JPH0578750A - Manufacture of forged steel roll for cold rolling - Google Patents
Manufacture of forged steel roll for cold rollingInfo
- Publication number
- JPH0578750A JPH0578750A JP24180091A JP24180091A JPH0578750A JP H0578750 A JPH0578750 A JP H0578750A JP 24180091 A JP24180091 A JP 24180091A JP 24180091 A JP24180091 A JP 24180091A JP H0578750 A JPH0578750 A JP H0578750A
- Authority
- JP
- Japan
- Prior art keywords
- forging
- roll
- forged steel
- range
- steel roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、冷間圧延機のワール
ロール、中間ロール等に用いる鍛鋼ロールに関し、特に
ロール表面品質特性(特にショットダルロール粗度の均
一性)を有利に改善し、かつ鍛造後の球状化焼鈍処理を
省略できる製造方法を提案しようとするものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a forged steel roll used for whirl rolls, intermediate rolls, etc. of a cold rolling mill, and particularly advantageously improves roll surface quality characteristics (especially uniformity of shotdal roll roughness), Moreover, the present invention intends to propose a manufacturing method that can omit the spheroidizing annealing process after forging.
【0002】[0002]
【従来の技術】冷間圧延用ワークロールが具備すべき特
性としては、耐事故性、耐摩耗性、硬化深度などが挙げ
られ、加えて、良好な表面品質を特に要求される被圧延
材に対しては、耐肌荒れ性が極めて重要な特性となる。
このワークロールに肌荒れが生じると、被圧延板の表面
にも肌荒れが転写されて製品表面の品質が劣化し、また
ロールの肌荒れが著しい場合にはロールを再研削する必
要が生じる。かかる冷間圧延用ワークロールに、耐肌荒
れ性が優れていることが要求される所以である。2. Description of the Prior Art Work rolls for cold rolling are required to have properties such as accident resistance, wear resistance, and hardening depth. On the other hand, rough skin resistance is a very important characteristic.
When the work roll is roughened, the roughened surface is also transferred to the surface of the plate to be rolled, the quality of the product surface is deteriorated, and when the roll is significantly roughened, it is necessary to re-grind the roll. This is the reason why the work roll for cold rolling is required to have excellent resistance to surface roughening.
【0003】ところでロールには、鋳造の際の凝固時に
樹枝状晶(デンドライト)が形成され、鍛造過程で、特
有のデンドライト模様(デンドライトの樹枝部と樹間
部)がこの表面に生じる結果、ロール表面には、この模
様に沿って硬度むら(うねり)があり、加えて組織むら
(細粒と粗粒)も存在する。このロール表面の硬度むら
及び組織むらが、前述した肌荒れの要因である。By the way, dendritic crystals (dendrites) are formed on the roll during solidification during casting, and a unique dendrite pattern (dendritic dendritic part and interdendritic part) is formed on this surface during the forging process. The surface has uneven hardness (waviness) along this pattern, and also has uneven texture (fine particles and coarse particles). The hardness unevenness and the texture unevenness on the roll surface are the causes of the aforementioned rough skin.
【0004】また調質圧延に用いるワークロールには、
被圧延材の表面粗度の調整を行うために、ロール表面を
ダル(微細な梨地)に粗面化したロールを使用してい
る。かかるロールの粗度化には、通常ショットブラスト
方式すなわち粗度に応じたグリッドをロールに向けて投
射することにより行っている。このショットブラストの
際、グリッドは、一粒一粒が全く同じ大きさではなく、
ある粒度分布を持っているので、完全にランダムに投射
したとしても統計的なゆらぎによってロール表面には粗
度むら(うねり)が発生する。かかる投射グリッドの不
均一に基づく粗度むらが、上述したロール表面の硬度む
ら及び組織むらと重畳して、ロール表面に大きな粗度む
ら(うねり)を形成してしまい、冷延製品の表面品質や
圧延中の板形状に影響を及ぼし、生産性の低下や操業の
攪乱を招き、問題となっていた。Work rolls used for temper rolling include
In order to adjust the surface roughness of the material to be rolled, a roll whose surface is roughened into a dull (fine satin) is used. The roughening of the roll is usually performed by a shot blast method, that is, a grid corresponding to the roughness is projected toward the roll. At the time of this shot blast, the grid is not the same size one by one,
Since it has a certain particle size distribution, unevenness in roughness (waviness) occurs on the roll surface due to statistical fluctuations even when projected completely randomly. The unevenness of roughness due to the non-uniformity of the projection grid overlaps with the unevenness of hardness and texture of the roll surface described above to form a large unevenness of roughness (waviness) on the roll surface, resulting in the surface quality of the cold rolled product. It has a problem in that it affects the strip shape during rolling and lowers the productivity and disturbs the operation.
【0005】これらの問題を解決するためにデンドライ
トを微細化する技術が考えられ、例えば特開昭61-9554
号及び同61-9445 号各公報には、それぞれP添加及びZ
r、Niの複合添加を行う方法が開示されていて、また特
開昭56-86611号公報には、デンドライト主幹のロール胴
の外表面とのなす角を15度以上にすることが開示されて
いる。しかしながら何れの方法もデンドライトの樹枝部
と樹間部との硬度差を本質的に低減する技術ではなく、
ショットダルロールのように粗度むらのないことが厳し
く要求されるロールでは十分な効果を発揮しているとは
言い難かった。In order to solve these problems, a technique for miniaturizing dendrites has been considered, for example, Japanese Patent Laid-Open No. 61-9554.
No. 61 and No. 61-9445, P added and Z respectively
r, a method of performing a composite addition of Ni is disclosed, and JP-A-56-86611 discloses that the angle formed by the outer surface of the roll cylinder of the dendrite trunk is 15 degrees or more. There is. However, neither method is a technique for essentially reducing the hardness difference between the dendrite tree branches and the inter-tree parts,
It was hard to say that a roll that is strictly required to have no unevenness of roughness, such as a shot-dal roll, is sufficiently effective.
