JPH0570685B2 - - Google Patents

Info

Publication number
JPH0570685B2
JPH0570685B2 JP26178287A JP26178287A JPH0570685B2 JP H0570685 B2 JPH0570685 B2 JP H0570685B2 JP 26178287 A JP26178287 A JP 26178287A JP 26178287 A JP26178287 A JP 26178287A JP H0570685 B2 JPH0570685 B2 JP H0570685B2
Authority
JP
Japan
Prior art keywords
spheroidization
temperature
hardness
rolling
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26178287A
Other languages
Japanese (ja)
Other versions
JPH01104718A (en
Inventor
Kenichiro Naito
Toshimichi Mori
Hitoshi Marukuni
Hirobumi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon Steel Corp
Original Assignee
Nissan Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon Steel Corp filed Critical Nissan Motor Co Ltd
Priority to JP26178287A priority Critical patent/JPH01104718A/en
Publication of JPH01104718A publication Critical patent/JPH01104718A/en
Publication of JPH0570685B2 publication Critical patent/JPH0570685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は冷間鍛造加工に供される棒線材の製造
方法に関するものである。 [従来の技術] 鋼材から機械構造用部品を成形する方法として
冷間鍛造加工が多用されているが、工具寿命が短
く加工割れが発生し易い等の問題があるため、鍛
造前に球状化焼鈍処理が行われている。 この熱処理には通常10時間以上必要であり、生
産性や省エネルギーの点からこの時間を短縮する
ことが永年の課題となつている。 球状化焼鈍時間を短縮するには鋼材の改良によ
る方法と焼鈍方法の改良がある。鋼材の改良例と
して特開昭60−152627号公報や特開昭60−255922
号公報等がある。 これらは鋼材圧延後、急冷して微細なフエライ
ト−パーライトとベイナイトまたはマルテンサイ
トの混在組織とし、これによりセメンタイトの球
状化速度を早くしている。 しかしこのような方法ではセメンタイトが過度
に微細で、硬さが従来法のものに比べかなり高く
なり、球状化焼鈍の所期の目的を達成し得ない。 一方焼鈍方法の改良としては特公昭60−22050
号公報や特公昭61−15930号公報等がある。これ
らは棒線材をストランド状として特殊な加熱装置
を用いて、Ac1変態点より30℃以上高い温度に、
3000℃/h以上で急速加熱し、短時間保定の後、
徐冷も30℃/h以上の速度で冷却を行うことによ
り、焼鈍時間を60分以内にまて短縮している。 しかしこの方法は、特殊な加熱設備等の設備改
造が必要なだけでなく、球状化不十分となり易
く、また素材材質のばらつきが焼鈍後に引き継が
れ、焼鈍材材質のばらつきが拡大するという問題
があつた。 このように従来の球状化焼鈍時間の短縮法はい
ずれも問題があり、実用化に至つていない。 [発明が解決しようとする問題点] 機械構造用鋼棒線材を冷間鍛造する場合、セメ
ンタイトを球状化し軟質化する目的で10時間以上
の球状化焼鈍が行われているが、生産性や省エネ
ルギーの点でこの焼鈍時間の短縮が永年の課題で
あつた。 本発明は、従来無関係と無なされていた制御圧
延によるフエライト分率増加と、細粒化の素材改
良に保定時間短縮と特定温度域のみを徐冷する焼
鈍方法改良を組合わせた冷間鍛造用棒線材の製造
方法を提供するものである。 [問題点を解決するための手段] 本発明者らはこのような従来技術の問題点を解
決すべく球状化焼鈍時間の短縮について研究し次
の知見を得た。 (1) 球状化焼鈍工程においてAc1変態点直上温度
へ加熱・保定および徐冷過程の内、徐冷過程が
最も重要で、特にセメンタイトが再析出す温度
を中心とした特定範囲での冷却速度を早くする
と、セメンタイトの球状化は著しく悪化し硬さ
も増加する。 (2) しかし従来殆んど無関係と見なされていた素
材のフエライト−パーライト結晶粒を微細化し
ておくと、焼鈍時の徐冷速度を早くしても球状
化度を良好とする効果がある。 (3) このような細粒鋼を焼鈍した場合、Ac1変態
点直上までの加熱速度を適度に早くし、また
Ac1変態点直上温度での保定時間を適度に短く
すると、球状化度はさらに向上する。 (4) Ac1変態点温度以上に保定後、A1変態点直上
までの冷却速度を早くすることによつて、その
後のAr1点をよこぎる徐冷過程でセメンタイト
の析出を速やかにし、球状化度を良好とするこ
とが可能である。 (5) さらに制御圧延によつて鋼材の結晶粒を微細
化するだけでなく、フエライトの組織物率の増
加を図つたものに上記の適当な短時間焼鈍を施
せば、球状化度だけでなく硬さも従来の長時間
保定および長時間徐冷による球状化焼鈍法のも
のと全く遜色のない良好な焼鈍材が得られる。 これらの知見に基づいて本件を発明するに至つ
た。すなわち本発明はC0.1〜0.6%を含有する鋼
を棒鋼あるいは線材に熱間圧延する際に、最終仕
上圧延を700〜800℃の温度範囲で行い、粒度8番
以上のフエライトおよびパーライトの混合組織と
した鋼材を、Ac1+15±10℃に再加熱し5〜60分
保持した後、720℃から680℃以下の温度までの区
間を10℃/hから30℃/h未満の速度で冷却する
ことを特徴とする冷間鍛造用棒線材の製造方法で
あり、上述のAc1+15±10℃まで再加熱する場合
の加熱速度を300℃/h以上と、またこの温度か
ら720℃までの冷却速度を30℃/h以上としたこ
とを要旨とするものである。 [作用] 以下に本発明で限定した鋼材成分、圧延条件、
焼鈍条件の理由について説明する。 Cは0.1%未満では機械構造用部品として十分
な強度が得られず、また球状化焼鈍による軟質化
効果も小さくなる。一方0.6%を超えると球状化
焼鈍しても硬さが高いため、冷間加工に適さない
ことから0.1〜0.6%の範囲に限定した。 C以外の元素については本発明の適用に際し特
に限定の必要ほないが、以下の範囲にあることが
望ましい。 Siは製品強度および焼入性を高めるために有効
であるが、焼鈍材硬さを増加させる影響が大き
く、上限を0.35%とすべきである。 Mnは焼入性およびSによる熱間脆性防止のた
めに、下限を0.15%とする必要があるが、焼鈍材
硬さを増加させるため上限を1.5%とする。 Sは切削性の改良に有効であるが、熱間脆性や
加工割れの原因となる介在物の増加を生じさせる
ため上限を0.10%とする。 Cr、MoおよびNiは焼入性を高めることに有効
であるが、焼鈍材硬さを増加させるため、上限を
それぞれ1.2%、0.5%および0.5%とする。 Bは微量で焼入性を高めることに効果があるが
焼鈍材の硬さを殆んど増加しない。そのため
Mn、Cr、Mo等の焼入性増加元素と置換するこ
とによつて、球状化焼鈍後の硬さ低下を図るのに
有用な元素である。 しかし過度に添加すると製品靭性を劣化させる
ので、これを防止するためには上限を0.003%と
するのが良い。 次に鋼材の圧延条件および組織についてのべ
る。 最終仕上圧延の上限を800℃としたのは、この
温度以下で最終圧延を行うことにより、オーステ
ナイト結晶粒を微細化し、これより変態して生じ
るフエライトおよびパーライトを微細化するとと
もに、その変態温度を高温化させることにより、
フエライト量を増加させ軟質化させることが可能
であるからである。 従つて800℃を超すとフエライトおよびパーラ
イトが粗大化し、このような効果が期待できな
い。一方700℃未満では圧延負荷が著しく大きく
なり、仕上圧延の実施が困難になる他、鋼材温度
を仕上圧延時に700℃以下とするためには、圧延
途中で水冷等の冷却処理をしなければならず、表
層部に硬質なベイナイト等の下部変態組織が生じ
て、焼鈍材の硬さを増加させるため700℃を下限
とした。 この制御圧延にさらに圧延後0.5℃/sec以下の
冷速で徐冷を施すことを付加すれば、素材のフエ
ライト分率が増加することにより、さらに焼鈍材
硬さを低下できるので望ましい。 なおCr、MoおよびNi等を多量に含む低合金鋼
においては、圧延温度の低下でベイナイト等の発
生が大幅に抑制されるが、フエライト−パーライ
トのみの組織とするには圧延後の徐冷が必須であ
る。 結晶粒度を8番以上に限定したのは、次に述べ
るように球状化焼鈍時間を短縮した場合、従来の
鋼材ではセメンタイトの球状化が不十分である
が、結晶粒度8番以上とすることによつて、良好
な球状化組織が得られるからである。 次に焼鈍条件についてのべる。 室温からAc1変態点上の保定温度までの加熱速
度は、焼鈍材材質へ与える影響は比較的小さい
が、粒度8番以上の細粒鋼では300℃/h以上と
することにより球状化度が良好となる。しかし加
熱速度が過度に大きいと球状化不十分となるため
2500℃/h以内が良い。 次に保定温度は、Ac1+15−10℃未満では未固
溶セメンタイトが残り球状化度が劣化し、Ac1
15+10℃を超えると逆にセメンタイトの殆どが固
溶かるため、再生パーライトが生じて球状化度が
著しく劣化するので、Ac1+15±10℃の範囲に限
定した。 この温度に保定する時間は、5分未満ではセメ
ンタイトの固溶が十分でなく、60分を超えると過
度に固溶してしまうことから5〜60分と限定した
が、焼鈍時間短縮のために、望ましくは5〜30分
以内とすべきである。 セメンタイトの球状化には720〜680℃区間の徐
冷が最も重要で、徐冷開始720℃未満あるいは徐
冷終了680℃を超えると、球状セメンタイトの析
出が妨げられ球状化都が著しく劣化するため、徐
冷区間を720℃から680℃以下の温度までの区間と
限定した。 この間の徐冷速度は30℃/h以上では再生パー
ライトが発生し、球状化度が劣化し硬さが増加す
るため、30℃/h未満とした。また徐冷速度は小
さいほど良いが、10℃/h未満ではこれ以上遅く
しても効果は小さく、いたずらに焼鈍時間を延長
させることになるため下限を10℃/hとした。 本発明の熱間圧延素材を用いると、保定温度か
ら徐冷開始温度までの冷却速度を30℃/h以上と
することにより、硬さが増加せずに球状化度を良
好とすることができる。 [実施例] 以下に本発明による実施例を従来法による比較
例と対比して具体的に説明する。 第1表に供試材の化学成分を示す。 供試材はいずれもJISで定められた機械構造溶
炭素鋼および低合金鋼の成分規格を満足するもの
である。 これらはいずれも転炉溶製後連続鋳造で鋳造さ
れた。120mm角鋼片に分塊圧延後、第2表に示す
圧延条件で32mm丸棒鋼に圧延した。 圧延後は冷却床で放冷したしたもの(鋼材冷却
速度0.8℃/sec)と、圧延終了後ただちに保熱カ
バーで覆い徐冷したもの(鋼材冷却速度0.3℃/
sec)とを製造した。 第2表ははまたこの圧延材のJIS G0552に基く
結晶粒度、組織およびフエライト組織分率を示し
た。 さらにそれぞれの鋼材のAc1変態点温度、球状
化焼鈍条件および球状化焼鈍材の材質評価結果を
合せて示した。 球状化焼鈍材の評価は、硬さおよびJIS G3539
に規定される球状化度の2点について行つた。 球状化焼鈍での材質達成目標は硬さ(Hvが105
×(%C+%Si/3+%Mn/6+%Cr/19)+
72.6(ポイント)以下、球状化度がNo.2以下の2
つの条件を両方とも満足することである。 第2表の水準No.に丸印のついたNo.2・4・6・
11・15・17・19・21が本発明の実施例であり、水
準No.1・3・16・18・20に示す従来放(長時間保
定+長時間徐冷)による例と比較して、焼鈍総時
間(t)を従来の1/2〜1/3に短縮しても硬さ・球状化
度とも従来放によるものと同等あるいはそれ以上
で、先に述べた軟質化目標をいずれも満足してい
ることがわかる。 水準No.5、7〜11、12〜14、22に示す9例は、
いずれも軟質化目標を達成し得なかつた例であ
る。 No.5は素材圧延時に制御圧延を行わないで短時
間焼鈍した例で、セメンタイトの球状化が不良で
硬さもやや高い。 No.7は保定温度(TH)が本発明範囲の下限以
下に設定した例で、セメンタイトの固溶不足によ
り球状化度が悪く硬さも著しく高い。 No.8はその逆に上限以上に設定した例でセメン
タイトが過度に固溶し、再生パーライトを生じて
いるため、球状化度が悪く硬さもやや高い。 No.9は保定時間(tH)が本発明範囲より短く、
先のNo.7同様にセメンタイトの固溶不足により球
状化度が悪く硬さもやや高い。 No.10は逆に保定時間(tH)が長過ぎた例で、No.
8同様にセメンタイトが過度に固溶し、球状化度
が不良である。No.12は徐冷開始温度(T1)が本
発明範囲の下限よりも低く、球状セメンタイトが
析出せずにパーライトが析出していて硬さ・球状
化度とも著しく悪い。 No.13は徐冷時の冷速(V2)が本発明範囲の上
限より早かつた例で、これもセメンタイトの大半
が球状化せずパーライトとなつて析出しており硬
さ・球状化度とも不良である。 No.14は徐冷終了温度(T2)が本発明範囲の上
限以上に設定した例で、球状セメンタイトの析出
が完全に終了する前に徐冷を終了したため、一部
パーライトとなつており硬さ・球状化度とも高
い。 またNo.22は低合金鋼に圧延後徐冷を施さなかつ
た例で、素材組織中にベイナイトが発生している
ため、短時間焼鈍では球状化度は良いものの硬さ
が著しく高い。 なおNo.6は加熱速度(VH)が従来法なみに遅
い例で、硬さ・球状化度とも目標を満足するもの
のNo.4に比較すると、焼鈍総時間(t)は長くなり硬
さ・球状化度ともやや悪い。 No.11は徐冷開始までの冷速(V1)が遅い例で、
これも目標を一応満足するもののNo.4に比較する
と焼鈍総時間(t)が長い割に硬さ・球状化度は改善
されていない。 No.15は圧延終了後ただちに徐冷(冷却速度0.3
℃/sec)をした例であり、焼鈍後は徐冷をしな
かつたNo.4に比較して硬さがさらに低下してい
る。
[Industrial Field of Application] The present invention relates to a method for manufacturing rods and wires to be subjected to cold forging. [Conventional technology] Cold forging is often used as a method for forming mechanical structural parts from steel materials, but due to problems such as short tool life and easy processing cracks, spheroidizing annealing is used before forging. Processing is taking place. This heat treatment usually requires 10 hours or more, and shortening this time has been a long-standing challenge from the standpoint of productivity and energy conservation. There are two ways to shorten the spheroidizing annealing time: improving the steel material and improving the annealing method. Examples of improved steel materials include JP-A-60-152627 and JP-A-60-255922.
There are publications etc. After rolling the steel material, these materials are rapidly cooled to form a mixed structure of fine ferrite-pearlite and bainite or martensite, thereby increasing the rate of spheroidization of cementite. However, in this method, the cementite is excessively fine and the hardness is considerably higher than that in the conventional method, so that the intended purpose of spheroidizing annealing cannot be achieved. On the other hand, as an improvement of the annealing method,
Publication No. 15930 and Special Publication No. 61-15930. These are made of rods and wires in the form of strands and heated to a temperature 30°C or more higher than the Ac 1 transformation point using a special heating device.
After rapid heating at 3000℃/h or higher and holding for a short time,
By performing slow cooling at a rate of 30°C/h or higher, the annealing time is shortened to less than 60 minutes. However, this method not only requires modification of equipment such as special heating equipment, but also tends to result in insufficient spheroidization, and also has the problem that variations in material properties are carried over after annealing, increasing variations in material properties of annealed materials. Ta. As described above, all of the conventional methods for shortening the spheroidizing annealing time have problems and have not been put to practical use. [Problems to be solved by the invention] When cold forging steel rods and wire rods for machine structural use, spheroidizing annealing is performed for 10 hours or more in order to spheroidize and soften the cementite, but this does not improve productivity or save energy. Therefore, shortening the annealing time has been a long-standing issue. The present invention is for cold forging, which combines increasing the ferrite fraction through controlled rolling, which had been done unrelatedly in the past, improving the material by making it finer, shortening the holding time, and improving the annealing method by slow cooling only in a specific temperature range. The present invention provides a method for manufacturing rods and wires. [Means for Solving the Problems] In order to solve the problems of the prior art, the present inventors conducted research on shortening the spheroidizing annealing time and obtained the following findings. (1) In the spheroidizing annealing process, the slow cooling process is the most important among the heating and holding to a temperature just above the Ac 1 transformation point and slow cooling process, and especially the cooling rate in a specific range centered on the temperature at which cementite reprecipitates. If the process is accelerated, the spheroidization of cementite will be significantly worsened and the hardness will also increase. (2) However, if the ferrite-pearlite crystal grains of the material, which were conventionally considered to be almost unrelated, are refined, the degree of spheroidization can be improved even if the slow cooling rate during annealing is increased. (3) When such fine-grained steel is annealed, the heating rate to just above the Ac 1 transformation point should be moderately fast, and
By appropriately shortening the holding time at the temperature just above the Ac 1 transformation point, the degree of spheroidization is further improved. (4) After maintaining the Ac 1 transformation point temperature or higher, by increasing the cooling rate to just above the A 1 transformation point, cementite precipitates quickly in the subsequent slow cooling process that crosses the Ar 1 point, and forms a spherical shape. It is possible to improve the degree of oxidation. (5) Furthermore, by applying the above-mentioned appropriate short-time annealing to a steel material that not only refines the crystal grains of the steel material through controlled rolling but also increases the ferrite microstructure ratio, it is possible to improve not only the degree of spheroidization but also the degree of spheroidization. A good annealed material with hardness comparable to that of the conventional spheroidizing annealing method using long-term holding and slow cooling can be obtained. Based on these findings, we came up with the present invention. That is, in the present invention, when hot rolling steel containing 0.1 to 0.6% C into a steel bar or wire rod, the final finish rolling is performed at a temperature range of 700 to 800°C, and ferrite and pearlite with a grain size of No. 8 or higher are mixed. After reheating the textured steel material to Ac 1 +15±10℃ and holding it for 5 to 60 minutes, it is cooled at a rate of 10℃/h to less than 30℃/h in the range from 720℃ to 680℃ or less. This is a method for producing rods and wire rods for cold forging, which is characterized by a heating rate of 300°C/h or more when reheating to Ac 1 +15±10°C, and a heating rate of 300°C/h or more from this temperature to 720°C. The gist of this is that the cooling rate is 30°C/h or more. [Function] The steel material components, rolling conditions, and rolling conditions limited in the present invention are as follows:
The reason for the annealing conditions will be explained. If C is less than 0.1%, sufficient strength as a mechanical structural component cannot be obtained, and the softening effect of spheroidizing annealing is also reduced. On the other hand, if it exceeds 0.6%, the hardness will be high even after spheroidizing annealing, making it unsuitable for cold working, so it was limited to a range of 0.1 to 0.6%. Elements other than C do not need to be particularly limited when applying the present invention, but are preferably within the following ranges. Although Si is effective for increasing product strength and hardenability, it has a large effect on increasing the hardness of annealed materials, and the upper limit should be 0.35%. The lower limit of Mn needs to be 0.15% for hardenability and prevention of hot embrittlement due to S, but the upper limit is 1.5% because it increases the hardness of the annealed material. Although S is effective in improving machinability, it increases inclusions that cause hot embrittlement and processing cracks, so the upper limit is set at 0.10%. Cr, Mo, and Ni are effective in increasing the hardenability, but since they increase the hardness of the annealed material, the upper limits are set to 1.2%, 0.5%, and 0.5%, respectively. Although a small amount of B is effective in increasing hardenability, it hardly increases the hardness of the annealed material. Therefore
It is an element useful for reducing hardness after spheroidizing annealing by replacing it with hardenability increasing elements such as Mn, Cr, and Mo. However, if it is added excessively, the product toughness will deteriorate, so to prevent this, the upper limit should be set at 0.003%. Next, we will discuss the rolling conditions and structure of the steel material. The reason why the upper limit of final finishing rolling was set at 800℃ is that by performing final rolling below this temperature, the austenite crystal grains are refined, the ferrite and pearlite that are transformed from these grains are refined, and the transformation temperature is lowered. By increasing the temperature,
This is because it is possible to increase the amount of ferrite and make it soft. Therefore, if the temperature exceeds 800°C, ferrite and pearlite will become coarse and such an effect cannot be expected. On the other hand, if the temperature is lower than 700℃, the rolling load will be significantly large, making it difficult to carry out finish rolling, and in order to keep the steel material temperature below 700℃ during finish rolling, cooling treatment such as water cooling must be performed during rolling. First, a lower transformed structure such as hard bainite occurs in the surface layer, increasing the hardness of the annealed material, so 700°C was set as the lower limit. It is desirable to add slow cooling to this controlled rolling at a cooling rate of 0.5° C./sec or less after rolling, since this increases the ferrite fraction of the material and further reduces the hardness of the annealed material. Note that in low-alloy steel containing large amounts of Cr, Mo, Ni, etc., the generation of bainite etc. can be greatly suppressed by lowering the rolling temperature, but slow cooling after rolling is required to create a structure consisting only of ferrite and pearlite. Required. The reason for limiting the grain size to No. 8 or higher is that when the spheroidizing annealing time is shortened as described below, the spheroidization of cementite is insufficient in conventional steel materials, but by setting the grain size to No. 8 or higher, Therefore, a good spheroidal structure can be obtained. Next, the annealing conditions will be described. The heating rate from room temperature to the holding temperature above the Ac 1 transformation point has a relatively small effect on the annealing material, but for fine-grained steel with a grain size of No. 8 or higher, the degree of spheroidization can be reduced by heating at 300°C/h or higher. Becomes good. However, if the heating rate is too high, spheroidization will be insufficient.
It is best to keep it within 2500℃/h. Next, if the holding temperature is lower than Ac 1 +15-10℃, undissolved cementite remains and the degree of spheroidization deteriorates, causing Ac 1 +
On the other hand, if the temperature exceeds 15 + 10°C, most of the cementite will dissolve into solid solution, producing recycled pearlite and significantly deteriorating the degree of spheroidization, so the temperature was limited to the range of Ac 1 +15 +/-10°C. The time to maintain this temperature was limited to 5 to 60 minutes because if it was less than 5 minutes, the solid solution of cementite would not be sufficient, and if it exceeded 60 minutes, it would be excessively dissolved, but in order to shorten the annealing time. , preferably within 5 to 30 minutes. Slow cooling in the 720 to 680℃ range is most important for cementite spheroidization.If the slow cooling starts below 720℃ or slow cooling ends above 680℃, the precipitation of spheroidal cementite will be hindered and the spheroidization will deteriorate significantly. , the slow cooling section was limited to the section from 720°C to a temperature below 680°C. The slow cooling rate during this time was set to be less than 30°C/h because if it was 30°C/h or more, recycled pearlite would occur, the degree of spheroidization would deteriorate, and the hardness would increase. Further, the slower the annealing rate, the better; however, if it is less than 10°C/h, even if it is slower, the effect will be small and the annealing time will be unnecessarily extended, so the lower limit was set at 10°C/h. When the hot-rolled material of the present invention is used, by setting the cooling rate from the holding temperature to the slow cooling start temperature to 30°C/h or more, it is possible to improve the degree of spheroidization without increasing hardness. . [Example] Examples according to the present invention will be specifically described below in comparison with comparative examples according to the conventional method. Table 1 shows the chemical composition of the sample materials. All of the test materials met the mechanical structural molten carbon steel and low alloy steel composition standards specified by JIS. All of these were cast by continuous casting after melting in a converter furnace. After blooming into a 120 mm square steel billet, it was rolled into a 32 mm round steel bar under the rolling conditions shown in Table 2. After rolling, one was left to cool on a cooling bed (steel cooling rate 0.8℃/sec), and the other was covered with a heat insulation cover immediately after rolling and slowly cooled (steel cooling rate 0.3℃/sec).
sec) was manufactured. Table 2 also shows the grain size, structure, and ferrite structure fraction of this rolled material based on JIS G0552. Furthermore, the Ac 1 transformation temperature of each steel material, spheroidizing annealing conditions, and material evaluation results of the spheroidizing annealing material are also shown. Evaluation of spheroidized annealed materials is based on hardness and JIS G3539
Two points of the degree of spheroidization defined by . The target material quality achieved with spheroidizing annealing is hardness (Hv of 105
×(%C+%Si/3+%Mn/6+%Cr/19)+
72.6 (points) or less, degree of spheroidization is No. 2 or less 2
Both conditions must be satisfied. No. 2, 4, 6, with a circle in the level number in Table 2
Nos. 11, 15, 17, 19, and 21 are examples of the present invention, and compared with examples using conventional release (long-term retention + long-time slow cooling) shown in level Nos. 1, 3, 16, 18, and 20. Even if the total annealing time (t) was reduced to 1/2 to 1/3 of the conventional one, the hardness and degree of spheroidization were equal to or higher than those of conventional annealing, and both of the softening targets mentioned earlier were achieved. I can see that you are satisfied. The nine examples shown in level No. 5, 7-11, 12-14, and 22 are:
All of these are examples in which the softening target could not be achieved. No. 5 is an example in which the material was annealed for a short time without performing controlled rolling during rolling, and the cementite spheroidization was poor and the hardness was somewhat high. No. 7 is an example in which the holding temperature (T H ) was set below the lower limit of the range of the present invention, and the degree of spheroidization was poor due to insufficient solid solution of cementite, and the hardness was also extremely high. On the contrary, No. 8 is an example in which the value was set above the upper limit, and cementite was dissolved excessively to form recycled pearlite, resulting in poor spheroidization and slightly high hardness. No. 9 has a retention time (t H ) shorter than the range of the present invention.
Similar to No. 7 above, the degree of spheroidization is poor due to insufficient solid solution of cementite, and the hardness is also somewhat high. On the other hand, No. 10 is an example where the retention time (t H ) was too long.
Similarly to No. 8, cementite is dissolved in solid solution excessively, and the degree of spheroidization is poor. In No. 12, the slow cooling start temperature (T 1 ) is lower than the lower limit of the range of the present invention, pearlite is precipitated without spheroidal cementite precipitated, and both hardness and degree of spheroidization are extremely poor. No. 13 is an example in which the cooling rate (V 2 ) during slow cooling was faster than the upper limit of the range of the present invention, and in this case, most of the cementite did not become spheroidized but precipitated as pearlite, resulting in hardness and spheroidization. It is always defective. No. 14 is an example in which the slow cooling end temperature (T 2 ) was set above the upper limit of the range of the present invention, and because the slow cooling was finished before the precipitation of spherical cementite was completely completed, some of the parts became pearlite and hardened. Both the shape and the degree of spheroidization are high. In addition, No. 22 is an example in which low alloy steel was not slowly cooled after rolling, and because bainite was generated in the material structure, the degree of spheroidization was good after short-time annealing, but the hardness was extremely high. In addition, No. 6 is an example in which the heating rate (V H ) is slow as in the conventional method, and although it satisfies the targets for both hardness and spheroidization, the total annealing time (t) is longer and the hardness is lower than No. 4. - Spheroidization degree is also somewhat poor. No. 11 is an example where the cooling speed (V 1 ) until the slow cooling starts is slow.
Although this also satisfies the target, compared to No. 4, the hardness and degree of spheroidization are not improved even though the total annealing time (t) is long. No.15 is slowly cooled immediately after rolling (cooling rate 0.3
℃/sec), and the hardness was further reduced after annealing compared to No. 4, which was not slowly cooled.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 C0.1〜0.6%を含有する鋼を棒鋼あるいは線
材に熱間圧延する際に最終仕上圧延を700〜800℃
の温度範囲で行い、粒度8番以上のフエライトお
よびパーライトの混合組織とした鋼材を、Ac1
15±10℃に再加熱し、5〜60分保持した後720℃
から680℃以下の温度までの区間を10℃/hから
30℃/h未満の速度で冷却することを特徴とする
冷間鍛造用棒線材の製造方法。 2 Ac1+15±10℃までの加熱速度を300℃/h
以上、およびこの温度から720℃までの冷却速度
を30℃/h以上とする特許請求の範囲第1項記載
の冷間鍛造用棒線材の製造方法。
[Claims] 1. When hot rolling steel containing 0.1 to 0.6% C into steel bars or wire rods, the final finishing rolling is carried out at 700 to 800°C.
Ac 1 +
Reheat to 15±10℃ and hold for 5-60 minutes, then 720℃
From 10℃/h to a temperature of 680℃ or less
A method for producing a rod and wire rod for cold forging, characterized by cooling at a rate of less than 30°C/h. 2 Ac 1 Heating rate up to +15±10℃ at 300℃/h
The method for manufacturing a rod and wire rod for cold forging according to claim 1, wherein the cooling rate from this temperature to 720°C is 30°C/h or more.
JP26178287A 1987-10-19 1987-10-19 Manufacture of bar stock or wire rod for cold forging Granted JPH01104718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26178287A JPH01104718A (en) 1987-10-19 1987-10-19 Manufacture of bar stock or wire rod for cold forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26178287A JPH01104718A (en) 1987-10-19 1987-10-19 Manufacture of bar stock or wire rod for cold forging

Publications (2)

Publication Number Publication Date
JPH01104718A JPH01104718A (en) 1989-04-21
JPH0570685B2 true JPH0570685B2 (en) 1993-10-05

Family

ID=17366627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26178287A Granted JPH01104718A (en) 1987-10-19 1987-10-19 Manufacture of bar stock or wire rod for cold forging

Country Status (1)

Country Link
JP (1) JPH01104718A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900598B2 (en) * 2007-06-29 2012-03-21 三洋電機株式会社 Electrolytic capacitor and manufacturing method thereof
JP5018305B2 (en) * 2007-07-19 2012-09-05 住友金属工業株式会社 Manufacturing method of rough bearing product
JP5067120B2 (en) * 2007-10-29 2012-11-07 住友金属工業株式会社 Manufacturing method of rough bearing product
JP2015168882A (en) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel
JP6479538B2 (en) * 2015-03-31 2019-03-06 株式会社神戸製鋼所 Steel wire for machine structural parts
JP2018168473A (en) * 2018-07-06 2018-11-01 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel

Also Published As

Publication number Publication date
JPH01104718A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
US5252153A (en) Process for producing steel bar wire rod for cold working
JP4629816B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JPH0570685B2 (en)
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3031484B2 (en) Method for producing steel wire rod or steel bar having spheroidized structure
JPH0576524B2 (en)
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH02107743A (en) Ultrahigh tensile strength pc steel wire or steel rod excellent in uniform elongation and its production
JPS6286125A (en) Production of hot rolled steel products having high strength and high toughness
JPH0217608B2 (en)
JPH0426716A (en) Short-time spheroidization annealing method for steel bar and wire
JPH1025521A (en) Method to spheroidizing wire rod
JPS6358906B2 (en)
JPH0576525B2 (en)
JPS59129719A (en) Production of high chromium roll
JPS59136423A (en) Preparation of rod steel and wire material having spheroidal structure
KR20040057216A (en) High strength hypereutectoid steel and method for manufacturing hypereutectoid steel rod wire using the same
JPH0426721A (en) Spheroidization annealing method for steel bar and wire
JPH01255623A (en) Heat treatment for directly softening high carbon steel
JPS6277419A (en) Production of high tensile steel having excellent arrest characteristic
JPH04246129A (en) Production of high carbon steel wire rod for tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees