JPH11310821A - Method for quenching metallic mold - Google Patents

Method for quenching metallic mold

Info

Publication number
JPH11310821A
JPH11310821A JP12026298A JP12026298A JPH11310821A JP H11310821 A JPH11310821 A JP H11310821A JP 12026298 A JP12026298 A JP 12026298A JP 12026298 A JP12026298 A JP 12026298A JP H11310821 A JPH11310821 A JP H11310821A
Authority
JP
Japan
Prior art keywords
cooling
mold
quenching
liquid
metallic mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12026298A
Other languages
Japanese (ja)
Inventor
Masayuki Nagasawa
政幸 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP12026298A priority Critical patent/JPH11310821A/en
Publication of JPH11310821A publication Critical patent/JPH11310821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the toughness, and the heat crack resistance with the setting of high hardness and the service life of a metallic mold by executing cooling of the metallic mold to a specific temp. range in a first process for cooling with the mixed coolant of liquid and gas and in a second process for cooling with the liquid coolant. SOLUTION: The metallic mold is heated to a prescribed temp. for obtaining uniform austenitic structure and successively, quenching is applied. Thereat, in at least a part of the temp. range of 950 deg.C to 750 deg.C, the cooling is applied by using the mixed coolant of the liquid and the gas. As the mixed coolant, desirably, water and air are used and the cooling is executed by spraying. Since the cooling is dependant on the diamension and the shape of the metallic mold, the coolant quantities of the liquid and the gas are controlled to cool the metallic mold with the optimum cooling capacity. Successively, in the temp. range of 400 deg.C to 250 deg.C, the cooling is applied by using the liquid coolant. The cooling of the liquid used in this second cooling process, is executed by using an oil and the cooling is desirable to be rapid cooling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は靭性に優れる金型の
焼入れ方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quenching a mold having excellent toughness.

【0002】[0002]

【従来の技術】ダイカスト金型や熱間鍛造金型などの製
造においては、焼入れ工程が必須である。焼入れに対し
ては、脆いベイナイト組織を生成しないようにできるだ
け急冷することが求められている。そのため、通常は油
冷による焼入れが行われている。しかし、大型の金型で
は冷却時の歪により割れが発生し易く、ベイナイトの生
成をある程度容認した衝風冷却が採用される場合が多い
ものであった。
2. Description of the Related Art A quenching step is indispensable in the production of die casting dies and hot forging dies. Quenching is required to be cooled as rapidly as possible so as not to form a brittle bainite structure. Therefore, quenching by oil cooling is usually performed. However, large molds are liable to crack due to strain during cooling, and in many cases, blast cooling that allows formation of bainite to some extent is employed.

【0003】最近、特公平6−104851号において
は、熱間ダイス鋼をオーステナイト化温度まで加熱する
工程と、前記加熱された熱間ダイス鋼をベイナイト領域
のノーズに向かう冷却速度で空冷ないし衝風冷却によっ
て複合冷却変更温度まで冷却する工程と、前記空冷ない
し衝風冷却された熱間ダイス鋼を前記ベイナイト領域の
ノーズを避ける冷却速度で油冷などによる急冷を行う工
程からなる熱間ダイス鋼の金型焼入れ方法が提案され
た。この金型冷却方法は、熱処理歪が問題となる高温域
では、冷却速度を高めず、ベイナイト組織の生成が問題
となる低温側で急冷処理を適応するもので、靭性の高い
金型が得られるので、金型の寿命向上も達成している。
[0003] Recently, Japanese Patent Publication No. 6-104851 discloses a process of heating a hot die steel to an austenitizing temperature, and air-cooling or blasting the heated hot die steel at a cooling rate toward a nose in a bainite region. A step of cooling to a combined cooling change temperature by cooling, and a step of performing rapid cooling by oil cooling or the like at a cooling rate of avoiding a nose in the bainite region, the hot die steel being air-cooled or blast-cooled. A mold quenching method has been proposed. This mold cooling method does not increase the cooling rate in the high temperature region where heat treatment distortion is a problem, and adapts quenching treatment on the low temperature side where the formation of bainite structure is a problem, and a mold with high toughness can be obtained. Therefore, the life of the mold is also improved.

【0004】[0004]

【発明が解決しようとする課題】近年、金型が更に大型
化・複雑形状化する傾向にあり、一部の金型では更なる
靭性の向上が必要となる場合が出てきた。本発明者の検
討によれば、上述の特公平6−104851号が靭性向
上に対して極めて有効であった。そして、さらに検討を
進めた所、焼入れ時の高温域において、炭化物析出が靭
性の低下の原因となっていることを突き止めた。本発明
の目的は、より靭性に優れる金型の焼入れ方法を提供す
ることである。
In recent years, molds have tended to become larger and more complex in shape, and some molds have required further improvement in toughness. According to the study of the present inventor, the above-mentioned Japanese Patent Publication No. Hei 6-104851 was extremely effective in improving toughness. Further investigations revealed that carbide precipitation caused a decrease in toughness in a high temperature range during quenching. An object of the present invention is to provide a method of quenching a mold having better toughness.

【0005】[0005]

【課題を解決するための手段】本発明は、靭性に影響を
及ぼす炭化物の析出を抑え、かつベイナイト組織の生成
を抑えること、さらに冷却割れを抑えることのできる焼
入れ方法を検討し本発明に到達した。すなわち、950
℃から700℃までの範囲の少なくとも一部を液体と気
体の混合冷媒で冷却を行う第一の冷却工程と、400℃
から250℃の範囲を液体の冷媒で冷却を行う第二の冷
却工程により、焼入れを行う金型の焼入れ方法である。
DISCLOSURE OF THE INVENTION The present invention has been accomplished by studying a quenching method capable of suppressing precipitation of carbides affecting toughness, suppressing formation of bainite structure, and suppressing cooling cracks. did. That is, 950
A first cooling step of cooling at least a part of the temperature range from 700C to 700C with a mixed refrigerant of liquid and gas;
This is a method of quenching a mold in which quenching is performed in a second cooling step in which cooling is performed in a range from to 250 ° C. with a liquid refrigerant.

【0006】望ましくは、第一の冷却工程の冷却は、水
と空気を吹き付けるものであることを特徴とする金型の
焼入れ冷却方法である。
Preferably, the cooling in the first cooling step is a method of quenching and cooling the mold, wherein water and air are blown.

【0007】さらに望ましくは、第二の冷却工程の冷却
に用いる液体の冷媒は、油であることを特徴とする金型
の焼入れ冷却方法である。
[0007] More preferably, there is provided a method for quenching and cooling a mold, wherein the liquid refrigerant used for cooling in the second cooling step is oil.

【0008】[0008]

【発明の実施の形態】本発明者は、まず、靭性に及ぼす
金型材料の組織の影響について鋭意研究を行い、焼入れ
温度に加熱した際に得られたオーステナイト組織の結晶
粒界(以下旧オーステナイト結晶粒界と称する)への炭
化物の析出と、粗大化したベイナイト組織の影響が大き
いことを見出した。さらに、旧オーステナイト結晶粒界
への炭化物析出およびベイナイト組織の生成について研
究を行った結果、以下の結論を得た。旧オーステナイト
粒界への炭化物析出は950℃から700℃までの冷却
過程で起こっているので、冷却速度が遅い場合に生ず
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor first conducted intensive studies on the effect of the structure of a mold material on toughness, and found that the austenite structure obtained at the time of heating to a quenching temperature had grain boundaries (hereinafter referred to as former austenite). (Referred to as crystal grain boundaries), and the effect of the coarsened bainite structure was found to be significant. Furthermore, the following conclusions were obtained as a result of studying the precipitation of carbides and the formation of bainite structure at the prior austenite grain boundaries. Since the precipitation of carbides on the prior austenite grain boundaries occurs during the cooling process from 950 ° C. to 700 ° C., it occurs when the cooling rate is low.

【0009】また、従来行われている空冷や気体のみを
冷媒として用いる冷却などでは、特に大型の金型や、キ
ャビティー部が複雑なものでは、炭化物の析出を抑制す
るには冷却速度が遅い場合があり、この炭化物析出によ
り靭性が低下する場合がある。そして、この温度域を衝
風冷却よりもはやい速度で、急速冷却することにより、
炭化物の析出を抑制し、かつ冷却割れを抑えるには、液
体と気体の混合冷媒で冷却することが必要であることを
見出したものである。
In the conventional cooling such as air cooling or cooling using only gas as a cooling medium, the cooling rate is slow to suppress the precipitation of carbides, particularly in a large mold or a complicated cavity. In some cases, toughness may be reduced due to the carbide precipitation. And by rapidly cooling this temperature range at a speed no longer than blast cooling,
It has been found that it is necessary to cool with a mixed refrigerant of liquid and gas in order to suppress the precipitation of carbides and suppress cooling cracks.

【0010】また、ベイナイト組織については、焼入れ
冷却過程の400℃から250℃の温度域を急冷して、
ベイナイトノーズを避けることが特に重要で、これに対
しても衝風冷却などでは冷却速度が不十分で、大きな靭
性低下をもたらしていることがわかった。そして、この
400℃から250℃という特定の温度域を急速冷却す
ることにより、ベイナイト組織の生成と粗大化を抑制で
きることを見出した。つまり、靭性の向上のためには、
焼入れ冷却過程において上述の特定温度域を急速冷却す
ることが効果があるという知見を得た。
The bainite structure is rapidly cooled in a temperature range of 400 ° C. to 250 ° C. during the quenching and cooling process.
It was particularly important to avoid bainite nose, and it was also found that the cooling speed was insufficient with blast cooling or the like, resulting in a large decrease in toughness. Then, it has been found that by rapidly cooling the specific temperature range of 400 ° C. to 250 ° C., formation and coarsening of a bainite structure can be suppressed. In other words, to improve toughness,
It has been found that rapid cooling of the above-mentioned specific temperature range is effective in the quenching and cooling process.

【0011】以下に、本発明を詳述する。先ず、金型は
均一なオーステナイト組織を得るために、所定の加熱温
度にされ、引き続き焼入れに供される。ここで本発明で
は、950℃から700℃までの温度領域の少なくとも
一部を液体と気体の混合冷媒で冷却を施す。これは、旧
オーステナイト粒界への炭化物の析出は950℃〜70
0℃の温度域において、靭性の低下を引き起こす因子と
なる炭化物の析出を抑えるためである。このため、冷却
速度の遅い空冷や気体のみを冷媒として用いる冷却など
では炭化物が析出し、靭性の低下が起こるためである。
また、単純な水冷や油冷などでは、冷却速度が速すぎる
ため、熱処理歪が大きくなり、ひどい時には割れを生ず
る。
Hereinafter, the present invention will be described in detail. First, the mold is heated to a predetermined heating temperature in order to obtain a uniform austenite structure, and subsequently subjected to quenching. Here, in the present invention, at least a part of the temperature range from 950 ° C. to 700 ° C. is cooled with a mixed refrigerant of liquid and gas. This is because the precipitation of carbide at the former austenite grain boundary is 950 ° C. to 70 ° C.
This is because in a temperature range of 0 ° C., the precipitation of carbides, which is a factor causing a decrease in toughness, is suppressed. For this reason, in air cooling with a slow cooling rate or cooling using only gas as a refrigerant, carbides are precipitated and the toughness is reduced.
Further, simple water cooling, oil cooling, or the like results in too high a cooling rate, resulting in a large heat treatment distortion, and in severe cases, cracks.

【0012】そのため、本発明の第一の冷却工程の冷却
では、少なくとも一部を液体と気体との組合せによる混
合冷媒で冷却を行う。ここで、本発明の対象とする金型
は、その形状が一定ではなく、大きさ、形状などで冷却
速度が大きく変わり、特に金型のキャビティ面は、曲率
半径の小さいコーナー部を有する複雑形状となり、金型
の冷却速度の上限の設定は、特に形状に依存する。
Therefore, in the cooling in the first cooling step of the present invention, at least a part of the cooling is performed by a mixed refrigerant of a combination of a liquid and a gas. Here, the mold to which the present invention is applied is not uniform in shape, and the cooling rate varies greatly depending on the size and shape. In particular, the cavity surface of the mold has a complicated shape having a corner portion having a small radius of curvature. Thus, the setting of the upper limit of the cooling rate of the mold depends particularly on the shape.

【0013】そのため本発明では、金型の大きさや、キ
ャビティー面の形状から、本発明の第一の冷却工程にお
いて用いる混合冷媒は、望ましくは水と空気を吹き付け
て冷却を行う。ここで、金型の冷却は大きさや特に形状
に依存するため、その金型に最適な冷却能力で冷却する
必要があり、最大の留意点としては、曲率半径の小さい
コーナー部に応力の集中を避ける冷却方法を選ぶことが
重要である。たとえば、金型の大きさや形状に合わせ
て、液体や気体の冷媒の量をコントロールすることによ
って、最適な冷却能力を得ることができる。
For this reason, in the present invention, the mixed refrigerant used in the first cooling step of the present invention is preferably cooled by spraying water and air, based on the size of the mold and the shape of the cavity surface. Here, since the cooling of the mold depends on the size and especially the shape, it is necessary to cool with the optimal cooling capacity for the mold. It is important to choose cooling methods to avoid. For example, by controlling the amount of liquid or gaseous refrigerant in accordance with the size and shape of the mold, an optimal cooling capacity can be obtained.

【0014】次に本発明では、第二の冷却工程の400
℃から250℃の範囲を液体の冷媒で冷却を施す。この
理由については以下の通りである。粗大なベイナイト組
織は400℃から250℃の温度域において、衝風冷却
などでは冷却速度が不十分な冷却を用いれば、冷却速度
が遅いためにベイナイトノーズを避けることできず、靭
性を大きく低下させる。つまり、この温度域の冷却速度
を液体の冷媒を用いて急速冷却することにより、靭性を
改善することができるのである。
Next, in the present invention, the second cooling step 400
Cooling is performed in a temperature range from ℃ to 250 ℃ with a liquid refrigerant. The reason is as follows. In a temperature range of 400 ° C. to 250 ° C., if a cooling with insufficient cooling speed such as blast cooling is used, a coarse bainite structure cannot avoid bainite nose due to a low cooling speed and greatly reduces toughness. . That is, the toughness can be improved by rapidly cooling the cooling rate in this temperature range using a liquid refrigerant.

【0015】また、本発明の第二の冷却工程で用いる液
体の冷媒としては、油冷で急冷を施すことが望ましい。
この理由としては油冷により上述の冷却速度を十分得る
ことができ、かつ水冷などのように過度に冷却速度が速
くなってしまい、焼入れ冷却時に割れを引き起こすこと
が少ないからである。これらの冷却方法を用いること
で、金型を均一に冷却でき、さらに優れた靭性を付与す
ることができる。
As the liquid refrigerant used in the second cooling step of the present invention, it is desirable to perform rapid cooling by oil cooling.
The reason for this is that the above cooling rate can be sufficiently obtained by oil cooling, and the cooling rate becomes excessively high as in water cooling or the like, and there is little occurrence of cracking during quenching cooling. By using these cooling methods, the mold can be cooled uniformly and more excellent toughness can be imparted.

【0016】[0016]

【実施例】本実施例では、本発明の効果を説明すべく、
本発明ダイカスト金型および比較ダイカスト金型を製作
し、その特性を比較した。これらの本発明金型および比
較金型は、その素材として何れもSKD61を使用した
もので、概略寸法は350mm×310mm×170m
mである。本発明金型の焼入れ冷却は、焼入れ温度10
30℃から500℃までを水と空気を吹き付けて冷却を
行った後、500℃以下は油冷を行い、150℃で空冷
とした。また、比較金型の焼入れ冷却は油冷のみで行っ
た。それぞれの焼入れ冷却曲線を図1に示す。
EXAMPLE In this example, to explain the effect of the present invention,
The die casting mold of the present invention and a comparative die casting mold were manufactured and their characteristics were compared. Each of these molds of the present invention and comparative molds uses SKD61 as a material, and the approximate dimensions are 350 mm × 310 mm × 170 m
m. The quenching of the mold of the present invention is performed at a quenching temperature of 10
After cooling from 30 ° C to 500 ° C by spraying water and air, oil cooling was performed at 500 ° C or less, and air cooling was performed at 150 ° C. The quenching cooling of the comparative mold was performed only by oil cooling. FIG. 1 shows the respective quenching cooling curves.

【0017】従来の金型である比較金型No.2は、焼
入れ冷却時に曲率半径の小さいコーナー部から割れが発
生し、使用できなくなってしまったのに対し、本発明金
型No.1は焼入れ冷却時の割れは発生しなかった。本
発明金型は上述の焼入れ処理後、焼戻し処理により45
HRCに調質した。また、比較金型も特性比較のため、
同様の焼戻し処理により、45HRCに調質した。そし
て、本発明金型および比較金型より試験片を採取し、2
mmUシャルピー衝撃試験を行った結果を表2に示す。こ
の結果より、本発明金型は油冷された金型と同等の靭性
を有していることがわかる。また、試験片のミクロ組織
を観察したところ、本発明金型および比較金型の何れに
おいても旧オーステナイト粒界への炭化物の析出は見ら
れなかった。以上の結果より、本発明の焼入れ冷却方法
によれば、焼入れ冷却時の割れを防止しながら、炭化物
の粒界析出を抑えることができ、靭性に優れる金型を得
ることができることがわかる。
The comparative mold No. 1 which is a conventional mold is used. In the case of mold No. 2 of the present invention, cracking occurred at the corner portion having a small radius of curvature during quenching and cooling, making it unusable. In No. 1, no crack occurred during quenching and cooling. After the above-mentioned quenching treatment, the mold of the present invention is subjected to a
Conditioned to HRC. In addition, the comparative mold is also used for comparing the characteristics.
By the same tempering treatment, it was tempered to 45 HRC. Then, test pieces were collected from the mold of the present invention and the comparative mold, and 2
Table 2 shows the results of the mmU Charpy impact test. From this result, it is understood that the mold of the present invention has the same toughness as the oil-cooled mold. Further, when the microstructure of the test piece was observed, no precipitation of carbides was observed at the former austenite grain boundary in any of the mold of the present invention and the comparative mold. From the above results, it can be seen that according to the quenching and cooling method of the present invention, while preventing cracks during quenching and cooling, grain boundary precipitation of carbides can be suppressed, and a mold having excellent toughness can be obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明の金型およびその焼入れ冷却方法
によれば、靭性を大きく改善することができ、金型の硬
さ設定を従来より高く設定することができるので、耐ヒ
ートクラック性も優れ、金型の寿命を向上させることが
できる。
According to the mold and the quenching and cooling method of the present invention, the toughness can be greatly improved, and the hardness of the mold can be set higher than before, so that the heat crack resistance is also reduced. Excellent, it is possible to improve the life of the mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における焼入れ冷却曲線を示す
図である。
FIG. 1 is a diagram showing a quenching cooling curve in an example of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 950℃から700℃までの範囲の少な
くとも一部を液体と気体の混合冷媒で冷却を行う第一の
冷却工程と、400℃から250℃の範囲を液体の冷媒
で冷却を行う第二の冷却工程により、焼入れを行うこと
を特徴とする金型の焼入れ方法。
1. A first cooling step of cooling at least a part of a temperature range of 950 ° C. to 700 ° C. with a mixed refrigerant of a liquid and a gas, and a cooling step of cooling a temperature range of 400 ° C. to 250 ° C. with a liquid refrigerant. A quenching method for a mold, wherein quenching is performed in a second cooling step.
【請求項2】 第一の冷却工程の冷却は、水と空気を吹
き付けるものであることを特徴とする請求項1に記載の
金型の焼入れ方法。
2. The method according to claim 1, wherein the cooling in the first cooling step is performed by blowing water and air.
【請求項3】 第二の冷却工程の冷却に用いる液体の冷
媒は、油であることを特徴とする請求項1に記載の金型
の焼入れ方法。
3. The method according to claim 1, wherein the liquid refrigerant used for cooling in the second cooling step is oil.
JP12026298A 1998-04-30 1998-04-30 Method for quenching metallic mold Pending JPH11310821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12026298A JPH11310821A (en) 1998-04-30 1998-04-30 Method for quenching metallic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12026298A JPH11310821A (en) 1998-04-30 1998-04-30 Method for quenching metallic mold

Publications (1)

Publication Number Publication Date
JPH11310821A true JPH11310821A (en) 1999-11-09

Family

ID=14781866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12026298A Pending JPH11310821A (en) 1998-04-30 1998-04-30 Method for quenching metallic mold

Country Status (1)

Country Link
JP (1) JPH11310821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342368A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Heat treatment method for steel member
CN111044559A (en) * 2019-11-26 2020-04-21 中南大学 Phase change latent heat calculation method based on alloy end quenching finite point temperature curve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006342368A (en) * 2005-06-07 2006-12-21 Daido Steel Co Ltd Heat treatment method for steel member
CN111044559A (en) * 2019-11-26 2020-04-21 中南大学 Phase change latent heat calculation method based on alloy end quenching finite point temperature curve
CN111044559B (en) * 2019-11-26 2021-09-14 中南大学 Phase change latent heat calculation method based on alloy end quenching finite point temperature curve

Similar Documents

Publication Publication Date Title
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
KR20070110397A (en) Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts
CN113737106B (en) Die steel for 1500MPa hot stamping part cold trimming punching cutter and preparation method thereof
CN109628833B (en) Cr-Mo-Si-V cold-work die steel and preparation method thereof
CN109023104B (en) 4Cr13 plastic die steel and preparation method thereof
CN117845031A (en) Production method for improving strip-shaped structure of medium-low carbon hot-rolled cold heading steel wire rod
JP2006342377A (en) Method for quenching large-sized die
CN111172373A (en) Low-carbon steel heat treatment process
JP2008202078A (en) Hot-working die steel
KR101405843B1 (en) Forging process of fine grain steel
JPH11310821A (en) Method for quenching metallic mold
CN116121644A (en) High-toughness mine disc saw blade steel plate and manufacturing method thereof
CN108866298B (en) Forging heat treatment process of Cr12MoV steel
CN108690935B (en) High-quality alloy tool steel plate and production method thereof
CN107164625B (en) Brake beam preparation method
JP3897274B2 (en) Hardening method for steel
US2924543A (en) Cold-finished steels and method for manufacturing same
JPH11350034A (en) Method for quenching die
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JP2781296B2 (en) Manufacturing method of forged steel roll for cold rolling
JPH10202331A (en) Manufacture of hot working die
KR100285258B1 (en) Spheroidizing method of high ally steel for wire rod
JP3747982B2 (en) Manufacturing method of medium and high carbon steel sheet
JPS61199035A (en) Manufacture of composite roll having tough neck part
KR20240029270A (en) Hot-working tool steel and method for manufacturing thereof