に鍛伸方向と平行に幅が50mmで、深さ50mmの溝を機械加工して金型を模擬した試料を準備した。
No.A合金はJIS SKD61相当材であり、No.2合金はSKD61にCo,Niを加え、更にMoを高めた、耐ヒートクラック特性を向上させた合金である。
No.A合金のA1変態点は850℃、A3変態点は895℃であり、No.B合金のA1変態点は830℃、A3変態点は850℃であった。
The following examples further illustrate the present invention.
First, blocks each having a thickness of 300 mm (w) x 300 mm (l) x 300 mm (t) are cut out from the die material for hot dies having the composition shown in Table 1, and the width is parallel to the forging direction on one surface thereof. Was prepared by simulating a mold by machining a groove having a depth of 50 mm and a depth of 50 mm.
No. Alloy A is a JIS SKD61 equivalent material. Alloy 2 is an alloy with improved heat crack resistance, in which Co and Ni are added to SKD61 and Mo is further increased.
No. The A1 transformation point of the alloy A is 850 ° C. and the A3 transformation point is 895 ° C. The B1 alloy had an A1 transformation point of 830 ° C and an A3 transformation point of 850 ° C.

これらのブロック試料を真空炉を用いて個別に焼入れ処理をした。
冷却速度を測定するために、中心部に熱電対を挿入して測定した。表面の温度は放射温度計により確認した。焼入れ条件は表2に示す。なお、表2中に示さない、低温側焼入れ昇温工程(図1(1),図2(1))条件は、75℃/Hであった。
表2中のNo.6の試験片は、真空中或いは不活性ガス雰囲気中で焼入温度まで加熱し、続く焼入れ冷却工程、中断保持工程後の低温側焼入れ冷却工程を不活性ガス雰囲気でガス加圧量を制御しながら冷却した。
その他の試験片の冷却条件は、焼入れ冷却工程として、加熱炉から材料を一旦取り出して、大気中で空冷または衝風冷却し、冷却途中で中断して所定の温度に設定された加熱炉に装入し加熱保持を行う中断保持工程を経た後、焼入油で冷却して低温側焼入れ冷却工程とした。
各試験片のヒートパターンは、No.7の試験片が図1に示すヒートパターンとし、それ以外は図2に示すヒートパターンとした。
These block samples were individually quenched using a vacuum furnace.
In order to measure the cooling rate, it was measured by inserting a thermocouple at the center. The surface temperature was confirmed with a radiation thermometer. The quenching conditions are shown in Table 2. In addition, the low temperature side quenching temperature rising process (FIG. 1 (1), FIG. 2 (1)) conditions which are not shown in Table 2 were 75 degreeC / H.
No. in Table 2 The test piece 6 is heated to the quenching temperature in a vacuum or in an inert gas atmosphere, and the gas pressurization amount is controlled in the inert gas atmosphere in the subsequent quenching cooling process and the low temperature side quenching cooling process after the interruption holding process. While cooling.
The other cooling conditions for the test specimens are as follows: As a quenching cooling process, the material is once taken out of the heating furnace, air-cooled or blast-cooled in the atmosphere, suspended in the middle of cooling, and installed in a heating furnace set at a predetermined temperature. After passing through an interrupting holding process for heating and holding, it was cooled with quenching oil to form a low-temperature quenching cooling process.
The heat pattern of each test piece is No. 7 was the heat pattern shown in FIG. 1, and the other test pieces were the heat pattern shown in FIG.

低温側焼入れ冷却工程終了の後、45HRCに焼戻しをして、焼割れの有無、歪み量の測定、シャルピー衝撃値を評価した。
焼割れの有無は、カラーチェックを行い溝加工部のコーナーに割れが有るかどうかを確認した。歪み量の測定は、溝加工部と反対側の面の基準面に対する変形量を対角線上に測定した。測定値の内、基準面から一番大きく外れている量を300mmで割って、百分率(%)で表示した。シャルピー試験片は中心部から鍛造方向と平行に切り出し、2mmUノッチ試験を行った。
また、結晶粒径にバラツキが生じているかを10視野の総合判定により確認した。バラツキの有無(混粒組織の有無)の結果は、上記の焼割れの有無、歪み量、結晶粒度、シャルピー衝撃値の結果と共に表3に示し、代表的な顕微鏡写真を図3(本発明No.7)、図4(比較例No.1)に示す。
After completion of the low-temperature side quenching and cooling step, tempering was performed to 45HRC, and the presence or absence of tempering cracks, measurement of the amount of distortion, and Charpy impact value were evaluated.
The presence or absence of fire cracks was checked by a color check to see if there were cracks in the corners of the grooved part. For the measurement of the amount of distortion, the amount of deformation of the surface opposite to the grooved portion with respect to the reference surface was measured diagonally. Of the measured values, the amount that deviates most from the reference plane was divided by 300 mm and displayed as a percentage (%). The Charpy test piece was cut out from the center portion in parallel with the forging direction and subjected to a 2 mmU notch test.
Further, whether or not the crystal grain size was varied was confirmed by comprehensive judgment of 10 visual fields. The results of presence / absence of dispersion (presence / absence of mixed grain structure) are shown in Table 3 together with the results of the above-mentioned presence / absence of cracking, strain, crystal grain size, and Charpy impact value, and a representative micrograph is shown in FIG. 7) and FIG. 4 (Comparative Example No. 1).

本発明方法を適用した金型を模擬した試料は、バラツキ(混粒組織)、焼割れも無く、歪み量、結晶粒度、シャルピー衝撃値共に良好な結果となった。また、図3及び図4の顕微鏡写真を見ても、本発明No.7は中心部まで微細で均一な金属組織となっているが、比較例No.1は、結晶粒が粗れて、ベイナイト組織も発達している。
比較例No.1はA1からA3の加熱速度が遅いために、オーステナイト粒がゆっくりと成長し結晶粒が粗ており、シャルピー衝撃値は低く20J/cm未満となった。また、比較例No.8及びNo.9は、焼入中断保持を実施していなかったため、冷却途中で均熱プロセスがなく、冷却ムラが大きくなり、溝部コーナーの応力集中部で割れが発生していた。
The sample simulating the mold to which the method of the present invention was applied had no variation (mixed grain structure) and no burning cracking, and gave good results in strain, crystal grain size, and Charpy impact value. In addition, even when the micrographs of FIGS. 7 has a fine and uniform metal structure up to the center. In No. 1, crystal grains are rough and a bainite structure is developed.
Comparative Example No. In No. 1, since the heating rate from A1 to A3 was slow, the austenite grains grew slowly and the crystal grains were coarse, and the Charpy impact value was low and less than 20 J / cm 2 . Comparative Example No. 8 and no. In No. 9, since quenching interruption was not carried out, there was no soaking process during cooling, cooling unevenness increased, and cracks occurred in the stress concentrated portion at the groove corner.

本発明焼入れ方法を適用した金型は、結晶粒が微細で、高靭性が得られ、金型に大きな負荷がかかった時の大割れを防止できる。
また、焼入温度も高められるので、硬さ、高温硬さも高く、ヒートクラック等の抑制に効果がある。高靭性および高温強度が不可欠な用途に適用できる。さらに、実用上、熱処理歪みの低減により、熱処理後の手直し工数を低減に効果を奏するものである。
そのため、金型のような複雑な形状で、且つ、大型の鋼材において、結晶粒の微細化、均一化が求められるような用途の鋼材へ適用することができる。
The mold to which the quenching method of the present invention is applied has fine crystal grains and high toughness, and can prevent large cracks when a large load is applied to the mold.
Further, since the quenching temperature can be increased, the hardness and the high temperature hardness are also high, which is effective in suppressing heat cracks and the like. Applicable to applications where high toughness and high temperature strength are essential. Further, practically, the reduction of the heat treatment distortion is effective in reducing the number of rework steps after the heat treatment.
Therefore, in a complicated shape such as a mold and a large steel material, it can be applied to a steel material for a purpose that requires refinement and uniformity of crystal grains.

本発明の焼入れ方法の一例を示すヒートパターンの図である。It is a figure of the heat pattern which shows an example of the hardening method of this invention. 本発明の焼入れ方法の一例を示すヒートパターンの図である。It is a figure of the heat pattern which shows an example of the hardening method of this invention. 本発明の焼入れ方法を適用した試料の断面顕微鏡写真である。It is a cross-sectional microscope picture of the sample which applied the hardening method of this invention. 比較例試料の断面顕微鏡写真である。It is a cross-sectional microscope picture of a comparative example sample.

符号の説明Explanation of symbols

1. 低温側焼入れ昇温工程
1A.焼入れ昇温予熱工程
2. 焼入れ昇温工程
3. 保持工程
4. 焼入れ冷却工程
5. 中断保持工程
6. 低温側焼入れ冷却工程
1. Low temperature side quenching temperature increasing step 1A. 1. Quenching temperature rising preheating process 2. Quenching temperature raising step Holding step 4. 4. Quenching and cooling step 5. Interruption holding process Low-temperature quenching and cooling process

Claims (4)

金型の焼入れ方法において、A1変態点からA3変態点の温度域を100℃/H以上の加熱速度で加熱する焼入れ昇温工程の後、A3変態点以上で1150℃を超えない温度域で保持をする保持工程を行い、次いでA3変態点から600℃までの温度域を5〜20℃/minの冷却速度で焼入れ冷却工程を行い、500〜400℃までの温度域にて0.5〜5時間の中断保持工程を経た後、400〜200℃の温度域を1〜15℃/minの冷却速度で冷却する低温側焼入れ冷却工程を経ることを特徴とする金型の焼入れ方法。 In the mold quenching method, after the quenching and heating step in which the temperature range from the A1 transformation point to the A3 transformation point is heated at a heating rate of 100 ° C./H or higher, the temperature is maintained at a temperature range that does not exceed 1150 ° C. above the A3 transformation point. The holding step is performed, and then the quenching cooling step is performed at a cooling rate of 5 to 20 ° C./min in the temperature range from the A3 transformation point to 600 ° C., and 0.5 to 5 in the temperature range of 500 to 400 ° C. A die quenching method comprising a low temperature side quenching cooling step of cooling a temperature range of 400 to 200 ° C. at a cooling rate of 1 to 15 ° C./min after passing through a time interruption holding step. A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程は、150℃/H以上の加熱速度で加熱することを特徴とする請求項1に記載の金型の焼入れ方法。 The method for quenching a mold according to claim 1, wherein the quenching temperature raising step of heating the temperature range from the A1 transformation point to the A3 transformation point is performed at a heating rate of 150 ° C / H or more. A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程前に行う低温側焼入れ昇温工程の加熱は、150℃/H以下の加熱速度で加熱することを特徴とする請求項1または2に記載の金型の焼入れ方法。 The heating in the low temperature side quenching temperature raising step performed before the quenching temperature raising step of heating the temperature range from the A1 transformation point to the A3 transformation point is performed at a heating rate of 150 ° C / H or less. 2. A method of quenching the mold according to 2. A1変態点からA3変態点の温度域を加熱する焼入れ昇温工程前に、少なくとも1回以上の保持を行う焼入れ昇温予熱工程を行うことを特徴とする請求項1乃至3の何れかに記載の金型の焼入れ方法。 The quenching temperature rising preheating step for holding at least once is performed before the quenching temperature raising step for heating the temperature range from the A1 transformation point to the A3 transformation point. How to quench molds.
JP2007246693A 2007-09-25 2007-09-25 Mold quenching method Active JP5105235B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007246693A JP5105235B2 (en) 2007-09-25 2007-09-25 Mold quenching method
CN2008101617041A CN101397603B (en) 2007-09-25 2008-09-22 Manufacturing method of metal mould

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007246693A JP5105235B2 (en) 2007-09-25 2007-09-25 Mold quenching method

Publications (2)

Publication Number Publication Date
JP2009074155A true JP2009074155A (en) 2009-04-09
JP5105235B2 JP5105235B2 (en) 2012-12-26

Family

ID=40516445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007246693A Active JP5105235B2 (en) 2007-09-25 2007-09-25 Mold quenching method

Country Status (2)

Country Link
JP (1) JP5105235B2 (en)
CN (1) CN101397603B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091069A1 (en) * 2010-12-29 2012-07-05 日立金属株式会社 Method for quenching mold
JP2014101576A (en) * 2012-10-23 2014-06-05 Hitachi Metals Ltd Hardening method for metal mold
EP3358023A4 (en) * 2015-09-30 2019-05-01 Hitachi Metals, Ltd. Method for deriving cooling time when quenching steel material, method for quenching steel material, and method for quenching and tempering steel material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650215B2 (en) 2013-05-17 2017-05-16 Intelligrated Headquarters Llc Robotic carton unloader
CN105473474B (en) 2013-05-17 2018-01-23 因特利格兰特总部有限责任公司 robot carton unloader
WO2015031668A1 (en) 2013-08-28 2015-03-05 Intelligrated Headquarters Llc Robotic carton unloader
JP6388193B2 (en) * 2014-03-18 2018-09-12 日立金属株式会社 Mold quenching method and mold manufacturing method
CN106119475A (en) * 2016-08-30 2016-11-16 芜湖三联锻造有限公司 A kind of large-scale high alloy mould special thermal treatment technique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173239A (en) * 1984-03-05 1984-10-01 Kubota Ltd Spheroidal graphite cast iron caliber roll
JPH0328318A (en) * 1989-06-26 1991-02-06 Nichiei Kozai Kk Method for hardening hot die steel
JPH06234085A (en) * 1993-02-08 1994-08-23 Nippon North Kk Production of composite tool
JPH08232057A (en) * 1995-02-27 1996-09-10 Kobe Steel Ltd Production of die cast member
JP2006342368A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Heat treatment method for steel member
JP2006342377A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Method for quenching large-sized die
JP2009013465A (en) * 2007-07-04 2009-01-22 Daido Steel Co Ltd Tool steel, member for forming using the same, and method for verifying quality of tool steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173239A (en) * 1984-03-05 1984-10-01 Kubota Ltd Spheroidal graphite cast iron caliber roll
JPH0328318A (en) * 1989-06-26 1991-02-06 Nichiei Kozai Kk Method for hardening hot die steel
JPH06234085A (en) * 1993-02-08 1994-08-23 Nippon North Kk Production of composite tool
JPH08232057A (en) * 1995-02-27 1996-09-10 Kobe Steel Ltd Production of die cast member
JP2006342368A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Heat treatment method for steel member
JP2006342377A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Method for quenching large-sized die
JP2009013465A (en) * 2007-07-04 2009-01-22 Daido Steel Co Ltd Tool steel, member for forming using the same, and method for verifying quality of tool steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091069A1 (en) * 2010-12-29 2012-07-05 日立金属株式会社 Method for quenching mold
JP5075293B2 (en) * 2010-12-29 2012-11-21 日立金属株式会社 Mold quenching method
JP2014101576A (en) * 2012-10-23 2014-06-05 Hitachi Metals Ltd Hardening method for metal mold
EP3358023A4 (en) * 2015-09-30 2019-05-01 Hitachi Metals, Ltd. Method for deriving cooling time when quenching steel material, method for quenching steel material, and method for quenching and tempering steel material

Also Published As

Publication number Publication date
CN101397603B (en) 2010-10-27
JP5105235B2 (en) 2012-12-26
CN101397603A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5105235B2 (en) Mold quenching method
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP5121123B2 (en) High-temperature carburizing steel with excellent grain resistance and its manufacturing method, and high-temperature carburizing shaped product and its carburizing and quenching method
JP4423608B2 (en) Hardened tool steel material
EP2006398A1 (en) Process for producing steel material
JP5443843B2 (en) Method for producing forged steel roll for cold rolling
JP4835972B2 (en) Method for producing tool steel intermediate material and method for producing tool steel
JP2006342377A (en) Method for quenching large-sized die
JP5359582B2 (en) Hardened tool steel material
JP5023441B2 (en) Heat treatment method for steel members for die casting dies
JP5904409B2 (en) Manufacturing method of steel materials for molds with excellent toughness
JP5075293B2 (en) Mold quenching method
JP3159372B2 (en) Mold and quenching method
JP5597115B2 (en) Hard drawn wire, spring, and method of manufacturing hard drawn wire
CN108300842B (en) Anti-cracking annealing method for steel casting
JP2008202078A (en) Hot-working die steel
JP4974285B2 (en) Medium and high carbon steel sheet with excellent workability and manufacturing method thereof
EP3155134A1 (en) Method of heat treatment of bearing steel
JP6108924B2 (en) Manufacturing method of steel for cold forging
JP5972823B2 (en) Manufacturing method of steel for cold forging
JP5050436B2 (en) Alloy steel manufacturing method
KR101322972B1 (en) Martensitic stainless steel and method for manufacturing the same
JPH09182948A (en) Die and its quenching
JP2006213990A (en) Manufacturing method of hot working die
CN115652046A (en) Heat treatment process for eliminating band-shaped structure in steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5105235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350