JP2006342368A - Heat treatment method for steel member - Google Patents

Heat treatment method for steel member Download PDF

Info

Publication number
JP2006342368A
JP2006342368A JP2005166762A JP2005166762A JP2006342368A JP 2006342368 A JP2006342368 A JP 2006342368A JP 2005166762 A JP2005166762 A JP 2005166762A JP 2005166762 A JP2005166762 A JP 2005166762A JP 2006342368 A JP2006342368 A JP 2006342368A
Authority
JP
Japan
Prior art keywords
temperature
steel member
cooling
transformation
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005166762A
Other languages
Japanese (ja)
Other versions
JP5023441B2 (en
Inventor
Masamichi Kono
正道 河野
Koichiro Inoue
幸一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005166762A priority Critical patent/JP5023441B2/en
Publication of JP2006342368A publication Critical patent/JP2006342368A/en
Application granted granted Critical
Publication of JP5023441B2 publication Critical patent/JP5023441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method for a steel member including a quenching stage where, even in the case of a steel member such as a large-sized die, its toughening can be securely performed, and strain and cracks are hardly caused therein. <P>SOLUTION: The heat treatment method for a steel member includes a quenching stage where a steel member which contains at least 0.20 to 1.5 wt.% carbon and 0.5 to 25 wt.% carbide forming element(s) and is composed of a tool steel having a weight of ≥50 kg is subjected to the following cooling steps: the first cooling step where cooling is performed in a high temperature zone ht from a quenching temperature (1,030°C) to 600°C at the average cooling velocity Cl of >3°C/min in which the precipitation of a pearlite phase and a ferrite phase can be evaded; and the second cooling step where cooling is performed in a low temperature zone 1t from 500 to 130°C at the average cooling velocity of ≥1°C/min. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、工具鋼からなり所定以上の重量を有するダイカスト金型、熱間鍛造用金型、あるいはダイスなどの鋼部材の熱処理方法に関する。   The present invention relates to a heat treatment method for a steel member such as a die-casting die, a hot forging die, or a die made of tool steel and having a predetermined weight or more.

従来、熱間ダイス鋼の焼き入れは、マルテンサイト単相化を図るため、以下の条件が必要とされていた。
(1)焼き入れ温度から600℃付近までは、粒界炭化物の析出とパーライト変態とを回避するため、一定以上の冷却速度で急冷する。
(2)更に、ベーナイト変態を回避するため、250〜150℃まで急冷する。
例えば、焼き入れによる歪みや割れを防ぎ、ヒートクラックが生じにくい靭性の高い鋼製の金型を得るため、焼き入れ温度から650〜300℃の温度帯までは、トルースタイトまたは粒界炭化物が析出する冷却速度よりも速い速度で冷却し、その後ポリマー液中で冷却することで、ベーナイトの析出を抑制する金型の焼き入れ方法が提案されている(例えば、特許文献1参照)。
Conventionally, the quenching of hot die steel has required the following conditions in order to achieve martensite single phase.
(1) From the quenching temperature to around 600 ° C., in order to avoid precipitation of grain boundary carbides and pearlite transformation, rapid cooling is performed at a cooling rate above a certain level.
(2) Furthermore, in order to avoid bainite transformation, it is rapidly cooled to 250 to 150 ° C.
For example, to prevent distortion and cracking due to quenching and to obtain a tough steel mold that is less likely to cause heat cracking, from a quenching temperature to a temperature range of 650 to 300 ° C., troostite or grain boundary carbide precipitates. A die quenching method that suppresses precipitation of bainite by cooling at a rate faster than the cooling rate to be performed and then cooling in a polymer solution has been proposed (for example, see Patent Document 1).

特開平9−182948号公報(第1〜12頁)JP-A-9-182948 (pages 1 to 12)

しかし、大型化する金型では、冷却速度を速く且つ均一にしにくいため、前記(1)焼き入れ温度から600℃付近まで、粒界炭化物の析出とパーライト変態とを回避するための急冷、および(2)ベーナイト変態を回避するための250〜150℃までの急冷、の双方を満たすことは、困難であった。このため、大型の金型を焼き入れにより強靱化することは、至難であった。
しかも、上記(1)、(2)の双方の条件を満たす焼き入れは、金型の変形量(歪)が大きくなる傾向にあるため、その後で仕上げ加工による修正のための工数が増加する、という問題もあった。
However, in the mold which is enlarged, since the cooling rate is difficult to make fast and uniform, (1) rapid cooling from the quenching temperature to around 600 ° C. to avoid precipitation of grain boundary carbides and pearlite transformation, and ( 2) It was difficult to satisfy both of the rapid cooling to 250 to 150 ° C. in order to avoid the bainite transformation. For this reason, it has been extremely difficult to toughen large dies by quenching.
In addition, quenching that satisfies both the above conditions (1) and (2) tends to increase the amount of deformation (distortion) of the mold, so that the number of steps for correction by finishing increases thereafter. There was also a problem.

本発明は、背景技術において説明した問題点を解決し、大型の金型などの鋼部材であっても、確実に強靱化でき且つ歪や割れが生じにくい焼き入れ工程を含む鋼部材の熱処理方法を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and even a steel member such as a large metal mold can be reliably toughened and includes a quenching step in which distortion and cracking hardly occur. It is an issue to provide.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

即ち、本発明による鋼部材の熱処理方法(請求項1)は、少なくとも、0.20〜1.5wt%の炭素と0.5〜25wt%の炭化物生成元素とを含むと共に、重量が50kg以上である鋼部材に対し、以下の冷却ステップを施す焼き入れ工程を含む、ことを特徴とする。
第1冷却ステップ:焼き入れ温度からパーライト変態およびフェライト変態の少なくとも一方が開始し得る温度までの高温度帯において、パーライト相およびフェライト相の析出が回避できる平均冷却速度で冷却する。
第2冷却ステップ:ベーナイト変態開始温度からベーナイト変態終了温度およびマルテンサイト変態終了温度よりも低温度までの低温度帯において、1℃/分以上の平均冷却速度で冷却する。
That is, the heat treatment method for steel members according to the present invention (Claim 1) includes at least 0.20 to 1.5 wt% carbon and 0.5 to 25 wt% carbide forming elements, and has a weight of 50 kg or more. It includes a quenching process for subjecting a steel member to the following cooling step.
First cooling step: In a high temperature range from the quenching temperature to a temperature at which at least one of the pearlite transformation and the ferrite transformation can start, cooling is performed at an average cooling rate that can avoid precipitation of the pearlite phase and the ferrite phase.
Second cooling step: Cooling is performed at an average cooling rate of 1 ° C./min or more in a low temperature zone from the bainite transformation start temperature to the bainite transformation finish temperature and the martensite transformation finish temperature.

また、本発明による鋼部材(JIS:SKD61)の熱処理方法(請求項2)は、少なくとも、0.20〜1.5wt%の炭素と、0.5〜25wt%の炭化物生成元素とを含むと共に、重量が50kg以上である鋼部材に対し、以下の冷却ステップを施す焼き入れ工程を含む、ことを特徴と表すこともできる。
第1冷却ステップ:焼き入れ温度から600℃までの高温度帯において、パーライト相およびフェライト相の析出が回避できる3℃/分超の平均冷却速度で冷却する。
第2冷却ステップ:500℃以下で且つ130℃までの低温度帯において、1℃/分以上の平均冷却速度で冷却する。
前記各温度は、処理すべき鋼部材の断面において冷却速度が最少となる部位での温度が望ましく、係る部位は、数値シュミレーションによる推定、熱電対の挿入による実則、あるいは経験則などから求められる。
Moreover, the heat treatment method (Claim 2) of the steel member (JIS: SKD61) according to the present invention includes at least 0.20 to 1.5 wt% carbon and 0.5 to 25 wt% carbide generating element. In addition, the steel member having a weight of 50 kg or more includes a quenching process in which the following cooling step is performed.
First cooling step: In a high temperature zone from the quenching temperature to 600 ° C., cooling is performed at an average cooling rate of more than 3 ° C./min that can prevent precipitation of a pearlite phase and a ferrite phase.
Second cooling step: Cooling is performed at an average cooling rate of 1 ° C./min or higher in a low temperature range of 500 ° C. or lower and up to 130 ° C.
Each temperature is preferably a temperature at a portion where the cooling rate is minimized in the cross section of the steel member to be processed, and such a portion is obtained from an estimation by numerical simulation, a real rule by inserting a thermocouple, an empirical rule, or the like.

前記各方法によれば、第1冷却ステップの高温度帯では、パーライト相およびフェライト相が析出し始めるパーライト変態およびフェライト変態の開始温度および開始時間(ノーズタイム)を回避できる冷却速度(3℃/分超)で急冷されるため、焼き入れ温度時と同じオーステナイト相を母層として、上記高温度帯を通過できる。この結果、パーライト相およびフェライト相の析出を防ぎ、後述する低温度帯での変態よって、強靱化を図ることが可能となる。尚、第1冷却ステップでは、炭化物が上記オーステナイト相中に析出することがある。
更に、前記第2冷却ステップの低温度帯では、1℃/分以上の平均冷却速度で冷却するため、400℃〜マルテンサイト変態開始温度の間で、マルテンサイト変態またはベーナイト変態が開始され易くなる。また、130℃になるまで上記速度で冷却するため、残留オーステナイト相を低減できる。この結果、500℃〜400℃超の温度帯での変態を防止できる。即ち、粗大な結晶粒のマルテンサイト相またはベーナイト相が析出する事態を防止できるので、後述する焼き戻し工程を施すことで、鋼部材の強靱化を図ることができる。
従って、例えば、重量が数100kg〜1トンに達するダイカスト金型などの比較的大型の鋼部材を、確実に強靱化でき且つ変形や割れを生じずに熱処理できるため、当該処理後においてヒートクラックなどを予防することが可能となる。
According to each of the above methods, in the high temperature zone of the first cooling step, the cooling rate (3 ° C./noble time) that can avoid the start temperature and start time (nose time) of the pearlite transformation and the ferrite transformation where the pearlite phase and the ferrite phase start to precipitate. Therefore, it is possible to pass through the high temperature zone using the same austenite phase as the quenching temperature as a base layer. As a result, precipitation of the pearlite phase and the ferrite phase can be prevented, and the toughening can be achieved by the transformation in the low temperature zone described later. In the first cooling step, carbides may precipitate in the austenite phase.
Furthermore, in the low temperature zone of the second cooling step, cooling is performed at an average cooling rate of 1 ° C./min or more, so that martensitic transformation or bainitic transformation is easily started between 400 ° C. and martensitic transformation start temperature. . Moreover, since it cools at the said speed | rate until it becomes 130 degreeC, a retained austenite phase can be reduced. As a result, transformation in a temperature range of 500 ° C. to over 400 ° C. can be prevented. That is, since a situation in which a martensite phase or a bainite phase of coarse crystal grains is precipitated can be prevented, the steel member can be toughened by performing a tempering step described later.
Therefore, for example, a relatively large steel member such as a die casting mold having a weight of several hundred kg to 1 ton can be reliably toughened and heat-treated without causing deformation or cracking. Can be prevented.

尚、鋼部材が、0.20〜1.5wt%の炭素と、0.5〜25wt%の炭化物生成元素とを含むのは、適量の炭化物を生成させ、強靱化を図るためである。炭素が0.20wt%未満で且つ炭化物生成元素が0.5wt%未満になると、炭化物の生成量が不足して高強度化に寄与できず、一方、炭素が1.5wt%超で且つ炭化物生成元素が25wt%超になると、炭化物の生成量が過多となるため、高靱化に寄与できず、且つコスト高になる。これらを防ぐため、炭素および炭化物生成元素の添加量の範囲を前記範囲に規制したものである。
また、前記炭化物生成元素には、V、W、Ti、Nb、Crなどが含まれ、これらと炭素とによって、VC、WC、TiC、NbC、Crなどの炭化物が生成される。これらの他に、熱処理すべき鋼部材に求められる特性に応じて、Si、Mn、Sなどを更に添加してもよい。
更に、本発明の対象となる鋼部材を重量で50kg以上としたのは、比較的小さな鋼部材の場合、前記(1)、(2)の条件を同時に満たす焼き入れが容易であるため、冷却速度を速くし且つ均一にしにくい大型の金型などの鋼部材を対象とものである。熱処理を施す鋼部材は、ダイカスト金型のように複雑な形状を呈するが、上記50kg以上の重量である鋼部材を仮に立方体で表現すれば、体積が6330cmで、各辺の長さは18.5cmである。
The steel member contains 0.20 to 1.5 wt% of carbon and 0.5 to 25 wt% of a carbide generating element in order to generate an appropriate amount of carbide and toughen. If the carbon content is less than 0.20 wt% and the carbide generating element is less than 0.5 wt%, the amount of carbide generated is insufficient and cannot contribute to high strength, while the carbon content exceeds 1.5 wt% and carbide is generated. If the element content exceeds 25 wt%, the amount of carbide generated is excessive, so that it cannot contribute to high toughness and the cost is high. In order to prevent these, the range of the addition amount of carbon and carbide forming elements is restricted to the above range.
The carbide generating elements include V, W, Ti, Nb, Cr and the like, and carbides such as VC, WC, TiC, NbC, Cr 7 C 3 are generated by these and carbon. In addition to these, Si, Mn, S and the like may be further added according to the characteristics required for the steel member to be heat-treated.
Further, the reason why the weight of the steel member that is the subject of the present invention is 50 kg or more is that, in the case of a relatively small steel member, it is easy to quench the conditions (1) and (2) at the same time. It is intended for steel members such as large dies that are difficult to increase in speed and uniformity. The steel member subjected to the heat treatment has a complicated shape like a die-casting mold. However, if the steel member having a weight of 50 kg or more is expressed in a cube, the volume is 6330 cm 3 and the length of each side is 18 .5 cm.

また、本発明には、前記第2冷却ステップにおける低温度帯のうち、500℃からベーナイト変態開始温度およびマルテンサイト変態開始温度の何れか一方までの温度帯では、ベーナイト変態およびマルテンサイト変態の少なくとも一方が、400℃〜マルテンサイト変態開始温度の範囲で開始するような冷却速度で冷却し、且つ変態開始後は1℃/分以上の平均冷却速度で冷却する、鋼部材の熱処理方法(請求項3)も含まれる。
これによれば、低温度帯のうち上記温度帯では、1℃/分以上の平均冷却速度で冷却し、且つ400℃〜マルテンサイト変態開始温度の間で、マルテンサイト変態、ベーナイト変態、あるいはこれらの双方が開始される。この結果、400℃超の温度帯で変態が開始された際に、粗大な結晶粒のマルテンサイト相またはベーナイト相が析出する事態を防止できるので、鋼部材の強靱化を確実に図ることができる。
Further, in the present invention, in the low temperature zone in the second cooling step, in the temperature zone from 500 ° C. to any one of the bainite transformation start temperature and the martensite transformation start temperature, at least the bainite transformation and the martensite transformation. One is a heat treatment method for a steel member that is cooled at a cooling rate that starts in a range of 400 ° C. to a martensite transformation start temperature, and that is cooled at an average cooling rate of 1 ° C./min or more after the transformation starts. 3) is also included.
According to this, in the above temperature zone in the low temperature zone, cooling is performed at an average cooling rate of 1 ° C./min or more, and between 400 ° C. and the martensitic transformation start temperature, martensitic transformation, bainitic transformation, or these Both are started. As a result, it is possible to prevent a situation in which a martensite phase or a bainite phase of coarse crystal grains is precipitated when the transformation is started in a temperature range exceeding 400 ° C. Therefore, it is possible to surely strengthen the steel member. .

更に、本発明には、前記第1冷却ステップの高温度帯と第2冷却ステップの低温度帯との間おける中間温度帯または600℃〜500℃の間では、焼き入れすべき鋼部材の断面における最高温度部位と最低温度部位との差が200℃以下となるように制御する、鋼部材の熱処理方法(請求項4)も含まれる。
これによれば、鋼部材の内部における冷却温度の差が200℃以下に抑制されるため、各部位間にわたる冷却による変形量(歪)を、0.2%以下に低減することができる。この結果、例えば、鋼部材が一辺の長さが500〜1000mmの大型の金型であっても、多大の工数の矯正工程が不要となるため、コストダウンが可能となる。尚、前記断面内部の温度差を150℃以下にした場合には、鋼部材の変形量を0.1%以下に抑制することが可能である。
Furthermore, in the present invention, in the intermediate temperature zone between the high temperature zone of the first cooling step and the low temperature zone of the second cooling step, or between 600 ° C. and 500 ° C., the cross section of the steel member to be quenched. Also included is a steel member heat treatment method (Claim 4) that controls the difference between the maximum temperature region and the minimum temperature region to be 200 ° C. or less.
According to this, since the difference in the cooling temperature inside the steel member is suppressed to 200 ° C. or less, the deformation amount (strain) due to the cooling between the respective parts can be reduced to 0.2% or less. As a result, for example, even if the steel member is a large metal mold having a side length of 500 to 1000 mm, a correction process with a large number of man-hours is not required, and thus the cost can be reduced. In addition, when the temperature difference inside the cross section is set to 150 ° C. or less, the deformation amount of the steel member can be suppressed to 0.1% or less.

加えて、本発明には、前記焼き入れ工程の後に、前記焼き入れを施された鋼部材を、50〜750℃に加熱および保持する焼き戻し工程を有する、鋼部材の熱処理方法(請求項5)も含まれる。
これによれば、前記熱処理工程の後でも残った残留オーステナイト相を分解し、且つ微細な炭化物を排出した安定した前記マルテンサイト相またはベーナイト相の組織になるため、当該鋼種本来の特性を発揮させることができる。
尚、上加熱温度が50℃未満では、残留オーステナイト相が分解できず、一方750℃を越えると、前記オーステナイト相に逆変態するおそれが高くなるので、係る温度範囲を除いたものである。例えば、鋼部材がJIS:SKD61の場合、好ましい焼き戻しの条件は、550〜650℃×1〜2時間であるが、係る条件の焼き戻しを2〜5回程度繰り返し行っても良い。
In addition, the present invention includes a tempering step of heating and holding the quenched steel member at 50 to 750 ° C. after the quenching step (Claim 5). ) Is also included.
According to this, since the residual austenite phase remaining after the heat treatment step is decomposed and a stable structure of the martensite phase or bainite phase from which fine carbides are discharged is obtained, the original characteristics of the steel type are exhibited. be able to.
If the upper heating temperature is less than 50 ° C., the residual austenite phase cannot be decomposed. On the other hand, if the upper heating temperature exceeds 750 ° C., there is a high risk of reverse transformation to the austenite phase. For example, when the steel member is JIS: SKD61, the preferable tempering condition is 550 to 650 ° C. × 1 to 2 hours, but the tempering condition may be repeated about 2 to 5 times.

付言すれば、前記鋼部材が、工具鋼からなる金型である、鋼部材の熱処理方法も本発明に含まれ得る。これによる場合、重量が数100kgであるダイカスト金型などの比較的大型の鋼部材を、確実に強靱化でき且つ変形や割れを生じずに焼処理でき、使用時においてヒートクラックなどを予防することが可能となる。   In other words, a method for heat-treating a steel member, in which the steel member is a mold made of tool steel, may be included in the present invention. In this case, a relatively large steel member such as a die-casting die having a weight of several hundred kg can be reliably toughened and fired without causing deformation or cracking, and heat cracks can be prevented during use. Is possible.

以下において、本発明を実施するための最良の形態について説明する。
図1は、本発明と比較例とにおける焼き入れ工程の概略を示す温度−時間グラフ、図2は、本発明の焼き入れ工程および焼き戻し工程の温度履歴を示すグラフである。以下において、熱処理の対象とした鋼部材は、JIS:SKD61からなり、サイズが10.5×10.5×56mmの試験片である。
図1,図2に示すように、本発明例の鋼部材は、1030℃の焼き入れ温度に加熱され、約2時間保持することで均熱化され、平均結晶粒径がdγのオーステナイト相(γ相)となる。
上記鋼部材を例えば、例えば油中に挿入し、図1中のカーブした実線で示すように、1030℃(焼き入れ温度)からパーライト変態およびフェライト変態の少なくとも一方の変態終了温度(線)Pf,Ff(具体的には、600℃)までの高温度帯htにおいて、パーライト相およびフェライト相の析出が回避できる平均冷却速度C1で冷却(急冷)する第1冷却ステップを行う。係る平均冷却速度C1は、具体的には3℃/分超であり、例えば、放置冷却、衝風冷却、高温冷媒中での冷却などの方法が用いられる。
In the following, the best mode for carrying out the present invention will be described.
FIG. 1 is a temperature-time graph showing the outline of the quenching process in the present invention and the comparative example, and FIG. 2 is a graph showing the temperature history of the quenching process and the tempering process of the present invention. Below, the steel member made into the object of heat processing consists of JIS: SKD61, and is a test piece of size 10.5 * 10.5 * 56mm.
As shown in FIGS. 1 and 2, the steel member of the example of the present invention is heated to a quenching temperature of 1030 ° C. and is soaked by holding for about 2 hours, and an austenite phase having an average crystal grain size of dγ ( γ phase).
For example, the steel member is inserted into oil, for example, and as shown by a curved solid line in FIG. 1, from 1030 ° C. (quenching temperature) to at least one transformation end temperature (line) Pf of pearlite transformation and ferrite transformation, Pf, In the high temperature zone ht up to Ff (specifically, 600 ° C.), a first cooling step is performed in which cooling (rapid cooling) is performed at an average cooling rate C1 that can avoid precipitation of pearlite phase and ferrite phase. The average cooling rate C1 is specifically more than 3 ° C./min. For example, methods such as standing cooling, blast cooling, and cooling in a high-temperature refrigerant are used.

図3のグラフは、前記平均冷却速度C1を変化させて熱処理方法を施した複数の前記試験片から切り出した10×10×55mmのJIS3試験片について、室温での衝撃試験を行った結果を示す。これによれば、平均冷却速度C1が3℃/分超では、高いレベルの衝撃値(A)であった。これは、高温度帯htでの冷却中において、オーステナイト相の粒界に、例えば、図1中で示すVC(炭化物)が析出するが、靭性への悪影響は小さいことを示している。一方、3℃/分以下では、衝撃値(B)が急激に低下した。これは、平均冷却速度C1が低過ぎたため、パーライト相が析出したことによる。
以上の結果から、平均冷却速度C1は、3℃/分超としたものである。尚、高温度帯htで最も重要なことは、フェライト相やパーライト相の析出を回避することであり、炭化物のある程度の析出は、許容し得ることが分かった。
また、衝撃値を高めるには、図4,図5のグラフに示すように、後述する焼き戻し工程後の硬度(HRC)を下げると共に、焼き入れ温度におけるオーステナイト相の平均結晶粒径dγを小さくすると良い、ことも確認された。
The graph of FIG. 3 shows the result of conducting an impact test at room temperature on a 10 × 10 × 55 mm JIS3 test piece cut out from a plurality of the test pieces subjected to the heat treatment method by changing the average cooling rate C1. . According to this, when the average cooling rate C1 exceeds 3 ° C./min, the impact value (A) is at a high level. This indicates that, for example, VC (carbide) shown in FIG. 1 precipitates at the grain boundary of the austenite phase during cooling in the high temperature zone ht, but the adverse effect on toughness is small. On the other hand, at 3 ° C./min or less, the impact value (B) rapidly decreased. This is because the pearlite phase was precipitated because the average cooling rate C1 was too low.
From the above results, the average cooling rate C1 is more than 3 ° C./min. The most important thing in the high temperature zone ht is to avoid precipitation of ferrite phase and pearlite phase, and it has been found that some precipitation of carbide is acceptable.
In order to increase the impact value, as shown in the graphs of FIGS. 4 and 5, the hardness (HRC) after the tempering process described later is decreased, and the average crystal grain size dγ of the austenite phase at the quenching temperature is decreased. It was also confirmed that it was good.

一方、図1中の右側にカーブした一点鎖線で示すように、パーライト変態またはフェライト変態の開始線Ps,Fsに抵触する比較例Aは、パーライト相またはフェライト相が析出するため、本発明から外れる。
また、重量が50kg未満の比較的小型の鋼部材を対象とする比較例Bは、図1中の左側にカーブした二点鎖線線で示すように、本発明例よりも、速い冷却速度で冷却しても、鋼部材全体がほぼ均一に冷却されるため、焼き割れや変形を生じにくい。また、係る比較例Bの小型の鋼部材は、高温度帯htにおける炭化物の析出も回避し易いので、強靱化は比較的容易である。これらのため、本発明は、重量が50kg以上の鋼部材を対象としたものである。
On the other hand, as shown by the alternate long and short dashed line on the right side in FIG. 1, Comparative Example A that conflicts with the start lines Ps and Fs of the pearlite transformation or the ferrite transformation is out of the present invention because the pearlite phase or the ferrite phase is precipitated. .
Further, Comparative Example B targeting a relatively small steel member having a weight of less than 50 kg is cooled at a higher cooling rate than the example of the present invention, as indicated by a two-dot chain line curved to the left in FIG. Even so, since the entire steel member is cooled substantially uniformly, it does not easily cause cracking or deformation. In addition, the small steel member of Comparative Example B is relatively easy to toughen because it is easy to avoid the precipitation of carbides in the high temperature zone ht. For these reasons, the present invention is intended for steel members weighing 50 kg or more.

引き続いて冷却される本発明例の前記鋼部材は、図1に示すように、600〜500℃の中間温度帯mtでは、その断面における最高温度部位と最低温度部位との差が200℃以下となるような平均冷却速度、例えば3℃/分で冷却するように制御される。この結果、中間温度帯mtにおいて、冷却に伴う鋼部材の変形量を0.2%以下に抑制でき、次の第2冷却ステップを良好に行うことも可能となる。尚、上記温度差が150℃以下では、変形量を0.1%以下に抑制できた。
次に、ベーナイト変態開始温度Bsからベーナイト変態終了温度Bfおよびマルテンサイト変態終了温度Mfよりも低い制御冷却終了温度Tfまで、即ち、前記鋼部材では、500℃以下で且つ制御終了温度の130℃までの低温度帯ltにおいては、図2に示すように、1℃/分以上の平均冷却速度CTで冷却される。
As shown in FIG. 1, the steel member of the present invention example that is subsequently cooled has an intermediate temperature zone mt of 600 to 500 ° C., and the difference between the highest temperature portion and the lowest temperature portion in the cross section is 200 ° C. or less. It is controlled to cool at an average cooling rate such as 3 ° C./min. As a result, in the intermediate temperature zone mt, the deformation amount of the steel member accompanying cooling can be suppressed to 0.2% or less, and the next second cooling step can be performed well. When the temperature difference was 150 ° C. or less, the deformation amount could be suppressed to 0.1% or less.
Next, from the bainite transformation start temperature Bs to the control cooling finish temperature Tf lower than the bainite transformation finish temperature Bf and the martensite transformation finish temperature Mf, that is, in the steel member, up to 500 ° C. and the control finish temperature of 130 ° C. In the low temperature zone lt, as shown in FIG. 2, cooling is performed at an average cooling rate CT of 1 ° C./min or more.

前記平均冷却速度CTは、図2に示すように、厳密には、500℃からマルテンサイト変態開始温度Ms(あるいは、ベーナイト変態開始温度Bs)までの平均冷却速度C2Uと、これからマルテンサイト変態終了温度Mf(あるいは、ベーナイト変態終了温度Bf)である制御冷却終了温度Tf(例えば130℃)までの平均冷却速度C2Lとの2段階に区分される。
以下では、マルテンサイト変態開始温度Msは、単にMsとし、ベーナイト変態開始温度Bsは、単にBsと記する。
上記平均冷却速度C2Uは、マルテンサイト変態およびベーナイト変態の少なくとも一方が、400℃〜Msの範囲で開始するような値、例えば2℃/分以上である。この結果、400℃超の温度帯で変態が開始された際に、析出する粗大な結晶粒のマルテンサイト相またはベーナイト相の混入を防止できる。
As shown in FIG. 2, the average cooling rate CT is, strictly speaking, the average cooling rate C2U from 500 ° C. to the martensite transformation start temperature Ms (or the bainitic transformation start temperature Bs), and the martensite transformation end temperature from now on. It is divided into two stages, that is, an average cooling rate C2L up to a control cooling end temperature Tf (for example, 130 ° C.) which is Mf (or bainite transformation end temperature Bf).
Hereinafter, the martensitic transformation start temperature Ms is simply referred to as Ms, and the bainite transformation start temperature Bs is simply referred to as Bs.
The average cooling rate C2U is such a value that at least one of martensitic transformation and bainite transformation starts in the range of 400 ° C. to Ms, for example, 2 ° C./min or more. As a result, it is possible to prevent the martensite phase or the bainite phase from being mixed in the coarse crystal grains that are precipitated when the transformation is started in a temperature range exceeding 400 ° C.

ここで、対象とする鋼部材(JIS:SKD61)における変態開始温度(MsあるいはBs)の影響を調べた。
先ず、前記オーステナイト相の平均結晶粒径dγと平均冷却速度C1とを一定として、前記平均冷却速度C2Uと変態開始温度(MsあるいはBs)との関係を、図6のグラフで示す。これによれば、平均冷却速度C2Uが小さいほど、変態開始温度は高くなり、特に平均冷却速度C2Uが5℃/分未満になると、変態開始温度は著しく高くなることが判明した。従って、上記速度C2Uは、5℃/分以上が推奨される。
また、前記平均結晶粒径dγ、平均冷却速度C1、平均冷却速度C2L、および、制御終了温度Tfを一定として、変態開始温度(MsまたはBs)と焼き戻し工程後の硬度(HRC)との関係を、図7のグラフで示す。これによれば、変態開始温度(MsまたはBs)が高く且つ上記硬度が高いほど、衝撃値は低くなるので、衝撃値を高めるには、変態開始温度(MsまたはBs)を400℃以下にし、且つ上記硬度を下げる必要があることが判明した。
Here, the influence of the transformation start temperature (Ms or Bs) in the target steel member (JIS: SKD61) was examined.
First, the graph of FIG. 6 shows the relationship between the average cooling rate C2U and the transformation start temperature (Ms or Bs) with the average crystal grain size dγ of the austenite phase and the average cooling rate C1 being constant. According to this, it was found that as the average cooling rate C2U is smaller, the transformation start temperature becomes higher, and particularly when the average cooling rate C2U is less than 5 ° C./min, the transformation start temperature becomes remarkably higher. Therefore, it is recommended that the speed C2U is 5 ° C./min or more.
Further, the relationship between the transformation start temperature (Ms or Bs) and the hardness after tempering process (HRC) with the average crystal grain size dγ, the average cooling rate C1, the average cooling rate C2L, and the control end temperature Tf being constant. Is shown in the graph of FIG. According to this, the higher the transformation start temperature (Ms or Bs) and the higher the hardness, the lower the impact value. Therefore, to increase the impact value, the transformation start temperature (Ms or Bs) is set to 400 ° C. or lower, It was also found that the hardness needs to be lowered.

更に、前記平均冷却速度C1、平均冷却速度C2L、制御終了温度Tf、および、焼き戻し工程後の硬度(HRC)を一定として、前記オーステナイト相の平均結晶粒径dγと変態開始温度(MsまたはBs)との関係を、図8のグラフで示す。これによれば、上記平均結晶粒径dγが小さく且つ変態開始温度(MsまたはBs)が低くなるとほど、衝撃値を高められることが判明した。
以上の図6〜図8のグラフの結果から、変態開始温度(MsまたはBs)を、400℃〜Msの間にする必要があることが判明した。尚、変態開始温度(MsまたはBs)を、400℃〜Msの間で開始させる冷却方法には、比較的低温(20〜200℃)の冷媒中での冷却が有効である。係る冷媒には、水、油、水溶性焼き入れ剤などが含まれる。また、本発明の鋼部材は、その組成や冷却条件などにより、図1中のカーブした実線で示すように、低温度帯ltでは、マルテンサイト変態またはベーナイト変態の何れかを生じる。
Further, assuming that the average cooling rate C1, the average cooling rate C2L, the control end temperature Tf, and the hardness (HRC) after the tempering step are constant, the average crystal grain size dγ of the austenite phase and the transformation start temperature (Ms or Bs). ) Is shown in the graph of FIG. According to this, it was found that the impact value can be increased as the average crystal grain size dγ is smaller and the transformation start temperature (Ms or Bs) is lower.
From the results of the graphs of FIGS. 6 to 8 described above, it was found that the transformation start temperature (Ms or Bs) needs to be between 400 ° C. and Ms. Note that cooling in a refrigerant at a relatively low temperature (20 to 200 ° C.) is effective for a cooling method in which the transformation start temperature (Ms or Bs) is started between 400 ° C. and Ms. Such refrigerants include water, oil, water-soluble quenching agents and the like. Further, the steel member of the present invention exhibits either martensitic transformation or bainitic transformation in the low temperature zone lt, as shown by the curved solid line in FIG. 1, depending on the composition, cooling conditions, and the like.

変態が400℃〜Msの間で開始されても、それ以降の平均冷却速度C2Lを、1℃/分以上にしないと、焼き戻し工程後において強靱な鋼部材を得られなくなる。その理由は、特にベーナイト変態中での平均冷却速度C2Lが低いと、新たに析出する変態相(マルテンサイト相、ベーナイト層、またはこれらの混合層、以下同じ)が粗大となり、焼き戻し後における鋼部材の強靱化を妨げるためである。
ここで、上記変態開始後の平均冷却速度C2Lの影響を調べた。
先ず、前記平均結晶粒径dγ、平均冷却速度C1,C2U、および、制御終了温度Tfを一定として、上記変態開始後の平均冷却速度C2Lと、焼き戻し後の衝撃値および硬度(HRC)との関係を図9のグラフに示す。
Even if the transformation is started between 400 ° C. and Ms, a tough steel member cannot be obtained after the tempering process unless the subsequent average cooling rate C2L is set to 1 ° C./min or more. The reason for this is that, particularly when the average cooling rate C2L during the bainite transformation is low, the newly transformed transformation phase (martensite phase, bainite layer, or a mixed layer thereof, hereinafter the same) becomes coarse, and the steel after tempering. This is to prevent toughening of the member.
Here, the influence of the average cooling rate C2L after the start of the transformation was examined.
First, assuming that the average crystal grain size dγ, the average cooling rate C1, C2U, and the control end temperature Tf are constant, the average cooling rate C2L after the start of the transformation, the impact value and the hardness (HRC) after tempering The relationship is shown in the graph of FIG.

これによれば、平均冷却速度C2Lが高くなり、且つ上記硬度(HRC)が低くなるほど、衝撃値は高くなり、特に1℃/分以上では著しく高くなることが判明した。これは、新たに析出する変態相が微細化されるためであり、特にベーナイト変態中のベーナイト相では顕著であった。
また、前記平均冷却速度C1,C2U、制御終了温度Tf、および、焼き戻し後の硬度(HRC)を一定として、上記変態開始後の平均冷却速度C2Lと前記平均結晶粒径dγと衝撃値との関係を、図10のグラフに示す。これによれば、平均冷却速度C2Lが高くなり、且つ平均結晶粒径dγが小さくなるほど、衝撃値は高くなることが判明した。
以上の結果から、鋼部材の衝撃値を高めるには、前記平均結晶粒径dγを小さくし、且つ平均冷却速度C2Lを1℃/分以上とすると共に、焼き戻し後の硬度(HRC)を下げる必要があることが判明した。
尚、上記平均冷却速度C2Lを得る方法は、比較的低温の冷媒(水、油、水溶性焼き入れ剤)中での冷却が有効である。
According to this, it has been found that as the average cooling rate C2L increases and the hardness (HRC) decreases, the impact value increases, particularly at 1 ° C./min or higher. This is because the newly precipitated transformation phase is refined, and is particularly remarkable in the bainite phase during the bainite transformation.
The average cooling rate C1, C2U, the control end temperature Tf, and the hardness after tempering (HRC) are constant, and the average cooling rate C2L after the start of transformation, the average crystal grain size dγ, and the impact value are The relationship is shown in the graph of FIG. It has been found that the impact value increases as the average cooling rate C2L increases and the average crystal grain size dγ decreases.
From the above results, in order to increase the impact value of the steel member, the average crystal grain size dγ is decreased, the average cooling rate C2L is set to 1 ° C./min or more, and the hardness after tempering (HRC) is decreased. It turns out that there is a need.
The method for obtaining the average cooling rate C2L is effective in cooling in a relatively low-temperature refrigerant (water, oil, water-soluble quenching agent).

引き続いて、前記平均冷却速度C2Lで冷却される本発明例の鋼部材は、図1,図2に示すように、上記速度C2Lによる制御冷却を、マルテンサイト変態終了温度Mfあるいはベーナイト変態終了温度Bf(以下、単にMfあるいはBfと記載する)または、これよりも低温の130℃以下まで継続する。その理由は、1℃/分以上の平均冷却速度C2Lによる制御冷却が終了した時点で、オーステナイト相が多く残留していると、その後の工程で、係る残留オーステナイト相が粗大なベーナイト相となって、鋼部材の強靱化を阻害するためである。尚、鋼の成分にもよるが、上記Mfの代表値は、約130℃であり、上記Bfの代表値は、250〜130℃の範囲内である。   Subsequently, as shown in FIGS. 1 and 2, the steel member of the present invention cooled at the average cooling rate C2L is subjected to the controlled cooling at the rate C2L by the martensite transformation end temperature Mf or the bainite transformation end temperature Bf. (Hereinafter, simply described as Mf or Bf) or continued to 130 ° C. or lower, which is lower than this. The reason for this is that when a large amount of austenite phase remains at the time when control cooling at an average cooling rate C2L of 1 ° C./min or more is completed, the remaining austenite phase becomes a coarse bainite phase in the subsequent steps. This is to inhibit the toughening of the steel member. Although it depends on the steel composition, the representative value of Mf is about 130 ° C., and the representative value of Bf is in the range of 250 to 130 ° C.

ここで、対象とする鋼部材(JIS:SKD61)における制御冷却終了温度Tfの影響を調べた。先ず、前記平均結晶粒径dγ、平均冷却速度C1,CT(C2U,C2L)を一定として、鋼部材の衝撃値と制御冷却終了温度Tfと焼き戻し後の硬度(HRC)との関係を、図11のグラフに示す。これによれば、制御冷却終了温度Tfが低くなるほど、衝撃値は高くなり、特に130℃以下で著しく高くなった。また、焼き戻し後の硬度(HRC)が低いほど、衝撃値は高くなる傾向も示した。
更に、前記平均冷却速度C1,CT(C2U,C2L)と、焼き戻し後の硬度(HRC)とを一定として、鋼部材の衝撃値と制御冷却終了温度Tfと前記平均結晶粒径dγとの関係を、図12のグラフに示す。これにても、制御冷却終了温度Tfが低くくなるほど、衝撃値は高くなり、特に130℃以下で著しかった。また、前記平均結晶粒径dγが小さいほど、衝撃値は高くなる傾向も示した。
以上の結果から、マルテンサイト変態(あるいは、ベーナイト変態)開始後では、平均冷却速度C2Lによる制御冷却を130℃以下の制御冷却終了温度Tfまで、維持する必要があることが判明した。
Here, the influence of the control cooling end temperature Tf in the target steel member (JIS: SKD61) was examined. First, assuming that the average crystal grain size dγ and the average cooling rate C1, CT (C2U, C2L) are constant, the relationship between the impact value of the steel member, the controlled cooling end temperature Tf, and the hardness after tempering (HRC) is shown in FIG. 11 graphs. According to this, the lower the control cooling end temperature Tf, the higher the impact value, and the higher the value, particularly at 130 ° C. or less. Further, the impact value tended to be higher as the hardness after tempering (HRC) was lower.
Further, the average cooling rate C1, CT (C2U, C2L) and the hardness after tempering (HRC) are constant, and the relationship between the impact value of the steel member, the controlled cooling end temperature Tf, and the average crystal grain size dγ. Is shown in the graph of FIG. Even in this case, the lower the control cooling end temperature Tf, the higher the impact value, and it was particularly remarkable at 130 ° C. or lower. Further, the impact value tended to increase as the average crystal grain size dγ decreased.
From the above results, it was found that after the start of martensitic transformation (or bainite transformation), it is necessary to maintain the controlled cooling at the average cooling rate C2L up to the controlled cooling end temperature Tf of 130 ° C. or lower.

尚、前記平均冷却速度CTが1℃/分以上であっても、これを構成する平均冷却速度C2U,C2Lの双方が1℃/分以上でないと、鋼部材の衝撃値が低下する。即ち、平均冷却速度C2U,C2Lの一方が1℃/分未満になると、変態が高温で始まることで、変態相が粗大となったり、あるいは、新たに析出する変態相が粗大となって、衝撃値を低下させる。このため、平均冷却速度C2U,C2Lの双方を1℃/分以上にする必要がある。
また、焼き入れ工程の直後に、鋼部材に残留するオーステナイト相は、その後の緩冷(130℃から室温までの間、あるいは焼き戻し工程後の冷却中)により、粗大なベーナイト相に分解するが、その量が40vol%未満であれば、衝撃値への悪影響は極く小さいことも判明した。係る結果から、焼き入れ時に存在したオーステナイト相の60vol%以上が、130℃以下の制御冷却終了温度Tfに至った時点でマルテンサイト相またはベーナイト相に相変態していることが望ましい。
Even if the average cooling rate CT is 1 ° C./min or more, the impact value of the steel member is lowered unless both of the average cooling rates C2U and C2L constituting the average cooling rate CT are 1 ° C./min or more. That is, when one of the average cooling rates C2U and C2L is less than 1 ° C./min, the transformation starts at a high temperature, and the transformation phase becomes coarse, or the newly precipitated transformation phase becomes coarse. Decrease the value. For this reason, both the average cooling rates C2U and C2L need to be 1 ° C./min or more.
Further, immediately after the quenching step, the austenite phase remaining in the steel member is decomposed into a coarse bainite phase by subsequent slow cooling (between 130 ° C. and room temperature or during cooling after the tempering step). It was also found that if the amount is less than 40 vol%, the adverse effect on the impact value is extremely small. From such a result, it is desirable that 60 vol% or more of the austenite phase existing at the time of quenching is transformed into a martensite phase or a bainite phase when a control cooling end temperature Tf of 130 ° C. or less is reached.

そして、焼き入れ工程を経て室温まで冷却された鋼部材は、図2に示すように、50〜750℃の温度Ttに加熱され、且つ1〜2時間保持した後、室温まで冷却する焼き戻し工程を施される。鋼部材がJIS:SKD61の場合、550〜650℃×1〜2時間の条件で焼き戻す。これにより、鋼部材中の残留オーステナイト相は分解し、組織全体が安定したマルテンサイト相またはベーナイト相となり、鋼種ごとの本来の特性を顕在化でき、且つ硬度(HRC)を40〜50にすることができる。尚、係る焼き戻し工程は、複数回繰り返して行っても良い。
以上のような焼き入れ工程および焼き戻し工程を経る本発明の熱処理方法によれば、例えば、ダイカスト金型などの大型の鋼部材であっても、確実に強靱化でき且つ変形や焼き割れを生じずに熱処理できるため、当該熱処理後の使用時において、ヒートクラックなどの予防も可能となる。
And the steel member cooled to room temperature through the quenching process is heated to a temperature Tt of 50 to 750 ° C. and held for 1 to 2 hours and then cooled to room temperature as shown in FIG. Is given. When the steel member is JIS: SKD61, it is tempered under the conditions of 550 to 650 ° C. × 1 to 2 hours. As a result, the retained austenite phase in the steel member is decomposed, the entire structure becomes a stable martensite phase or bainite phase, and the original characteristics of each steel type can be made obvious, and the hardness (HRC) should be 40-50. Can do. The tempering process may be repeated a plurality of times.
According to the heat treatment method of the present invention that undergoes the quenching process and the tempering process as described above, for example, even a large steel member such as a die-casting mold can be reliably toughened, and deformation and tempering cracks are generated. Therefore, heat cracks can be prevented during use after the heat treatment.

以下において、本発明の具体的な実施例を比較例と併せて説明する。
実機検証には、JIS:SKD61からなり、重量が750kgで、900×450×210mmのダイカスト用金型であって、中央部に窪みがあり、四隅に4本の脚を有する形態のものを複数個用意した。予め、係る金型の断面内に熱電対を12本挿入し、各種の焼き入れ工程における温度履歴をサンプリングした。
上記複数の金型を1030℃(焼き入れ温度)に30分間均熱し、表1に示す種々の冷却パターン(平均冷却速度C1,C2U,C2Lなど)による焼き入れ・焼き戻し工程をそれぞれに施した。尚、焼き入れと焼き戻しの均熱時間は、全て共通とし、焼き入れ工程では、500℃の炉中に各金型を挿入し、それらの断面内における最大温度差を小さくする方法を用いた。
また、焼き戻し工程後の硬度(HRC)は、焼き戻し条件を制御することで、全ての金型をHRC45になるように調整した。更に、各金型を、実際のダイカスト鋳造に同じ条件で適用し、それらの寿命を相対的な比によって表1に示した。
In the following, specific examples of the present invention will be described together with comparative examples.
The actual machine verification consists of JIS: SKD61, a die casting mold with a weight of 750 kg, 900 x 450 x 210 mm, with a recess in the center and four legs in four corners. Prepared. In advance, twelve thermocouples were inserted into the cross section of the mold, and temperature histories in various quenching processes were sampled.
The above molds were soaked at 1030 ° C. (quenching temperature) for 30 minutes, and subjected to quenching and tempering processes with various cooling patterns shown in Table 1 (average cooling rates C1, C2U, C2L, etc.). . The soaking time for quenching and tempering is all the same, and in the quenching process, each mold was inserted into a furnace at 500 ° C., and the method of reducing the maximum temperature difference in the cross section was used. .
Further, the hardness (HRC) after the tempering step was adjusted so that all the molds became HRC45 by controlling the tempering conditions. Furthermore, each mold was applied to actual die casting under the same conditions, and their lifetimes are shown in Table 1 by relative ratios.

表1に示すように、本発明による実施例1〜12では、焼き戻し後の変形量が0.2%以下、衝撃値は26J/cm以上、寿命比は、最長の実施例1,7を1とした場合の比で、0.92以上となった。また、焼き割れも皆無であった。
係る結果から、実施例1〜12によれば、熱処理中における変形量が小さいため、矯正などの後工程や再作製が不要となり、衝撃値も比較的高いので、大きな金型であるにも拘わらず、長寿命で優れた耐久性を奏することが確認できた。
As shown in Table 1, in Examples 1 to 12 according to the present invention, the deformation after tempering is 0.2% or less, the impact value is 26 J / cm 2 or more, and the life ratio is the longest of Examples 1 and 7. The ratio was 0.92 or more when 1 was 1. Moreover, there was no burning crack.
From these results, according to Examples 1 to 12, since the amount of deformation during heat treatment is small, there is no need for subsequent processes such as correction and re-creation, and the impact value is relatively high, so even though it is a large mold. It was confirmed that it had a long life and excellent durability.

Figure 2006342368
Figure 2006342368

一方、表1に示すように、比較例1〜5は、変形量が0.17%以下と小さいにも拘わらず、衝撃値が14J/cm以下と低く、型寿命比も0.78以下と短くなった。その原因は、比較例1では、平均冷却速度C1が2.1℃/分と低く、比較例2では、制御冷却終了温度Tfが200℃と高く、比較例3では、変態開始温度Ms(Bs)が408℃高く、比較例4では、平均冷却速度C2Lが0.9℃/分と低いことによる。更に、比較例5は、平均冷却速度C1、平均冷却速度C2L、態開始温度Ms(Bs)、および、平均冷却速度C2Lが本発明の規定範囲から外れていたため、前記のように衝撃値と寿命とが最も低下したものである。
以上のような実施例1〜12の結果により、本発明の効果が確認された。
On the other hand, as shown in Table 1, in Comparative Examples 1 to 5, although the deformation amount is as small as 0.17% or less, the impact value is as low as 14 J / cm 2 or less, and the mold life ratio is also 0.78 or less. And shortened. The cause is that in Comparative Example 1, the average cooling rate C1 is as low as 2.1 ° C./min, in Comparative Example 2, the control cooling end temperature Tf is as high as 200 ° C., and in Comparative Example 3, the transformation start temperature Ms (Bs ) Is 408 ° C. higher, and in Comparative Example 4, the average cooling rate C2L is as low as 0.9 ° C./min. Further, in Comparative Example 5, the average cooling rate C1, the average cooling rate C2L, the state start temperature Ms (Bs), and the average cooling rate C2L were out of the specified range of the present invention. And are the most declined.
From the results of Examples 1 to 12 as described above, the effects of the present invention were confirmed.

本発明は、以上において説明した実施の形態および実施例に限定されない。
例えば、本発明は、前記炭素および炭化物生成元素を含み且つ重量が50kg以上の鋼部材であれば、工具鋼以外の鋼種からなるものや、ダイスなどの金型に限らず、適用することが可能である。
また、冷却方法は、焼き入れ工程での前記平均冷却速度C1,CT,C2U,C2Lや、焼き戻しの冷却速度を遵守できのであれば、水冷、油冷、衝風冷却、水溶性媒体中への浸漬など、各種の方法が適宜選択される。
尚、本発明は、その趣旨を逸脱しない範囲で種々に改変することができる。
The present invention is not limited to the embodiments and examples described above.
For example, the present invention can be applied to any steel member that contains the carbon and carbide generating elements and has a weight of 50 kg or more, not limited to a steel type other than tool steel or a die such as a die. It is.
In addition, the cooling method can be water cooling, oil cooling, blast cooling, or into a water-soluble medium as long as the average cooling rates C1, CT, C2U, and C2L in the quenching step and the tempering cooling rate can be observed. Various methods such as dipping are appropriately selected.
The present invention can be variously modified without departing from the spirit of the present invention.

本発明の熱処理方法における焼き入れ工程を示す温度−時間グラフ。The temperature-time graph which shows the hardening process in the heat processing method of this invention. 本発明の焼き入れ工程および焼き戻し工程の温度履歴を示すグラフ。The graph which shows the temperature history of the quenching process and tempering process of this invention. 焼き入れ工程中の平均冷却速度C1と衝撃値との関係を示すグラフ。The graph which shows the relationship between the average cooling rate C1 in a hardening process, and an impact value. 焼き戻し後の硬度の区分による図3と同種のグラフ。FIG. 4 is a graph similar to FIG. 3 according to the classification of hardness after tempering. 焼き入れ時の平均結晶粒径dγの区分による図3と同種のグラフ。FIG. 4 is a graph similar to FIG. 3 according to the classification of the average grain size dγ during quenching. 変態開始温度と平均冷却速度C2Uとの関係を示すグラフ。The graph which shows the relationship between transformation start temperature and average cooling rate C2U. 焼き入れ工程中の変態開始温度と衝撃値との関係を示すグラフ。The graph which shows the relationship between the transformation start temperature in a hardening process, and an impact value. 焼き入れ時の平均結晶粒径dγの区分による図7と同種のグラフ。FIG. 8 is a graph similar to FIG. 7 according to the classification of the average grain size dγ during quenching. 焼き戻し後の硬度の区分による図7と同種のグラフ。FIG. 8 is a graph similar to FIG. 7 in terms of hardness classification after tempering. 平均冷却速度C2Lと衝撃値との関係を示すグラフ。The graph which shows the relationship between average cooling rate C2L and an impact value. 制御冷却終了温度Tfと衝撃値との関係を示すグラフ。The graph which shows the relationship between control cooling end temperature Tf and an impact value. 焼き入れ時の平均結晶粒径dγの区分による図11と同種のグラフ。FIG. 12 is a graph similar to FIG. 11 according to the classification of the average grain size dγ during quenching.

符号の説明Explanation of symbols

ht………………………………高温度帯
mt………………………………中間温度帯
lt………………………………低温度帯
Pf………………………………パーライト変態終了温度
Ff………………………………フェライト変態終了温度
Ms………………………………マルテンサイト変態開始温度
Bs………………………………ベーナイト変態開始温度
C1,CT,C2U,C2L…平均冷却速度
Tf………………………………制御冷却終了温度
Tt………………………………焼き戻し温度
ht ……………………………… High temperature zone mt ……………………………… Intermediate temperature zone lt ……………………………… Low temperature zone Pf… …………………………… Perlite transformation end temperature Ff ……………………………… Ferrite transformation end temperature Ms ……………………………… Martensite transformation start temperature Bs ……………………………… Banite transformation start temperature C1, CT, C2U, C2L… Average cooling rate Tf ……………………………… Control cooling end temperature Tt ………… …………………… Tempering temperature

Claims (5)

少なくとも、0.20〜1.5wt%の炭素と0.5〜25wt%の炭化物生成元素とを含むと共に、重量が50kg以上である鋼部材に対し、以下の冷却ステップを施す焼き入れ工程を含む、ことを特徴とする鋼部材の熱処理方法。
第1冷却ステップ:焼き入れ温度からパーライト変態およびフェライト変態の少なくとも一方が開始し得る温度までの高温度帯において、パーライト相およびフェライト相の析出が回避できる平均冷却速度で冷却する。
第2冷却ステップ:ベーナイト変態開始温度からベーナイト変態終了温度およびマルテンサイト変態終了温度よりも低温度までの低温度帯において、1℃/分以上の平均冷却速度で冷却する。
Including a quenching step in which at least 0.20 to 1.5 wt% of carbon and 0.5 to 25 wt% of a carbide generating element are included, and a steel member having a weight of 50 kg or more is subjected to the following cooling step. A method for heat treating a steel member.
First cooling step: In a high temperature range from the quenching temperature to a temperature at which at least one of the pearlite transformation and the ferrite transformation can start, cooling is performed at an average cooling rate that can avoid precipitation of the pearlite phase and the ferrite phase.
Second cooling step: Cooling is performed at an average cooling rate of 1 ° C./min or more in a low temperature zone from the bainite transformation start temperature to the bainite transformation finish temperature and the martensite transformation finish temperature.
少なくとも、0.20〜1.5wt%の炭素と、0.5〜25wt%の炭化物生成元素とを含むと共に、重量が50kg以上である鋼部材に対し、以下の冷却ステップを施す焼き入れ工程を含む、ことを特徴とする鋼部材の熱処理方法。
第1冷却ステップ:焼き入れ温度から600℃までの高温度帯において、パーライト相およびフェライト相の析出が回避できる3℃/分超の平均冷却速度で冷却する。
第2冷却ステップ:500℃以下で且つ130℃までの低温度帯において、1℃/分以上の平均冷却速度で冷却する。
A quenching process in which at least a 0.20 to 1.5 wt% carbon and a 0.5 to 25 wt% carbide-forming element and a steel member having a weight of 50 kg or more are subjected to the following cooling step. A heat treatment method for a steel member, comprising:
First cooling step: In a high temperature zone from the quenching temperature to 600 ° C., cooling is performed at an average cooling rate of more than 3 ° C./min that can prevent precipitation of a pearlite phase and a ferrite phase.
Second cooling step: Cooling is performed at an average cooling rate of 1 ° C./min or higher in a low temperature range of 500 ° C. or lower and up to 130 ° C.
前記第2冷却ステップにおける低温度帯のうち、500℃からベーナイト変態開始温度およびマルテンサイト変態開始温度の何れか一方までの温度帯では、ベーナイト変態およびマルテンサイト変態の少なくとも一方が、400℃〜マルテンサイト変態開始温度の範囲で開始するような冷却速度で冷却し、且つ変態開始後は1℃/分以上の平均冷却速度で冷却する、
ことを特徴とする請求項1または2に記載の鋼部材の熱処理方法。
Among the low temperature zones in the second cooling step, in the temperature zone from 500 ° C. to any one of the bainite transformation start temperature and the martensite transformation start temperature, at least one of the bainite transformation and the martensite transformation is 400 ° C. to martensite. Cool at a cooling rate that starts at the site transformation start temperature range, and after the transformation starts, cool at an average cooling rate of 1 ° C./min or more.
The method for heat-treating a steel member according to claim 1 or 2.
前記第1冷却ステップの高温度帯と第2冷却ステップの低温度帯との間おける中間温度帯または600℃〜500℃の間では、焼き入れすべき鋼部材の断面における最高温度部位と最低温度部位との差が200℃以下となるように制御する、
ことを特徴とする請求項1乃至3の何れか一項に記載の鋼部材の熱処理方法。
In the intermediate temperature zone between the high temperature zone of the first cooling step and the low temperature zone of the second cooling step or between 600 ° C. and 500 ° C., the highest temperature portion and the lowest temperature in the cross section of the steel member to be quenched. Control so that the difference with the part is 200 ° C. or less.
The method for heat treating a steel member according to any one of claims 1 to 3.
前記焼き入れ工程の後に、前記焼き入れを施された鋼部材を、50〜750℃に加熱および保持する焼戻し工程を有する、
ことを特徴とする請求項1乃至4の何れか一項に記載の鋼部材の熱処理方法。
After the quenching step, the steel member subjected to the quenching has a tempering step of heating and holding at 50 to 750 ° C.
The method for heat treatment of a steel member according to any one of claims 1 to 4, wherein the heat treatment method is performed.
JP2005166762A 2005-06-07 2005-06-07 Heat treatment method for steel members for die casting dies Active JP5023441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166762A JP5023441B2 (en) 2005-06-07 2005-06-07 Heat treatment method for steel members for die casting dies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166762A JP5023441B2 (en) 2005-06-07 2005-06-07 Heat treatment method for steel members for die casting dies

Publications (2)

Publication Number Publication Date
JP2006342368A true JP2006342368A (en) 2006-12-21
JP5023441B2 JP5023441B2 (en) 2012-09-12

Family

ID=37639545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166762A Active JP5023441B2 (en) 2005-06-07 2005-06-07 Heat treatment method for steel members for die casting dies

Country Status (1)

Country Link
JP (1) JP5023441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074155A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Method for quenching die
WO2012091069A1 (en) * 2010-12-29 2012-07-05 日立金属株式会社 Method for quenching mold
CN103305663A (en) * 2013-05-30 2013-09-18 天津大学 Martensite lath tissue refining method under effect of strong magnetic field of heat-resistant steel of 9-12% Cr system
CN103627880A (en) * 2013-12-17 2014-03-12 二重集团(德阳)重型装备股份有限公司 Medium-frequency induction quenching process in heavy-duty rack with super modulus
US11306371B1 (en) * 2017-10-16 2022-04-19 DANTE Solutions, Inc. Gas quenching system and method for minimizing distortion of heat treated parts

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589929A (en) * 1981-07-10 1983-01-20 Kashiwara Kikai Seisakusho:Kk Heat treatment for roll die for cold pilger rolling mill
JPH0328318A (en) * 1989-06-26 1991-02-06 Nichiei Kozai Kk Method for hardening hot die steel
JPH08225830A (en) * 1995-12-28 1996-09-03 Nichiei Kozai Kk Quenching of die made of hot die steel
JPH09182948A (en) * 1995-12-27 1997-07-15 Hitachi Metals Ltd Die and its quenching
JPH11310821A (en) * 1998-04-30 1999-11-09 Hitachi Metals Ltd Method for quenching metallic mold
JPH11350034A (en) * 1998-06-10 1999-12-21 Hitachi Metals Ltd Method for quenching die
JP2001181735A (en) * 1999-12-28 2001-07-03 Hitachi Metals Ltd Quenching method for steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589929A (en) * 1981-07-10 1983-01-20 Kashiwara Kikai Seisakusho:Kk Heat treatment for roll die for cold pilger rolling mill
JPH0328318A (en) * 1989-06-26 1991-02-06 Nichiei Kozai Kk Method for hardening hot die steel
JPH09182948A (en) * 1995-12-27 1997-07-15 Hitachi Metals Ltd Die and its quenching
JPH08225830A (en) * 1995-12-28 1996-09-03 Nichiei Kozai Kk Quenching of die made of hot die steel
JPH11310821A (en) * 1998-04-30 1999-11-09 Hitachi Metals Ltd Method for quenching metallic mold
JPH11350034A (en) * 1998-06-10 1999-12-21 Hitachi Metals Ltd Method for quenching die
JP2001181735A (en) * 1999-12-28 2001-07-03 Hitachi Metals Ltd Quenching method for steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074155A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Method for quenching die
WO2012091069A1 (en) * 2010-12-29 2012-07-05 日立金属株式会社 Method for quenching mold
JP5075293B2 (en) * 2010-12-29 2012-11-21 日立金属株式会社 Mold quenching method
CN103228802A (en) * 2010-12-29 2013-07-31 日立金属株式会社 Method for quenching mold
TWI427152B (en) * 2010-12-29 2014-02-21 Hitachi Metals Ltd Quenching method for mold
CN103305663A (en) * 2013-05-30 2013-09-18 天津大学 Martensite lath tissue refining method under effect of strong magnetic field of heat-resistant steel of 9-12% Cr system
CN103627880A (en) * 2013-12-17 2014-03-12 二重集团(德阳)重型装备股份有限公司 Medium-frequency induction quenching process in heavy-duty rack with super modulus
US11306371B1 (en) * 2017-10-16 2022-04-19 DANTE Solutions, Inc. Gas quenching system and method for minimizing distortion of heat treated parts

Also Published As

Publication number Publication date
JP5023441B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP7300451B2 (en) Wire rod for cold heading, processed product using the same, and manufacturing method thereof
JPWO2010137607A1 (en) Carburized parts and manufacturing method thereof
JP5135558B2 (en) Induction hardened steel, induction hardened rough shape, method for producing the same, and induction hardened steel parts
JP5288259B2 (en) Pre-quenching method and quenching method for martensitic tool steel
JP2011256456A (en) Method for manufacturing steel for cold forging
JP5105235B2 (en) Mold quenching method
JP2007131907A (en) Steel for induction hardening with excellent cold workability, and its manufacturing method
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
JP5023441B2 (en) Heat treatment method for steel members for die casting dies
JP4676993B2 (en) Bush making
KR101834996B1 (en) High hardness martensitic stainless steel with excellent hardenability and method of manufacturing the same
JP2007016284A (en) Method for producing tool steel intermediate material, and method for producing tool steel
JP7270343B2 (en) Method for manufacturing mechanical parts
EP3155134A1 (en) Method of heat treatment of bearing steel
CN110468338A (en) 1Cr11Ni2W2MoV heat resisting steel and its quenching-and-tempering process method
JP2932357B2 (en) Quenching method of mold made of hot die steel
JP2009242918A (en) Component for machine structure having excellent rolling fatigue property, and method for producing the same
JP3717745B2 (en) Mandrel bar and its manufacturing method
CN105925773A (en) Heat treatment method for steel
JP5050436B2 (en) Alloy steel manufacturing method
JP6347153B2 (en) Steel material and manufacturing method thereof
JP2001131631A (en) Method of spheroidizing-annealing steel material in short time and steel material using this method
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JP4596577B2 (en) Manufacturing method of billet for cold forging
JP2023061553A (en) Manufacturing method of martensitic stainless steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5023441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150