【0006】またこのような冷間圧延用鍛鋼ロールの製
造にあっては通常、鍛造終了後の高C−Cr系鍛鋼ロール
素材を、割れ防止のために室温まで放冷することなく高
温状態のまま熱処理炉に装入(いわゆる赤材扱い)し、
次いで鍛造後の粗い炭化物を適切な球状炭化物にする球
状化焼鈍処理が施されていた。かかる処理については、
日本鉄鋼協会編「第3版鉄鋼便覧(第V巻)鋳造・鍛造
・粉末冶金」丸善(昭和57年5月31日発行)p.330 、表
11・6に詳細に説明されている。Further, in the production of such a forged steel roll for cold rolling, the high C--Cr type forged steel roll material after the forging is usually kept in a high temperature state without being cooled to room temperature in order to prevent cracking. Charge the heat treatment furnace as it is (so-called red material),
Next, spheroidizing annealing treatment was performed to convert the coarse carbide after forging into an appropriate spherical carbide. For such processing,
Iron and Steel Institute of Japan, "3rd Edition Steel Handbook (Volume V) Casting / Forging / Powder Metallurgy" Maruzen (Published May 31, 1982) p.330, table
It is explained in detail in 11.6.
【0007】かかるロール素材の鍛造後の球状化焼鈍処
理及び調質処理は、冷間圧延用ワークロールが、前に述
べたようにロール胴部の表面硬さがHs:90以上で、かつ
深い硬化層と耐事故性が要求されるから、そのためにロ
ール胴部の表面焼入れの前工程で、結晶粒及び組織の調
整により適切な球状炭化物を有しかつ軸部硬さの調整及
びロール内部の強じん化を高めておく必要があるためで
ある。かかるロール素材の球状化焼鈍処理は、ロール素
材の結晶粒及び組織の調整により適切な球状炭化物を得
るためには不可欠な工程であるが、この処理は約150時
間にわたって熱処理炉を占有するため、多大の経費及び
時間を要するという問題があった。For the spheroidizing annealing treatment and temper treatment after forging of such a roll material, the work roll for cold rolling has a surface hardness of Hs: 90 or more and a deep surface of the roll body as described above. Since a hardened layer and accident resistance are required, for that purpose, in the pre-process of the surface quenching of the roll body, it has a suitable spherical carbide by adjusting the crystal grains and the structure and the adjustment of the shaft hardness and the inside of the roll. This is because it is necessary to increase the toughness. The spheroidizing annealing treatment of the roll material is an indispensable step in order to obtain a suitable spherical carbide by adjusting the crystal grains and the structure of the roll material, but this treatment occupies the heat treatment furnace for about 150 hours, There is a problem that it requires a great deal of expense and time.
【0008】そこで出願人は先に特開平2-282429 号公
報で、球状化焼鈍処理を省略してもこの処理を行った場
合と同品質の鍛鋼ロール素材を製造し得る方法を提案し
たが、最近の厳しいロール表面品質の要求に対して十分
な対処ができなくなり、上記の課題は十分に解決されて
いるとはいえなかった。Therefore, the applicant previously proposed in Japanese Patent Laid-Open No. 2-282429 a method capable of producing a forged steel roll material having the same quality as that obtained by performing the spheroidizing annealing treatment, even though the spheroidizing annealing treatment is omitted. The recent demands for strict roll surface quality cannot be adequately dealt with, and the above problems cannot be said to be sufficiently solved.
【0009】[0009]
【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、 ロール表面品質特性の改善(特にショットダルロール
粗度の均一化)を図るために、デンドライトの樹枝部と
樹間部との硬度むらを最小値(あるいは飽和値)まで低
減し、かつ 球状化焼鈍処理を省略してもこの処理を行った場合と
同品質の高C−Cr系鍛鋼ロール素材を製造し得る鍛鋼ロ
ールの製造方法を提案すること目的とする。DISCLOSURE OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and in order to improve the roll surface quality characteristics (especially, the uniformity of the shotdal roll roughness), the dendritic dendritic portion is used. Even if the spheroidizing annealing treatment is omitted, the high quality C-Cr system forged steel roll material with the same quality can be manufactured by reducing the hardness unevenness between the wood and the wood to the minimum value (or saturation value). The purpose is to propose a method for manufacturing a forged steel roll that can be manufactured.
【0010】[0010]
【課題を解決するための手段】発明者らは、 適切な加熱拡散を施すことよりデンドライトの樹枝部
と樹間部との硬度むらを最小値(あるいは飽和値)まで
低減させることによってロール表面品質特性(特にショ
ットダルロール粗度の均一性)の優れた鍛鋼ロールを製
造し得ること、及び 加熱拡散処理、鍛造方法、鍛造後の冷却方法及び調質
熱処理の球状化作用を上手に組み合わせることによっ
て、球状化焼鈍処理を省略してもこの処理を行った場合
と同品質の高C−Cr系鍛鋼ロール素材を製造し得ること
の知見を得て、これらの知見に基づいてこの発明をなす
に至った。[Means for Solving the Problems] The inventors of the present invention reduce the unevenness of hardness between dendrite dendritic parts and inter-tree parts to a minimum value (or a saturation value) by applying appropriate heat diffusion, and thereby, the surface quality of rolls is improved. By being able to produce forged steel rolls with excellent properties (especially the uniformity of shot dull roll roughness), and by combining the spheroidizing action of heat diffusion treatment, forging method, cooling method after forging, and heat treatment for tempering However, even if the spheroidizing annealing treatment is omitted, it has been found that a high C-Cr type forged steel roll material of the same quality as in the case where this treatment is performed can be manufactured, and the present invention is made based on these findings. I arrived.
【0011】すなわちこの発明は、C:0.7 〜1.2 wt%
(以下単に%で示す)及びCr:2.0〜12.0%を含有する
鍛鋼ロール用鋳造材に、熱間鍛造及びそれに引き続く熱
処理を施して鍛鋼ロールを製造するに当たり、 該熱間
鍛造に先立って、1200〜1280℃の範囲の温度での加熱拡
散処理を、次式で算出される加熱拡散パラメータP P=log(t)−(19840/T) (ここにt:加熱保持時間(min) 、T:加熱温度
(K)) が−9.8 〜−9.2 の範囲を満足させて施すことを特徴と
する冷間圧延用鍛鋼ロールの製造方法である。That is, the present invention is C: 0.7-1.2 wt%
(For the purpose of producing a forged steel roll by hot forging and subsequent heat treatment of a cast material for forged steel roll containing (hereinafter simply indicated by%) and Cr: 2.0 to 12.0%, prior to the hot forging, 1200 Heating diffusion treatment at a temperature in the range of 1280 ° C., heating diffusion parameter P P = log (t) − (19840 / T) calculated by the following equation (where t: heating holding time (min), T: The method for producing a forged steel roll for cold rolling is characterized in that the heating temperature (K) is applied in a range of -9.8 to -9.2.
【0012】またこの発明は、C:0.7 〜1.2 %及びC
r:2.0 〜12.0%を含有する鍛鋼ロール用鋳造材に、熱
間鍛造及びそれに引き続く熱処理を施して鍛鋼ロールを
製造するに当たり、該熱間鍛造に先立って、1200〜1280
℃の範囲の温度での加熱拡散処理を、次式で算出される
加熱拡散パラメータP P=log(t)−(19840/T) (t:加熱保持時間(min) 、T:加熱温度(K)) が−9.8 〜−9.2 の範囲を満足させて施し、次いで熱間
鍛造を、1050〜1200℃で上下V金敷を用いて圧下代6%
以上の圧下量でかつ鍛錬比1.6 S 以上に鍛錬し、引き続
く冷却を、Ms点以上〜Ms点+150 ℃の温度域までは空冷
し、その後調質熱処理を施すことを特徴とする冷延圧延
用鍛鋼ロールの製造方法である。The present invention also provides C: 0.7-1.2% and C
r: For forged steel roll casting material containing 2.0 to 12.0%, in hot forging and subsequent heat treatment to produce a forged steel roll, prior to the hot forging, 1200 to 1280
In the heat diffusion treatment at a temperature in the range of ℃, the heat diffusion parameter calculated by the following equation P P = log (t)-(19840 / T) (t: heating holding time (min), T: heating temperature (K )) Is satisfied in the range of -9.8 to -9.2, and then hot forging is performed at 1050 to 1200 ° C using the upper and lower V anvils to reduce the rolling allowance by 6%.
For cold rolling, which is characterized by forging with the above reduction amount and a forging ratio of 1.6 S or more, followed by cooling by air cooling to a temperature range of Ms point or more to Ms point + 150 ° C, and then heat treatment. It is a method for manufacturing a forged steel roll.
【0013】[0013]
【作用】ロール素材表面のデンドライトの樹枝部と樹間
部での硬度むらは、CrさらにはMoのミクロ偏析が要因で
あり、そこで鍛造に先立つ適正な加熱拡散処理により、
デンドライト模様の不鮮明及びミクロ組織の均一化を介
して硬度むらが大幅に低減し、これに伴ってショットダ
ルロールのような冷間圧延用鍛鋼ロール粗度の均一化が
図れるのである。[Function] Hardness unevenness at the dendrites and inter-trees of the dendrites on the surface of the roll material is due to the microsegregation of Cr and Mo. Therefore, by appropriate heat diffusion treatment prior to forging,
The unevenness of hardness is greatly reduced through the unclear dendrite pattern and the uniformization of the microstructure, and the roughness of the cold-rolled forged steel roll such as a shot-dal roll can be made uniform accordingly.
【0014】図1及び図2に0.90%C−4.5 %Cr−0.6
%Mo−0.07%V系の材料に種々の条件で加熱拡散処理を
行った場合の硬度むら及びCr、Moのミクロ偏析について
調べた結果をそれぞれ示す。同図から明らかなように、
この発明に従う加熱拡散処理(1200〜1280℃)を施した
ロールは、この発明の範囲よりも低い温度での加熱拡散
処理材(1180℃)に比べてデンドライトの樹枝部と樹間
部との硬度むらが低減していて、この硬度むらは、Cr、
Moのミクロ偏析軽減と対応している。硬度むらの最小値
(あるいは飽和値)は、1200〜1280℃の加熱拡散処理を
加熱拡散パラメータP P=log(t)−(19840/T) (ここにt:加熱保持時間(mi
n) 、T:加熱温度(K)) が−9.8 〜−9.2 となる範囲で施すことにより得られ
る。1 and 2, 0.90% C-4.5% Cr-0.6
The results of examining the hardness unevenness and the microsegregation of Cr and Mo when heat diffusion treatment was performed on various materials of% Mo-0.07% V under various conditions are shown. As is clear from the figure,
The roll subjected to the heat diffusion treatment (1200 to 1280 ° C) according to the present invention has a hardness of dendritic dendritic portion and inter-tree portion as compared with the heat diffusion treatment material (1180 ° C) at a temperature lower than the range of the present invention. The unevenness is reduced, and this uneven hardness is Cr,
Corresponds to reduce Mo microsegregation. The minimum value (or saturation value) of the hardness unevenness is obtained by performing the heat diffusion treatment at 1200 to 1280 ° C with the heat diffusion parameter P P = log (t)-(19840 / T) (where t is the heat retention time (mi
n), T: heating temperature (K)) in a range of -9.8 to -9.2.
【0015】かかる加熱拡散処理は、製造工程における
球状化焼鈍の省略のためにも有効である。すなわち、通
常の鍛造温度加熱温度(1050〜1200℃)よりも50〜150
℃高い温度での加熱拡散処理(1200〜1280℃)を施し、
次いで通常の鍛造加熱温度で、鍛造方法をコントロール
して組織の均一化と結晶粒の微細化を図り、また鍛造後
の冷却条件を限定することで球状化焼鈍処理の省略が可
能になるのである。The above heat diffusion treatment is also effective for omitting the spheroidizing annealing in the manufacturing process. That is, the normal forging temperature is 50 to 150 higher than the heating temperature (1050 to 1200 ° C).
Heat diffusion process (1200 ~ 1280 ℃) at high temperature ℃,
Then, at a normal forging heating temperature, it is possible to omit the spheroidizing annealing process by controlling the forging method to make the structure uniform and to refine the crystal grains, and by limiting the cooling conditions after forging. ..
【0016】加熱拡散処理の温度は、1200℃より低い
と、Cr、Moのミクロ偏析を軽減して基地への固溶促進を
図る効果が少なくなりかつ共晶炭化物を細分球状化させ
る効果が少なくなり、一方1280℃を超えるとボイドの圧
着が困難になってくるので1200〜1280℃の範囲に限定し
た。より好ましく1230〜1280℃の範囲に管理すればより
効果的な拡散が得られる。When the temperature of the heat diffusion treatment is lower than 1200 ° C., the effect of reducing the microsegregation of Cr and Mo to promote the solid solution in the matrix is reduced and the effect of making the eutectic carbide into fine spheroids is small. On the other hand, when the temperature exceeds 1280 ℃, it becomes difficult to bond the voids, so the range was limited to 1200-1280 ℃. More effective diffusion can be obtained by controlling the temperature in the range of 1230 to 1280 ° C.
【0017】加熱拡散パラメータPは、−9.2 より大き
い場合(高温、長時間加熱)は、Moの再偏析が生じ、か
つ加熱費用も多くなって経済的でないため上限を−9.2
とする(ロールの熱間鍛造の際に、表面の脱炭層の深さ
はあまり大きな問題にはならない)。一方、パラメータ
Pが−9.8 よりも小さいと、図2に示すΔHvが増加する
傾向を示し、通常の管理範囲で許容できるΔHv:60以内
となる範囲として下限を−9.8 とした。When the heating diffusion parameter P is larger than -9.2 (high temperature, long time heating), re-segregation of Mo occurs and the heating cost increases, which is not economical and therefore the upper limit is -9.2.
(During hot forging of the roll, the depth of the decarburized layer on the surface is not a big problem). On the other hand, when the parameter P is smaller than −9.8, ΔHv shown in FIG. 2 tends to increase, and the lower limit of −9.8 is set as the range within ΔHv: 60 which is allowable in the normal control range.
【0018】なお鍛造及びその後の熱処理条件に関して
は、ロール表面性状の改善を図る場合には、通常実施さ
れている条件で適宜決定すればよい。Regarding the conditions of forging and the subsequent heat treatment, in order to improve the surface properties of the roll, it may be appropriately determined under the conditions usually practiced.
【0019】次に鍛造及び熱処理条件に関して、球状化
焼鈍工程を省略しようとする場合には、以下のように行
うことが肝要である。Next, regarding the forging and heat treatment conditions, when the spheroidizing annealing step is to be omitted, it is essential to carry out as follows.
【0020】鍛造加熱温度:1050〜1200℃ 鍛造加熱温度は低すぎると鍛造作業性が悪く、一方高す
ぎると鋼塊偏析部の共晶炭化物が部分溶融して熱間加工
性の低下に伴い、塑性加工が困難になる。このため、鍛
造加熱温度はCr、Mo、Vの含有量によって異なるが、10
50〜1200℃の範囲に限定した。より好ましくは1080〜11
80℃の範囲に管理すれば加工性はより安定する。Forging heating temperature: 1050 to 1200 ° C. If the forging heating temperature is too low, the forging workability is poor, while if it is too high, the eutectic carbide in the segregated portion of the steel ingot is partially melted and the hot workability is lowered. Plastic processing becomes difficult. Therefore, the forging heating temperature varies depending on the Cr, Mo, and V contents, but
Limited to the range of 50-1200 ℃. More preferably 1080-11
If it is controlled within the range of 80 ℃, the workability will be more stable.
【0021】鍛造方法:上下V金敷、圧下量6%以上、
鍛錬比1.6 S 以上 通常の鍛造加熱温度(1050〜1200℃)よりも50〜150 ℃
高い温度で加熱拡散処理(1200〜1280℃)を施すと、鋼
塊偏析部の共晶炭化物が溶融し、ボイドが発生するの
で、鍛造でボイドの圧着及び共晶炭化物の分断を図る必
要があり、鍛造方法は上下V金敷を用いて、圧下量6%
以上、鍛錬比1.6 S 以上に限定した。ここに上下V金敷
は、平金敷に比較して圧下量が小さくても鋼塊の中心ま
で圧下力を伝え、大きな塑性加工を加えることができる
からであり、圧下量が6%に満たない場合や鍛錬比が1.
6 S よりも小さい場合には空隙欠陥圧着のための十分な
圧着効果を得ることができないためである。Forging method: upper and lower V anvil, reduction amount of 6% or more,
Forging ratio 1.6 S or more 50 to 150 ℃ higher than normal forging heating temperature (1050 to 1200 ℃)
When heat diffusion treatment (1200-1280 ℃) is performed at high temperature, the eutectic carbide in the ingot segregation part melts to generate voids, so it is necessary to forge the voids and separate the eutectic carbides by forging. The forging method uses the upper and lower V anvils and the rolling amount is 6%
As mentioned above, the training ratio is limited to 1.6 S or more. This is because the upper and lower V anvils can transfer a large amount of rolling force to the center of the steel ingot even if the amount of rolling is small compared to the flat anvil and apply a large amount of plastic working. If the amount of rolling is less than 6%. And the training ratio is 1.
This is because if it is smaller than 6 S, a sufficient crimping effect for void defect crimping cannot be obtained.
【0022】鍛造後の冷却条件:上記の条件で得られた
鍛造品は、マルテンサイト変態の開始点Ms点(この発明
の鍛鋼ロールでは200 〜250 ℃)以上、Ms点+(50 〜15
0 ℃) までの温度範囲、具体的には300 〜400 ℃の温度
域まで空冷し、均一に炭化物を分布させる。ここで鍛造
後の冷却速度が遅いと、炭化物が粗くなり、この粗大炭
化物は次工程の調質熱処理、表面焼入れ後も残留するの
で、鍛造後に空冷し、均一に炭化物を分布させておくこ
とが重要である。とはいえ割れ防止の点から、鍛造終了
後の空冷終了温度はMs点近傍からMs点+150 ℃までの温
度域とし、それ以後は赤材扱いで熱処理炉に装入し、γ
→αの相変態を行った後、調質熱処理で炭化物の球状化
及びマトリックスの強じん化を図る。Cooling condition after forging: The forged product obtained under the above conditions has a martensitic transformation starting point Ms point (200 to 250 ° C. in the forged steel roll of the present invention) or more, Ms point + (50 to 15)
(0 ° C), and air-cooled to a temperature range of 300 to 400 ° C, to uniformly distribute the carbide. If the cooling rate after forging is slow, the carbide will become coarse, and this coarse carbide will remain after the heat treatment for heat treatment and surface quenching in the next step, so it is necessary to cool it by air after forging and distribute the carbide evenly. is important. However, from the standpoint of preventing cracking, the end temperature of air cooling after forging is in the temperature range from near the Ms point to the Ms point + 150 ° C, and after that, it is treated as red material and charged into the heat treatment furnace.
→ After the α phase transformation, heat treatment is performed to make the carbide spherical and toughen the matrix.
【0023】このように高温の加熱拡散処理で、共晶炭
化物を細分球状化させると共に、Cr、Moのミクロ偏析を
軽減して基地への固溶促進を図り、かつ鍛造工程で結晶
粒の微細化を図り、次いで鍛造後の冷却で均一に炭化物
を分散させ、その後に赤材扱いの調質熱処理で炭化物の
球状化が施されるため、球状化焼鈍処理の作用を代替で
き、したがって球状化焼鈍処理を省略してもこの処理を
行ったと同品質のロール素材が得られるのである。かか
る製造工程のブロック図を図3に示す。As described above, the eutectic carbide is finely spheroidized by the heat diffusion treatment at a high temperature, the microsegregation of Cr and Mo is reduced to promote the solid solution in the matrix, and the crystal grains are finely divided in the forging step. The spheroidizing process can be replaced by the spheroidizing annealing process because the spheroidizing of the carbide is carried out by the tempering heat treatment of red material after the carbide is dispersed uniformly by cooling after the forging and then the spheroidizing treatment is performed. Even if the annealing process is omitted, a roll material of the same quality can be obtained by performing this process. A block diagram of the manufacturing process is shown in FIG.
【0024】なお熱処理条件は、ロールの仕様、材質に
よって異なり、ロール胴部及び軸部の硬さ仕様との兼ね
合いで上記の範囲内で適宜決定される。The heat treatment conditions differ depending on the specifications and material of the roll, and are appropriately determined within the above range in consideration of the hardness specifications of the roll body and the shaft.
【0025】次にこの発明で鍛鋼ロールの成分組成範囲
を限定した理由は次のとおりである。The reason why the composition range of the forged steel roll is limited in the present invention is as follows.
【0026】C:0.7 〜1.2 % Cは、焼入れ性向上、硬さ向上に有効な成分であって、
焼入れ鍛鋼ロールとして必要な焼入れ性及び硬さ確保す
るためには0.7 %以上は必要であるが1.2 %を超えると
硬さの増加が顕著ではないため0.7 〜1.2%の範囲に限
定した。C: 0.7 to 1.2% C is a component effective for improving hardenability and hardness,
In order to secure the hardenability and hardness required for a hardened forged steel roll, 0.7% or more is required, but if it exceeds 1.2%, the increase in hardness is not significant, so the range was limited to 0.7-1.2%.
【0027】Cr:2.0 〜12.0% Crは、冷間圧延用ロールとして必要な耐摩耗性を得るの
に有効な成分であって、そのため2.0 %以上の含有が必
要であるが、12.0%を超えると焼入れ性を低下させるの
で2.0 〜12.0%の範囲に限定した。Cr: 2.0 to 12.0% Cr is an effective component for obtaining the wear resistance required for cold rolling rolls, and therefore, it is necessary to contain 2.0% or more, but more than 12.0%. However, the hardenability is deteriorated, so the content is limited to the range of 2.0 to 12.0%.
【0028】Mo:0.2 〜4.50%及び V:0.05〜2.00% の1種又は2種(2種の場合、合計で0.50〜5.50wt%) Mo、Vはいずれも複合炭化物を形成し、炭化物自体の耐
摩耗性を向上させることによってこの発明の効果を副次
的に補うために添加する。Moが0.20%またVが0.05%に
満たないと、必要な耐摩耗性が得られない不利があり、
一方Moが4.50%、またVが2.00%を超えると延性及びじ
ん性が低下し、焼割れを生じ易いという不都合を生じる
ので、Mo:0.20〜4.50%程度、V:0.05〜2.00%程度と
することが好ましい。Mo: 0.2 to 4.50% and V: 0.05 to 2.00% of 1 type or 2 types (in the case of 2 types, 0.50 to 5.50 wt% in total) Mo and V both form a composite carbide and the carbide itself. It is added to supplement the effect of the present invention by improving the wear resistance of. If the Mo content is less than 0.20% and the V content is less than 0.05%, the necessary wear resistance cannot be obtained, which is a disadvantage.
On the other hand, when Mo exceeds 4.50% and V exceeds 2.00%, ductility and toughness decrease, which causes the problem of easy occurrence of quench cracking. Therefore, Mo: about 0.20 to 4.50%, V: about 0.05 to 2.00%. Preferably.
【0029】Ni:0.60wt%以下 Niは、焼入れ性向上及び耐焼割れ性確保のために微量添
加してもよい。Niが0.60%を超えると残留オーステイナ
イト量を増大させて硬さを低下させるという不都合を生
じるので、0.60%以下程度とすることが好ましい。Ni: 0.60 wt% or less Ni may be added in a trace amount in order to improve the hardenability and to secure the resistance to quench cracking. If Ni exceeds 0.60%, the amount of residual austenite increases and the hardness decreases, so it is preferable to set it to about 0.60% or less.
【0030】Si:0.50〜1.20wt% Siは、焼入れ性向上及び耐焼割れ性確保のために0.50%
以上添加する。1.20%を超えるとこれらの効果が小さく
なるから0.50〜1.20%程度とすることが好ましい。Si: 0.50 to 1.20 wt% Si is 0.50% in order to improve hardenability and to secure quench cracking resistance.
The above is added. If it exceeds 1.20%, these effects become small, so 0.50 to 1.20% is preferable.
【0031】Mn:0.30〜1.00wt% Mnは、焼入れ性向上のために有効な成分であって、その
ために0.30%は必要であるが1.00%を超えるとぜい化が
顕著となるから 0.30〜1.00%程度とすることが好まし
い。Mn: 0.30 to 1.00 wt% Mn is an effective component for improving hardenability, and therefore 0.30% is necessary, but if it exceeds 1.00%, embrittlement becomes remarkable, so 0.30 to It is preferably about 1.00%.
【0032】[0032]
実施例1 表1に示す種々の成分組成になる鋼をESR(エレクト
ロスラグ再溶解)法にて、直径850 mm、長さ1800mmのサ
イズの鋼塊に各々4個ずつ製作した。Example 1 Steels having various compositional compositions shown in Table 1 were manufactured by ESR (electroslag remelting) method into four steel ingots each having a diameter of 850 mm and a length of 1800 mm.
【0033】[0033]
【表1】 [Table 1]
【0034】これらの鋼塊から胴径610 mm、胴長1800m
m、全長3880mmの鍛鋼ロール素材を鍛造するに当たり、
各チャージ内の2個の鋼塊にはこの発明にかかる方法
を、各チャージ内の他の鋼塊には従来方法をそれぞれ適
用した。ここに、この発明に従う方法は、加熱拡散処理
が、1280℃,30時間(P=−9.5 )であり、従来方法は
加熱拡散処理が、1180℃,23時間(P=−10.5)であ
る。なお鍛造はもとより熱処理以降の製造工程は、一般
的な鍛鋼ロールの製造方法に従って行った。得られた鍛
鋼ロールの品質を完成検査及び使用実績で調査し、その
結果をまとめて表2に示す。Body diameter 610 mm, body length 1800 m from these steel ingots
When forging a forged steel roll material with a length of 3880 mm,
The method according to the present invention was applied to the two steel ingots in each charge, and the conventional method was applied to the other steel ingots in each charge. Here, in the method according to the present invention, the heat diffusion treatment is 1280 ° C. and 30 hours (P = −9.5), and in the conventional method, the heat diffusion treatment is 1180 ° C. and 23 hours (P = −10.5). In addition to the forging, the manufacturing process after the heat treatment was performed according to a general method for manufacturing a forged steel roll. The quality of the obtained forged steel roll is investigated by the completion inspection and the usage record, and the results are summarized in Table 2.
【0035】[0035]
【表2】 [Table 2]
【0036】また得られた鍛鋼ロールのロール表面の硬
度分布を図4に、ロール粗度分布を図5に、それぞれ実
施例((a))と、比較例((b))とで比較して示す。表2及
び図4,5から明らかなように、この発明に従う実施例
は、比較例に比べデンドライトの樹枝部と樹間部との硬
度むらが大幅に低減し、これに伴い、ショットダルロー
ル粗度の均一化が図れた。The hardness distribution of the roll surface of the obtained forged steel roll is shown in FIG. 4, the roll roughness distribution is shown in FIG. 5, and the comparison is made between Example ((a)) and Comparative Example ((b)). Indicate. As is clear from Table 2 and FIGS. 4 and 5, in the examples according to the present invention, the hardness unevenness between the dendritic dendritic part and the inter-tree part is significantly reduced as compared with the comparative example. The degree of uniformity was achieved.
【0037】実施例2 表3に示す種々の成分組成になる鋼をESR(エレクト
ロスラグ再溶解)法にて図6(a) に示す直径610 mm、長
さ1800mmのサイズの鋼塊を各鋼種4個ずつ製作した。Example 2 Steels having various compositional compositions shown in Table 3 were prepared by ESR (electroslag remelting) method into steel ingots having a diameter of 610 mm and a length of 1800 mm shown in FIG. 6 (a). I made four each.
【0038】[0038]
【表3】 [Table 3]
【0039】これらの鋼塊から図6(b) に示す胴径420
mm、胴長1640mm、全長4490mmの鍛鋼ロールを鍛造するに
あたり、各鋼種の一方の鋼塊(2個ずつ)にはこの発明
にかかる方法を、他の鋼塊には従来方法をそれぞれ適用
した。ここにこの発明にかかる方法は、まず加熱拡散処
理として鋼A,Bには1280℃、30時間、鋼C〜Gには12
30℃, 30時間、鋼H〜Jには1280℃, 30時間施し、次い
で通常の鍛造加熱温度(A,B鋼:1180℃、D鋼:1150
℃、C,G鋼:1100℃、E,F鋼:1080℃、H鋼:1180
℃、I鋼:1180℃、J鋼:1180℃、)で上下V金敷を用
いて、圧下代6〜10%の範囲で鍛錬比2S に鍛錬した
後、鍛造品の表面温度が300 ℃になるまで空冷し、次い
で赤材扱いで熱処理炉に装入し調質処理を施した。また
従来方法は、所定の鍛造(上下V金敷を用いて、圧下代
6〜10%の範囲で鍛錬比2S に鍛錬)を施した後、図7
に示す熱サイクルで焼ならし及び球状化焼鈍を施した
後、調質処理を施した。なお調質熱処理以降の製造工程
は、一般的な鍛鋼ロールの製造方法に従って行った。か
くして得られた鍛鋼ロールの品質を完成検査及び使用実
績で調査し、その結果を表4にまとめて示す。From these steel ingots, the body diameter 420 shown in FIG.
In forging a forged steel roll having a length of mm, a body length of 1640 mm, and a total length of 4490 mm, the method according to the present invention was applied to one steel ingot (two pieces) of each steel type, and the conventional method was applied to the other steel ingots. The method according to the present invention is as follows: First, as heat diffusion treatment, 1280 ° C. for 30 hours for steels A and B and 12 hours for steels CG.
30 ℃, 30 hours, 1280 ℃, 30 hours for steel H to J, then normal forging heating temperature (A and B steel: 1180 ℃, D steel: 1150
℃, C, G steel: 1100 ℃, E, F steel: 1080 ℃, H steel: 1180
℃, I steel: 1180 ℃, J steel: 1180 ℃,) After forging to a forging ratio of 2S within a rolling reduction range of 6 to 10% using a top and bottom V anvil, the surface temperature of the forged product becomes 300 ℃. After air cooling, the material was treated as a red material and placed in a heat treatment furnace for temper treatment. Further, the conventional method is that after performing a predetermined forging (using an upper and lower V anvil, forging to a forging ratio of 2S within a range of a rolling allowance of 6 to 10%),
After normalizing and spheroidizing annealing in the heat cycle shown in, heat treatment was performed. The manufacturing process after the heat treatment was performed according to a general method for manufacturing a forged steel roll. The quality of the thus-obtained forged steel roll was investigated by completion inspection and actual use, and the results are summarized in Table 4.
【0040】[0040]
【表4】 [Table 4]
【0041】同表から明らかなように、この発明に従う
実施例は、球状化焼鈍を省略しても従来法で得られた比
較例と同品質である。As is clear from the table, the examples according to the present invention have the same quality as the comparative examples obtained by the conventional method even if the spheroidizing annealing is omitted.
【0042】[0042]
【発明の効果】かくしてこの発明によれば、ロール表面
品質特性を改善でき、したがって冷延鋼板の圧延ライン
において生産性の向上、操業安定化に著しい効果を奏す
る。また球状化焼鈍を省略することができ、したがって
製造コストの削減、能率向上に著しい効果を奏する。As described above, according to the present invention, the roll surface quality characteristics can be improved, and therefore, the productivity is improved and the operation is stabilized in the rolling line of the cold rolled steel sheet. Further, the spheroidizing annealing can be omitted, so that the manufacturing cost can be reduced and the efficiency can be significantly improved.
【図1】図1は、加熱拡散処理が硬度むら低減に及ぼす
効果を示すグラフである。FIG. 1 is a graph showing the effect of heat diffusion treatment on reducing hardness unevenness.
【図2】図2は、加熱拡散処理がミクロ偏析低減に及ぼ
す効果を示すグラフである。FIG. 2 is a graph showing the effect of heat diffusion treatment on reduction of microsegregation.
【図3】図3は、この発明にかかる製造工程のブロック
図である。FIG. 3 is a block diagram of a manufacturing process according to the present invention.
【図4】図4は、鍛鋼ロールのロール表面の硬度分布を
示すグラフである。FIG. 4 is a graph showing a hardness distribution on a roll surface of a forged steel roll.
【図5】図5は、鍛鋼ロールのロール表面の粗度分布を
示すグラフである。FIG. 5 is a graph showing a roughness distribution on a roll surface of a forged steel roll.
【図6】図6は、実施例における鋼塊及び鍛造品のサイ
ズを示す説明図である。FIG. 6 is an explanatory diagram showing sizes of a steel ingot and a forged product in the example.
【図7】図7は、比較例における熱処理サイクルを示す
説明図である。FIG. 7 is an explanatory diagram showing a heat treatment cycle in a comparative example.
Claims (2)
引き続く熱処理を施して鍛鋼ロールを製造するに当た
り、 該熱間鍛造に先立って、1200〜1280℃の範囲の温度での
加熱拡散処理を、次式で算出される加熱拡散パラメータ
P P=log(t)−(19840/T) (ここにt:加熱保持時間(min) 、T:加熱温度
(K)) が−9.8 〜−9.2 の範囲を満足させて施すことを特徴と
する冷間圧延用鍛鋼ロールの製造方法。1. A forged steel roll casting material containing C: 0.7 to 1.2 wt% and Cr: 2.0 to 12.0 wt% is subjected to hot forging and subsequent heat treatment to produce a forged steel roll. Prior to forging, the heat diffusion treatment at a temperature in the range of 1200 to 1280 ° C. is performed by the heat diffusion parameter P P = log (t) − (19840 / T) calculated by the following formula (where t: heat retention time). (min), T: heating temperature (K)) satisfying the range of -9.8 to -9.2, and applying it, The manufacturing method of the forged steel roll for cold rolling characterized by the above-mentioned.
引き続く熱処理を施して鍛鋼ロールを製造するに当た
り、 該熱間鍛造に先立って、1200〜1280℃の範囲の温度での
加熱拡散処理を、次式で算出される加熱拡散パラメータ
P P=log(t)−(19840/T) (t:加熱保持時間(min) 、T:加熱温度(K)) が−9.8 〜−9.2 の範囲を満足させて施し、 次いで熱間鍛造を、1050〜1200℃で上下V金敷を用いて
圧下代6%以上の圧下量でかつ鍛錬比1.6 S 以上に鍛錬
し、 引き続く冷却を、Ms点以上〜Ms点+150 ℃の温度域まで
は空冷し、 その後調質熱処理を施すことを特徴とする冷延圧延用鍛
鋼ロールの製造方法。2. Hot forging and subsequent heat treatment are applied to a cast material for forged steel roll containing C: 0.7 to 1.2 wt% and Cr: 2.0 to 12.0 wt% to produce a forged steel roll. Prior to forging, a heat diffusion treatment at a temperature in the range of 1200 to 1280 ° C. is performed by a heat diffusion parameter P P = log (t) − (19840 / T) (t: heat retention time (min ), T: heating temperature (K)) satisfying the range of −9.8 to −9.2, and then hot forging is performed at 1050 to 1200 ° C. using an upper and lower V anvil with a reduction amount of 6% or more. And a forging ratio of 1.6 S or more, and subsequent cooling is air-cooled to a temperature range of Ms point or higher to Ms point + 150 ° C, and then heat-treated for tempering. ..
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24180091A JP2781296B2 (en) | 1991-09-20 | 1991-09-20 | Manufacturing method of forged steel roll for cold rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24180091A JP2781296B2 (en) | 1991-09-20 | 1991-09-20 | Manufacturing method of forged steel roll for cold rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0578750A true JPH0578750A (en) | 1993-03-30 |
JP2781296B2 JP2781296B2 (en) | 1998-07-30 |
Family
ID=17079700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24180091A Expired - Lifetime JP2781296B2 (en) | 1991-09-20 | 1991-09-20 | Manufacturing method of forged steel roll for cold rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2781296B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035286A (en) * | 2010-08-05 | 2012-02-23 | Sumitomo Metal Ind Ltd | Method for manufacturing forged steel roll |
JP2014193488A (en) * | 2014-05-09 | 2014-10-09 | Nippon Steel & Sumitomo Metal | Method of casting ingot for production of forged-steel roll |
CN115074625A (en) * | 2022-06-23 | 2022-09-20 | 宝钢轧辊科技有限责任公司 | Intermediate roll of sendzimir mill and its manufacturing method |
CN115537640A (en) * | 2022-10-14 | 2022-12-30 | 唐山志威科技有限公司 | ZW931 roller of lithium ion battery pole piece rolling mill and preparation method thereof |
-
1991
- 1991-09-20 JP JP24180091A patent/JP2781296B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012035286A (en) * | 2010-08-05 | 2012-02-23 | Sumitomo Metal Ind Ltd | Method for manufacturing forged steel roll |
JP2014193488A (en) * | 2014-05-09 | 2014-10-09 | Nippon Steel & Sumitomo Metal | Method of casting ingot for production of forged-steel roll |
CN115074625A (en) * | 2022-06-23 | 2022-09-20 | 宝钢轧辊科技有限责任公司 | Intermediate roll of sendzimir mill and its manufacturing method |
CN115537640A (en) * | 2022-10-14 | 2022-12-30 | 唐山志威科技有限公司 | ZW931 roller of lithium ion battery pole piece rolling mill and preparation method thereof |
CN115537640B (en) * | 2022-10-14 | 2023-03-10 | 唐山志威科技有限公司 | ZW931 roller of lithium ion battery pole piece rolling mill and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2781296B2 (en) | 1998-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110438310B (en) | Hot work die steel and heat treatment method thereof | |
CN109913768B (en) | Electroslag remelting hot work die steel and preparation method thereof | |
CN105063492B (en) | Hot-strip of automobile friction and preparation method thereof | |
CN109252104A (en) | High-speed steel and production method thereof | |
JPH10273756A (en) | Cold tool made of casting, and its production | |
CN105002434B (en) | Vehicle clutch plate pairing steel sheet hot-strip and preparation method thereof | |
CN114480796B (en) | Method for obtaining uniform granular pearlite structure without spheroidizing annealing | |
CN114959420A (en) | Preparation method of non-quenched and tempered steel for cylinder of plastic molding machine for producing round billet | |
CN105177435B (en) | Thin hot rolled steel strip for cutting tools and manufacturing method of thin hot rolled steel strip | |
CN115449595A (en) | Method for improving annealing structure uniformity of H13 hot work die steel | |
CN114934231A (en) | High-manganese low-magnetism high-strength austenitic steel and manufacturing method thereof | |
JP2002167644A (en) | Cold tool steel having constant deformation on treatment and method for producing cold tool using the steel | |
KR101286121B1 (en) | High carbon forging work roll for hot rolling having superior high temperature abrasion resistance and mechanical strength, and the method for producing the work roll | |
JPH05214484A (en) | High strength spring steel and its production | |
JP2938101B2 (en) | Manufacturing method of steel for cold forging | |
JP3002392B2 (en) | Method for manufacturing centrifugally cast composite roll | |
CN113366136A (en) | High carbon hot-rolled steel sheet and method for producing same | |
CN116497195A (en) | Homogenization treatment method and application of hot work die steel | |
JP2781296B2 (en) | Manufacturing method of forged steel roll for cold rolling | |
CN114703431B (en) | Heat treatment process for homogenizing hot-work die steel and annealed structure | |
JP3641597B2 (en) | Composite roll for hot rolling and hot rolling method using the same | |
JP4393344B2 (en) | Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance | |
JPH10202331A (en) | Manufacture of hot working die | |
JP2001234278A (en) | Cold tool steel excellent in machinability | |
JP2000087177A (en) | Steel casting of cold-working tool steel excellent in machinability, and its production |