JPH0533283B2 - - Google Patents

Info

Publication number
JPH0533283B2
JPH0533283B2 JP1389285A JP1389285A JPH0533283B2 JP H0533283 B2 JPH0533283 B2 JP H0533283B2 JP 1389285 A JP1389285 A JP 1389285A JP 1389285 A JP1389285 A JP 1389285A JP H0533283 B2 JPH0533283 B2 JP H0533283B2
Authority
JP
Japan
Prior art keywords
less
steel
limited
strength
softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1389285A
Other languages
Japanese (ja)
Other versions
JPS61174323A (en
Inventor
Toshihiko Takahashi
Toshizo Tarui
Hiroshi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1389285A priority Critical patent/JPS61174323A/en
Publication of JPS61174323A publication Critical patent/JPS61174323A/en
Publication of JPH0533283B2 publication Critical patent/JPH0533283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は機械構造用鋼の軟質化に係り、特に冷
間鍛造に供される中炭素系機械構造用鋼の軟質化
法に関するものである。 (従来の技術及び問題点) 従来、中炭素系機械構造用鋼は、冷間鍛造に際
し、その変形抵抗を下げて冷間鍛造の向上を高め
るために、たとえば特開昭59−136421号公報など
に見られるようにセメンタイトの球状化焼鈍が実
施されるのが一般的である。しかしてこの球状化
焼鈍は通常十数時間以上と極めて長時間を要する
処理であるため、A1点以下に保定するだけの軟
質化焼鈍で代替できれば産業上の効果は大きい
が、JISに記載されている機械構造用鋼ではその
軟質化焼鈍材は軟かさにおいて球状化焼鈍材に遠
く及ばない。 本発明者らはA1点以下の温度で焼鈍した材料
の強度に及ぼす圧延材強度の効果を解析した結
果、圧延材を十分軟質化しておけばA1点以下の
温度で短時間焼鈍するだけで球状化焼鈍材に匹敵
する軟質化を達成できることを見い出した。 即ち、A1点以下の温度で焼鈍すると引張強度
はほぼ焼鈍時間に比例して低下するが、圧延材の
強度をあらかじめ充分下げておけば短時間で球状
化焼鈍材なみの強度にまで低下させ得ることを見
出したのである。 そこで本発明者らは、中炭素鋼の圧延材の強度
を支配する因子について種々解析した結果、圧延
材の強度を低下せしめるにはパーライトのセメン
タイト間間隔を粗くすることが有効で、そのため
には熱間圧延後の冷却過程でできるだけ高い温度
でパーライト変態させればよく、かかる観点から
圧延後できるだけ高温でパーライト変態させて軟
質化させるための鋼材組成と圧延冷却条件及びそ
の後のA1点下焼鈍条件として適正なるものを選
択すればよいという全く新たな知見を得て本発明
をなしたのである。 (問題点を解決するための手段、作用) 即ち、本発明は以上の知見に基いてなされたも
のであつて、その要旨とする所は、重量%で
C0.32〜0.65%、Si0.05%未満、MnとCrの合計量
が0.3〜1.1%の範囲でMn0.2〜0.5%、Cr0.1〜0.7
%、Al0.005〜0.1%を含有し、且つPを0.02%未
満、Sを0.02%未満制限し、その他必要に応じて
(A)Ni1%以下、Cu1%以下、Mo0.3%以下の1種
または2種以上、あるいは(B)Ti0.002〜0.05%、
B0.0005〜0.02%、Nb0.005〜0.05%、V0.005〜
0.1%の1種または2種以上、の(A)、(B)の群の一
方または両方を含有し、残部はFe及び不可避不
純物よりなる鋼について、熱間圧延後5〜60℃/
分の冷却速度で徐冷した後、あらためて680〜720
℃の範囲の温度で15分〜4時間保定することを特
徴とする機械構造用鋼の軟質化法である。 以下に本発明を詳細に説明する。 まず最初に、本発明において軟質化とは、その
圧延材の引張強度を含有炭素量(C%)によつて
規定される強度28+65×C%(Kg/mm2)以下とす
ることを意味する。この式はC量を0.2〜0.7%と
変えて回帰させて求めたものであり、28はフエラ
イトとパーライトの強度に、また65はC量即ちパ
ーライト量にそれぞれ依存する項である。C量に
よつて決まる同式の値を強度が超える場合には軟
質化したとは言えない。 次に本発明の対象とする鋼の成分限定理由につ
いて述べる。 まず、Cは冷間鍛造後の焼入れ.焼戻し処理に
於いて製品に所要の強度を付与するために必須の
元素であるが、0.32%未満では所要の強度が得ら
れず、一方0.65%を超えても焼入れ、焼戻し後の
強度はもはや増加しないので、0.32〜0.65%の範
囲に限定した。 また、Siはその固溶体硬化作用によつて圧延材
の強度を高めるので、固溶体硬化の影響を無視で
きるようになる0.05%未満に含有量を限定した。
また、このようにSiを下げても、焼入処理時に要
求される焼入性は低下しない。 次にMnとCrに関してであるが、MnとCrを複
合添加し、且つその含有量を上記のように定めた
点が本発明の最も重要は点である。 即ち、従来の機械構造用鋼であるS45C鋼は
C0.42〜0.48%、Si0.15〜0.35%、Mn0.60〜0.90%
も含むことが規定されているが、そのMn量を減
らし、代りにCrを添加することによつて、S45C
鋼に比べフエライト変態開始温度とともに軟質化
のポイントであるパーライト変態の開始温度と終
了温度が高くなる。そこで、目標の軟質化を短時
間で達成するためには、できるだけMnをCrで置
換した方が良いが、Mn0.2%未満では鋼中のSを
十分に固定することができず、熱間脆性をおさえ
ることができない。一方、Mnが0.5%を超えると
Crが添加されていても高温でのパーライト変態
を短時間に終了させることができないので、Mn
量を0.2〜0.5%に限定した。 Crは高温でのパーライト変態の促進には不可
欠の元素であるが、その添加量が0.1%未満では
十分な効果を発揮しない。一方、0.7%を超える
と鋼の焼入性を高め、変態温度が違に低下してく
るので、Crの含有量を0.1〜0.7%に限定した。 更にMnとCrの合計量を0.3〜1.1%に限定した
のは、合計量が0.3%未満では鍛造後の焼入処理
時の焼入性を保証することができず、一方、1.1
%を超えると鋼材の焼入性が上りすぎて圧延材が
軟かくならず、目標強度を下回らなくなるので、
0.3〜1.1%に限定した。 また、Alは鍛造後の焼入れ処理時のオーステ
ナイト粒度の粗大化を防止する目的で添加するも
ので、0.005%未満ではその効果がなく、一方0.1
%を超えるとオーステナイト粒粗大化抑制効果は
飽和する上、むしろ冷間鍛造性を劣化させるの
で、0.005〜0.1%に限定した。 P、Sはいずれも冷間鍛造性に有害な元素であ
る。いずれも0.02%を超えると悪影響が顕著にな
るので、これ未満に限定した。 以上が本発明の対象とする鋼の基本成分である
が、本発明においては、この他、鋼の強度・靭性
を向上させるため、(A)Ni1%以下、Cu1%以下、
Mo0.3%以下の1種または2種以上、または高温
域のパーライト変態促進のために(B)Ti0.002〜
0.05%、B0.0005〜0.02%、Nb0.005〜0.05%、
V0.005〜0.1%の1種または2種以上、の(A)、(B)
の群の一方または両方を含有せしめることもでき
る。 まず、(A)群のNi、Cu、Moはいずれも製品の強
度、靭性を向上させるために添加されるが、Ni1
%、Cu1%、Mo0.3%をそれぞれ超えるといずれ
もその効果は飽和するのでこれらを上限とした。 一方、(B)群のTi、B、Nb、Vはいずれも高温
域でのパーライト変態の促進を目的の添加され
る。すなわちTiとBは組合せて添加する方が効
果的で、TiはAlと共にNを固定してBの焼入性
効果を十分に発揮させるために添加される。Ti
とBの添加によつて鍛造後の焼入れ処理時の焼入
性を増加させると、MnとCrの合計量を減らすこ
とが可能となり、高温域でのパーライト変態は一
段と短時間に終了するようになる。Tiは0.002%
未満ではN固定効果が不十分であり、一方0.05%
を超えると冷間鍛造性に有害な粗大なTiNが生
成するので、0.002%〜0.05%に限定した。Bは
0.0005%未満では焼入性増加効果は発揮せず、
0.02%を超えると粗大なB化合物を析出させて靭
性を劣化させるので、0.0005〜0.02%に限定し
た。Nb、Vはいずれも圧延後のオーステナイト
粒度を微細化させて変態を促進することを目的に
添加するが、それぞれ0.005%未満では微細化効
果が期待できず、一方Nbが0.05%、Vが0.1%を
それぞれ超えると、Nb、Vの粗大な炭窒化物が
析出して靭性及び冷間鍛造性を劣化させるので、
Nbは0.005〜0.05%、またVは0.005〜0.1%にそれ
ぞれ限定した。 次に、本発明における軟質化処理条件について
述べる。 まず、前記のごとき化学組成を有する鋼につい
て熱間圧延後の冷却速度を60℃/分以下に限定し
たのは、60℃/分より速く冷却されると低温でパ
ーライト変態し、圧延材の強度が上るため、後続
する680〜720℃の焼鈍でも目標の軟質化が達成で
きないためである。一方、冷却速度は小さい方が
有利であるが、5℃/分より下げても焼鈍後の強
度は大幅に変わらなくなるので5℃/分を下限と
した。 また、圧延後の焼鈍温度を680〜720℃に限定し
たのは、680℃より低温では目標の軟質化が得ら
れず、一方720℃を超えると鋼材内でMnなどの
元素が偏析している箇所がオーステナイト化され
てしまうためである。 保定時間は15分〜4時間に限定したが、15分未
満では軟質化が目標値まで進行せず、一方4時間
以内で充分に軟質化し、これ以上保定する必要が
ないためである。なお、熱間圧延条件は特に限定
しないが、ほぼ1050℃程度以下の熱延開始温度が
望ましく、特に変態促進に有利なオーステナイト
粒細粒化の観点からは900℃以下の低温仕上げが
望ましい。 以下、実施例により本発明の効果をさらに具体
的に説明する。 (実施例) 第1表に供試材の化学組成ならびに通常の熱間
圧延で11φmmに仕上げた後の冷却速度と軟質化処
理条件を示す。同表中試験番号1、3、5、7、
9、11〜14、24〜27が本発明例で、他は比較例で
ある。これらの材料を用いて、引張試験はJIS
14A号試験片で行ない、冷鍛性の評価は11φmm×
21mmの試験片を真歪2の圧縮試験を行なつたとき
の割れ発生の有無で求め、○印は割れが発生しな
かつたこと、×印は割れが発生したことを示す。
また、焼入・焼戻後の靭性値は、900℃に30分加
熱後油焼入れし、次に600℃に1時間焼戻した材
料をJIS3号試験片を用いて20℃で衝撃試験を行な
い求めたものである。これらの試験結果を第1表
に併記する。
(Industrial Application Field) The present invention relates to softening of mechanical structural steel, and particularly to a method of softening medium carbon mechanical structural steel used for cold forging. (Prior Art and Problems) Conventionally, medium-carbon mechanical structural steels have been developed using techniques such as Japanese Patent Application Laid-Open No. 136421/1983, etc., in order to lower deformation resistance and improve cold forging during cold forging. Generally, cementite is subjected to spheroidizing annealing as shown in . However, the spheroidizing annealing of the lever is a very long process, usually over ten hours or more, so if it could be replaced with softening annealing that only maintains the A point below 1 , it would have a great industrial effect, but it is not specified in JIS. In the case of steel for machine structural use, the softened annealed material is far less soft than the spheroidized annealed material. The present inventors analyzed the effect of rolled material strength on the strength of materials annealed at temperatures below point A1 , and found that if the rolled material is sufficiently softened, it can be annealed for a short time at temperatures below point A1 . It has been found that softening comparable to that of spheroidized annealed materials can be achieved. In other words, when annealing at a temperature below point A , the tensile strength decreases approximately in proportion to the annealing time, but if the strength of the rolled material is sufficiently lowered in advance, it can be reduced to the same strength as the spheroidized annealed material in a short time. I found out what I could get. Therefore, the present inventors analyzed various factors that control the strength of rolled medium carbon steel materials, and found that it is effective to coarsen the cementite spacing of pearlite in order to reduce the strength of rolled materials. It is sufficient to carry out pearlite transformation at as high a temperature as possible in the cooling process after hot rolling, and from this point of view, the steel composition, rolling cooling conditions, and subsequent A1 point below annealing are required to cause pearlite transformation at as high a temperature as possible after rolling to soften it. The present invention was made based on the completely new knowledge that it is only necessary to select appropriate conditions. (Means and effects for solving the problems) That is, the present invention has been made based on the above knowledge, and its gist is that
C0.32-0.65%, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.7 with the total amount of Mn and Cr ranging from 0.3 to 1.1%.
%, contains Al0.005-0.1%, and limits P to less than 0.02%, S to less than 0.02%, and other settings as necessary.
(A) One or more of Ni 1% or less, Cu 1% or less, Mo 0.3% or less, or (B) Ti 0.002 to 0.05%,
B0.0005~0.02%, Nb0.005~0.05%, V0.005~
For steel containing 0.1% of one or more of the groups (A) and (B), the remainder being Fe and unavoidable impurities, the temperature is 5 to 60°C after hot rolling.
After slow cooling at a cooling rate of 680 to 720
This is a method for softening steel for mechanical structural use, which is characterized by holding the temperature at a temperature in the range of 15 minutes to 4 hours. The present invention will be explained in detail below. First of all, in the present invention, softening means that the tensile strength of the rolled material is equal to or less than 28+65×C% (Kg/mm 2 ), which is defined by the carbon content (C%). . This equation was obtained by regression with the C content varied from 0.2 to 0.7%, and 28 is a term that depends on the strength of ferrite and pearlite, and 65 is a term that depends on the C content, that is, the pearlite content. If the strength exceeds the value of the same formula determined by the amount of C, it cannot be said that the material has been softened. Next, the reason for limiting the composition of steel, which is the object of the present invention, will be described. First, C is quenched after cold forging. It is an essential element to impart the required strength to the product during tempering treatment, but if it is less than 0.32%, the required strength cannot be obtained, while if it exceeds 0.65%, the strength after quenching and tempering will no longer increase. Therefore, it was limited to the range of 0.32 to 0.65%. Furthermore, since Si increases the strength of the rolled material through its solid solution hardening effect, the content was limited to less than 0.05%, which makes the effect of solid solution hardening negligible.
Furthermore, even if Si is lowered in this way, the hardenability required during hardening treatment does not decrease. Next, regarding Mn and Cr, the most important point of the present invention is that Mn and Cr are added in combination and their contents are determined as described above. In other words, S45C steel, a conventional mechanical structural steel,
C0.42~0.48%, Si0.15~0.35%, Mn0.60~0.90%
However, by reducing the amount of Mn and adding Cr instead, S45C
Compared to steel, the ferrite transformation start temperature and the pearlite transformation start and end temperatures, which are the points of softening, are higher. Therefore, in order to achieve the target softening in a short time, it is better to replace Mn with Cr as much as possible, but if Mn is less than 0.2%, S in the steel cannot be sufficiently fixed, and hot Unable to contain fragility. On the other hand, when Mn exceeds 0.5%
Even if Cr is added, the pearlite transformation at high temperatures cannot be completed in a short time, so Mn
The amount was limited to 0.2-0.5%. Cr is an essential element for promoting pearlite transformation at high temperatures, but if the amount added is less than 0.1%, sufficient effect will not be exhibited. On the other hand, if it exceeds 0.7%, the hardenability of the steel will increase and the transformation temperature will drop, so the content of Cr was limited to 0.1 to 0.7%. Furthermore, the total amount of Mn and Cr was limited to 0.3 to 1.1% because if the total amount is less than 0.3%, hardenability during post-forging quenching treatment cannot be guaranteed.
If it exceeds %, the hardenability of the steel material will increase too much and the rolled material will not become soft and will not fall below the target strength.
Limited to 0.3-1.1%. Furthermore, Al is added to prevent coarsening of the austenite grain size during the quenching process after forging, and if it is less than 0.005%, it has no effect;
If it exceeds 0.005% to 0.1%, the effect of suppressing austenite grain coarsening will be saturated and will actually deteriorate cold forgeability, so it is limited to 0.005 to 0.1%. Both P and S are elements harmful to cold forgeability. In either case, if it exceeds 0.02%, the negative effects become noticeable, so the content was limited to less than this. The above are the basic components of the steel targeted by the present invention, but in the present invention, in order to improve the strength and toughness of the steel, (A) Ni 1% or less, Cu 1% or less,
One or more types of Mo0.3% or less, or (B)Ti0.002 to promote pearlite transformation in high temperature range
0.05%, B0.0005~0.02%, Nb0.005~0.05%,
(A), (B) of one or more types of V0.005-0.1%
It is also possible to contain one or both of the groups. First, Ni, Cu, and Mo in group (A) are all added to improve the strength and toughness of products, but Ni1
%, Cu1%, and Mo0.3%, the effects are saturated, so these were set as upper limits. On the other hand, Ti, B, Nb, and V in group (B) are all added for the purpose of promoting pearlite transformation in a high temperature range. That is, it is more effective to add Ti and B in combination, and Ti is added in order to fix N together with Al and fully exhibit the hardenability effect of B. Ti
By increasing the hardenability during post-forging quenching treatment by adding B and B, it becomes possible to reduce the total amount of Mn and Cr, and the pearlite transformation at high temperatures is completed in a shorter time. Become. Ti is 0.002%
Below 0.05%, the N fixed effect is insufficient;
If it exceeds 0.2%, coarse TiN will be generated which is harmful to cold forgeability, so it is limited to 0.002% to 0.05%. B is
If it is less than 0.0005%, the effect of increasing hardenability will not be exhibited.
If it exceeds 0.02%, coarse B compounds will precipitate and the toughness will deteriorate, so it is limited to 0.0005 to 0.02%. Both Nb and V are added for the purpose of refining the austenite grain size after rolling and promoting transformation, but if each is less than 0.005%, no refining effect can be expected, while Nb is 0.05% and V is 0.1%. %, coarse carbonitrides of Nb and V will precipitate and deteriorate toughness and cold forgeability.
Nb was limited to 0.005-0.05%, and V was limited to 0.005-0.1%. Next, the softening treatment conditions in the present invention will be described. First, the reason why we limited the cooling rate after hot rolling to 60°C/min or less for steel with the above chemical composition is that if it is cooled faster than 60°C/min, it will undergo pearlite transformation at low temperatures, which will strengthen the rolled material. This is because the target softening cannot be achieved even in the subsequent annealing at 680 to 720°C. On the other hand, although it is advantageous to have a lower cooling rate, 5°C/min was set as the lower limit because the strength after annealing does not change significantly even if the cooling rate is lower than 5°C/min. In addition, the reason why the annealing temperature after rolling was limited to 680-720℃ is because the target softening cannot be achieved at temperatures lower than 680℃, while elements such as Mn segregate within the steel when the temperature exceeds 720℃. This is because the parts become austenitized. The retention time was limited to 15 minutes to 4 hours, but this is because softening does not proceed to the target value in less than 15 minutes, while it becomes sufficiently softened within 4 hours and there is no need to retain it any longer. Note that hot rolling conditions are not particularly limited, but a hot rolling start temperature of about 1050° C. or lower is desirable, and a low-temperature finish of 900° C. or lower is particularly desirable from the viewpoint of austenite grain refinement, which is advantageous for promoting transformation. Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples. (Example) Table 1 shows the chemical composition of the sample material, as well as the cooling rate and softening treatment conditions after finishing it to 11φmm by normal hot rolling. Test numbers 1, 3, 5, 7 in the same table,
9, 11-14, and 24-27 are examples of the present invention, and the others are comparative examples. Using these materials, tensile tests are conducted according to JIS
Conducted with No. 14A test piece, cold forgeability evaluation was 11φmm×
It was determined by the presence or absence of cracks when a 21 mm test piece was subjected to a compression test with a true strain of 2. An ○ mark indicates that no crack occurred, and an x mark indicates that a crack occurred.
In addition, the toughness value after quenching and tempering was determined by heating the material to 900℃ for 30 minutes, oil quenching, then tempering it to 600℃ for 1 hour, and then performing an impact test at 20℃ using a JIS No. 3 test piece. It is something that These test results are also listed in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%でC0.32〜0.65%、 Si0.05%未満、 MnとCrの合計量が0.3〜1.1%の範囲で Mn0.2〜0.5%、 Cr0.1〜0.7%、 Al0.005〜0.1% を含有し、且つPを0.02%未満、Sを0.02%未満
と制限し、その他必要に応じて (A) Ni1%以下、Cu1%以下、Mo0.3%以下の1
種または2種以上、 あるいは (B) Ti0.002〜0.05%、B0.0005〜0.02%、
Nb0.005〜0.05%、V0.005〜0.1%の1種または
2種以上、 の(A)、(B)の群の一方または両方を含有し、残部は
Feおよび不可避不純物よりなる鋼について、熱
間圧延後5〜60℃/分の冷却速度で徐冷した後、
あらためて680〜720℃の範囲の温度で15分〜4時
間保定することを特徴とする機械構造用鋼の軟質
化法。
[Claims] 1. C0.32-0.65% by weight, Si less than 0.05%, Mn0.2-0.5%, Cr0.1-0.7% in the range of the total amount of Mn and Cr from 0.3 to 1.1%. , Al 0.005 to 0.1%, P is limited to less than 0.02%, S is limited to less than 0.02%, and as necessary, (A) Ni 1% or less, Cu 1% or less, Mo 0.3% or less.
species or two or more species, or (B) Ti0.002-0.05%, B0.0005-0.02%,
Contains one or more of Nb0.005-0.05%, V0.005-0.1%, one or both of groups (A) and (B), and the remainder is
After hot rolling, the steel containing Fe and unavoidable impurities is gradually cooled at a cooling rate of 5 to 60°C/min.
A method for softening steel for machine structural use, which is further maintained at a temperature in the range of 680 to 720°C for 15 minutes to 4 hours.
JP1389285A 1985-01-28 1985-01-28 Method for softening machine structural steel Granted JPS61174323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1389285A JPS61174323A (en) 1985-01-28 1985-01-28 Method for softening machine structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1389285A JPS61174323A (en) 1985-01-28 1985-01-28 Method for softening machine structural steel

Publications (2)

Publication Number Publication Date
JPS61174323A JPS61174323A (en) 1986-08-06
JPH0533283B2 true JPH0533283B2 (en) 1993-05-19

Family

ID=11845832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1389285A Granted JPS61174323A (en) 1985-01-28 1985-01-28 Method for softening machine structural steel

Country Status (1)

Country Link
JP (1) JPS61174323A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353209A (en) * 1986-08-22 1988-03-07 Nippon Steel Corp Softening method for alloy steel for machine structure use
JP2610662B2 (en) * 1988-11-09 1997-05-14 川崎製鉄株式会社 Carbon steel for machine structure with excellent cold forgeability and induction hardenability
US5651938A (en) * 1995-05-01 1997-07-29 Blount, Inc. High strength steel composition having enhanced low temperature toughness
JP6256184B2 (en) * 2014-05-12 2018-01-10 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet

Also Published As

Publication number Publication date
JPS61174323A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPH039168B2 (en)
JPH0571657B2 (en)
JPS6128742B2 (en)
JPH0533283B2 (en)
JPS5948949B2 (en) carburizing steel
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPH04371547A (en) Production of high strength and high toughness steel
JPH0576522B2 (en)
JPS62253724A (en) Production of wire rod for cold forging having granular cementite structure
JP2861698B2 (en) Manufacturing method of high yield ratio high toughness non-heat treated high strength steel
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JP3397250B2 (en) Method for softening heat treatment of hot rolled martensitic stainless steel material and method for heat treatment of rolled hot wire product after softening heat treatment
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture
JPH0572442B2 (en)
JPH0229727B2 (en) DORIRUKARAAYOBOKONOSEIZOHOHO
JPS61253347A (en) Low carbon steel having superior cold workability
JPS6353209A (en) Softening method for alloy steel for machine structure use
JPH11100644A (en) Manufacture of spring steel with high strength and high toughness and spring
JPH05302116A (en) Production of hardening obviated steel for hot forging
JPH05156354A (en) Manufacture of hardening obviated steel for hot forging
JPH0351779B2 (en)
JPS63130748A (en) Non-heattreated tough and hard steel having high strength