JPS6353209A - Softening method for alloy steel for machine structure use - Google Patents

Softening method for alloy steel for machine structure use

Info

Publication number
JPS6353209A
JPS6353209A JP19528786A JP19528786A JPS6353209A JP S6353209 A JPS6353209 A JP S6353209A JP 19528786 A JP19528786 A JP 19528786A JP 19528786 A JP19528786 A JP 19528786A JP S6353209 A JPS6353209 A JP S6353209A
Authority
JP
Japan
Prior art keywords
less
steel
softening
pearlite transformation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19528786A
Other languages
Japanese (ja)
Inventor
Toshizo Tarui
敏三 樽井
Toshihiko Takahashi
高橋 稔彦
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19528786A priority Critical patent/JPS6353209A/en
Publication of JPS6353209A publication Critical patent/JPS6353209A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To soften an alloy steel having high hardenability by the annealing for short time by promoting furthermore pearlite transformation at high temp. by adding B in the steel having the specific composition and also after that specifying the annealing condition at A1 point or lower. CONSTITUTION:The steel having by wt% of 0.15-0.65 C, <0.1 Si, 0.2-0.5 Mn, 0.0003-0.01 B, >0.7-1.8 Cr, 0.01-0.1 Al, <0.02 P and S and the remaining part of Fe is provided. After hot-rolling this steel, it is slowly cooled at <=15 deg.C/min cooling velocity in the temp. range from at least 750 deg.C to the completion of pearlite transformation, and then it is kept at 690-740 deg.C for 30min-5hr. Further, in the above steel, one or more elements of <=1% Ni, <=0.3% Mo, <=1% Cu and/or one or more elements of 0.002-0.05% Ti, 0.005-0.05% Nb, 0.005-0.2% V may be contained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は機械構造用合金鋼の軟質化法に係り、特に冷間
鍛造によって、例えばボルト、ナツトなどに加工される
機械構造用合金鋼の軟質化法に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for softening alloy steel for machine structures, and particularly for softening alloy steel for machine structures that is processed into bolts, nuts, etc. by cold forging. This relates to a softening method.

[従来の技術] 従来1機械構造用合金鋼は、冷間鍛造に際し、その変形
抵抗を下げて冷間鍛造性の向上を高めるために、たとえ
ば特開昭59−136421号公報などに見られるよう
にセメンタイトの球状化焼鈍が実施されるのが一般的で
ある。ところが、この球状化焼鈍は通常十数時間以上と
極めて長時間を要する処理であるため、A□点以下に短
時間保定するだけの軟質化焼鈍で代替できれば産業上の
効果は大きいが、JISに記載されている機械構造用合
金鋼ではその軟質化焼鈍材は柔らかさにおいて球状化焼
鈍材に遠く及ばない。
[Prior Art] Conventional 1 machine structural alloy steels have been developed in order to reduce deformation resistance and improve cold forgeability during cold forging, as seen in, for example, Japanese Patent Laid-Open No. 59-136421. Generally, cementite is subjected to spheroidizing annealing. However, since this spheroidizing annealing process usually requires an extremely long time, more than ten hours, it would be industrially effective if it could be replaced with softening annealing, which maintains the temperature below the A□ point for a short period of time. In the described alloy steel for machine structures, the softened annealed material is not far superior to the spheroidized annealed material in terms of softness.

本発明者らはA1点以下の温度で焼鈍した材料の強度に
及ぼす圧延材強度の効果を解析した結果、圧延材を十分
軟質化しておけばA1点以下の温度で短時間焼鈍するだ
けで球状化焼鈍材に匹敵する軟質化を達成出来ることを
見い出し、先に特願昭60−13892号により提案を
行った。
The present inventors analyzed the effect of rolled material strength on the strength of materials annealed at temperatures below the A1 point, and found that if the rolled material is sufficiently softened, it will be possible to form a spherical shape by annealing for a short time at a temperature below the A1 point. It was discovered that it was possible to achieve a softening comparable to that of chemically annealed materials, and a proposal was previously made in Japanese Patent Application No. 13892/1983.

即ち、A1点以下の温度で焼鈍すると引張強度はほぼ焼
鈍時間に比例して低下するが、圧延材の強度をあらかじ
め十分に下げておけば短時間で球状化焼鈍材なみの強度
にまで低下させ得ることを見出し、更に機械構造用鋼の
圧延材の強度を支配する因子について種々解析した結果
、圧延材の強度を低下せしめるためにはパーライトのセ
メンタイト間間隔を粗くすることが有効で、そのために
は熱間圧延後の冷却過程でできるだけ高い温度でパーラ
イト変態させればよく、かかる観点から圧延後できるだ
け高温でパーライト変態させて軟質化させるための鋼材
組成と圧延冷却条件及びその後のA0点以下の焼鈍条件
として適正なるものを選択すればよいという知見を得た
ものである。ところで、この製造手段は焼入性の低い低
合金鋼の軟質化の点で極めて優れているものの、S C
r。
In other words, when annealing at a temperature below the A1 point, the tensile strength decreases approximately in proportion to the annealing time, but if the strength of the rolled material is sufficiently lowered in advance, it can be reduced to the same strength as the spheroidized annealed material in a short time. Furthermore, as a result of various analyzes of the factors governing the strength of rolled material of machine structural steel, we found that it is effective to coarsen the spacing between pearlite and cementite in order to reduce the strength of rolled material. It is sufficient to carry out pearlite transformation at as high a temperature as possible in the cooling process after hot rolling, and from this point of view, the steel composition and rolling cooling conditions for softening by pearlite transformation at as high a temperature as possible after rolling, and the subsequent A0 point or lower. The knowledge was obtained that it is sufficient to select appropriate annealing conditions. By the way, although this manufacturing method is extremely superior in terms of softening low alloy steel with low hardenability, S C
r.

SCMfiのような焼入性の高い合金鋼の軟質化という
点ではまだ改良の余地があった。
There was still room for improvement in terms of softening alloy steels with high hardenability such as SCMfi.

[発明が解決しようとする問題点] 本発明は上記のごとき実情に鑑みなされるものであって
、焼入性の高い合金鋼を短時間の焼鈍で軟質化する方法
を提供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for softening highly hardenable alloy steel by short-time annealing. It is something to do.

[問題点を解決するための手段 作用]即ち、本発明者
らは先に提案した技術をさらに改良し、Bを添加するこ
とによって圧延材軟質化の最大のポイントであるところ
の高温でのパーライト変態を一層促進させ、その後のA
4点以下の焼鈍条件として適正なものを選択すれば、焼
入性の高い合金鋼でも短時間で軟質化が可能であるとい
う全く新たな知見を得て本発明をなしたものである。
[Means for Solving the Problems] That is, the present inventors have further improved the technique proposed previously, and by adding B, pearlite at high temperatures, which is the most important point in softening the rolled material, has been improved. Further promotes metamorphosis and subsequent A
The present invention was made based on the completely new knowledge that even alloy steels with high hardenability can be softened in a short time if appropriate annealing conditions of 4 points or less are selected.

本発明は、以上の知見に基づいてなされるものであって
、その要旨とする所は、重量%でC:0゜15−0.6
5%、Si: 0.1%未満、Mn:0゜2〜0.5%
、B : 0.0003〜0.01%。
The present invention has been made based on the above findings, and its gist is that C: 0°15-0.6 in weight%
5%, Si: less than 0.1%, Mn: 0°2-0.5%
, B: 0.0003-0.01%.

Cr:0.7超〜1.8%、 A Q : 0.01〜
0.1%を含有し、Pを0.02%未満、Sを0.02
%未満と制限し、その他必要に応じて(A)Ni:1%
以下、Mo:0.3%以下、Cu:1%以下の1種マタ
は2種以上、(B)Ti: 0.002〜0゜05%、
Nb: 0.005〜0.05%、V:O,O05〜0
.2%の1種または2種以上、(7) (A) 。
Cr: more than 0.7 to 1.8%, AQ: 0.01 to
Contains 0.1%, less than 0.02% P, and 0.02% S
(A)Ni: 1% as necessary.
Hereinafter, Mo: 0.3% or less, Cu: 1% or less of 1 type or more, (B) Ti: 0.002 to 0°05%,
Nb: 0.005~0.05%, V:O, O05~0
.. 2% of one or more types, (7) (A).

(B)の群の一方または両方を含有し、残部は。Containing one or both of group (B), the remainder.

Feおよび不可避不純物よりなる鋼について、熱間圧延
後、少なくとも750℃からパーライト変態終了までの
温度範囲を15℃/分以下の冷却速度で徐冷した後、あ
らためて690〜740℃の温度範囲で30分〜5時間
保定することを特徴とする機械構造用合金鋼の軟質化法
である。
After hot rolling, steel consisting of Fe and unavoidable impurities is slowly cooled at a cooling rate of 15°C/min or less over a temperature range from at least 750°C to the end of pearlite transformation, and then reheated at a temperature range of 690 to 740°C for 30°C. This is a method for softening alloy steel for machine structures, which is characterized by holding for 5 minutes to 5 hours.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず最初に、本発明において軟質化とは、その焼鈍材の
引張強度を、炭素当量Ceq (Ceq=C+Si/2
4+Mn/6+Cr15+Cu/13+M。
First of all, in the present invention, softening refers to the tensile strength of the annealed material based on carbon equivalent Ceq (Ceq=C+Si/2
4+Mn/6+Cr15+Cu/13+M.

/4+Ni/40)によって規定される強度= 22 
+ 63 Ceq (Kg/mm2)以下とすることを
意味する。この強度式はCeq量を0゜3〜1.3の範
囲内で求めたものであり、22はフェライトとパーライ
トの強度に、また63はCeq量即ちパーライト量にそ
れぞれ依存する項である。Ceq量によって決まる同大
の値を強度が越える場合には軟質化とは言えない。
/4+Ni/40) = 22
+63 Ceq (Kg/mm2) or less. In this strength formula, the Ceq amount is determined within the range of 0°3 to 1.3, and 22 is a term that depends on the strength of ferrite and pearlite, and 63 is a term that depends on the Ceq amount, that is, the pearlite amount. If the strength exceeds the same value determined by the amount of Ceq, it cannot be said to be softening.

次に、本発明の対象とする鋼の成分限定理由についての
べる。
Next, the reasons for limiting the composition of steel, which is the object of the present invention, will be discussed.

まず、Cは冷間txI造後の焼入れ焼戻し処理において
製品に所要の強度を付与するために必須の元素であるが
、0.15%未満では所要の強度が得られず、一方0.
65%を越えても焼入れ焼戻し後の強度はもはや増加し
ないので、0.15〜0゜65%の範囲に限定した。
First, C is an essential element in order to impart the required strength to the product in the quenching and tempering treatment after cold TxI manufacturing, but if it is less than 0.15%, the required strength cannot be obtained;
Since the strength after quenching and tempering will no longer increase even if it exceeds 65%, it is limited to a range of 0.15 to 0.65%.

また、Siはその固容体硬化作用によって圧延材の強度
を高めるので、固容体硬化の影響を無視できるようにな
る0、1%未満に含有量を限定した。また、このように
Siを下げても、焼入処理時に要求される焼入性は低下
しない。
In addition, since Si increases the strength of the rolled material through its solid hardening effect, the content was limited to less than 0.1% so that the influence of solid hardening can be ignored. Further, even if the Si content is lowered in this way, the hardenability required during hardening treatment does not decrease.

つぎに、Mnと8に関してであるが、この含有量を前記
のように定めた点が本発明の最も重要な点である。
Next, regarding Mn and 8, the most important point of the present invention is that the contents are determined as described above.

即ち、例えば従来の代表的な機械構造用クロム鋼である
SC:r430t!lはC: 0.28−0.33%、
Si: 0.15〜0.35%、Mn:0.60〜0.
85%、Cr: 0.90〜1.20%を含むことが規
定されているが、そのMn量を減らすことによって、5
Cr430鋼に比べ軟質化のポイントであるパーライト
変態の終了温度が高くなる。
That is, for example, SC: r430t, which is a typical conventional chrome steel for machine structures! l is C: 0.28-0.33%,
Si: 0.15-0.35%, Mn: 0.60-0.
85%, Cr: 0.90 to 1.20%, but by reducing the amount of Mn, Cr: 0.90 to 1.20%.
The end temperature of pearlite transformation, which is the point of softening, is higher than that of Cr430 steel.

Mn量が減少しただけ焼入性は低下するが、これはBを
添加することによって補う。さらに、Bは圧延後の徐冷
域ではパーライト変態を抑制することはなく、逆に固溶
BがB化合物として析出することによりパーライト変態
を促進させる効果がある。従って、Bを添加した鋼を熱
間圧延後、徐冷すると高温でのパーライト変態を短時間
で終了させることができる。なお通常、Bは焼入性を向
上させる元素として使用されるが1本発明ではBを熱間
圧延後のパーライト変態を促進させるためと冷間鍛造後
の熱処理時における焼入性向上の両方に利用するもので
ある。また、このようなmはS Cr430鋼に比べ高
速で冷却しても同じ温度でパーライト変態させられる。
Although the hardenability decreases as the amount of Mn decreases, this is compensated for by adding B. Furthermore, B does not suppress pearlite transformation in the slow cooling region after rolling, but on the contrary, solid solution B precipitates as a B compound, thereby having the effect of promoting pearlite transformation. Therefore, if B-added steel is slowly cooled after hot rolling, the pearlite transformation at high temperatures can be completed in a short time. Generally, B is used as an element to improve hardenability, but in the present invention, B is used both to promote pearlite transformation after hot rolling and to improve hardenability during heat treatment after cold forging. It is something to be used. Moreover, even if such m is cooled at a higher speed than S Cr430 steel, it undergoes pearlite transformation at the same temperature.

ここで、MnとBの添加量を上記のように限定したのは
以下の理由による。
Here, the reason why the amounts of Mn and B added are limited as described above is as follows.

高温域のパーライト変態を短時間で終了させるためには
、できるだけMnを減らした方がよいが。
In order to complete the pearlite transformation in the high temperature range in a short time, it is better to reduce Mn as much as possible.

MnfJ<0.2%未満では鋼中のSを十分に固定する
ことができず、熱間脆性をおさえることができない。一
方、Mnが0.5%を越えるとBが添加されていても高
温でのパーライト変態を短時間に終了させることができ
ないので、Mn量を0.2〜0゜5%に限定した。
When MnfJ<0.2%, S in the steel cannot be sufficiently fixed, and hot embrittlement cannot be suppressed. On the other hand, if Mn exceeds 0.5%, the pearlite transformation at high temperature cannot be completed in a short time even if B is added, so the Mn amount was limited to 0.2 to 0.5%.

Bは、圧延後の徐冷域でのパーライト変態を促進させ且
つ冷間鍛造後の熱処理の焼入性を著しく高め強度を向上
させるのに有効であるが、0.0003%未満ではその
効果が上がらず、一方0゜01%を越えると冷間@造性
を劣化させるので、0.0003〜0.01%に限定し
た。
B is effective in promoting pearlite transformation in the slow cooling region after rolling and significantly increasing the hardenability in heat treatment after cold forging and improving strength, but if it is less than 0.0003%, the effect will not increase. On the other hand, if it exceeds 0.01%, cold forming properties deteriorate, so it is limited to 0.0003 to 0.01%.

また、Crは冷間鍛造後の焼入れ処理時の焼入性を高め
、強度、靭性を向上させるのに必須の元素であるが、0
.7%以下ではその効果が不十分であり本発明の目的と
するところの焼入性の高い鋼とならない、一方、1.8
%を越えると鋼の焼入性が高まりすぎて、熱間圧延後の
パーライト変態終了温度が低下し軟質圧延材とならない
ので、0.7超〜1.8%に限定した。
In addition, Cr is an essential element to enhance hardenability during quenching treatment after cold forging, and to improve strength and toughness.
.. If it is less than 7%, the effect is insufficient and the steel with high hardenability, which is the objective of the present invention, cannot be obtained.
%, the hardenability of the steel increases too much and the end temperature of pearlite transformation after hot rolling decreases, making it impossible to obtain a soft rolled material.

さらに、AQ、は冷間鍛造後の焼入れ処理時のオーステ
ナイト粒度の粗大化を防止するためとNをAQN化合物
として固定しBの焼入性効果を確保するためしこ必要な
元素であるが、0.01%未満ではその効果がなく、一
方0.1を越えると上記の効果が飽和する上、むしろ冷
間鍛造性を劣化させるので、0.01〜0.1%に限定
した。
Furthermore, AQ is a necessary element to prevent coarsening of austenite grain size during quenching after cold forging and to fix N as an AQN compound to ensure the hardenability effect of B. If it is less than 0.01%, there is no effect, while if it exceeds 0.1, the above effect is saturated and the cold forgeability is deteriorated, so it is limited to 0.01 to 0.1%.

P、Sはいずれも冷間鍛造性に有害な元素である。いず
れも0.02%を賊えると悪影響が顕著になるので、こ
れ未満に限定した。
Both P and S are elements harmful to cold forgeability. In either case, if the content exceeds 0.02%, the adverse effects become significant, so the content was limited to less than 0.02%.

以上が本発明の対象とする鋼の基本成分であるが、本発
明においては、 (A)Ni: 1%以下、Mo:0.3%以下、Cu:
1%以下の1種または2種以上。
The above are the basic components of the steel targeted by the present invention. In the present invention, (A) Ni: 1% or less, Mo: 0.3% or less, Cu:
1% or less of one or more types.

(B)Ti: 0.002〜0.05%、Nb: 0.
0O5〜0.05%、V:0.005〜0.2%の1種
または2種以上 の(A)、(B)の群の一方または両方を含有せしめる
こともできる。まず、(A)群のNiは靭性を向上させ
るとともに焼入性を大きくして強度を上げるために添加
されるが、1%を越えると焼入性が大きくなり過ぎて冷
間鍛造性が悪くなるのでこれを上限とした。
(B) Ti: 0.002-0.05%, Nb: 0.
0O5 to 0.05%, V: 0.005 to 0.2%, one or more of the groups (A) and (B) or both may be contained. First, Ni in group (A) is added to improve toughness and increase hardenability to increase strength, but if it exceeds 1%, hardenability increases too much and cold forgeability deteriorates. Therefore, this is set as the upper limit.

MOは焼入れ性を向上させ、強い焼戻し軟化抵抗を与え
る元素であるが、0.3%を越えても添加量に見合うだ
けの効果が期待、できないのでこれを上限とした。
MO is an element that improves hardenability and provides strong temper softening resistance, but even if it exceeds 0.3%, an effect commensurate with the amount added cannot be expected, so this is set as the upper limit.

Cu+JNiと同様に靭性と焼入性を向上させるが。Like Cu+JNi, it improves toughness and hardenability.

1%を越えるとその効果は飽和するのでこれを上限とし
た。
If it exceeds 1%, the effect will be saturated, so this was set as the upper limit.

一方、(B)群のTi、Nb、Vはいずれも熱間圧延後
のオーステナイト結晶粒を微細化させ、高温域でのパー
ライト変態の促進を目的に添加される。
On the other hand, Ti, Nb, and V in group (B) are all added for the purpose of refining austenite crystal grains after hot rolling and promoting pearlite transformation in a high temperature range.

TiはNと結合してTiN化合物を形成し、熱間圧延後
のオーステナイト結晶粒の粗大化を防止して、高温域で
のパーライト変態を促進させる。また、TiとBは組合
せて添加する方が効果的で、TiはAQと共にNを固定
してBの熱間圧延後のパーライト変態を促進させる効果
と冷間鍛造後の焼入性効果を十分に発揮させるために添
加される。
Ti combines with N to form a TiN compound, prevents coarsening of austenite crystal grains after hot rolling, and promotes pearlite transformation in a high temperature range. In addition, it is more effective to add Ti and B in combination; Ti, together with AQ, fixes N and sufficiently promotes the pearlite transformation of B after hot rolling and the hardenability effect after cold forging. It is added to achieve the desired effect.

Tiは0.002%未満ではNを固定する効果が不十分
であり、一方0.05%を越えると冷間鍛造性及び靭性
に有害な粗大なTiNあるいはTiCが生成するので、
0.002〜0.05%に制限した。
If Ti is less than 0.002%, the effect of fixing N is insufficient, while if it exceeds 0.05%, coarse TiN or TiC that is harmful to cold forgeability and toughness is generated.
It was limited to 0.002-0.05%.

Nb、Vはいずれも圧延後のオーステナイト粒度を微細
化させてパーライト変態を促進することを目的に添加す
るが、それぞれ0.005%未満では微細効果が期待で
きず、一方Nbが0.05%。
Both Nb and V are added for the purpose of refining the austenite grain size after rolling and promoting pearlite transformation, but if each is less than 0.005%, no finer effect can be expected; on the other hand, if Nb is 0.05% .

■が0.2%をそれぞれ越えるとNb、Vの粗大な炭窒
化物が析出して靭性及び冷間鍛造性を劣化させるので、
Nbは0.005〜0.05%、またVは0.005〜
0.2%にそれぞれ限定した。
If (2) exceeds 0.2%, coarse carbonitrides of Nb and V will precipitate and deteriorate toughness and cold forgeability.
Nb is 0.005-0.05%, and V is 0.005-0.005%
Each was limited to 0.2%.

次に、本発明における軟質化処理条件について述べる。Next, the softening treatment conditions in the present invention will be described.

まず、前記の化学組成を有する鋼について熱間圧延後の
冷却速度を15℃/分以下に限定したのは、15℃/分
より速く冷却されると低温変態パーライトもしくはベイ
ナイトが生成し、圧延材の強度が上るため、後続する6
90〜740℃の焼鈍でも目標の軟質化が達成できない
ためである。冷却速度は遅い方が有利であるが、設備上
、生産性上の実用的な面を考慮すると、3〜b 却速度が軟質化と生産性を両立させる好ましい冷却速度
範囲である。また徐冷温度範囲は、熱間圧延後直ちに徐
冷してもさしつかえないが、本発明の対象とする成分系
では、750℃から徐冷すれば十分である。徐冷停止温
度は、パーライト変態終了前に徐冷を停止するとその後
の放冷過程で強度の高い低温パーライトもしくはベイナ
イトが生成して硬くなるので、パーライト変態終了温度
とした。パーライト変態終了温度は鋼種、冷却速度によ
って変るが本発明の対象とする成分系の鋼では、約65
0〜680℃である。
First, the cooling rate after hot rolling of steel with the above chemical composition was limited to 15°C/min or less because cooling faster than 15°C/min produces low-temperature transformed pearlite or bainite, and the rolled material Since the strength of 6 increases, the subsequent 6
This is because the target softening cannot be achieved even by annealing at 90 to 740°C. Although it is advantageous to have a slow cooling rate, in consideration of practical aspects of equipment and productivity, a cooling rate of 3 to b is a preferable cooling rate range that achieves both softening and productivity. Regarding the slow cooling temperature range, slow cooling may be performed immediately after hot rolling, but slow cooling from 750° C. is sufficient for the component system targeted by the present invention. The slow cooling stop temperature was set as the pearlite transformation finish temperature because if slow cooling is stopped before the end of pearlite transformation, high-strength low-temperature pearlite or bainite will be generated and hardened in the subsequent cooling process. The pearlite transformation end temperature varies depending on the steel type and cooling rate, but for steel with the composition targeted by the present invention, it is approximately 65
The temperature is 0 to 680°C.

また、圧延後の焼鈍温度を690〜740℃に限定した
のは、690℃より低温では目標の軟質化が達成されず
、一方740℃を越えると鋼材内でMnなどの元素が偏
析している箇所がオーステナイト化してしまうためであ
る。保定時間は3゜分〜5時間に限定したが、30分未
満では軟質化が目標値にまで進行せず、一方5時間以内
で十分に軟質化し、これ以上保定する必要がないためで
ある。 以下、実施例により本発明の効果をさらに具体
的に説明する。
In addition, the reason why the annealing temperature after rolling was limited to 690-740°C is because the target softening cannot be achieved at temperatures lower than 690°C, while elements such as Mn segregate within the steel when it exceeds 740°C. This is because the parts become austenite. The holding time was limited to 3° minutes to 5 hours, but this is because softening does not progress to the target value if it is less than 30 minutes, while it becomes sufficiently soft within 5 hours and there is no need to hold it any longer. Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

[実施例コ 第1表に供試材の化学組成ならびに通常の熱間圧延で1
3φm111に仕上げた後の冷却条件等を示す。
[Example Table 1 shows the chemical composition of the sample material and the results obtained by normal hot rolling.
The cooling conditions etc. after finishing to 3φm111 are shown.

同表中試験番号No、5.7.10−14.17゜18
.20,21,27.29が本発明例で、その他は比較
例である。これらの材料を用いて、引張試験はJIS1
4A号試験片で行い、冷鍛性の評価はQ、5+nm深さ
のVノツチを付けた1oφmmX15mmの試験片で据
込率4o%の圧縮試験を行った時の割れの発生の有無で
求め、○印は割れが発生がしなかったこと、x印は割れ
が発生したことを示す、これらの試験結果を第1表に併
記する。
Test number No. in the same table, 5.7.10-14.17゜18
.. Nos. 20, 21, 27, and 29 are examples of the present invention, and the others are comparative examples. Using these materials, the tensile test was conducted according to JIS1
The evaluation of cold forgeability was performed using a No. 4A test piece, and the evaluation of cold forgeability was determined by the presence or absence of cracks when a compression test was performed at an upsetting rate of 4o% using a 1oφmm x 15mm test piece with a V-notch of Q, 5+nm depth. The test results are also listed in Table 1, where the ○ mark indicates that no cracking occurred, and the x mark indicates that cracking occurred.

同表に見られるように、本発明例はいずれも短時間焼鈍
で目標強度22 + 63 Ceq  (kg/mwt
”)を十分に下まわり、満足すべき軟質化度が得られて
いる。また、冷間鍛造性も申し分ない。
As shown in the table, all of the examples of the present invention achieved a target strength of 22 + 63 Ceq (kg/mwt
”), and a satisfactory degree of softening has been obtained. Cold forging properties are also satisfactory.

これに対して、比較例であるNo、2.15゜16.2
4.28はいずれも熱間圧延後の冷却条件あるいは焼鈍
条件が不適切なために軟質化されなかった例である。即
ち、No、2.16は圧延後の冷却速度が速すぎたため
に圧延材の強度が高すぎて、短時間焼鈍では軟質化され
なかった。−方、No、15は焼鈍温度が高すぎたため
に、N o 。
On the other hand, the comparative example No. 2.15°16.2
4.28 are all examples in which softening was not achieved due to inappropriate cooling conditions or annealing conditions after hot rolling. That is, in No. 2.16, the cooling rate after rolling was too fast, so the strength of the rolled material was too high, and it could not be softened by short-time annealing. - On the other hand, No. 15 was No because the annealing temperature was too high.

28は逆に低すぎたために、いずれも目標強度22+6
3Ceq  (kg/mo+”)を下回らせることがで
きなかった。また、No、24は焼鈍時間が短かすぎて
軟質化されなかった例である。
On the other hand, 28 was too low, so the target strength was 22+6 in both cases.
It was not possible to reduce the temperature to below 3Ceq (kg/mo+''). In addition, No. 24 is an example in which the annealing time was too short and softening was not achieved.

比較例であるNo、4はMn、No、6はCr。Comparative examples No. 4 are Mn, No. 6 are Cr.

No、9はSiの含有量が多すぎるために圧延後の冷却
条件ないし焼鈍条件を最適にしても目標の軟質化に到達
していない。
In No. 9, the Si content was too high, so even if the cooling conditions or annealing conditions after rolling were optimized, the target softening was not achieved.

また、比較例であるN001はB、No、3はAl1の
含有量がそれぞれ少なすぎるために、いずれも軟質化を
達成できていない。
Moreover, since the content of B, No. 3, and Al1 of Comparative Example No. 001 were too small, softening could not be achieved in any of them.

さらに、比較例であるN008はB、No、23はTi
の含有量が過剰なため、軟質化はできているものの冷間
鍛造性が悪い、No、19はSiとMnの含有量が多す
ぎるために強度が高く、しかもNb量が多すぎるために
冷間鍛造性も悪い。No。
Furthermore, comparative example No. 008 is B, No. 23 is Ti.
No. 19 has too much Si and Mn content, so it has high strength, and it has too much Nb, so it has poor cold forging properties. It also has poor forging properties. No.

22は目標とする軟質化はできているが、V量が多すぎ
るために冷間鍛造性が劣っていた例である。
No. 22 is an example in which the targeted softening was achieved, but the cold forgeability was poor because the amount of V was too large.

また、No、25.26はそれぞれp、s量が多すぎて
冷間鍛造性に問題があった例である。
Moreover, No. 25.26 is an example in which the amounts of p and s were too large, respectively, and there was a problem in cold forgeability.

[発明の効果コ 以上の実施例からも明らかなごとく、本発明は鋼材組成
と熱間圧延後の冷却条件並びに焼鈍条件とを最適に選択
することによって、短時間焼鈍で機械構造用合金鋼の軟
質化を可能にしたものであり、産業上の効果は極めて顕
著なものがある。
[Effects of the Invention] As is clear from the above examples, the present invention can produce alloy steel for mechanical structures in a short time annealing by optimally selecting the steel material composition, cooling conditions after hot rolling, and annealing conditions. This makes it possible to soften the material, and its industrial effects are extremely significant.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC:0.15〜0.65%、Si:0.
1%未満、 Mn:0.2〜0.5%、 B:0.0003〜0.01%、 Cr:0.7超〜1.8%、 Al:0.01〜0.1%、 を含有し、Pを0.02%未満、Sを0.02%未満と
制限し、残部はFeおよび不可避不純物よりなる鋼につ
いて、熱間圧延後、少なくとも750℃からパーライト
変態終了までの温度範囲を15℃/分以下の冷却速度で
徐冷した後、あらためて690〜740℃の温度範囲で
30分〜5時間保定することを特徴とする機械構造用合
金鋼の軟質化法。
(1) C: 0.15-0.65%, Si: 0.
less than 1%, Mn: 0.2-0.5%, B: 0.0003-0.01%, Cr: more than 0.7-1.8%, Al: 0.01-0.1%, For steels containing P and S of less than 0.02% and S of less than 0.02%, with the remainder consisting of Fe and unavoidable impurities, the temperature range after hot rolling is from at least 750°C to the end of pearlite transformation. A method for softening alloy steel for mechanical structures, which comprises slow cooling at a cooling rate of 15° C./min or less, and then maintaining the temperature in a temperature range of 690 to 740° C. for 30 minutes to 5 hours.
(2)重量%でC:0.15〜0.65%、Si:0.
1%未満、 Mn:0.2〜0.5%、 B:0.0003〜0.01%、 Cr:0.7超〜1.8%、 Al:0.01〜0.1% を含有し、Pを0.02%未満、Sを0.02%未満と
制限し、更に (A)Ni:1%以下、Mo:0.3%以下、Cu:1
%以下の1種または2種以上、 (B)Ti:0.002〜0.05%、Nb:0.00
5〜0.05%、V:0.005〜0.2%の1種また
は2種以上、 の(A)、(B)の群の一方または両方を含有し、残部
はFeおよび不可避不純物よりなる鋼について、熱間圧
延後、少なくとも750℃からパーライト変態終了まで
の温度範囲を15℃/分以下の冷却速度で徐冷した後、
あらためて690〜740℃の温度範囲で30分〜5時
間保定することを特徴とする機械構造用合金鋼の軟質化
法。
(2) C: 0.15-0.65%, Si: 0.
Contains less than 1%, Mn: 0.2-0.5%, B: 0.0003-0.01%, Cr: more than 0.7-1.8%, Al: 0.01-0.1% However, P is limited to less than 0.02%, S is limited to less than 0.02%, and further (A) Ni: 1% or less, Mo: 0.3% or less, Cu: 1
% or less, (B) Ti: 0.002 to 0.05%, Nb: 0.00
5 to 0.05%, V: 0.005 to 0.2%, one or more of the groups (A) and (B), and the remainder is Fe and unavoidable impurities. After hot rolling, the steel is slowly cooled in a temperature range from at least 750°C to the end of pearlite transformation at a cooling rate of 15°C/min or less,
A method for softening alloy steel for machine structural use, which comprises maintaining the temperature in a temperature range of 690 to 740°C for 30 minutes to 5 hours.
JP19528786A 1986-08-22 1986-08-22 Softening method for alloy steel for machine structure use Pending JPS6353209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19528786A JPS6353209A (en) 1986-08-22 1986-08-22 Softening method for alloy steel for machine structure use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19528786A JPS6353209A (en) 1986-08-22 1986-08-22 Softening method for alloy steel for machine structure use

Publications (1)

Publication Number Publication Date
JPS6353209A true JPS6353209A (en) 1988-03-07

Family

ID=16338645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19528786A Pending JPS6353209A (en) 1986-08-22 1986-08-22 Softening method for alloy steel for machine structure use

Country Status (1)

Country Link
JP (1) JPS6353209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001940A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174323A (en) * 1985-01-28 1986-08-06 Nippon Steel Corp Method for softening machine structural steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174323A (en) * 1985-01-28 1986-08-06 Nippon Steel Corp Method for softening machine structural steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001940A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method for designing component in alternative steel for chromium-molybdenum steel

Similar Documents

Publication Publication Date Title
JP3139876B2 (en) Method of manufacturing non-heat treated steel for hot forging and non-heat treated hot forged product, and non-heat treated hot forged product
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JP4012475B2 (en) Machine structural steel excellent in cold workability and low decarburization and method for producing the same
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH039168B2 (en)
JPH05105957A (en) Production of heat resistant high strength bolt
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JP2768062B2 (en) Manufacturing method of high strength tough steel
JPS6156235A (en) Manufacture of high toughness nontemper steel
JP2756535B2 (en) Manufacturing method for strong steel bars
JP2861698B2 (en) Manufacturing method of high yield ratio high toughness non-heat treated high strength steel
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPS6137333B2 (en)
JP3999915B2 (en) ERW steel pipe for cold forging with excellent workability and its manufacturing method
JPS6353209A (en) Softening method for alloy steel for machine structure use
JP3543581B2 (en) Ferrite / pearlite non-heat treated steel
JPH0533283B2 (en)
JPH026828B2 (en)
JPS6353208A (en) Spheroidizing annealing method for alloy steel for machine structural use
JP3033459B2 (en) Manufacturing method of non-heat treated high strength steel
JPH1171633A (en) Induction hardened parts excellent in strength and fatigue resistance and production thereof