JPS6075517A - Manufacture of nonrefined forged steel article - Google Patents

Manufacture of nonrefined forged steel article

Info

Publication number
JPS6075517A
JPS6075517A JP18235583A JP18235583A JPS6075517A JP S6075517 A JPS6075517 A JP S6075517A JP 18235583 A JP18235583 A JP 18235583A JP 18235583 A JP18235583 A JP 18235583A JP S6075517 A JPS6075517 A JP S6075517A
Authority
JP
Japan
Prior art keywords
steel
temperature
forging
forged
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18235583A
Other languages
Japanese (ja)
Inventor
Morifumi Nakamura
中村 守文
Toshio Maeda
前田 壽雄
Yoshiyuki Nakatani
中谷 良行
Heijiro Kawakami
川上 平次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18235583A priority Critical patent/JPS6075517A/en
Publication of JPS6075517A publication Critical patent/JPS6075517A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the strength, toughness and ductility by subjecting a steel contg. prescribed percentages of C, Si, Mn, V, etc. to hot forging and heat treatment each at a prescribed temp. CONSTITUTION:A steel consisting of, by weight, 0.2-0.6% C, 0.15-1% Si, 0.6- 2% Mn, 0.03-0.3% V, <=0.12% S, 0.015-0.06% Al, 0.005-0.02% N and the balance Fe is manufactured by melting. The steel is forged at 750-1,100 deg.C starting temp. and 750-1,050 deg.C finishing temp., and it is cooled to a temp. between the temp. at which ferrite-pearlite transformation is finished and 100 deg.C in boiling water.

Description

【発明の詳細な説明】 本発明は非調質鍛鋼品の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing non-thermal forged steel products.

従来、自動車や建設機械に用いられる機械構造用部品は
、機械構造用炭素鋼や合金鋼を素材鋼として、これを熱
間鍛造した後、再加熱し、焼入れ−焼戻し等の調質処理
を施して、目的、用途に応じた強度特性を付与して製造
され、使用に供されている。しかし、上記熱処理には多
大の熱エネルギー費用を要すると共に、処理工程の増加
、仕掛り品の増大等のために製造費用が高くならざるを
得ない。
Conventionally, mechanical structural parts used in automobiles and construction machinery have been produced by hot forging carbon steel or alloy steel for mechanical structural use, then reheating, and subjecting it to heat treatment such as quenching and tempering. They are manufactured and put into use with strength characteristics depending on the purpose and use. However, the above-mentioned heat treatment requires a large amount of thermal energy cost, and the manufacturing cost inevitably increases due to an increase in the number of processing steps, an increase in the number of products in progress, and the like.

そこで、近年、鍛鋼品の製造において、製造工程を簡略
化、特に、焼入れ一焼戻し工程を省略するために、機械
構造用炭素鋼や合金鋼に微量のV、Nb、T+等の所謂
析出硬化型合金元素を添加した所謂熱間鍛造型非調質鋼
を素材とし、熱間鍛造時の加熱と、鍛造及びその後の冷
却工程を利用して、鍛造後放冷のままで所要の特性を得
る非調質鍛鋼品が注目されており、一部では既に実用化
されている。
Therefore, in recent years, in the manufacture of forged steel products, in order to simplify the manufacturing process, and in particular to omit the quenching and tempering process, so-called precipitation hardening type carbon steels and alloy steels containing trace amounts of V, Nb, T+, etc. The material is so-called hot-forged non-tempered steel with added alloying elements, and by using the heating during hot forging, the forging and the subsequent cooling process, it is possible to obtain the required properties while leaving it to cool after forging. Heat-treated forged steel products are attracting attention, and some have already been put into practical use.

このような非調質鍛鋼品は、通常、次のようにして製造
される。即ち、素材鋼の鍛造を1150〜1300℃の
温度から開始し、1100〜1300℃の温度で鍛造を
終了した後、大気中で放冷するか、又は衝風冷却するの
である。しかし、かかる従来の方法によれば、素材鋼の
化学成分、例えば、C,Mn、V等の添加量を調整する
ことによって、所要の強度を得ることはできても、強度
の上昇に伴う靭性及び延性の低下が避けられない。
Such non-thermal forged steel products are usually manufactured as follows. That is, forging of the steel material is started at a temperature of 1150 to 1300°C, and after the forging is finished at a temperature of 1100 to 1300°C, it is left to cool in the atmosphere or is blast cooled. However, according to such conventional methods, although it is possible to obtain the required strength by adjusting the chemical components of the steel material, such as the amounts of added C, Mn, V, etc., and a decrease in ductility is unavoidable.

本発明者らは、非調質鍛鋼品の製造における上記した問
題を解決するために鋭意研究した結果、所定の組成を有
する熱間鍛造型非調質鋼を素材として、鍛造の開始温度
及び終了温度を従来の方法に比べて低温側に規定すると
共に、鍛造後の冷却方法として沸騰水中で100°Cま
で冷却する方法を採用することにより、鋼に微細なパー
ライト・フェライト組織を形成させることができ、かく
して、高強度で靭性、延性にすぐれ、更に、被削性の点
でも従来の熱処理鍛鋼品より改善された非調質鍛鋼品を
得ることができることを見出して本発明に至ったもので
ある。
As a result of intensive research to solve the above-mentioned problems in manufacturing non-thermal forged steel products, the inventors of the present invention have determined that the forging start temperature and end temperature are By setting the temperature to a lower temperature than conventional methods and by using a method of cooling down to 100°C in boiling water after forging, it is possible to form a fine pearlite/ferrite structure in the steel. Thus, we have discovered that it is possible to obtain a non-thermal forged steel product that has high strength, excellent toughness and ductility, and is also improved in terms of machinability compared to conventional heat-treated steel forgings, leading to the present invention. be.

本発明による非調質鍛鋼品の製造方法は、重量%で CO,20〜0.60%、 Sto、15〜1.0% Mn 0.60〜2.0% V 0.03〜0.30% S O,12%以下 、l O,015〜0.060% N O,005〜0.020%、及び 残部が実質的に鉄及び不可避的不純物よりなる鋼を素材
鋼として、750〜1100’cの温度で鍛造を開始し
、750〜1050℃の温度で鍛造を終了した後、沸騰
水中でフェライト・パーライト変態が終了する温度から
100℃までの温度範囲に冷却することを特徴とする。
The method for producing a non-thermal forged steel product according to the present invention includes, in weight percent, CO, 20-0.60%, Sto, 15-1.0%, Mn 0.60-2.0%, V 0.03-0.30. % SO, 12% or less, 1 O, 015 to 0.060%, NO, 005 to 0.020%, and the balance substantially consisting of iron and unavoidable impurities as the steel material, 750 to 1100' Forging is started at a temperature of c, and after forging is finished at a temperature of 750 to 1050°C, cooling is performed in boiling water to a temperature range from the temperature at which ferrite-pearlite transformation ends to 100°C.

先ず、本発明の方法において素材鋼として用いる熱間鍛
造型非調質鋼の組成の限定理由を説明する。
First, the reasons for limiting the composition of the hot forged non-tempered steel used as the raw material steel in the method of the present invention will be explained.

Cは鍛鋼品の強度を確保し、また、VやCr等にその炭
化物を形成させ、その析出強化作用を発揮させるために
必要不可欠の元素として添加されるが、その含有量が0
.20%未満ではかかる強化効果に乏しく、一方、0.
60%を越えるときは、炭化物の生成が過剰となって不
必要に高硬度化し、靭性が低下する。従って、Cの含有
量範囲は0.20〜0.60%とする。
C is added as an essential element to ensure the strength of forged steel products, and also to form carbides in V, Cr, etc., and exhibit its precipitation strengthening effect.
.. If it is less than 20%, such reinforcing effect is poor; on the other hand, if it is 0.
When it exceeds 60%, carbides are excessively produced, resulting in unnecessarily high hardness and decreased toughness. Therefore, the C content range is 0.20 to 0.60%.

Stば脱酸のほか、鍛造冷却後のフェライト組織を強化
するうえで有効な元素であるが、0.15%未満では強
度が不足し、1.0%を越える場合は靭性と被削性を劣
化させる。従って、Stの含有量範囲は0.15〜1.
0%とする。
In addition to deoxidizing St, it is an effective element for strengthening the ferrite structure after cooling for forging, but if it is less than 0.15%, the strength will be insufficient, and if it exceeds 1.0%, it will deteriorate the toughness and machinability. deteriorate. Therefore, the content range of St is 0.15 to 1.
Set to 0%.

Mnは鍛鋼品の強度を上昇させるために必須の元素であ
り、また、焼入れ性を向上させる元素でもあるが、0.
60%よりも少ないときは強度上昇の効果が乏しく、2
.0%を越えて多量に含有させると延性の劣化が著しく
、また、硬度を高めて被削性にも有害な影響を与えるの
で、その含有量は0.60〜2.0%の範囲とする。
Mn is an essential element for increasing the strength of steel forgings, and is also an element for improving hardenability, but 0.
When it is less than 60%, the effect of increasing strength is poor, and 2
.. If the content exceeds 0%, the ductility deteriorates significantly and the hardness increases, which has a detrimental effect on machinability, so the content should be in the range of 0.60 to 2.0%. .

■は本発明の方法において、素材鋼の鍛造後の冷却にお
いてC及びNと炭窒化物を形成させて鋼の強化を図り、
併せてその靭性を向上させるために重要な元素であるが
、含有量が0.03%未満であるときはこの効果に乏し
く、一方、0.30%よりも多量に含有させると、強度
上昇に伴って却つて靭性を低下させる。従って、■の含
有量範囲は0.03〜0.30%とする。
(2) In the method of the present invention, carbonitrides are formed with C and N during cooling of the raw steel after forging to strengthen the steel,
It is also an important element for improving its toughness, but if its content is less than 0.03%, this effect will be poor, while if it is contained in an amount greater than 0.30%, it will not increase the strength. At the same time, the toughness is reduced. Therefore, the content range of (1) is set to 0.03 to 0.30%.

Sは鍛鋼品の被削性を改善するために添加される。しか
し、含有量が0.12%を越える多量であるときは、靭
性値が低下するので上限を0.12%とする。
S is added to improve the machinability of steel forgings. However, if the content exceeds 0.12%, the toughness value decreases, so the upper limit is set to 0.12%.

Aρは脱酸効果と結晶粒度の微細化に有効であるが、こ
の効果を有効に発揮させるためには少なくとも0.01
5%を含有させる必要がある。しかし、0.060%を
越えて多量に含有させても効果の増大が僅かであり、ま
た、被剛性にも有害な影響を与えるので、その含有量範
囲は0.015〜0゜060%とする。
Aρ is effective for deoxidizing effect and refining grain size, but in order to effectively exhibit this effect, it must be at least 0.01
It is necessary to contain 5%. However, even if it is contained in a large amount exceeding 0.060%, the effect will only increase slightly and it will also have a detrimental effect on the stiffness, so the content range is 0.015 to 0.060%. do.

Nは前記したようにVやAβと結合させて炭窒化物を形
成させて結晶粒を微細化させ、鋼の強化をはかるために
有用な元素である。この効果を有効に発揮させるには少
なくとも0.005%の添加を必要とするが、反面、0
.020%を越えて多量に含有させても効果の増大が期
待できず、また、靭性の劣化をも招くので、その含有量
は0.005〜0.020%とする。
As mentioned above, N is an element useful for strengthening steel by combining with V and Aβ to form carbonitrides and making crystal grains finer. To effectively exhibit this effect, it is necessary to add at least 0.005%;
.. Even if it is contained in a large amount exceeding 0.020%, no increase in the effect can be expected, and it also causes deterioration of toughness, so the content is set at 0.005 to 0.020%.

更に、本発明において用いる素材鋼は、例えば、鍛鋼品
の表面硬化を行なう場合の焼入れ性を増す等、機械的性
質の種々の改善のために、必要に応じて1.0%以下の
範囲でCrを添加することができる。Crの含有量カ月
、θ%を越えるときは、素材鋼におけるMn量の比較的
多いことと相俟って焼入れ性が増し、マルテンサイト等
の適冷組織となるので好ましくない。
Furthermore, the raw material steel used in the present invention may be impregnated in an amount of 1.0% or less, as necessary, in order to improve various mechanical properties, such as increasing hardenability when surface hardening a forged steel product. Cr can be added. When the Cr content exceeds .theta.%, the hardenability increases due to the relatively large amount of Mn in the steel material, resulting in an appropriately cooled structure such as martensite, which is not preferable.

本発明の方法においては、上記のような組成を有する鋼
を素材鋼とし、これが含有するVが完全にオーステナイ
ト化する温度又はそれ以上に加熱した後、750〜11
00℃の温度で鍛造を開始し、750〜1050℃の温
度で鍛造を終了する。
In the method of the present invention, steel having the above-mentioned composition is used as a raw material steel, and after being heated to a temperature at which the V contained therein is completely austenitized or higher, a temperature of 750 to 11
Forging starts at a temperature of 00°C and ends at a temperature of 750 to 1050°C.

この鍛造開始温度が750℃よりも低いときは、鍛造自
体が既に困難であって、十分な成形性が得られない。一
方、鍛造開始温度が1100℃を越え、従って、終了温
度が1050℃を越えるときは、素材鋼においてオース
テナイト結晶粒が粗大化して焼入れ性が増し、鍛造後冷
却時にベイナイト等の適冷組織が生じて、靭性及び延性
が低下する。
When this forging start temperature is lower than 750°C, forging itself is already difficult and sufficient formability cannot be obtained. On the other hand, when the forging start temperature exceeds 1100°C and therefore the end temperature exceeds 1050°C, the austenite crystal grains in the raw steel become coarse and hardenability increases, and proper cooling structures such as bainite occur during cooling after forging. As a result, toughness and ductility decrease.

本発明の方法においては、このようにして所定の温度で
鍛造を開始し、且つ、所定の温度で鍛造を終了した後、
沸騰水中でフェライト・パーライト変態が終了する温度
から100℃までの温度範囲、例えば、100℃まで冷
却することにより、鋼に微細なフェライト・パーライト
組織を生成せしめて、鍛鋼品に高強度と併せて靭性及び
延性を付与し得るのである。更に、冷却媒体として沸騰
水を用いることにより、大気や衝風による冷却に比較し
て均一な冷却ができるうえに、冷却能が大気や衝風に比
較して大きいために、従来に比してフェライト・パーラ
イト変態させるに要する時間を短縮することができる。
In the method of the present invention, after forging is started at a predetermined temperature and finished at a predetermined temperature,
By cooling the steel to a temperature ranging from the temperature at which ferrite/pearlite transformation ends to 100°C, for example, 100°C in boiling water, a fine ferrite/pearlite structure is generated in the steel, resulting in high strength and high strength for steel forgings. It can impart toughness and ductility. Furthermore, by using boiling water as a cooling medium, it is possible to achieve more uniform cooling compared to air or blast cooling, and the cooling capacity is greater than that of air or blast, so it is more efficient than conventional methods. The time required for ferrite-pearlite transformation can be shortened.

また、冷却時に鍛鋼品のスケールの大部分が剥離される
ので、場合によっては従来必要であったショツトブラス
ト工程を省略することができる。
Furthermore, since most of the scale of the forged steel product is peeled off during cooling, the shot blasting step that was conventionally necessary can be omitted in some cases.

以上のように、本発明の方法によれば、素材鋼の組成を
所定の範囲とすると共に、この素材鋼を熱間鍛造し、冷
却するに際して、その開始温度、終了温度及び冷却方法
を選択することによって初めて所要の高強度に加えて、
靭性と延性とを有する非調質鍛鋼品を得ることができる
のである。
As described above, according to the method of the present invention, the composition of the steel material is set within a predetermined range, and when the steel material is hot forged and cooled, the starting temperature, ending temperature, and cooling method are selected. In addition to the high strength required for the first time,
A non-thermal forged steel product having toughness and ductility can be obtained.

実施例 重量%で G O,44%、 Si0.25%、 Mn0.85%、 P O,022%、 S O,024%、 N O,010%1 .67! 0.025%、 V O,098%、及び Cr0.11% なる組成を有する熱間鍛造型非調質鋼545CV鋼、及
び CO,45%、 SiO,24%、 Mn0.83%、 P O,020%、 S−0,022%、 N O,010%、 Aβ 0.024%、及び V O,096% なる組成を有するCr無添加鋼をそれぞれ、■がオース
テナイト化する温度まで加熱し、種々の温度で鍛造を開
始することによって鍛造終了温度を変化させ、このよう
にして軸部を有する熱間鍛造品を製作し、次いで、これ
を沸騰水冷却又は大気放冷した。得られた鍛鋼品の軸部
の長平方向より引張試験片及びJIS S号試験片を採
取し、その機械的性質を調べた。結果を図面に示す。
Example weight percentage: G O, 44%, Si 0.25%, Mn 0.85%, P O, 022%, S O, 024%, N O, 010%1. 67! Hot forged non-thermal steel 545CV steel with a composition of 0.025%, VO, 098%, and 0.11% Cr, and CO, 45%, SiO, 24%, Mn 0.83%, PO, Cr-free steels having the following compositions: 0.020%, S-0.022%, NO.010%, Aβ 0.024%, and VO.096% were heated to a temperature at which ■ becomes austenitic, and then subjected to various treatments. By starting forging at a temperature of , the forging end temperature was varied, a hot forged product having a shaft portion was produced in this way, and then this was cooled with boiling water or left to cool in the atmosphere. Tensile test pieces and JIS No. S test pieces were taken from the longitudinal direction of the shaft portion of the obtained steel forgings, and their mechanical properties were investigated. The results are shown in the drawing.

鍛造開始温度が1100℃、終了温度が1075℃であ
り、その後、沸騰水冷却した鍛鋼品は、ベイナイトを一
部混合したフェライト・パーライト組織を有し、従って
、大気放冷した場合に比べて引張強さは大きいが、絞り
及び衝撃値が劣る。
The forging start temperature is 1100°C, the finishing temperature is 1075°C, and the forged steel product is then cooled with boiling water. It has a ferrite-pearlite structure with some bainite mixed in, and therefore has a higher tensile strength than when cooled in the air. It has great strength, but poor aperture and impact value.

しかし、鍛造開始温度が1000℃、終了温度が102
5℃であり、その後、沸騰水冷却した鍛鋼1 0.2%耐力が尚約10kgf/−大きいうえに、絞り
及び衝撃値も大気放冷した場合と同等若しくはそれ以上
であり、かくして、本発明の方法によれば、強度が大き
く、且つ、靭性、延性にすぐれた非調質鍛鋼品を得るこ
とができる。
However, the forging starting temperature is 1000℃ and the finishing temperature is 102℃.
5°C, and then cooled with boiling water.The 0.2% yield strength of the forged steel 1 is still about 10 kgf/- higher, and the reduction of area and impact value are equal to or higher than those of the case where the steel is cooled in the atmosphere.Thus, the present invention According to the method described above, it is possible to obtain a non-thermal forged steel product having high strength and excellent toughness and ductility.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は545CV鋼及びCr無添加鋼を熱間鍛造後、沸
騰水冷却又は大気放冷して鍛鋼品を得る方法において、
鍛造開始及び終了温度と得られる鍛鋼品の機械的及び衝
撃性質との関係を示すグラフである。 特許出願人 株式会社神戸製鋼所 代理人 弁理士 牧 野 逸 部 2
The drawing shows a method for obtaining a forged steel product by hot forging 545CV steel and Cr-free steel, then cooling with boiling water or cooling in the atmosphere.
1 is a graph showing the relationship between forging start and end temperatures and the mechanical and impact properties of the resulting forged steel product. Patent applicant Kobe Steel, Ltd. Representative Patent attorney Ittsu Makino Department 2

Claims (1)

【特許請求の範囲】 (]) 重量%で CO,20〜0.60%、 SiO,15〜1.0% Mn 0.60〜2.0% V O,03〜0.30% S O,1,2%以下 A7! 0.015〜0.060% N O,005〜0.020%、及び 残部が実質的に鉄及び不可避的不純物よりなる鋼を素材
鋼として、750〜l 100 ”Cの温度で鍛造を開
始し、750〜1050 ’Cの温度で ゛鍛造を終了
した後、沸騰水中でフェライト・パーライト変態が終了
する温度から100 ”cまでの温度範囲に冷却するこ
とを特徴とする非調質鍛鋼品の製造方法。 〔2)重量%で CO,20〜0.60%、 Si0.15〜1.0% Mn 0.60〜2.0% V O,03〜0.30% S O,12%以下 Aβ 0.015〜0.0 6 0% N O,005〜0.020%、 Cr 1.0%以下、及び 残部が実質的に鉄及び不可避的不純物よりなる鋼を素材
鋼として、750〜1100℃の温度で鍛造を開始し、
750〜1050℃の温度で鍛造を終了した後、沸騰水
中でフェライト・パーライト変態が終了する温度から1
00℃までの温度範囲に冷却することを特徴とする非調
質鍛鋼品の製造方法。
[Claims] (]) In weight% CO, 20-0.60%, SiO, 15-1.0% Mn 0.60-2.0% VO, 03-0.30% SO, 1.2% or less A7! Forging is started at a temperature of 750 to 100"C using a steel containing 0.015 to 0.060% N O, 005 to 0.020%, and the balance substantially iron and unavoidable impurities. , at a temperature of 750 to 1050'C. After completing forging, the product is cooled in boiling water to a temperature range from the temperature at which ferrite-pearlite transformation ends to 100'C. Method. [2) In weight% CO, 20-0.60%, Si 0.15-1.0% Mn 0.60-2.0% VO, 03-0.30% SO, 12% or less Aβ 0. A temperature of 750 to 1100°C using steel as a raw material containing 015 to 0.060% N O, 005 to 0.020%, 1.0% or less of Cr, and the balance substantially consisting of iron and unavoidable impurities. Start forging with
After completing forging at a temperature of 750 to 1050°C, the temperature at which ferrite-pearlite transformation ends in boiling water is 1
A method for producing a non-thermal forged steel product characterized by cooling to a temperature range of up to 00°C.
JP18235583A 1983-09-29 1983-09-29 Manufacture of nonrefined forged steel article Pending JPS6075517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18235583A JPS6075517A (en) 1983-09-29 1983-09-29 Manufacture of nonrefined forged steel article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18235583A JPS6075517A (en) 1983-09-29 1983-09-29 Manufacture of nonrefined forged steel article

Publications (1)

Publication Number Publication Date
JPS6075517A true JPS6075517A (en) 1985-04-27

Family

ID=16116860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18235583A Pending JPS6075517A (en) 1983-09-29 1983-09-29 Manufacture of nonrefined forged steel article

Country Status (1)

Country Link
JP (1) JPS6075517A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274055A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Non-heattreated steel with high toughness for hot forging
JPS63199848A (en) * 1987-02-16 1988-08-18 Kobe Steel Ltd Non-heattreated steel for hot forging having excellent fatigue resistance and machinability
JP2016538417A (en) * 2013-09-26 2016-12-08 ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド Non-tempered steel and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274055A (en) * 1985-09-27 1987-04-04 Kobe Steel Ltd Non-heattreated steel with high toughness for hot forging
JPH0571657B2 (en) * 1985-09-27 1993-10-07 Kobe Steel Ltd
JPS63199848A (en) * 1987-02-16 1988-08-18 Kobe Steel Ltd Non-heattreated steel for hot forging having excellent fatigue resistance and machinability
JP2016538417A (en) * 2013-09-26 2016-12-08 ペキン ユニバーシティ ファウンダー グループ カンパニー,リミティド Non-tempered steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100939462B1 (en) Hot forged products excellent in fatigue strength, process for production thereof, and machine structural parts
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH0156124B2 (en)
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JP4328924B2 (en) Manufacturing method of high-strength shaft parts
JPH039168B2 (en)
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JP2888135B2 (en) High durability high strength non-heat treated steel and its manufacturing method
JPH11217649A (en) Steel for induction hardening having both cold workability and high strength and its production
JP6390685B2 (en) Non-tempered steel and method for producing the same
JPS6075517A (en) Manufacture of nonrefined forged steel article
JPH1162943A (en) Soft nitrided as rolled or normalized crankshaft and manufacture thereof
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPH04371547A (en) Production of high strength and high toughness steel
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture
JPH0576522B2 (en)
JPH09316540A (en) Manufacture of steel for machine structural use for contour induction hardening, excellent in cold forgeability, and manufacture of cold forged part
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPH1171633A (en) Induction hardened parts excellent in strength and fatigue resistance and production thereof
JP3617187B2 (en) Manufacturing method of high strength connecting rod
JPH036351A (en) High fatigue strength spring steel and its manufacture
JPH02179841A (en) Non-heattreated steel for induction hardening and its manufacture