JPH0576522B2 - - Google Patents

Info

Publication number
JPH0576522B2
JPH0576522B2 JP1360785A JP1360785A JPH0576522B2 JP H0576522 B2 JPH0576522 B2 JP H0576522B2 JP 1360785 A JP1360785 A JP 1360785A JP 1360785 A JP1360785 A JP 1360785A JP H0576522 B2 JPH0576522 B2 JP H0576522B2
Authority
JP
Japan
Prior art keywords
less
steel
hours
range
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1360785A
Other languages
Japanese (ja)
Other versions
JPS61174321A (en
Inventor
Toshihiko Takahashi
Toshizo Tarui
Hiroshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1360785A priority Critical patent/JPS61174321A/en
Publication of JPS61174321A publication Critical patent/JPS61174321A/en
Publication of JPH0576522B2 publication Critical patent/JPH0576522B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、機械構造用鋼の球状化焼鈍法に係
り、特に冷間鍛造に供される中炭素系機械構造用
鋼の軟質化を目的とする球状化焼鈍法の改良に関
するものである。 (従来技術及び問題点) 従来、中炭素系機械構造用鋼は、冷間鍛造に際
しその変形抵抗を下げて、冷間鍛造性の向上をは
かるため、軟質化が行なわれ、その手段の一つと
してセメントタイトの球状化焼鈍処理が行われて
いる。 この球状化焼鈍処理は、たとえば特開昭59−
163421号公報に見られるように、A1点以上の温
度に加熱した後、10℃/時程度の超低速で連続冷
却するか、あるいはA1点以上に加熱後、A1点直
下の温度に3時間以上保定するという方法で行わ
れている。 しかしながら、これでは処理時間が非常に長く
なり工業的に不利である。一方、焼鈍時間の短縮
を目的として連続冷却の冷却速度を高めたり、あ
るいはA1点直下の保定時間を短くするような試
みを行なうと、結果として強度が増加し、いずれ
も軟質化の目的を達成できない。 ところで、一般に中炭素鋼の圧延材は、特開昭
59−136421号公報にも見られるように、パーライ
ト組織ないしフエライト・パーライト組織となつ
ている。従つて強度を低下させるためには、組織
の大半を占めるパーライトの強度を低下させるこ
とが必要である。 一般にパーライトの強度は、セメンタイト間隔
に反比例する関係があるので、球状パーライトの
強度を低下させることを考えると、そのためには
パーライトのセメンタイト間間隔を粗くすること
が必要になる。 しかるに、球状パーライトのセメントタイト間
間隔は、オーステナイトカラパーライトが変態生
成する温度で一義的な決まり、高い温度で変態す
るほど粗くなる。ところがパーライト変態は、温
度が高くなるほど進行が遅れ、終了にきわめて長
時間を要するようになる。 (問題点を解決するための手段・作用) そこで本発明者らは、かかる従来の知見を種々
解析して、中炭素系機械構造用鋼についてその強
度の支配因子を検討した結果、A1点近傍の温度
域でのパーライト変態を促進して、短時間の球状
化焼鈍により鋼材の軟質化をはかるための手段と
して、従来の鋼に含まれるMnの一部をCrとおき
変えるとともに、球状化焼鈍条件として所定のも
のを選ぶことによつて、その達成が可能であると
いう全く新な知見を得て本発明をなしたものであ
る。 本発明は以上のような知見に基いてなされたも
のであつて、その要旨は重量%でC0.32〜0.65%、
Si0.05%未満、MnとCrの合計量が0.3〜1.3%の範
囲で、Mn0.2〜0.5%、Cr0.1〜0.9%、Al0.005〜
0.1%を含有し、且つPを.02%未満、Sを0.02
%未満と制限し、必要に応じて(A)Ni1%以下、
Cu1%以下、Mo0.3%以下の1種または2種以
上、あるいは(B)Ti0.002〜0.05%、B0.0005〜0.02
%の1種または2種の(A)、(B)の群の一方または両
方を含有し、残部はFeおよび不可避不純物より
なる鋼について、730〜850℃に20秒〜3時間加熱
した後、0.5〜30℃/分の冷却速度で徐冷するか、
または730〜850℃に20秒〜3時間加熱した後、
670〜720℃の範囲の温度に5分〜2時間保定した
後放令する球状化処理を施すことを特徴とする機
械構造用鋼の球状化焼鈍法にある。 以下に本発明を詳細に説明する。 まず最初に本発明において球状化焼鈍とは、そ
の引張強度を26+65×C%(Kg/mm2)以下とする
処理を意味する。この式は、C量を0.2〜0.7%と
変えて回帰させて求めたものであり、26はフエラ
イトとパーライトの強度に、また65はC量即ちパ
ーライト量にそれぞれ依存する項である。C量に
よつて決まる同式の値を強度が超える場合には、
球状化焼鈍により軟質化したとは言えない。 次に本発明の対象とする鋼の成分限定理由につ
いて述べる。 まず、Cは冷間鋳造後の焼入れ焼戻し処理に於
いて、製品の所要の強度を付与するために必須の
元素であるが、0.32%未満では所要の強度を得ら
れず、一方0.65%を超えても焼入れ・焼戻し後の
強度はもはや増加しないので、0.32〜0.65%の範
囲に限定した。 Siはその固溶体硬化作用によつて、圧延材の強
度を高めるので、固溶体硬化の影響を無視できる
ようになる0.05%未満に含有量を限定した。ま
た、このようにSiを下げても、焼入処理時に要求
される焼入性は低下しない。 次にMnとCrは、MnとCrを複合添加し且つそ
の含有量を前記のように定めた点が本発明の最も
重要な点である。即ち、従来の中炭素機械構造用
鋼であるS45C鋼は、C0.42〜0.48%、Si0.15〜0.35
%、Mn0.60〜0.90%を含むことが規定されてい
るものであるが、そのMn量を減らし、代りにCr
を添加することによつて、S45C鋼に比べフエラ
イト変態開始温度とともに、軟質化のポイントで
あるパーライト変態の開始温度と終了温度が高く
なる。 従つてこのような鋼は、S45Cに比べて高速で
冷却しても同じ温度でパーライト変態させられ
る。また、この鋼はパーライト変態温度が高温側
へシフトするので、圧延後A1点近傍の温度に保
定した場合にも、短時間でパーライト変態を終了
させることができる。 本発明者らは、たとえば圧延後直後700℃に保
定したときのパーライト変態時間は、S45C鋼で
120分を要するのに対して、このようにMnを減
らし、Crを添加した鋼では、わずか3分で変態
が終了することを確認している。 ここでMnとCrの添加量及びその合計量を、上
記のように限定したのは以下の理由による。高温
域のパーライト変態を短時間で終了させるために
は、できるだけMnをCrで置換した方が良いが、
Mn0.2%未満では鋼中のSを十分に固定すること
ができず、熱間脆性をおさえることができない。
一方Mnが0.5%を超えると、Crが添加されていて
も高温でのパーライト変態を短時間で終了させる
ことができないので、Mn量を0.2〜0.5%に限定
した。 Crは高温でのパーライト変態の促進には不可
欠の元素であるが、その添加量が0.1%未満では
十分な効果を発揮しない。一方0.9%を超えると
鋼の焼入性を高め、変態温度が逆に低下してくる
ので、0.1〜0.9%に限定した。 更にMnとCrの合計量を0.3〜1.3%に限定した
のは、合計量が0.3%未満では鍛造後の焼入処理
時の焼入性を保証することができず、一方1.3%
を超えると、パーライト変態の終了に時間がかか
りすぎるためである。 Alは鍛造後の焼入れ処理時のオーステナイト
粒度の粗大化を防止する目的で添加するもので、
0.005%未満ではその効果がなく、一方0.1%を超
えるとオーステナイト粒粗大化抑制効果は飽和す
る上、むしろ冷間鍛造性を劣化させるので、
0.005〜0.1%に限定した。 P、Sはいずれも冷間鍛造性に有害な元素であ
る。いずれも0.02%を超えると悪影響が顕著にな
るので、これ以下に限定した。 以上が本発明の対象とする鋼の基本成分である
が、本発明においてはこの他、鋼の強度・靭性を
向上させるため、(A)Ni1%以下、Cu1%以下、
Mo0.3%以下の1種又は2種以上、また高温域の
パーライト変態促進のために、(B)Ti0.002〜0.05
%、B0.0005〜0.02%の1種又は2種の(A)、(B)の
いずれかの群の一方又は両方を含有せしめること
もできる。 (A)群のNiは、靭性を向上させるとともに焼入
性を大きくして、強度を向上させるたに添加され
るが、1%を超えると焼入性が大きくなり過ぎ
て、冷間鍛造性が悪くなるのでこれを上限とし
た。Cuも同様に靭性と焼入性を向上させるが、
1%を超えるとその効果は飽和するのでこれを上
限とした。 また、Moは焼入性を向上し、強い焼戻し軟化
抵抗を有するが、0.3%を超えても添加量に見合
うだけの効果がないのでこれを上限とした。 一方(B)群のTi、Bはいずれも高温域でのパー
ライト変態の促進を目的に添加される。すなわち
TiとBは組合せて添加する方が効果的で、Tiは
Alと共にNを固定して、Bの焼入性効果を十分
に発揮させるために添加される。TiとBの添加
によつて、鍛造後の焼入れ処理時の焼入性を増加
させると、MnとCrの合計量を減らすことが可能
となり、高温域でのパーライト変態は一段と短時
間に終了するようになる。 Tiは0.002%未満ではN固定効果が不十分であ
り、一方、0.05%を超えると冷間鍛造性に有害な
粗大なTiNが生成するので、0.002〜0.05%に限
定した。Bは0.0005%未満では焼入性増加効果は
発揮せず、0.02%を超えると粗大なB化合物を析
出させて靭性を劣化させるので、0.0005〜0.02%
に限定した。 次に本発明においては、軟質化処理のための球
状化焼鈍条件として、730〜850℃に20秒〜3時間
加熱した後、(イ)0.5℃/分〜30℃/分の冷却速度
で徐冷するか、あるいは(ロ)670〜720℃の範囲の温
度に5分〜2時間保定した後放冷するか(イ)、(ロ)い
ずれの処理を実施するものであつて、(イ)、(ロ)いず
れの手段によつても、高温域でのパーライト変態
を短時間に終了せしめ、且つ引張強度を26+65×
C%(Kg/mm2)以下とすることが可能である。 まず、加熱温度を730℃以上に限定したのは、
730℃より低い温度ではセメンタイトが十分にオ
ーステナイトへ溶け込まないので、その後の冷却
で球状パーライトに変態させられないで、目標と
する軟質度が得られないためである。一方、加熱
温度が850℃を超えると、オーステナイトから球
状パーライトではなく、層状パーライト変態、生
成して目標の軟質度が得られないので850℃を上
限とした。 加熱時間を20秒〜3時間に限定したのも同じ理
由で、20秒未満ではセメンタイト溶け込みが不十
分なため、又3時間を超えると、球状パーライト
を変態生成させられないためである。 次に上記のごとき条件で加熱後、(イ)連続冷却に
より徐冷を行なう場合は、その冷却速度が30℃/
分を超えると、球状パーライトの変態温度が下り
すぎて軟質化できないのでこれを上限とした。軟
質化の点からは、冷却速度は小さい方がいいが、
0.5℃/分より更に冷却速度を下げても、強度は
ほとんど低下しないのでこれを下限とした。この
範囲の中でも、特に加熱温度730〜780℃、冷却速
度1〜8℃/分が軟質化と生産性を両立させる望
ましい条件である。 一方、(ロ)保定を行なう場合、保定温度の上限を
720℃に限定したのは、720℃を超えると球状パー
ライト変態を終了させるのに2時間以上を要し現
実的でないためである。しかし、670℃より下で
はセメンタイト間隔が細かくなつて、目標の軟質
度が得られない。また、保定時間は5分未満では
パーライト変態が終了せず、目標の軟質化に到達
しないので5分保定を下限とした。一方2時間を
超えて保定しても軟質化はもはや進行しないので
2時間を上限とした。 保定後は放冷を行なうものであるが、これは前
記保定によつてパーライト変態が完了すので、そ
の後徐冷する一様がないからである。 以下実施例により、本発明の効果をさらに具体
的に説明する。 実施例 第1表に供試材の化学組成、ならびに通常の熱
間圧延で11φmmに仕上げた後、放冷した材料の焼
鈍条件を示す。同表中、試験番号No.1、4、7、
8、11、14〜17、27〜29が本発明例で、その他は
比較例である。 これらの材料を用いて、引張試験はJIS14A号
試験片で行ない、冷鍛性の評価は、11φmm×21mm
の試験片を真歪2の圧縮試験を行なつたときの割
れ発生の有無で求め、○印は割れが発生しなかつ
た場合、×印は割れが発生したことを示す。また、
焼入・焼戻後の靭性値は、900℃に0分加熱後、
油焼入れし、次に600℃に1時間焼戻した材料を
JIS3号試験片を用いて、20℃で衝撃試験を行ない
求めたものである。これらの試験結果を第1表に
併記する。 本発明のものは、いずれも26+65×C%(Kg/
mm2)の目標強度を十分に下回つている。これに対
し、比較例であるNo.2は、加熱後の冷却速度が大
きすぎたために、セメタイト間隔が細かくなつ
て、またNo.3では加熱温度が高すぎたために層状
パーライトが生成して、いずれも軟質化されなか
つた。また比較例であるNo.5、9、12は、いずれ
も保定条件が不適切、すなわちNo.5では保定時間
が短かすぎ、No.9は保定温度が高すぎ、No.12は温
度が低すぎるためにいずれも目標強度を下回るこ
とが出来なかつた。 一方、比較例であるNo.6、10、13は、いずれも
加熱条件が不適切な場合の例で、No.6は時間が短
かすぎ、No.10は逆に長すぎ、No.13は温度が低すぎ
たためいずれも軟質化されていない。 比較例であるNo.18〜26は、鋼材組成が不適切な
例で、No.18、19、20はいずれもMnが多すぎ、し
かもNo.18、19ではCrが含有されていないために
軟質化されていない。またNo.20はAlが多すぎる
ために冷間鍛造性も良くなかつた。No.21はCrが
多すぎて軟質化されていない。No.22では軟質化が
十分達成されているが、MnとCrの合計量が少な
いために焼入性が不足し、鍛造後の焼入・焼戻処
理で、必要な強度を確保できなかつた。No.23はSi
量が多くて軟質化できなかつた例である。No.24は
MnとCrの合計量が多すぎて軟質化されていない
例である。No.25と26は、P、Sの含有量が高すぎ
て冷間鍛造性、製品化された後の靭性が劣ること
を示す例である。
(Industrial Application Field) The present invention relates to a spheroidizing annealing method for mechanical structural steel, and in particular, a spheroidizing annealing method for softening medium carbon mechanical structural steel to be subjected to cold forging. It is about improvement. (Prior art and problems) Conventionally, medium carbon steel for mechanical structures has been softened in order to lower its deformation resistance and improve cold forgeability during cold forging. Spheroidizing annealing treatment of cementite is used as a method. This spheroidizing annealing treatment is performed, for example, in JP-A-59-
As seen in Publication No. 163421, after heating to a temperature of 1 point A or more, continuous cooling is performed at a very low rate of about 10°C/hour, or after heating to a temperature of 1 point A or more, the temperature is just below the 1 point of A. This is done by keeping it in place for at least 3 hours. However, this requires a very long processing time, which is industrially disadvantageous. On the other hand, attempts are made to increase the cooling rate of continuous cooling for the purpose of shortening the annealing time, or to shorten the retention time just below point A , resulting in an increase in strength, which both serve the purpose of softening. Unachievable. By the way, rolled materials of medium carbon steel are generally
As seen in Publication No. 59-136421, it has a pearlite structure or a ferrite-pearlite structure. Therefore, in order to reduce the strength, it is necessary to reduce the strength of pearlite, which occupies most of the structure. Generally, the strength of pearlite is inversely proportional to the cementite spacing, so in order to reduce the strength of spherical pearlite, it is necessary to coarsen the cementite spacing of pearlite. However, the intercementite spacing of spherical pearlite is primarily determined by the temperature at which austenite cara pearlite transforms and forms, and the higher the temperature transforms, the coarser it becomes. However, the higher the temperature, the slower the pearlite transformation progresses, and it takes an extremely long time to complete. ( Means /effects for solving the problem) The present inventors analyzed various conventional findings and examined the factors governing the strength of medium-carbon mechanical structural steel. As a means of promoting pearlite transformation in a nearby temperature range and softening the steel material through short-time spheroidizing annealing, some of the Mn contained in conventional steel is replaced with Cr, and spheroidizing is performed. The present invention was made based on the completely new knowledge that this can be achieved by selecting predetermined annealing conditions. The present invention was made based on the above findings, and the gist thereof is that C0.32 to 0.65% by weight,
Si less than 0.05%, total amount of Mn and Cr in the range of 0.3 to 1.3%, Mn 0.2 to 0.5%, Cr 0.1 to 0.9%, Al 0.005 to
Contains 0.1% and P. Less than 02%, S 0.02
(A)Ni 1% or less, if necessary.
One or more of Cu1% or less, Mo0.3% or less, or (B) Ti0.002-0.05%, B0.0005-0.02
% of one or both of groups (A) and (B), with the remainder consisting of Fe and unavoidable impurities, after heating at 730 to 850°C for 20 seconds to 3 hours, Cool slowly at a cooling rate of 0.5 to 30℃/min, or
Or after heating to 730-850℃ for 20 seconds to 3 hours,
A spheroidizing annealing method for machine structural steel is characterized in that a spheroidizing process is carried out by holding the temperature at a temperature in the range of 670 to 720°C for 5 minutes to 2 hours and then releasing it. The present invention will be explained in detail below. First of all, in the present invention, spheroidizing annealing means a treatment that reduces the tensile strength to 26+65×C% (Kg/mm 2 ) or less. This equation was obtained by regression with the amount of C varied from 0.2 to 0.7%, and 26 is a term that depends on the strength of ferrite and pearlite, and 65 is a term that depends on the amount of C, that is, the amount of pearlite. If the strength exceeds the value determined by the amount of C,
It cannot be said that the material was softened by spheroidizing annealing. Next, the reason for limiting the composition of steel, which is the object of the present invention, will be described. First, C is an essential element in order to impart the required strength to the product in the quenching and tempering treatment after cold casting, but if it is less than 0.32%, the required strength cannot be obtained, while if it exceeds 0.65%. However, the strength after quenching and tempering no longer increases, so it was limited to a range of 0.32 to 0.65%. Since Si increases the strength of the rolled material through its solid solution hardening effect, the content was limited to less than 0.05%, which makes the effect of solid solution hardening negligible. Furthermore, even if Si is lowered in this way, the hardenability required during hardening treatment does not decrease. Next, the most important point of the present invention is that Mn and Cr are added in combination and their contents are determined as described above. In other words, S45C steel, which is a conventional medium carbon mechanical structural steel, has a carbon content of 0.42 to 0.48% and a Si of 0.15 to 0.35%.
%, Mn0.60~0.90%, but the amount of Mn is reduced and Cr is added instead.
By adding , the ferrite transformation start temperature as well as the pearlite transformation start temperature and end temperature, which is the point of softening, become higher than S45C steel. Therefore, such steel can undergo pearlite transformation at the same temperature even if it is cooled at a faster rate than S45C. In addition, since the pearlite transformation temperature of this steel shifts to the high temperature side, pearlite transformation can be completed in a short time even when the temperature is maintained near point A1 after rolling. The present inventors have determined that, for example, the pearlite transformation time of S45C steel when held at 700°C immediately after rolling is
While it takes 120 minutes to transform, it has been confirmed that steel with reduced Mn and Cr addition can complete transformation in just 3 minutes. The reason why the amounts of Mn and Cr added and their total amount are limited as described above is as follows. In order to complete the pearlite transformation in the high temperature range in a short time, it is better to replace Mn with Cr as much as possible.
If Mn is less than 0.2%, S in the steel cannot be sufficiently fixed, and hot embrittlement cannot be suppressed.
On the other hand, if Mn exceeds 0.5%, pearlite transformation at high temperatures cannot be completed in a short time even if Cr is added, so the Mn amount was limited to 0.2 to 0.5%. Cr is an essential element for promoting pearlite transformation at high temperatures, but if the amount added is less than 0.1%, sufficient effect will not be exhibited. On the other hand, if it exceeds 0.9%, the hardenability of the steel increases and the transformation temperature decreases, so it is limited to 0.1 to 0.9%. Furthermore, the total amount of Mn and Cr was limited to 0.3 to 1.3% because if the total amount is less than 0.3%, hardenability during post-forging quenching treatment cannot be guaranteed.
This is because it takes too much time to complete pearlite metamorphosis if it exceeds . Al is added to prevent coarsening of austenite grain size during quenching after forging.
If it is less than 0.005%, there is no effect, while if it exceeds 0.1%, the effect of suppressing austenite grain coarsening is saturated, and if anything, cold forgeability is deteriorated.
Limited to 0.005-0.1%. Both P and S are elements harmful to cold forgeability. In either case, if it exceeds 0.02%, the negative effects become noticeable, so we limited it to less than this. The above are the basic components of the steel targeted by the present invention, but in order to improve the strength and toughness of the steel, (A) Ni 1% or less, Cu 1% or less,
One or more types of Mo0.3% or less, and (B)Ti0.002 to 0.05 to promote pearlite transformation in high temperature range.
%, B0.0005 to 0.02% of one or both of groups (A) and (B). Group (A) Ni is added to improve toughness and hardenability, thereby increasing strength, but if it exceeds 1%, hardenability becomes too large and cold forgeability increases. This is set as the upper limit because it becomes worse. Cu also improves toughness and hardenability, but
If it exceeds 1%, the effect is saturated, so this was set as the upper limit. Further, Mo improves hardenability and has strong temper softening resistance, but even if it exceeds 0.3%, there is no effect commensurate with the amount added, so this was set as the upper limit. On the other hand, Ti and B in group (B) are both added for the purpose of promoting pearlite transformation in a high temperature range. i.e.
It is more effective to add Ti and B in combination, and Ti
B is added to fix N together with Al and to fully exhibit the hardenability effect of B. By adding Ti and B to increase the hardenability during post-forging quenching, it becomes possible to reduce the total amount of Mn and Cr, and the pearlite transformation at high temperatures is completed in a shorter time. It becomes like this. Ti is limited to 0.002 to 0.05% because if it is less than 0.002%, the N fixing effect will be insufficient, and if it exceeds 0.05%, coarse TiN will be produced which is harmful to cold forgeability. If B is less than 0.0005%, it will not have the effect of increasing hardenability, and if it exceeds 0.02%, coarse B compounds will precipitate and the toughness will deteriorate, so B should be 0.0005 to 0.02%.
limited to. Next, in the present invention, as the spheroidizing annealing conditions for softening treatment, after heating at 730 to 850°C for 20 seconds to 3 hours, (a) slow cooling at a cooling rate of 0.5°C/min to 30°C/min. (b) Cooling, or (b) Holding at a temperature in the range of 670 to 720°C for 5 minutes to 2 hours and then allowing it to cool. (b) By either method, the pearlite transformation in the high temperature range can be completed in a short time, and the tensile strength can be reduced to 26 + 65 ×
C% (Kg/mm 2 ) or less. First, the heating temperature was limited to 730℃ or higher.
This is because cementite does not fully dissolve into austenite at temperatures lower than 730°C, so it cannot be transformed into spherical pearlite by subsequent cooling, and the target softness cannot be achieved. On the other hand, if the heating temperature exceeds 850°C, the austenite transforms into layered pearlite instead of spherical pearlite, and the target softness cannot be obtained, so 850°C was set as the upper limit. The reason why the heating time was limited to 20 seconds to 3 hours is for the same reason: If it is less than 20 seconds, cementite dissolution is insufficient, and if it exceeds 3 hours, spherical pearlite cannot be transformed. Next, after heating under the above conditions, (a) If slow cooling is performed by continuous cooling, the cooling rate is 30℃/
If it exceeds 10 minutes, the transformation temperature of the spherical pearlite will drop too much and it will not be possible to soften it, so this was set as the upper limit. From the point of view of softening, the lower the cooling rate, the better.
Even if the cooling rate was lowered further than 0.5° C./min, the strength hardly decreased, so this was set as the lower limit. Within this range, particularly, a heating temperature of 730 to 780°C and a cooling rate of 1 to 8°C/min are desirable conditions for achieving both softening and productivity. On the other hand, (b) when performing retention, the upper limit of the retention temperature is
The temperature was limited to 720°C because if the temperature exceeds 720°C, it would take more than 2 hours to complete the spherical pearlite transformation, which is not practical. However, below 670°C, the cementite spacing becomes so small that the target softness cannot be achieved. Further, if the retention time is less than 5 minutes, the pearlite transformation will not be completed and the target softening will not be achieved, so the retention time of 5 minutes was set as the lower limit. On the other hand, even if it was held for more than 2 hours, the softening would no longer proceed, so 2 hours was set as the upper limit. After the retention, the material is left to cool. This is because the pearlite transformation is completed by the retention, and there is no uniformity in the subsequent gradual cooling. Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples. Examples Table 1 shows the chemical composition of the sample material and the annealing conditions for the material which was finished to 11φmm by normal hot rolling and then allowed to cool. In the same table, test numbers No. 1, 4, 7,
Examples 8, 11, 14-17, and 27-29 are examples of the present invention, and the others are comparative examples. Using these materials, tensile tests were conducted using JIS No. 14A test pieces, and cold forging properties were evaluated using 11φmm x 21mm.
The test piece was subjected to a compression test with a true strain of 2 to determine the presence or absence of cracking, and the mark ◯ indicates that no cracking occurred, and the mark x indicates that cracking occurred. Also,
The toughness value after quenching and tempering is after heating to 900℃ for 0 minutes.
The material is oil quenched and then tempered at 600℃ for 1 hour.
This was determined by conducting an impact test at 20°C using a JIS No. 3 test piece. These test results are also listed in Table 1. The products of the present invention are all 26+65×C% (Kg/
mm 2 ), which is well below the target strength. On the other hand, in Comparative Example No. 2, the cooling rate after heating was too high, so the cementite spacing became fine, and in No. 3, the heating temperature was too high, resulting in the formation of layered pearlite. None of them were softened. Comparative examples Nos. 5, 9, and 12 all had inappropriate retention conditions; No. 5 had too short a retention time, No. 9 had too high a retention temperature, and No. 12 had too high a retention temperature. In both cases, it was not possible to lower the intensity below the target intensity because it was too low. On the other hand, comparative examples No. 6, 10, and 13 are all cases where the heating conditions are inappropriate; No. 6 is too short, No. 10 is too long, and No. 13 is too short. Because the temperature was too low, none of them were softened. Comparative examples Nos. 18 to 26 have inappropriate steel compositions. Nos. 18, 19, and 20 all contain too much Mn, and no. 18 and 19 do not contain Cr. Not softened. Also, No. 20 had poor cold forgeability due to too much Al. No. 21 has too much Cr and is not softened. No. 22 achieved sufficient softening, but the hardenability was insufficient due to the small total amount of Mn and Cr, and the necessary strength could not be secured during the quenching and tempering treatment after forging. . No.23 is Si
This is an example where the amount was too large to soften. No.24 is
This is an example in which the total amount of Mn and Cr is too large and the material is not softened. Nos. 25 and 26 are examples showing that the contents of P and S are too high, resulting in poor cold forgeability and poor toughness after production.

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、残部はFeおよび不可避不純物よりな
る鋼について、730〜850℃に20秒〜3時間加熱し
た後、0.5〜30℃/分の冷却速度で徐冷する球状
化処理を施すことを特徴とする機械構造用鋼の球
状化焼鈍法。 2 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、Ni1%以下、Cu1%以下、Mo0.3%以
下の1種または2種以上、残部はFeおよび不可
避不純物よりなる鋼について、730〜850℃に20秒
〜3時間加熱した後、0.5〜30℃/分の冷却速度
で徐冷する球状化処理を施すことを特徴とする機
械構造用鋼の球状化焼鈍法。 3 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、Ti0.002〜0.05%、B0.0005〜0.02%の
1種または2種を含有し、残部はFeおよび不可
避不純物よりなる鋼について、730〜850℃に20秒
〜3時間加熱した後、0.5〜30℃/分の冷却速度
で徐冷する球状化処理を施すことを特徴とする機
械構造用鋼の球状化焼鈍法。 4 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、 (A) Ni1%以下、Cu1%以下、Mo0.3%以下の1
種または2種以上、 および (B) Ti0.002〜0.05%、B0.0005〜0.02%の1種ま
たは2種 の(A)、(B)の群を含有し、残部はFeおよび不可避
不純物よりなる鋼について、730〜850℃に20秒〜
3時間加熱した後、0.5〜30℃/分の冷却速度で
徐冷する球状化処理を施すことを特徴とする機械
構造用鋼の球状化焼鈍法。 5 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、残部はFeおよび不可避不純物よりな
る鋼について、730〜850℃に20秒〜3時間加熱し
た後、670〜720℃の範囲の温度に5分〜2時間保
定した後放冷する球状化処理を施すことを特徴と
する機械構造用鋼の球状化焼鈍法。 6 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、Ni1%以下、Cu1%以下、Mo0.3%以
下の1種または2種以上、残部はFeおよび不可
避不純物よりなる鋼について、730〜850℃に20秒
〜3時間加熱した後、670〜720℃の範囲の温度に
5分〜2時間保定した後放令する球状化処理を施
すことを特徴とする機械構造用鋼の球状化焼鈍
法。 7 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、Ti0.002〜0.05%、B0.0005〜0.02%の
1種または2種を含有し、残部はFeおよび不可
避不純物よりなる鋼について、730〜850℃に20秒
〜3時間加熱した後、670〜720℃の範囲の温度に
5分〜2時間保定した後放冷する球状化処理を施
すことを特徴とする機械構造用鋼の球状化焼鈍
法。 8 重量%で C0.32〜0.65%、Si0.05%未満、 MnとCrの合計量が0.3〜1.3%の範囲で Mn0.2〜0.5%、Cr0.1〜0.9%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、 (A) Ni1%以下、Cu1%以下、Mo0.3%以下の1
種または2種以上、 および (B) Ti0.002〜0.05%、B0.0005〜0.02%の1種ま
たは2種 の(A)、(B)の群を含有し、残部はFeおよび不可避
不純物よりなる鋼について、730〜850℃に20秒〜
3時間加熱した後、670〜720℃の範囲の温度に5
分〜2時間保定した後放冷する球状化処理を施す
ことを特徴とする機械構造用鋼の球状化焼鈍法。
[Claims] 1% by weight: C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9% when the total amount of Mn and Cr is in the range of 0.3-1.3%. , containing 0.005 to 0.1% Al, and limiting P to less than 0.02% and S to less than 0.02%, with the balance consisting of Fe and unavoidable impurities, which was heated to 730 to 850°C for 20 seconds to 3 hours. A spheroidizing annealing method for mechanical structural steel, which is then subjected to a spheroidizing process of slow cooling at a cooling rate of 0.5 to 30°C/min. 2 Weight%: C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, and limits P to less than 0.02%, S to less than 0.02%, one or more of Ni 1% or less, Cu 1% or less, Mo 0.3% or less, the remainder consisting of Fe and unavoidable impurities. A spheroidizing annealing method for steel for mechanical structural use, which comprises heating the steel to 730 to 850°C for 20 seconds to 3 hours, and then subjecting the steel to a spheroidizing treatment in which the steel is slowly cooled at a cooling rate of 0.5 to 30°C/min. 3 By weight: C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, P is limited to less than 0.02%, S is limited to less than 0.02%, and contains one or two of Ti0.002-0.05% and B0.0005-0.02%, and the remainder is Fe and unavoidable impurities. Spheroidizing annealing of steel for machine structural use, characterized in that the steel is heated to 730 to 850°C for 20 seconds to 3 hours and then slowly cooled at a cooling rate of 0.5 to 30°C/minute to form a spheroid. Law. 4 In terms of weight%, C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, and limit P to less than 0.02% and S to less than 0.02%, (A) Ni 1% or less, Cu 1% or less, Mo 0.3% or less.
(B) Contains one or two of the groups (A) and (B) containing 0.002 to 0.05% of Ti and 0.0005 to 0.02% of B, with the remainder being Fe and unavoidable impurities. For steel, heated to 730~850℃ for 20 seconds~
A spheroidizing annealing method for mechanical structural steel, which comprises heating for 3 hours and then gradually cooling at a cooling rate of 0.5 to 30° C./min. 5 In terms of weight%, C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, and P is limited to less than 0.02%, S is limited to less than 0.02%, and the balance is Fe and unavoidable impurities. After heating to 730-850°C for 20 seconds to 3 hours, it is heated to 670-720°C. 1. A spheroidizing annealing method for mechanical structural steel, which comprises performing a spheroidizing process by maintaining the temperature at a temperature in the range of 5 minutes to 2 hours and then allowing it to cool. 6 In terms of weight%, C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, and limits P to less than 0.02%, S to less than 0.02%, one or more of Ni 1% or less, Cu 1% or less, Mo 0.3% or less, the remainder consisting of Fe and unavoidable impurities. For use in mechanical structures, steel is subjected to a spheroidizing treatment in which the steel is heated to 730 to 850°C for 20 seconds to 3 hours, held at a temperature in the range of 670 to 720°C for 5 minutes to 2 hours, and then released. Spheroidizing annealing method for steel. 7 In terms of weight%, C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, P is limited to less than 0.02%, S is limited to less than 0.02%, and contains one or two of Ti0.002-0.05% and B0.0005-0.02%, and the remainder is Fe and unavoidable impurities. A machine that performs a spheroidizing process on steel made of steel by heating it to 730 to 850°C for 20 seconds to 3 hours, holding it at a temperature in the range of 670 to 720°C for 5 minutes to 2 hours, and then allowing it to cool. Spheroidizing annealing method for structural steel. 8 Weight%: C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.9%, Al0.005-0.1 when the total amount of Mn and Cr is in the range of 0.3-1.3%. %, and limit P to less than 0.02% and S to less than 0.02%, (A) Ni 1% or less, Cu 1% or less, Mo 0.3% or less.
(B) Contains one or two of the groups (A) and (B) containing 0.002 to 0.05% of Ti and 0.0005 to 0.02% of B, with the remainder being Fe and unavoidable impurities. For steel, heated to 730~850℃ for 20 seconds~
After heating for 3 hours, heat to a temperature in the range of 670-720℃ for 5 hours.
A spheroidizing annealing method for machine structural steel, which is characterized by performing a spheroidizing treatment of holding for minutes to 2 hours and then allowing it to cool.
JP1360785A 1985-01-29 1985-01-29 Spheroidizing annealing method of machine structural steel Granted JPS61174321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1360785A JPS61174321A (en) 1985-01-29 1985-01-29 Spheroidizing annealing method of machine structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1360785A JPS61174321A (en) 1985-01-29 1985-01-29 Spheroidizing annealing method of machine structural steel

Publications (2)

Publication Number Publication Date
JPS61174321A JPS61174321A (en) 1986-08-06
JPH0576522B2 true JPH0576522B2 (en) 1993-10-22

Family

ID=11837916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1360785A Granted JPS61174321A (en) 1985-01-29 1985-01-29 Spheroidizing annealing method of machine structural steel

Country Status (1)

Country Link
JP (1) JPS61174321A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353208A (en) * 1986-08-22 1988-03-07 Nippon Steel Corp Spheroidizing annealing method for alloy steel for machine structural use
JP2591807B2 (en) * 1988-11-29 1997-03-19 川崎製鉄株式会社 Carbon steel for machine structure with excellent cold forgeability and induction hardening
JP3838480B2 (en) * 2000-05-17 2006-10-25 大同特殊鋼株式会社 High surface pressure resistant steel and high surface pressure resistant material with excellent machinability
CN107058704A (en) * 2016-12-22 2017-08-18 江苏翔能科技发展有限公司 A kind of process of elimination 4Cr13 stainless steel rings rolled piece annealed state net carbon
CN112941279A (en) * 2021-01-26 2021-06-11 青海西钢特殊钢科技开发有限公司 Heat treatment process for improving hardenability hardness of 20MnCr5+ HH steel tail end

Also Published As

Publication number Publication date
JPS61174321A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
RU2479662C2 (en) Super bainitic steel, and its manufacturing method
JP2001240941A (en) Bar wire rod for cold forging and its production method
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPH039168B2 (en)
JPH0576522B2 (en)
JPS6128742B2 (en)
JPS6159379B2 (en)
US20060057419A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPS6286125A (en) Production of hot rolled steel products having high strength and high toughness
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPS62253724A (en) Production of wire rod for cold forging having granular cementite structure
JPH036981B2 (en)
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPH0533283B2 (en)
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
US4325758A (en) Heat treatment for high chromium high carbon stainless steel
JP6059569B2 (en) Manufacturing method of steel material excellent in cold workability and machinability
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPS62280326A (en) Non-heattreated steel material for bolt excellent in toughness
JPS6353208A (en) Spheroidizing annealing method for alloy steel for machine structural use
JP3024245B2 (en) Manufacturing method of case hardened steel suitable for cold working
JPS6075517A (en) Manufacture of nonrefined forged steel article
JPH06306482A (en) Method for heat-treating martensitic stainless steel wire rod and worked product of the same wire rod

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees