JPH0217608B2 - - Google Patents
Info
- Publication number
- JPH0217608B2 JPH0217608B2 JP9647886A JP9647886A JPH0217608B2 JP H0217608 B2 JPH0217608 B2 JP H0217608B2 JP 9647886 A JP9647886 A JP 9647886A JP 9647886 A JP9647886 A JP 9647886A JP H0217608 B2 JPH0217608 B2 JP H0217608B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- cold
- wire rod
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 11
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical group C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 229910001566 austenite Inorganic materials 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 13
- 230000009466 transformation Effects 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910001562 pearlite Inorganic materials 0.000 description 9
- 238000002844 melting Methods 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 238000005496 tempering Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 230000001737 promoting effect Effects 0.000 description 4
- 102200082816 rs34868397 Human genes 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000746 Structural steel Inorganic materials 0.000 description 2
- 150000001721 carbon Chemical class 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野)
本発明は、球状化焼独省略可能な軟質冷鍜用線
材の製造方法に関するものである。
(従来の技術)
特開昭54−143716号公報では、仕上圧延入口温
度を600〜900℃の範囲に規定した低温圧延により
軟質化を図つているが、出口温度の規定がないた
め、圧延時の温度上昇により、所定の軟質化は達
成されない。更に、特開昭58−107416号公報は、
仕上圧延温度と圧下率を規定して軟質化を図る
が、低温圧延のためロールの耐久性、圧延時のモ
ーター負荷が大きくなること、線材の表面疵が生
じ易いことで問題である。
以上のように圧延線材の軟質化法は種々提案さ
れているが、従来の球状化焼鈍材並みのものを、
工業的に安定供給するまでには至つていないのが
現状であつた。
(発明が解決しようとする問題点)
本発明は球状化焼鈍省略プロセスによる粒状セ
メンタイト組織の冷鍜用線材の製造法を提供する
ものである。
(問題点を解決するための手段)
本発明者らは、圧延線材状態でセメンタイトの
粒状化組織を得る手段として、B添加により、高
温パーライト変態の短時間終了を促進させるとと
もに、従来の鋼に於いて含有されているMnの一
部をCr、Bで置き換え、かつBの効果を十分に
引き出すためにN、Oレベルを低値におさえる成
分系を開発した。
この成分系の鋼を最終仕上温度950℃以下で圧
延し、かつその後の冷却条件を750℃から650℃の
範囲で、0.3℃/sec以下にすることによりセメン
タイトの粒状化が図られるとともに、フエライト
中の過飽和カーボンの平衡状態への移行が図ら
れ、軟質化が達成される。
即ち本発明は以上の知見に基いてなされたもの
であつて、その要旨とするところは、C:0.20〜
0.60%、Si:0.10%以下、Mn:0.20〜0.40%、
P:0.020%以下、S:0.020%以下、Cr:0.20〜
0.60%、B:0.0005〜0.0050%、Ti:0.005〜0.030
%、Al:0.010〜0.060%、N:0.0060%以下、
O:0.0040%以下、残部Fe及び不可避不純より成
る鋼を仕上圧延ミルで熱間圧延し、最終仕上温度
を950℃以下にすることにより、圧延線材の再結
晶オーステナイト粒度を11以上とし、かつその後
の冷却条件を、750℃から650℃の範囲で0.3℃/
sec以下とすることを特徴とする。
以下に本発明を詳細に説明する。
まず、Cは冷鍜後の焼入・焼戻処理においてボ
ルト、ナツトなどの製品に所要の強度を付与する
ために不可欠の元素である。0.20%未満では、所
要の強度が得られない。一方、0.60%を超えると
圧延線材の強度が高くなり過ぎ、もはや冷鍜材と
しては使用できないので、0.20〜0.60%の範囲に
限定した。
Siはその固溶体硬化作用によつて、圧延線材の
強度を高める。固溶体硬化の影響を無視できるよ
うになる0.1%未満に含有量を限定した。このよ
うにSiを下げてもC、Mn、Cr、Bの組合せによ
り、焼入処理時に要求される焼入性は、低下しな
い。
次にMnは、焼入性向上及びSの固定に不可欠
の元素であるが、主としてS固定のための添加量
まで削減し、代わりにCr及びBをバランス良く
複合添加する。特にBが焼入性補償のみならず、
軟質化の促進に有効である点が、本発明の最も重
要な点の一つである。
即ち、従来の機械構造用鋼であるS45C鋼は、
JIS規格により、Mn:0.60〜0.90%を含むことが
規定されているが、そのMn量を減らし、代わり
にCr、Bを添加することによつて、S45C鋼に比
べフエライト変態開始温度とともに、パーライト
変態の開始・終了温度が高くなり、軟質化が促進
される。
ここで、MnとCrとBの添加量を、上記のよう
に限定した理由を以下に説明する。
高温域のパーライト変態を短時間で終了させる
ためには、できるだけMnをCrで置換えた方が良
いが、Mn0.2%未満では、鋼中のSを十分に固定
することができず、熱間脆性を押さえることがで
きない。一方、Mnが0.4%を超えると、Crが添加
されていても、高温でのパーライト変態を短時間
に終了させることができないので、Mn量を0.2〜
0.4%に限定した。
Crは、高温でのパーライト変態の促進には不
可欠の元素であるが、その添加量が0.2%未満で
は十分な効果を発揮しない。一方、0.6%を超え
ると、圧延線材の引張強さが高すぎて球状化焼鈍
材並の冷鍜性の確保が困難となるので、0.2〜0.6
%に限定した。
更にBは、高温でのパーライト変態の促進及び
焼入性向上には、不可欠の元素である。その添加
量が0.0005%未満では、それらの効果を発揮せ
ず。0.0050%を超えると、粗大なB化合物を析出
させて靭性を劣化させるので0.0005%〜0.0050%
に限定した。なお、MnとCrの合計量は0.4〜0.8
%が望ましい。
B添加を必須とする本発明成分系では、NとO
の上限値を規定することがBの効果発揮及び冷鍜
性の観点から特に重要である。すなわち、Nが、
0.0060%を超えると、B添加と同時に含有される
Tiと、硬質非変形介在物のTiNを形成するとと
もに、BNが析出して、高温パーライト変態の促
進と焼入性向上の効果が阻害されるのみならず、
冷鍜性を悪化するので、0.0060%以下に規定し
た。
また、Oが高いとAl2O3やTiO2の酸化物系介在
物が形成されて、冷鍜性を劣化させるので、O:
0.0040%以下と規定した。N、Oの規定範囲内
で、Si、Mn減、Cr、B添加を特徴とする成分条
件により、従来の冷鍜用線材に比較して、大巾な
圧延線材の軟質化が達成されるとともに、機械構
造用鋼並の焼入・焼戻強度を付与することができ
る。
また、Alは冷鍜後の焼入れ処理時のオーステ
ナイト粒度の粗大化を防止する目的で添加するも
ので、0.010%未満ではその効果が少なく、一方
0.060%を超えると、オーステナイト結晶粒粗大
化抑制効果は飽和する上、むしろ冷鍜性を劣化さ
せるので、0.010〜0.060%に限定した。
P、Sはいずれも冷鍜性に有害な元素である。
いずれも0.020%を超えると悪影響が顕著となる
ので、これ以下に限定した。
本発明では上記成分範囲の規定による軟質化効
果が大きい。
次に本発明においては、上記成分より成る鋼を
熱間圧延するに際し、最終仕上温度を950℃以下
にすることにより、再結晶オーステナイト粒度を
11以上とする。最も好ましいのは700〜950℃であ
る。700以下でも可能であるが、低温圧延となり
モーター負荷増等により、現実的でなくなる。
第1図に最終仕上温度と粒度の関係を示す。
このような細粒に仕上げることにより、変態核
が多数導入されることとなり、粒状セメンタイト
変態が可能となる。
熱間圧延後の冷却条件については、フエライ
ト・パーライト変態域を包含する750〜650℃の範
囲で、0.3℃/sec以下で冷却することを規定し
た。750〜650℃を外れると該変態域が外れる。
0.3℃/sec以下で冷却することにより、粒状セメ
ンタイト組織が得られる。これ以上になると硬く
なり、当初の目的が達成し得ない。また、フエラ
イト中の過飽和カーボンの平衡状態への移行が図
られる。
(実施例)
第1表は、供試材の化学組成、熱間圧延条件並
びに線材の熱間圧延状態及び焼入焼戻し状態の機
械的性質及び冷鍜性を示したものである。ここ
で、熱間圧延状態は10mmφ、焼入焼戻し材は10mm
φ線材を8.5mmφに伸線後、850℃油焼入→600℃
焼戻し後水冷処理したものである。
冷鍜性の評価は10mmφ線材を9.5mmφに伸線後、
0.5mm深さのVノツチを付けた9.5mmφ×1425mmの
試験片で、据込率40%の圧縮試験を行つた時の割
れ発生の有無で求めた。〇印は割れが発生しなか
つたもの、△印は拡大鏡で微細ワレが観察された
もの、×印は割れが発生したものを示す。
同表中、試験番号No.7、8、10〜15が本発明例
で、その他は比較例である。熱間圧延線材の軟質
化基準は、S45C相当で球状化焼鈍材並みの引張
強さ:58Kg/mm2以下、絞り:55%以上とした。
また、焼入・焼戻し後の保証強度基準は、引張
強さ86Kg/mm2以上とした。
同表に見られるように、本発明例はいずれも圧
延線材において、引張強さが58Kg/mm2以下でかつ
粒状セメンタイト組織となつている。また、冷鍜
性も球状化焼鈍材並みであり、かつ焼入・焼戻し
後の引張強さも86Kg/mm2以上である。
これに対して比較例であるNo.1〜6、17はBが
添加されていないために、軟質化が不十分でかつ
フエライト−パーライト組織であるか、または焼
入・焼戻し後の強度が得られない例である。No.9
は軟質化し、かつ粒状セメンタイト組織になる
が、Crが少なすぎるために所要の焼入・焼戻し
後の強度が得られない例である。
No.16はMnが少なすぎるために、Sの固定が十
分でなく冷鍜性が不良である例、No.18はSiが高す
ぎるために所要の軟質化が得られない例である。
No.19はNが、No.20はOが、No.21はBがそれぞれ高
すぎるために、冷鍜性が不良である例である。No.
22〜25は、JISのS45C相当材である。いずれも冷
鍜性不良である。
但し、No.22を球状化焼鈍すると、引張強さは、
52Kg/mm2、絞り59%となり冷鍜性は良好となる。
このようにS45C相当材は冷鍜前の球状化焼鈍が
必須である。
(Industrial Application Field) The present invention relates to a method for producing a soft wire rod for cold heating which can omit the spheroidizing process. (Prior art) In JP-A-54-143716, softening is achieved by low-temperature rolling in which the finishing rolling entrance temperature is specified in the range of 600 to 900°C, but since there is no specification of the exit temperature, Due to the temperature increase, the desired softening is not achieved. Furthermore, Japanese Patent Application Laid-Open No. 58-107416,
Although softening is attempted by specifying the finish rolling temperature and rolling reduction rate, there are problems with the durability of the rolls due to low temperature rolling, the increased motor load during rolling, and the tendency for surface flaws to occur on the wire. As mentioned above, various methods for softening rolled wire rods have been proposed, but
At present, it has not yet reached the point where it can be stably supplied industrially. (Problems to be Solved by the Invention) The present invention provides a method for producing a cold-melting wire rod having a granular cementite structure by a process of omitting spheroidizing annealing. (Means for Solving the Problem) The present inventors have proposed that, as a means of obtaining a granulated cementite structure in a rolled wire rod state, the addition of B accelerates the completion of high-temperature pearlite transformation in a short period of time, and We have developed a component system in which part of the Mn contained in the steel is replaced with Cr and B, and the N and O levels are kept low in order to fully bring out the effects of B. By rolling steel of this composition system at a final finishing temperature of 950°C or lower and cooling the temperature below 0.3°C/sec in the range of 750°C to 650°C, granulation of cementite is achieved, and ferrite is The supersaturated carbon inside is brought to an equilibrium state, and softening is achieved. That is, the present invention has been made based on the above knowledge, and the gist thereof is that C: 0.20 to
0.60%, Si: 0.10% or less, Mn: 0.20-0.40%,
P: 0.020% or less, S: 0.020% or less, Cr: 0.20~
0.60%, B: 0.0005~0.0050%, Ti: 0.005~0.030
%, Al: 0.010 to 0.060%, N: 0.0060% or less,
O: 0.0040% or less, the balance Fe and unavoidable impurities are hot-rolled in a finishing mill, and the final finishing temperature is 950°C or less, so that the recrystallized austenite grain size of the rolled wire rod is 11 or more, and then cooling conditions at 0.3℃/
sec or less. The present invention will be explained in detail below. First, C is an essential element for imparting the required strength to products such as bolts and nuts during the quenching and tempering treatment after cold heating. If it is less than 0.20%, the required strength cannot be obtained. On the other hand, if it exceeds 0.60%, the strength of the rolled wire becomes too high and it can no longer be used as a cold-melting material, so it is limited to a range of 0.20 to 0.60%. Si increases the strength of rolled wire through its solid solution hardening effect. The content was limited to less than 0.1%, which makes the effect of solid solution hardening negligible. Even if Si is lowered in this way, the combination of C, Mn, Cr, and B does not reduce the hardenability required during hardening treatment. Next, although Mn is an essential element for improving hardenability and fixing S, the amount added is reduced to mainly for fixing S, and Cr and B are added in a well-balanced combination instead. In particular, B not only compensates for hardenability, but also
One of the most important points of the present invention is that it is effective in promoting softening. In other words, S45C steel, a conventional mechanical structural steel,
The JIS standard stipulates that Mn should contain 0.60 to 0.90%, but by reducing the amount of Mn and adding Cr and B instead, the ferrite transformation start temperature and pearlite The start and end temperatures of transformation become higher, promoting softening. Here, the reason why the amounts of Mn, Cr, and B added are limited as described above will be explained below. In order to complete the pearlite transformation in the high temperature range in a short time, it is better to replace Mn with Cr as much as possible, but if Mn is less than 0.2%, the S in the steel cannot be sufficiently fixed, and hot Unable to suppress fragility. On the other hand, if Mn exceeds 0.4%, pearlite transformation at high temperatures cannot be completed in a short time even if Cr is added, so the Mn content should be reduced from 0.2% to
Limited to 0.4%. Cr is an essential element for promoting pearlite transformation at high temperatures, but if the amount added is less than 0.2%, sufficient effect will not be exhibited. On the other hand, if it exceeds 0.6%, the tensile strength of the rolled wire rod will be too high and it will be difficult to ensure the same cold-melting properties as the spheroidized annealed material.
%. Furthermore, B is an essential element for promoting pearlite transformation and improving hardenability at high temperatures. If the amount added is less than 0.0005%, these effects will not be exhibited. If it exceeds 0.0050%, coarse B compounds will precipitate and the toughness will deteriorate, so 0.0005% to 0.0050%
limited to. In addition, the total amount of Mn and Cr is 0.4 to 0.8
% is desirable. In the component system of the present invention that requires the addition of B, N and O
It is particularly important to specify the upper limit of B from the viewpoint of exhibiting the effect of B and cooling properties. That is, N is
If it exceeds 0.0060%, it will be included at the same time as B addition.
Along with forming TiN, a hard non-deformable inclusion, BN precipitates, which not only inhibits the promotion of high-temperature pearlite transformation and the effect of improving hardenability.
Since it deteriorates cold cooling properties, it is specified at 0.0060% or less. In addition, if O is high, oxide inclusions such as Al 2 O 3 and TiO 2 are formed, which deteriorates cold water properties, so O:
It was specified as 0.0040% or less. By using compositional conditions characterized by reduced Si, Mn, and addition of Cr and B while keeping N and O within the specified range, the rolled wire rod can be made much softer than conventional cold-melting wire rods. , it is possible to provide quenching and tempering strength comparable to that of mechanical structural steel. Furthermore, Al is added to prevent coarsening of the austenite grain size during the quenching process after cold-melting, and if it is less than 0.010%, the effect will be small;
If it exceeds 0.060%, the effect of suppressing austenite grain coarsening will be saturated, and the cold-hardening properties will deteriorate, so it is limited to 0.010 to 0.060%. Both P and S are elements harmful to cooling properties.
In either case, if it exceeds 0.020%, the negative effects become noticeable, so the content was limited to less than this. In the present invention, the softening effect is large due to the regulation of the above component ranges. Next, in the present invention, when hot rolling steel comprising the above components, the final finishing temperature is set to 950°C or less, thereby increasing the recrystallized austenite grain size.
Must be 11 or more. The most preferred temperature is 700-950°C. 700 or less is possible, but it becomes impractical due to low temperature rolling and increased motor load. Figure 1 shows the relationship between final finishing temperature and particle size. By finishing into such fine grains, a large number of transformation nuclei are introduced, and granular cementite transformation becomes possible. Regarding the cooling conditions after hot rolling, it was specified that cooling should be performed at a rate of 0.3° C./sec or less within a range of 750 to 650° C., which includes the ferrite-pearlite transformation region. When the temperature is outside the range of 750 to 650°C, the transformation range is outside.
A granular cementite structure is obtained by cooling at 0.3°C/sec or less. If it is more than this, it will become hard and the original purpose cannot be achieved. Furthermore, the supersaturated carbon in the ferrite is brought to an equilibrium state. (Example) Table 1 shows the chemical composition of the test materials, the hot rolling conditions, and the mechanical properties and cold hardening properties of the wire rods in the hot rolled state and in the quenched and tempered state. Here, the hot rolled state is 10mmφ, and the quenched and tempered material is 10mm.
After drawing the φ wire to 8.5mmφ, 850℃ oil quenching → 600℃
It is water-cooled after tempering. The evaluation of cold-melting property was carried out after drawing a 10mmφ wire rod to 9.5mmφ.
It was determined by the presence or absence of cracks when a compression test was performed at an upsetting rate of 40% using a 9.5mmφ x 1425mm test piece with a 0.5mm deep V-notch. ○ indicates that no cracks occurred, △ indicates that fine cracks were observed with a magnifying glass, and × indicates that cracks occurred. In the same table, test numbers 7, 8, and 10 to 15 are examples of the present invention, and the others are comparative examples. The softening standards for the hot rolled wire rod were S45C equivalent, tensile strength equivalent to spheroidized annealed material: 58 Kg/mm 2 or less, and reduction of area: 55% or more. In addition, the guaranteed strength standard after quenching and tempering was a tensile strength of 86 kg/mm 2 or more. As seen in the table, all of the rolled wire rods of the present invention have a tensile strength of 58 Kg/mm 2 or less and a granular cementite structure. Furthermore, the cold-melting properties are comparable to those of spheroidized annealed materials, and the tensile strength after quenching and tempering is 86 Kg/mm 2 or more. On the other hand, Comparative Examples Nos. 1 to 6 and 17 do not have B added, so the softening is insufficient and the structure is ferrite-pearlite, or the strength after quenching and tempering is insufficient. This is an example where it is not possible. No.9
This is an example in which the steel becomes soft and becomes a granular cementite structure, but the required strength after quenching and tempering cannot be obtained because the Cr content is too low. No. 16 is an example in which S is not sufficiently fixed due to too little Mn, resulting in poor cold hardening properties, and No. 18 is an example in which the required softening cannot be achieved because Si is too high.
No. 19 is an example in which N is too high, No. 20 is too high in O, and No. 21 is in an example in which B is too high, resulting in poor cooling properties. No.
22 to 25 are materials equivalent to JIS S45C. All of them had poor cooling properties. However, when No. 22 is annealed to spheroidize, the tensile strength is
52Kg/mm 2 and a reduction of 59%, resulting in good cold-filling properties.
In this way, materials equivalent to S45C require spheroidizing annealing before cold-melting.
【表】【table】
【表】
○印;本発明材
(発明の効果)
以上の実施例からも明らかなように、本発明は
熱間圧延状態で粒状セメンタイト組織を有する冷
鍜用線材を製造する方法であり、球状化焼鈍処理
を省略しうる点で、産業上の効果は極めて大きな
ものがある。[Table] Circle mark: Inventive material (effects of the invention) As is clear from the above examples, the present invention is a method for producing a cold-rolling wire rod having a granular cementite structure in a hot-rolled state. The industrial effect is extremely large in that chemical annealing treatment can be omitted.
第1図は仕上圧延温度と圧延再結晶粒度とのグ
ラフである。
FIG. 1 is a graph of finish rolling temperature and rolling recrystallization grain size.
Claims (1)
延ミルで熱間圧延し、最終仕上温度を950℃以下
にすることにより、圧延線材の再結晶オーステナ
イト粒度を11以上とし、かつその後の冷却条件を
750℃から650℃の範囲で0.3℃/sec以下とするこ
とを特徴とする粒状セメンタイト組織を有する冷
鍜用線材の製造方法。[Claims] 1. C: 0.20 to 0.60%, Si: 0.10% or less, Mn: 0.20 to 0.40%, P: 0.020% or less, S: 0.020% or less, Cr: 0.20 to 0.60%, B: 0.0005 to 0.0050%, Ti: 0.005 to 0.030% Al: 0.010 to 0.060%, N: 0.0060% or less O: 0.0040% or less A steel consisting of the balance Fe and unavoidable impurities is hot rolled in a finishing mill, and the final finishing temperature is 950°C. By setting the recrystallized austenite grain size of the rolled wire rod to 11 or more, and the subsequent cooling conditions,
A method for producing a wire rod for cold heating having a granular cementite structure, characterized in that the temperature is 0.3°C/sec or less in the range of 750°C to 650°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9647886A JPS62253724A (en) | 1986-04-25 | 1986-04-25 | Production of wire rod for cold forging having granular cementite structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9647886A JPS62253724A (en) | 1986-04-25 | 1986-04-25 | Production of wire rod for cold forging having granular cementite structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62253724A JPS62253724A (en) | 1987-11-05 |
JPH0217608B2 true JPH0217608B2 (en) | 1990-04-23 |
Family
ID=14166155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9647886A Granted JPS62253724A (en) | 1986-04-25 | 1986-04-25 | Production of wire rod for cold forging having granular cementite structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62253724A (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100338704B1 (en) * | 1997-12-27 | 2002-08-21 | 주식회사 포스코 | Manufacturing method of carbon steel wirerod for cold heading |
JP4665327B2 (en) * | 2001-03-28 | 2011-04-06 | Jfeスチール株式会社 | Method for producing B-containing high carbon steel with excellent cold workability in hot work |
KR20040032285A (en) * | 2002-10-08 | 2004-04-17 | 주식회사 포스코 | A method for manufacturing medium carbon steel bar-in-coil with low deviation in mechanical properties |
JP4884803B2 (en) * | 2005-03-16 | 2012-02-29 | 本田技研工業株式会社 | Heat treatment method for steel |
KR100742820B1 (en) * | 2005-12-27 | 2007-07-25 | 주식회사 포스코 | Steel wire having excellent cold heading quality and quenching property and method for producing the same |
TWI450975B (en) * | 2011-04-11 | 2014-09-01 | China Steel Corp | Process for making cementite grains in pearlite of steel cylindrical or spherical |
JP6497146B2 (en) * | 2015-03-16 | 2019-04-10 | 新日鐵住金株式会社 | Steel wire rod with excellent cold workability |
-
1986
- 1986-04-25 JP JP9647886A patent/JPS62253724A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62253724A (en) | 1987-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4018905B2 (en) | Hot rolled wire rod and bar for machine structure and manufacturing method thereof | |
JPH04365816A (en) | Production of steel wire rod for cold working | |
JP4057930B2 (en) | Machine structural steel excellent in cold workability and method for producing the same | |
JPH0156124B2 (en) | ||
JPH03140411A (en) | Improvement of cold working ability of heat treated steel | |
JP3160329B2 (en) | Manufacturing method of heat resistant high strength bolt | |
JPS63286517A (en) | Manufacture of high-tensile steel with low yielding ratio | |
JPH0217608B2 (en) | ||
JPH039168B2 (en) | ||
JPH1161272A (en) | Manufacture of high carbon cold-rolled steel plate excellent in formability | |
JPS6223929A (en) | Manufacture of steel for cold forging | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
JPH0250916A (en) | Production of low alloy high tension seamless steel pipe having fine grained structure | |
JP2000336460A (en) | Hot rolled wire rod and steel bar for machine structure and manufacture of the same | |
JP3228986B2 (en) | Manufacturing method of high strength steel sheet | |
JPS61284554A (en) | Alloy steel for unrefined bolt or the like having superior toughness and steel material for unrefined bolt or the like using same | |
JPH02213416A (en) | Production of steel bar with high ductility | |
JPS6286125A (en) | Production of hot rolled steel products having high strength and high toughness | |
JPH04124217A (en) | Production of high strength gear steel excellent in softening property | |
JPH01104718A (en) | Manufacture of bar stock or wire rod for cold forging | |
JP3620099B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JPS6137333B2 (en) | ||
JPS589816B2 (en) | Manufacturing method of non-thermal rolled steel bar | |
JPS6293343A (en) | Non-heattreated steel wire | |
JPH0576522B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |