JPH1162943A - Soft nitrided as rolled or normalized crankshaft and manufacture thereof - Google Patents

Soft nitrided as rolled or normalized crankshaft and manufacture thereof

Info

Publication number
JPH1162943A
JPH1162943A JP22149297A JP22149297A JPH1162943A JP H1162943 A JPH1162943 A JP H1162943A JP 22149297 A JP22149297 A JP 22149297A JP 22149297 A JP22149297 A JP 22149297A JP H1162943 A JPH1162943 A JP H1162943A
Authority
JP
Japan
Prior art keywords
steel
crankshaft
less
soft
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22149297A
Other languages
Japanese (ja)
Other versions
JP4010023B2 (en
Inventor
Masato Kurita
真人 栗田
Mitsuo Uno
光男 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22149297A priority Critical patent/JP4010023B2/en
Publication of JPH1162943A publication Critical patent/JPH1162943A/en
Application granted granted Critical
Publication of JP4010023B2 publication Critical patent/JP4010023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft intrided as rolled or normalized crankshaft to have excellent characteristics even when soft intrided as rolled or normalizing is applied without thermal refining and to provide manufacture thereof. SOLUTION: An as rolled or normalized crankshaft is manufactured of a steel consisting of 0.25-0.35 wt.% C, 0.05-1.50 wt.% Si, 0.80-1.20 wt.% MN, 0.005-0.03 wt.% Ti, 0.005-0.01 wt.% Al, 0.010-0.030 wt.% N, 0.10 or less wt.% S, and 0.0030 or less wt.% Ca, a rest consisting of Fe or inevitable impurities, and 0.03 wt.% P as impurities, 0.15 wt.% or less, and 0.02 wt.% V, and is soft- nitriding-treated. A material steel may further contain 0.05-0.20 wt.% Pb to improve machinability. The crankshaft is naturally cold-heat-dissipated after forging of a material. Thereafter, by applying a machining work and soft- nitriding treatment without effecting thermal treatment, manufacturing is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鍛造後の「焼入れ
焼もどし」や「焼ならし」などの調質処理を行わずに軟
窒化処理を施しても、高い疲労強度および優れた曲げ矯
正性をもつ鋼を素材とする軟窒化非調質クランク軸、お
よびそのクランク軸を製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a steel sheet having high fatigue strength and excellent bending straightening even if it is subjected to nitrocarburizing treatment without tempering such as "quenching and tempering" and "normalizing" after forging. The present invention relates to a nitrocarburized non-heat treated crankshaft made of a steel having heat resistance, and a method of manufacturing the crankshaft.

【0002】[0002]

【従来の技術】高い疲労強度が要求される自動車用等の
クランク軸では、鍛造および機械加工の後に高周波焼入
れや軟窒化処理などの表面処理を行うことが多い。軟窒
化処理は、疲労強度向上の点では高周波焼入れに若干劣
るものの、表面に硬質の化合物層が生成し、耐焼付き性
や耐かじり性を向上させるという点では著しく優れるた
め、軟窒化処理を施したクランク軸(以下「軟窒化クラ
ンク軸」と記す)も広く使用されている。
2. Description of the Related Art Crankshafts for automobiles and the like that require high fatigue strength are often subjected to surface treatment such as induction hardening and soft nitriding after forging and machining. Soft nitriding is slightly inferior to induction hardening in terms of improvement in fatigue strength, but is extremely excellent in that a hard compound layer is formed on the surface and improves seizure resistance and galling resistance. Such crankshafts (hereinafter referred to as "nitrocarburized crankshafts") are also widely used.

【0003】図1は、従来の調質鋼および後述する本発
明のクランク軸の素材となる鋼(以下、これを便宜的に
「本発明鋼」という)を使用する軟窒化クランク軸の製
造法を比較した工程の略図である。ここで(a)は従来
鋼を、また(b)は本発明鋼を素材とした場合の製品ま
での工程を示す。
FIG. 1 shows a method for manufacturing a soft-nitrided crankshaft using a conventional tempered steel and a steel used as a material of a crankshaft of the present invention described below (hereinafter, referred to as "the present invention steel" for convenience). FIG. Here, (a) shows the steps up to the product when the conventional steel is used and (b) uses the steel of the present invention as a raw material.

【0004】近年、図1(b)に示すように、コスト削
減や生産リードタイムの縮小のために調質処理を省略し
て鍛造のままで製品化する、いわゆる「非調質化」が多
くの自動車部品に対して検討されており、軟窒化クラン
ク軸でも同様である。しかしながら、調質処理を省略す
ることによって劣化する性能があり、このために非調質
化ができない部品がある。
In recent years, as shown in FIG. 1 (b), there is a lot of so-called "non-heat treatment" in which a heat treatment is omitted and a product is produced as forged in order to reduce costs and shorten production lead time. The same applies to nitrocarburized crankshafts. However, there is a performance that is degraded by omitting the tempering process, and therefore, there are parts that cannot be non-tempered.

【0005】まず第一に、鍛造後に調質処理を行わずに
軟窒化処理を施した部品(以下「非調質軟窒化鋼部品」
と呼ぶ)の疲労限度は、同一組成の鋼を鍛造後に調質処
理してから軟窒化処理を施した部品(以下「調質軟窒化
鋼部品」と呼ぶ)のそれよりも低い。
First, after forging, a part subjected to a nitrocarburizing treatment without performing a tempering treatment (hereinafter referred to as a "non-tempered nitrocarburized steel part")
) Is lower than that of a part obtained by subjecting steel of the same composition to forging, tempering and then nitrocarburizing (hereinafter referred to as “tempered nitrocarburized steel part”).

【0006】第二に、非調質軟窒化鋼部品では軟窒化処
理後の曲げ矯正時に大きな亀裂を生じる。軟窒化処理に
よって生じた変形は、逆方向の曲げ変形を加えることに
よって矯正するが、その曲げにより非調質軟窒化鋼部品
に亀裂が発生する限界のひずみ量(以下「曲げ矯正可能
ひずみ量」と呼ぶ)は、調質軟窒化鋼のそれよりも小さ
い。一般に、曲げ矯正可能ひずみ量が小さいほど、その
部分が自動車に組み込まれて使用されたとき、部品の疲
労限度が低下する。
Secondly, large cracks occur in the non-heat treated nitrocarburized steel parts when straightening after nitrocarburizing. Deformation caused by the nitrocarburizing treatment is corrected by applying bending deformation in the opposite direction. However, the critical strain amount at which cracks occur in non-heat treated nitrocarburized steel parts due to the bending (hereinafter referred to as “bending straightening strain amount”) Is smaller than that of tempered nitrocarburized steel. In general, the smaller the amount of strain that can be bent, the lower the fatigue limit of the part when the part is used in an automobile.

【0007】上記のように、非調質軟窒化鋼部品は、曲
げ矯正可能ひずみ量が調質軟窒化鋼部品に比べ小さいの
で、軟窒化処理によるひずみが大きい場合に曲げ矯正を
行うクランクシャフトには使用できない。
[0007] As described above, the non-heat-treated nitrocarburized steel part has a smaller amount of strain that can be straightened than the tempered nitrocarburized steel part. Cannot be used.

【0008】非調質鋼は、1100℃以上に加熱した後、10
00℃以上で鍛造を終了し放冷したままなので、その組織
は巨大な旧オーステナイト粒界に沿った薄いネット状フ
ェライトとその残りの部分のパーライトから構成され
る。それに比べて調質鋼の組織は、微細なオーステナイ
トから変態した、 (a)微細なフェライトとパーライトの
混合組織(焼準の場合)、または (b)きわめて微細なラ
スと炭化物からなるマルテンサイトまたはベイナイト
(焼入れ焼戻しの場合)、のいずれかである。また非調
質鋼のフェライト体積率は、焼準した鋼のそれに比較し
て小さい。これは、非調質鋼のオーステナイト粒径が大
きい分だけ焼入れ性が大きく、それだけフェライト変態
が抑制されることを反映するものである。
[0008] The non-heat treated steel is heated to 1100 ° C or higher,
Since the forging is completed at a temperature of 00 ° C. or more and the steel is left to cool, its structure is composed of a thin net-like ferrite along a giant old austenite grain boundary and pearlite of the rest. In contrast, the structure of tempered steel is transformed from fine austenite, (a) a mixed structure of fine ferrite and pearlite (in case of normalization), or (b) a martensite consisting of extremely fine lath and carbide. Bainite (in the case of quenching and tempering). The ferrite volume fraction of the non-heat treated steel is smaller than that of the normalized steel. This reflects that the hardenability is higher by the larger austenite grain size of the non-heat treated steel, and the ferrite transformation is suppressed accordingly.

【0009】これまでにも非調質軟窒化鋼部品の疲労限
度および曲げ矯正性を同時に改善する試みはなされたこ
とはあるが、十分に目的を達成した例はない。例えば、
析出硬化元素を高濃度に添加することによって、鍛造の
ままで、調質処理も軟窒化処理も施さずに高い疲労限度
を得るという発明がなされている。特開平7−102340号
公報および特開平4−193931号公報などにそのような発
明が開示されている。
Attempts have been made to simultaneously improve the fatigue limit and bend straightening of non-heat-treated nitrocarburized steel parts, but there is no example in which the object has been sufficiently achieved. For example,
An invention has been made in which, by adding a precipitation hardening element at a high concentration, a high fatigue limit can be obtained without forging treatment or nitrocarburizing treatment while forging. Such inventions are disclosed in JP-A-7-102340 and JP-A-4-193393.

【0010】また、特開平8−144018号公報には窒化後
の硬さのみを考慮した発明が開示されている。これらの
発明の鋼は、いずれも強力な析出硬化元素であるバナジ
ウム(V)を高濃度に含有する鋼であり、高価である。
また、耐焼付き性などが問題になる場合は、これらの高
V鋼に軟窒化処理を施さなければならないが、高V鋼の
軟窒化処理後の曲げ矯正性はきわめて劣る。
Japanese Patent Application Laid-Open No. 8-144018 discloses an invention in which only the hardness after nitriding is considered. The steels of these inventions are all steels containing a high concentration of vanadium (V), which is a strong precipitation hardening element, and are expensive.
Further, when seizure resistance or the like becomes a problem, these high-V steels must be subjected to nitrocarburizing treatment, but the bending straightening properties of the high-V steel after nitrocarburizing are extremely poor.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、調質
処理を行わないで軟窒化処理を施しても、繰り返し曲げ
により、あるいは曲げ矯正時に応力・ひずみが集中する
フィレットのR部の疲労限度が高く、かつ、曲げ矯正時
に発生する亀裂が実際上問題とならない程度にまで小さ
いか、あるいは亀裂が発生する限界のひずみ量が高い軟
窒化非調質クランク軸とその製造方法を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for reducing the fatigue of the R portion of a fillet where stress and strain are concentrated due to repeated bending or when straightening is performed even if nitrocarburizing treatment is performed without tempering treatment. To provide a nitrocarburized non-refined crankshaft having a high limit and a crack generated at the time of straightening that is small enough to cause no practical problem, or a high strain limit at which a crack is generated, and a method of manufacturing the same. It is in.

【0012】具体的には、焼準処理を行った代表的なJ
ISのS48C鋼製の軟窒化調質クランク軸以上の性
能、即ち、高い疲労限度および曲げ矯正性(曲げ矯正可
能ひずみ量)を同時に満足する性能、を持つクランク軸
およびその製造方法を提供することを目的とする。
Specifically, a typical J that has been subjected to normalizing
Provided is a crankshaft having a performance higher than that of a soft-nitrided tempered crankshaft made of IS S48C steel, that is, a performance that simultaneously satisfies a high fatigue limit and bending straightening property (bend straightening strain), and a method of manufacturing the same. With the goal.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、次の
(1) および(2) のクランク軸、ならびに(3) のその製造
方法にある。
The gist of the present invention is as follows.
(1) The crankshaft according to (2) and the method according to (3).

【0014】(1) 重量%で、C:0.25〜0.35%、Si:0.
05〜1.50%、Mn:0.80〜1.20%、Ti:0.005 〜0.03%、
Al:0.0005〜0.01%、N:0.010 〜0.030 %、S: 0.10
%以下、Ca:0.0030以下を含有し、残部がFeおよび不可
避不純物から成り、不純物としてのPが0.03%以下、Cr
が0.15%以下、Vが0.02%以下である鋼から製造され軟
窒化処理されている非調質クランク軸。
(1) By weight%, C: 0.25 to 0.35%, Si: 0.
05-1.50%, Mn: 0.80-1.20%, Ti: 0.005-0.03%,
Al: 0.0005 to 0.01%, N: 0.010 to 0.030%, S: 0.10
% Or less, Ca: 0.0030 or less, the balance consists of Fe and unavoidable impurities, P as an impurity is 0.03% or less, Cr
A non-heat-treated crankshaft manufactured from steel with 0.15% or less and V of 0.02% or less and subjected to nitrocarburizing treatment.

【0015】(2) 上記(1) の成分に加えて、さらに0.05
〜0.20%のPbを含有する鋼から製造され、軟窒化処理さ
れている非調質クランク軸。
(2) In addition to the above component (1), 0.05
Non-heat treated crankshaft manufactured from steel containing ~ 0.20% Pb and nitrocarburized.

【0016】(3) 上記(1) または(2) に記載の化学組成
の鋼をクランク軸に鍛造した後、自然放冷し、その後は
熱処理をすることなく機械加工および軟窒化処理を施す
ことを特徴とする軟窒化非調質クランク軸の製造方法。
(3) Forging a steel having the chemical composition described in (1) or (2) above into a crankshaft, allowing it to cool naturally, and thereafter subjecting it to machining and soft nitriding without heat treatment. A method for producing a soft-nitrided non-refined crankshaft, comprising:

【0017】なお、上記(3) の方法における軟窒化処理
は、次の条件で行うのが望ましい。
The nitrocarburizing treatment in the method (3) is preferably performed under the following conditions.

【0018】 窒化ガス雰囲気・・・・RXガス:アンモニア= 0.8〜
1.2 の雰囲気 窒化処理温度 ・・・・570 〜600 ℃ 窒化処理時間 ・・・・60〜120 分 窒化処理後の冷却・・・油冷
Nitrogen gas atmosphere: RX gas: ammonia = 0.8 to
1.2 atmosphere Nitriding temperature ・ ・ ・ 570-600 ℃ Nitriding time ・ ・ ・ ・ 60-120 min Cooling after nitriding ・ ・ ・ Oil cooling

【0019】[0019]

【発明の実施の形態】一般に、窒化処理によって形成さ
れる窒化層は、最表面の化合物層とその下の拡散層とか
らなる。非調質軟窒化鋼部品で疲労破壊が発生する起点
は、拡散層内あるいは拡散層と母材の境界部であり、ま
た曲げ矯正で問題となる亀裂は拡散層での亀裂である。
即ち、疲労破壊および曲げ矯正時の割れを支配するのは
拡散層の性質である。そこで、以下の説明で「表面」と
いうときは、化合物層を除いた拡散層の表面側を意味す
るものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, a nitrided layer formed by a nitriding treatment comprises a compound layer on the outermost surface and a diffusion layer thereunder. The starting point at which fatigue fracture occurs in a non-heat-treated nitrocarburized steel part is in the diffusion layer or at the boundary between the diffusion layer and the base material, and a crack that poses a problem in bending correction is a crack in the diffusion layer.
That is, it is the properties of the diffusion layer that govern fatigue fracture and cracking during bending correction. Therefore, in the following description, “surface” means the surface side of the diffusion layer excluding the compound layer.

【0020】従来の非調質軟窒化鋼部品の疲労限度が低
い原因は、次のように考えられる。
The cause of the low fatigue limit of the conventional non-heat treated nitrocarburized steel parts is considered as follows.

【0021】非調質軟窒化鋼部品では、拡散層と母材部
の境界付近には引張応力が残留する。
In a non-heat-treated nitrocarburized steel part, a tensile stress remains near the boundary between the diffusion layer and the base material.

【0022】疲労限度の改善のためには、この引張残留
応力を減少させるか、さらに望ましくは圧縮残留応力と
することが必要である。
In order to improve the fatigue limit, it is necessary to reduce the tensile residual stress or more desirably to the compressive residual stress.

【0023】非調質軟窒化鋼部品では、素材が析出硬化
元素を含まない鋼であっても、硬さは表面で著しく高く
なり、内部に向かって急勾配で低下する。このために、
表面には高い圧縮残留応力が発生するものの、境界付近
ではそれと均衡する引張残留応力が生じるものと推測さ
れる。
In the case of a non-heat treated nitrocarburized steel part, even if the material is a steel containing no precipitation hardening element, the hardness is significantly increased on the surface and decreases steeply toward the inside. For this,
It is presumed that a high compressive residual stress is generated on the surface, but a tensile residual stress is generated near the boundary, which is balanced with it.

【0024】非調質軟窒化鋼部品において、表面のみ硬
さが著しく高く、かつ硬化層深さが小さいということ
は、非調質軟窒化鋼部品では外部から入った窒素が内部
に入りにくく表面にとどまっていることを意味する。亀
裂起点となる境界部の高い引張残留応力を低減するに
は、内部にまで窒素原子を拡散させることによって、硬
さ勾配をなだらかにして、硬さを奥まで分布させること
が必要である。
In non-heat-treated nitrocarburized steel parts, the fact that the hardness of only the surface is extremely high and the depth of the hardened layer is small means that in non-heat-treated nitrocarburized steel parts, nitrogen that has entered from the outside hardly enters the interior. Means staying in In order to reduce the high tensile residual stress at the boundary part serving as the crack initiation point, it is necessary to diffuse the nitrogen atoms into the inside to make the hardness gradient gentle and to distribute the hardness deeply.

【0025】窒素の拡散速度はフェライト中では大き
く、パーライト中では層状セメンタイトに拡散を阻害さ
れるために著しく小さい。非調質鋼ではフェライトが旧
オーステナイト粒界に薄く集中しているために、窒素の
内部への拡散はそのフェライトを通ってしかできない。
これに対して、焼準処理を行った組織では微細なフェラ
イトが粒界に限らず組織全体に分布しているので、組織
全体にわたって拡散経路が存在する。このために、調質
鋼では窒化処理を施すと表面から内部にまで緩やかな硬
度分布ができるものと推定される。更に、非調質鋼の組
織が粗いこと自体も、疲労限度を低下させる要因として
挙げられる。
The diffusion rate of nitrogen is high in ferrite and extremely low in pearlite because diffusion is inhibited by layered cementite. In non-heat treated steels, nitrogen can only diffuse through the ferrite due to the thin concentration of ferrite at the former austenite grain boundaries.
On the other hand, in the microstructure subjected to the normalizing treatment, fine ferrite is distributed not only in the grain boundaries but also in the entire microstructure, and thus a diffusion path exists throughout the microstructure. For this reason, it is presumed that the tempered steel can have a gentle hardness distribution from the surface to the inside when the nitriding treatment is performed. Further, the coarse structure of the non-heat treated steel itself is also a factor that lowers the fatigue limit.

【0026】次に、曲げ矯正による亀裂の発生およびそ
の大きさについて述べる。
Next, the occurrence and size of cracks due to bending correction will be described.

【0027】鋼の表面硬さが高いほど曲げ矯正の際、亀
裂を生じやすく、亀裂長さは大きくなる。しかし、亀裂
長さは表面硬さだけでは一義的に決まらない。また、亀
裂はパーライト粒を一単位として進展する。したがっ
て、パーライト粒が小さいほど小さくなる傾向がある。
The higher the surface hardness of steel, the easier it is for cracks to be formed during bending correction, and the longer the crack length. However, the crack length is not uniquely determined by the surface hardness alone. In addition, the crack propagates with pearlite grains as one unit. Therefore, the smaller the pearlite grains, the smaller the tendency.

【0028】以上の事実および推測をまとめると、
(a)非調質鋼の組織自体が前記の問題点の解決を困難
にしている、(b)窒化処理後の表面硬さを上昇させる
元素の使用は好ましくない、という結論が得られる。
Summarizing the above facts and conjectures,
It can be concluded that (a) the structure of the non-heat treated steel itself makes it difficult to solve the above problems, and (b) it is not preferable to use an element that increases the surface hardness after nitriding.

【0029】そこで、組織等を改善する具体的な方法を
確認するために、本発明者らは以下に述べる実験を行っ
た。
In order to confirm a specific method for improving the structure and the like, the present inventors conducted the following experiment.

【0030】0.30%のCを含有する中炭素鋼を基本組成
として、各種元素の含有量を変えた24鋼種を素材とし
て、図2に示すクランク軸を模擬した試験体1を作製
し、軟窒化処理後の疲労試験および曲げ試験を行った。
表1に24種類の素材鋼の化学組成を示す。
Using a medium carbon steel containing 0.30% of C as a basic composition and 24 steels having various contents of various elements as materials, a test piece 1 simulating a crankshaft shown in FIG. A fatigue test and a bending test after the treatment were performed.
Table 1 shows the chemical compositions of the 24 types of base steel.

【0031】表1の最上欄の鋼No. X1が基本組成であ
る。それに対応して鋼No. X2以下の鋼はC、Mn、Cr、
Ti、NおよびVの影響を知るため、これらの含有量を変
化させた組成の鋼である。これらの実験室溶製による素
材棒鋼を1200℃に加熱して熱間鍛造し、自然空冷し、調
質処理を行うことなく、図2に示した試験体に加工し、
ガス軟窒化処理 (RXガス:NH3 =1:1の雰囲気中で
585℃に1.5 時間保持した後に油冷) を施した。なお、
比較のために、クランク軸用として一般に用いられるS
48C鋼を鍛造した後、焼準処理 (860 ℃に再加熱し15
分間保持後に空冷) を行い、同じ窒化処理を施した後
に、同じ試験を行った。
Steel No. X1 in the uppermost column of Table 1 is a basic composition. Correspondingly, steels with steel No. X2 and below are C, Mn, Cr,
It is a steel having a composition in which the contents of Ti, N and V are varied in order to know the effects. The raw material steel bars produced by these laboratories were heated to 1200 ° C., hot forged, naturally cooled, and processed into the test specimens shown in FIG.
Gas nitrocarburizing treatment (in an atmosphere of RX gas: NH 3 = 1: 1)
After holding at 585 ° C. for 1.5 hours, oil cooling was performed. In addition,
For comparison, S commonly used for crankshafts
After forging 48C steel, normalizing treatment (reheating to 860 ° C and 15
After holding for one minute, the same test was performed after performing the same nitriding treatment.

【0032】[0032]

【表1】 [Table 1]

【0033】疲労試験は室温大気中、試験片のジャーナ
ル部2の端部およびピン部3の中央部を支持した3点曲
げにて荷重制御両振りにて繰返し速度5Hzで実施し、
破断繰返し数が107 回となる応力振幅を疲労限度と定義
した。
The fatigue test was carried out in a room temperature atmosphere at a repetition rate of 5 Hz by three-point bending supporting the end of the journal portion 2 of the test piece and the center of the pin portion 3 with load control swing.
The stress amplitude at which the number of fracture cycles was 10 7 was defined as the fatigue limit.

【0034】ここで応力は、疲労亀裂が発生するピン部
フィレットR部(図2に符号4で示す)での応力(長さ
1mmのひずみゲージにより測定、算出)である。一方、
曲げ矯正性は、同じ試験体による静的曲げ試験により評
価した。疲労試験時にひずみゲージを貼付した場所と同
一の場所にひずみゲージを貼付し、室温大気中にて曲げ
を負荷し、ひずみゲージの断線を亀裂の発生と見なし、
その時のひずみ量を曲げ矯正可能ひずみ量とした。曲げ
矯正可能ひずみ量はばらつきが大きいため、1鋼種につ
き4個の試験片による試験を行いその平均値で評価し
た。
Here, the stress is a stress (measured and calculated by a strain gauge having a length of 1 mm) at a pin portion fillet R (indicated by reference numeral 4 in FIG. 2) where a fatigue crack occurs. on the other hand,
Bending straightness was evaluated by a static bending test using the same specimen. Attach the strain gauge to the same place where the strain gauge was attached at the time of the fatigue test, apply bending in the room temperature atmosphere, consider the breakage of the strain gauge as the occurrence of cracks,
The amount of strain at that time was defined as the amount of strain that can be corrected. Since the amount of bendable strain was large, the test was performed using four test pieces for each steel type, and the average value was evaluated.

【0035】図3に疲労限度および曲げ矯正可能ひずみ
量に及ぼすC、Mn、Crの影響(図3(a))およびTi、
N、Vの影響(図3(b)) を示す。 (a)図の左端に前記
のS48Cの焼準材の疲労限度および曲げ矯正可能ひず
み量を目安として示す。
FIG. 3 shows the effects of C, Mn, and Cr on the fatigue limit and the amount of strain that can be corrected (FIG. 3 (a)) and Ti,
The effects of N and V (FIG. 3 (b)) are shown. (a) At the left end of the figure, the fatigue limit and the amount of strain that can be bent are shown as a guide for the S48C standardized material.

【0036】上記の試験結果および組織の観察から次の
ような対策が前記の目的達成に有効であることが確認さ
れた。
From the above test results and the observation of the structure, it was confirmed that the following measures were effective in achieving the above object.

【0037】微量Tiによる鍛造加熱時のオーステナイ
ト粒成長の抑制 C含有量低減によるフェライトの粒内粒界にわたる均
一分布化 Ti含有量の適正化による固溶窒素量の確保 V、Crの制限による窒化後の表面硬さの抑制 本発明は、上記の基本的な知見と、各合金成分および不
純物の作用ならびに軟窒化処理の条件に関する詳細な検
討とを総合してなされたものである。
Suppression of austenite grain growth during forging heating by trace amount of Ti Uniform distribution of ferrite over intragranular grain boundaries by reducing C content Ensuring solid solution nitrogen amount by optimizing Ti content V Nitriding by limiting V and Cr Suppression of Subsequent Surface Hardness The present invention has been made by combining the above-described basic knowledge with detailed studies on the effects of each alloy component and impurities and the conditions of soft nitriding treatment.

【0038】I.本発明の軟窒化非調質クランク軸につ
いて 本発明の軟窒化クランク軸の素材となる鋼(本発明鋼)
の各構成元素の作用および各元素の含有量を限定した理
由は次のとおりである (成分含有量の%は全て重量%で
ある) 。
I. Regarding the nitrocarburized non-heat treated crankshaft of the present invention Steel used as the material of the nitrocarburized crankshaft of the present invention (steel of the present invention)
The reason for limiting the action of each constituent element and the content of each element is as follows (all percentages of the component contents are% by weight).

【0039】C:0.25〜0.35% Cは、引張り強度を確保するのに有効な元素であり、そ
のためには0.25%以上の含有量が必要である。図3に示
すように、0.25%未満では疲労限度も低い。しかし、0.
35%を超える過大な含有量になると、粒内からフェライ
トが発生しにくくなり、非調質鋼の組織を調質鋼のそれ
に近づけることができなくなる。その結果として、図3
に示したように曲げ矯正性が低下するので上限は0.35%
以下とする。
C: 0.25% to 0.35% C is an element effective for securing the tensile strength, and therefore, a content of 0.25% or more is necessary. As shown in FIG. 3, the fatigue limit is low at less than 0.25%. But 0.
If the content exceeds 35%, ferrite is less likely to be generated from within the grains, and the structure of the non-heat treated steel cannot be close to that of the heat treated steel. As a result, FIG.
The upper limit is 0.35% because the bending straightenability decreases as shown in
The following is assumed.

【0040】Si:0.05〜1.50% Siは溶製時の脱酸剤として必要であり、その効果を得る
には少なくとも0.05%が必要である。しかし、Si含有量
が過剰になると鍛造時の脱炭を促すので含有量の上限は
1.50 %とした。
Si: 0.05-1.50% Si is required as a deoxidizing agent at the time of melting, and at least 0.05% is required to obtain its effect. However, excessive Si content promotes decarburization during forging, so the upper limit of the content is
1.50%.

【0041】Mn:0.80〜1.20% Mnは、図3にも示すように疲労限度向上のために効果的
な元素である。その効果を確実に得るためには、下限を
0.80%としなければならない。しかし、過剰な添加はパ
ーライト体積率を増加させるため曲げ矯正性が低下す
る。従って、Mn含有量の適正範囲は0.80〜1.20%であ
る。
Mn: 0.80 to 1.20% Mn is an element effective for improving the fatigue limit as shown in FIG. To ensure the effect, set the lower limit
Must be 0.80%. However, excessive addition increases the volume ratio of pearlite, so that the bending straightening property decreases. Therefore, the appropriate range of the Mn content is 0.80 to 1.20%.

【0042】Ti:0.005 〜0.03% 微量のTiは、鍛造に先立つ加熱時のオーステナイト粒も
成長を抑制することにより、フェライトパーライト組織
を微細化する。その結果、非調質鋼の組織を焼準鋼のそ
れに近づけることができ、曲げ矯正時に発生する亀裂を
小さくすることができる。フェライト体積率が高い成分
系では微細化により曲げ矯正性への寄与は小さいが、本
発明鋼の組成範囲内でも高C−高Mnの成分系では、Ti添
加は曲げ矯正性改善に寄与する。この効果を得るために
は 0.005%以上が必要である。一方、Tiの含有量が0.03
%を超えると鋼中の固溶Nが減少し、図3に示すように
疲労限度が低下する。従って、Ti含有量の適正範囲は
0.005〜0.03%である。
Ti: 0.005 to 0.03% A trace amount of Ti makes the ferrite pearlite structure finer by suppressing the growth of austenite grains during heating prior to forging. As a result, the structure of the non-heat treated steel can be made close to that of the normal steel, and the crack generated at the time of straightening can be reduced. In a component system having a high ferrite volume fraction, the contribution to bending straightness is small due to the refinement, but even in the composition range of the steel of the present invention, in a high C-high Mn component system, addition of Ti contributes to improvement in bending straightness. To obtain this effect, 0.005% or more is required. On the other hand, the content of Ti is 0.03
%, The solute N in the steel decreases and the fatigue limit decreases as shown in FIG. Therefore, the proper range of Ti content is
0.005 to 0.03%.

【0043】Al:0.0005〜0.01% Alも溶製時の脱酸剤として必要であり、その効果を得る
には少なくとも0.0005%が必要である。しかし、Alが過
剰になると硬質の介在物が増えて、鋼の耐久性および被
削性がともに低下する。従って、Alの含有は0.01%まで
に抑えるべきである。
Al: 0.0005 to 0.01% Al is also required as a deoxidizing agent at the time of melting, and at least 0.0005% is required to obtain the effect. However, when Al is excessive, hard inclusions increase, and both durability and machinability of steel decrease. Therefore, the content of Al should be suppressed to 0.01%.

【0044】N:0.010 〜0.030 % 図3からも明らかなように、Nは疲労限度向上に有効な
元素である。この効果を得るためには 0.010%以上は必
要である。しかしながら 0.030%を超えて含有してもそ
の効果は飽和するとともに曲げ矯正性が低下するので、
0.010 〜0.030%とする。
N: 0.010 to 0.030% As is clear from FIG. 3, N is an element effective for improving the fatigue limit. To achieve this effect, 0.010% or more is required. However, even if the content exceeds 0.030%, the effect is saturated and the bending straightening property decreases,
0.010 to 0.030%.

【0045】S:0.10%以下 Sは、積極的に添加しなくてもよい。即ち、その含有量
は不可避不純物の範囲でもよい。しかし、Sには被削性
の向上の効果があるので、積極的に添加してもよい。そ
の効果を得るには、含有量を0.04%以上とするのが望ま
しい。ただし、Sが0.10%を超えると連続鋳造スラブに
欠陥を生じるから、上限は0.10%とする。
S: 0.10% or less S does not have to be positively added. That is, the content may be in the range of inevitable impurities. However, since S has an effect of improving machinability, it may be added positively. To obtain the effect, the content is desirably 0.04% or more. However, if S exceeds 0.10%, defects occur in the continuously cast slab, so the upper limit is 0.10%.

【0046】Ca:0.0030%以下 Caも、Sと同様に、積極的に添加しなくてもよい。従っ
て、その含有量は不可避不純物の範囲でもよい。しか
し、Caは、被削性向上を狙う場合に積極的に添加するこ
とができる成分である。被削性の向上に効果があるCaは
0.0003 %以上であるから、添加する場合は、これ以上
の含有量を確保するのが望ましい。一方、Caが0.0030%
を超えると鋼中への大型介在物の混入が避けられない。
従って、Caを添加する場合でも、その含有量は0.0030%
までにとどめるべきである。
Ca: 0.0030% or less Ca, like S, need not be positively added. Therefore, its content may be in the range of unavoidable impurities. However, Ca is a component that can be positively added when improving machinability. Ca is effective in improving machinability
Since it is 0.0003% or more, it is desirable to secure a higher content when adding. On the other hand, Ca is 0.0030%
If it exceeds 300, the inclusion of large inclusions in the steel is inevitable.
Therefore, even when Ca is added, its content is 0.0030%
Should stop by.

【0047】本発明のクランク軸の素材鋼の一つは、上
記の成分の外、残部がFeと不可避不純物からなるもので
ある。他の一つは、特に良好な被削性を重視したもの
で、前記の成分に加えて、次のPbを含有する鋼である。
One of the material steels for the crankshaft of the present invention comprises, in addition to the above components, the balance consisting of Fe and unavoidable impurities. The other one, which emphasizes particularly good machinability, is a steel containing the following Pb in addition to the above components.

【0048】Pb:0.05〜0.20% Pbの添加による非削性の向上効果は、その含有量が0.05
%以上のときに顕著になる。しかし、Pbが過剰になると
鋼中の介在物が多くなり疲労限度が著しく低下する。従
って、Pbを添加する場合は、その含有量は0.03〜0.20%
とすべきである。なお、前述のSおよびCaを積極的に添
加した上で、さらにPbを添加すれば、これらの元素の複
合効果によって、被削性向上の効果が著しく大きくな
る。
Pb: 0.05 to 0.20% The effect of improving the non-machining property by adding Pb is as follows.
It becomes remarkable when it is more than%. However, when Pb is excessive, inclusions in the steel increase and the fatigue limit is remarkably reduced. Therefore, when Pb is added, its content is 0.03-0.20%
Should be. If Pb is further added after positively adding S and Ca described above, the effect of improving machinability is significantly increased due to the combined effect of these elements.

【0049】本発明鋼は、次に述べるP、CrおよびVを
不純物として抑制することにも大きな特徴がある。
The steel of the present invention also has a great feature in that P, Cr and V described below are suppressed as impurities.

【0050】P:0.03%以下 Pは、鋼の衝撃値および破壊靱性値を低下させるので、
可及的に少ないことが望ましい。ただし、ごく少量の含
有量ではその影響は小さい上、Pを極低レベルに下げる
には精錬コストが嵩むので 0.03 %を許容上限値とし
た。
P: not more than 0.03% P decreases the impact value and fracture toughness value of steel.
It is desirable to have as little as possible. However, if the content is very small, the effect is small, and the refining cost increases to reduce P to an extremely low level. Therefore, the allowable upper limit is set to 0.03%.

【0051】Cr:0.15%以下 図3に示したとおり、Crは疲労限界の向上には効果があ
るが、曲げ矯正性を劣化させる。これはCrが窒化処理に
より窒化物を生成し硬さを高めるからである。
Cr: 0.15% or less As shown in FIG. 3, Cr is effective in improving the fatigue limit, but deteriorates the bending straightness. This is because Cr forms nitrides by nitriding to increase the hardness.

【0052】従って、本発明鋼では、Crの積極的な添加
はせず、不純物としてその上限を0.15%に抑える。0.15
%までは弊害が比較的小さく、またCrの含有量を極端に
低くするには精錬コストが大幅に増大するので、0.15%
までの含有量は許容することとした。この上限値以下
で、できるだけ少ない方がよい。
Therefore, in the steel of the present invention, Cr is not actively added, and the upper limit thereof is suppressed to 0.15% as an impurity. 0.15
%, The harmful effects are relatively small, and refining costs increase significantly if the Cr content is extremely low.
The contents up to are determined to be acceptable. Below the upper limit, the smaller the better, the better.

【0053】V:0.02%以下 図3からも明らかなように、VもCrと同様に窒化処理後
の表面硬さを上昇させ、曲げ矯正性を著しく低下させ
る。従って、Vは不可避不純物として混入する以上に添
加しない。不可避不純物としても0.020 %以下としなけ
ればならない。
V: not more than 0.02% As is clear from FIG. 3, V also increases the surface hardness after nitriding similarly to Cr, and significantly lowers the straightness. Therefore, V is not added beyond mixing as unavoidable impurities. It must be 0.020% or less as inevitable impurities.

【0054】II.本発明の軟窒化非調質クランク軸の製
造方法について 本発明の軟窒化非調質クランク軸は次に述べる方法で製
造することができる。
II. Manufacturing method of soft-nitrided non-heat treated crankshaft of the present invention The soft-nitrided non-heat treated crankshaft of the present invention can be manufactured by the following method.

【0055】即ち、前記組成の素材 (本発明鋼) を加熱
し、鍛造加工を行い目的の形状とする。この時の加熱温
度は、低ければ低いほど好ましいが、低温鍛造には大き
なプレス能力が必要となるため、一般的な条件として12
00℃を標準とし、プレスの能力に応じて1150〜1250℃の
範囲で決める。鍛造後は、製造コストの点から自然放冷
(空冷) とする。ただし、製造時間短縮のために送風等
による強制空冷を行ってもなんら問題はない。
That is, the material having the above composition (the steel of the present invention) is heated and forged to obtain a desired shape. The heating temperature at this time is preferably as low as possible, but a low temperature forging requires a large pressing capacity.
The standard is set to 00 ° C, and the range is determined in the range of 1150 to 1250 ° C depending on the pressing ability. After forging, allow to cool naturally due to manufacturing cost
(Air cooling). However, there is no problem if forced air cooling is performed by air blowing or the like in order to shorten the manufacturing time.

【0056】目的とする形状に整えた後に、一般に行わ
れる焼準または焼入れ焼もどしなどの調質処理を行うこ
となく、軟窒化処理を施す。軟窒化条件は、RXガス:
アンモニア=0.8 〜1.2 の雰囲気で、温度 570〜600
℃、時間60〜120 分とし、その後は直接油冷する。ここ
でガス組成比、環境温度および時間を上記のように定め
るのは、耐焼付き性の改善のための適正な化合物層と十
分な深さの拡散層を得るためである。
After the desired shape is prepared, a soft nitriding treatment is performed without performing a tempering treatment such as normalizing or quenching and tempering that is generally performed. The conditions of soft nitriding are RX gas:
Ammonia = 0.8-1.2 atmosphere, temperature 570-600
℃ for 60 to 120 minutes, then oil-cooled directly. Here, the gas composition ratio, the environmental temperature and the time are determined as described above in order to obtain a proper compound layer for improving seizure resistance and a diffusion layer having a sufficient depth.

【0057】[0057]

【実施例1】表2は、試験に供した本発明鋼10種類、比
較鋼13種類、およびS48C相当鋼2種類の化学組成を
示す一覧表である。これらの鋼を各 150kg、大気中溶解
炉で溶製した後に、1200℃まで加熱し、図2に示した形
状および寸法のクランク形の試験体に熱間鍛造し放冷し
た。その後若干の機械加工を行い、軟窒化処理を施し
た。
Example 1 Table 2 is a list showing the chemical compositions of 10 kinds of steels of the present invention, 13 kinds of comparative steels, and 2 kinds of S48C equivalent steels subjected to the tests. After smelting 150 kg of each of these steels in an air melting furnace, the steels were heated to 1200 ° C., hot forged into crank-shaped test pieces having the shape and dimensions shown in FIG. 2 and allowed to cool. Thereafter, a slight machining was performed, and a soft nitriding treatment was performed.

【0058】ガス軟窒化は、ガス比をRXガス:NH3
1:1とし、その雰囲気中で試験片を 585℃に加熱し、
90分保持した後、150 ℃の油中に油冷した。窒化した各
試験体をそのまま各試験に供した。
In the gas nitrocarburizing, the gas ratio is set to RX gas: NH 3 =
1: 1 and the specimen was heated to 585 ° C in that atmosphere,
After holding for 90 minutes, the mixture was oil-cooled in oil at 150 ° C. Each nitrided specimen was used for each test as it was.

【0059】疲労試験は前述のとおりで、破断繰り返し
数が107 回となる応力振幅を疲労限度と定義した。一
方、曲げ矯正性も前述した方法と同様の方法で評価し
た。非削性についても全ての鋼に対して工具寿命の試験
を行った。被削性の評価は、S48C鋼にPbを0.05%添
加した鋼 (表2の No.Z25) に調質処理を施したもの
を基準とする相対比較によって行った。
The fatigue test was as described above, and the stress amplitude at which the number of repetitive fractures was 10 7 was defined as the fatigue limit. On the other hand, bending straightness was also evaluated by the same method as described above. Tool life tests were also performed on all steels for non-machinability. The machinability was evaluated by a relative comparison based on a temper-treated steel (No. Z25 in Table 2) obtained by adding 0.05% of Pb to S48C steel.

【0060】[0060]

【表2】 [Table 2]

【0061】表3に、疲労、曲げおよび非削性の各試験
の結果を示す。同表から明らかなように、本発明の軟窒
化非調質クランク軸(本発明例)は、疲労限度および曲
げ矯正可能ひずみ量の両方において、目標値(No.Z24
のS48C鋼を素材とする軟窒化調質クランク軸の性
能。即ち、疲労限度が 60kgf/mm2、曲げ矯正可能ひずみ
量が 3.5%) を達成している。それに対して比較例の中
には目標値の疲労限度と曲げ矯正可能ひずみ量を同時に
達成するものは存在しない。
Table 3 shows the results of each of the fatigue, bending, and non-machining tests. As is clear from the table, the nitrocarburized non-heat treated crankshaft of the present invention (example of the present invention) has a target value (No. Z24) in both the fatigue limit and the amount of strain that can be corrected.
Of nitrocarburized tempered crankshaft made of S48C steel. That is, a fatigue limit of 60 kgf / mm 2 and a bendable strain of 3.5% have been achieved. On the other hand, none of the comparative examples simultaneously achieve the target fatigue limit and the amount of strain that can be corrected.

【0062】表3の被削性は、S48CにPbを添加した
No.Z25と同等以上の工具寿命となったものを良好と
して○印を付し、これより工具寿命の短いものを×とし
てある。本発明例のうちPbを添加したものは、疲労限度
と曲げ矯正性を同時に満たしたうえで良好な被削性をも
つことがわかる。
The machinability shown in Table 3 was obtained by adding Pb to S48C.
Those having a tool life equal to or greater than that of No. Z25 were marked as good, and those with a shorter tool life were marked x. It can be seen that among the examples of the present invention, those to which Pb was added had good machinability while satisfying the fatigue limit and the bending straightening property at the same time.

【0063】[0063]

【表3】 [Table 3]

【0064】図4には、表1に示したX1の鋼を素材と
して作製した試験片を用いて、疲労限度に及ぼす軟窒化
処理の温度と処理時間の影響を調べた結果を示す。な
お、窒化処理のガス組成は前記のとおりである。図示の
とおり、目標の疲労限度(S48Cを素材とする軟窒化
調質クランク軸の疲労限度) を得るためには、処理温度
は 570℃以上、処理時間は60分以上が必要である。また
処理温度 600℃以上、処理時間 120分でその効果はほぼ
飽和している。
FIG. 4 shows the results of examining the effects of the temperature and the treatment time of the nitrocarburizing treatment on the fatigue limit using test specimens made of the steel X1 shown in Table 1 as a raw material. The gas composition for the nitriding treatment is as described above. As shown in the figure, in order to obtain the target fatigue limit (the fatigue limit of the nitrocarburized tempered crankshaft made of S48C), the processing temperature must be 570 ° C. or more and the processing time must be 60 minutes or more. The effect is almost saturated at a processing temperature of 600 ° C. or more and a processing time of 120 minutes.

【0065】[0065]

【発明の効果】本発明の軟窒化非調質クランク軸は、熱
間鍛造後、調質処理を行わずに軟窒化窒化処理を施して
も、素材鋼の組織改善効果により、従来の調質処理を行
った軟窒化クランク軸と同等以上の優れた疲労限度およ
び曲げ矯正性を確保できる。このクランク軸を製造する
本発明方法は、調質処理の工程が不用なものであるか
ら、大きなコスト削減と製造時間短縮の効果がある。
The soft-nitrided non-heat treated crankshaft of the present invention has a conventional temper due to the effect of improving the microstructure of the material steel even if it is subjected to a soft nitriding process after hot forging without tempering. Excellent fatigue limit and bending straightness equal to or higher than that of the treated nitrocarburized crankshaft can be secured. Since the method of the present invention for manufacturing the crankshaft does not require the step of the refining treatment, it has a significant effect of reducing costs and manufacturing time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1の (a)は従来の軟窒化クランク軸(調質
材)の製造工程、(b) は本発明の軟窒化クランク軸(非
調質材)の製造工程をそれぞれ示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a diagram showing a process for manufacturing a conventional nitrocarburized crankshaft (tempered material), and FIG. 1 (b) is a diagram illustrating a process for manufacturing a nitrocarburized crankshaft (non-tempered material) of the present invention. It is.

【図2】図2は、疲労試験および曲げ試験に供したクラ
ンク軸を模擬した試験体の形状を示す図面で、 (a)が正
面図、(b) が側面図である。
FIG. 2 is a drawing showing a shape of a test body simulating a crankshaft subjected to a fatigue test and a bending test, wherein (a) is a front view and (b) is a side view.

【図3】図3は、疲労限度および曲げ矯正可能ひずみ量
に及ぼすC、Mn、Cr、V、Ti、およびNの影響を示す図
面である。
FIG. 3 is a drawing showing the effects of C, Mn, Cr, V, Ti, and N on the fatigue limit and the amount of strain that can be corrected.

【図4】図4は、疲労限度および曲げ矯正可能ひずみ量
に及ぼす軟窒化処理の温度と処理時間の影響を示す図で
ある。
FIG. 4 is a diagram showing the influence of temperature and treatment time of nitrocarburizing treatment on the fatigue limit and the amount of strain that can be bent.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.25〜0.35%、Si:0.05〜
1.50%、Mn:0.80〜1.20%、Ti:0.005 〜0.03%、Al:
0.0005〜0.01%、N:0.010 〜0.030 %、S: 0.10%以
下、Ca:0.0030以下を含有し、残部がFeおよび不可避不
純物から成り、不純物としてのPが0.03%以下、Crが0.
15%以下、Vが0.02%以下である鋼から製造され軟窒化
処理されている非調質クランク軸。
C .: 0.25 to 0.35% by weight, Si: 0.05 to
1.50%, Mn: 0.80 to 1.20%, Ti: 0.005 to 0.03%, Al:
0.0005 to 0.01%, N: 0.010 to 0.030%, S: 0.10% or less, Ca: 0.0030 or less, the balance consists of Fe and unavoidable impurities, P as an impurity is 0.03% or less, and Cr is 0.
Non-heat treated crankshaft manufactured from steel with 15% or less and V of 0.02% or less and subjected to soft nitriding.
【請求項2】重量%で、C:0.25〜0.35%、Si:0.05〜
1.50%、Mn:0.80〜1.20%、Ti:0.005 〜0.03%、Al:
0.0005〜0.01%、N:0.010 〜0.030 %、S: 0.10%以
下、Ca:0.0030以下、およびPb:0.05〜0.20%を含有
し、残部がFeおよび不可避不純物から成り、不純物とし
てのPが0.03%以下、Crが0.15%以下、Vが0.02%以下
である鋼から製造され軟窒化処理されている非調質クラ
ンク軸。
2. C .: 0.25-0.35% by weight, Si: 0.05-% by weight
1.50%, Mn: 0.80 to 1.20%, Ti: 0.005 to 0.03%, Al:
0.0005 to 0.01%, N: 0.010 to 0.030%, S: 0.10% or less, Ca: 0.0030 or less, and Pb: 0.05 to 0.20%, the balance being Fe and unavoidable impurities, and 0.03% of P as impurities. Hereinafter, a non-heat treated crankshaft manufactured from steel having a Cr content of 0.15% or less and a V of 0.02% or less and subjected to nitrocarburizing treatment.
【請求項3】請求項1または2に記載の組成の鋼をクラ
ンク軸に鍛造した後、自然放冷し、その後は熱処理をす
ることなく機械加工および軟窒化処理を施すことを特徴
とする軟窒化非調質クランク軸の製造方法。
3. A steel according to claim 1 or 2, wherein the steel is forged into a crankshaft, allowed to cool naturally, and thereafter subjected to machining and nitrocarburizing without heat treatment. A method for manufacturing a nitrided non-heat treated crankshaft.
【請求項4】軟窒化処理をRXガス:アンモニア= 0.8
〜1.2 の雰囲気で、570 〜600 ℃にて60〜120 分加熱
し、その後油冷する方法で行う請求項3に記載の軟窒化
非調質クランク軸の製造方法。
4. The nitrocarburizing treatment is performed using RX gas: ammonia = 0.8.
4. The method for producing a soft-nitrided non-heat treated crankshaft according to claim 3, wherein the method is performed by heating at 570 to 600 [deg.] C. for 60 to 120 minutes in an atmosphere of to 1.2 and then oil cooling.
JP22149297A 1997-08-18 1997-08-18 Soft nitrided non-tempered crankshaft and manufacturing method thereof Expired - Fee Related JP4010023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22149297A JP4010023B2 (en) 1997-08-18 1997-08-18 Soft nitrided non-tempered crankshaft and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22149297A JP4010023B2 (en) 1997-08-18 1997-08-18 Soft nitrided non-tempered crankshaft and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH1162943A true JPH1162943A (en) 1999-03-05
JP4010023B2 JP4010023B2 (en) 2007-11-21

Family

ID=16767569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22149297A Expired - Fee Related JP4010023B2 (en) 1997-08-18 1997-08-18 Soft nitrided non-tempered crankshaft and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4010023B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391124B1 (en) 1999-11-05 2002-05-21 Sumitomo Metals (Kokura) Ltd. Non-heat treated, soft-nitrided steel parts
JP2002226939A (en) * 2001-02-01 2002-08-14 Daido Steel Co Ltd Non-refining steel for soft-nitriding
WO2005021816A1 (en) * 2003-09-01 2005-03-10 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft nitriding
WO2006090604A1 (en) * 2005-02-25 2006-08-31 Sumitomo Metal Industries, Ltd. Non-tempered steel soft nitrided component
JP2008088473A (en) * 2006-09-29 2008-04-17 Daido Steel Co Ltd Method for manufacturing crankshaft
JP2008308740A (en) * 2007-06-15 2008-12-25 Sumitomo Metal Ind Ltd Steel member for soft nitriding
US7815750B2 (en) 2005-11-28 2010-10-19 Nippon Steel Corporation Method of production of steel soft nitrided machine part
WO2012070349A1 (en) * 2010-11-22 2012-05-31 住友金属工業株式会社 Non-heat-treated steel for soft nitriding, and soft-nitrided component

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391124B1 (en) 1999-11-05 2002-05-21 Sumitomo Metals (Kokura) Ltd. Non-heat treated, soft-nitrided steel parts
JP2002226939A (en) * 2001-02-01 2002-08-14 Daido Steel Co Ltd Non-refining steel for soft-nitriding
JP4556334B2 (en) * 2001-02-01 2010-10-06 大同特殊鋼株式会社 Non-tempered steel hot forged parts for soft nitriding
US7416616B2 (en) 2003-09-01 2008-08-26 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft-nitriding
WO2005021816A1 (en) * 2003-09-01 2005-03-10 Sumitomo Metal Industries, Ltd. Non-heat treated steel for soft nitriding
JP4500708B2 (en) * 2005-02-25 2010-07-14 住友金属工業株式会社 Non-tempered steel nitrocarburized parts
EP1857563A1 (en) * 2005-02-25 2007-11-21 Sumitomo Metal Industries, Ltd. Non-tempered steel soft nitrided component
JP2006233300A (en) * 2005-02-25 2006-09-07 Sumitomo Metal Ind Ltd Non-heattreated steel soft-nitrided parts
EP1857563A4 (en) * 2005-02-25 2010-08-04 Honda Motor Co Ltd Non-tempered steel soft nitrided component
WO2006090604A1 (en) * 2005-02-25 2006-08-31 Sumitomo Metal Industries, Ltd. Non-tempered steel soft nitrided component
US7815750B2 (en) 2005-11-28 2010-10-19 Nippon Steel Corporation Method of production of steel soft nitrided machine part
DE102006055922B4 (en) * 2005-11-28 2013-03-28 Nippon Steel Corp. Process for producing a soft nitrided steel machine part
JP2008088473A (en) * 2006-09-29 2008-04-17 Daido Steel Co Ltd Method for manufacturing crankshaft
JP2008308740A (en) * 2007-06-15 2008-12-25 Sumitomo Metal Ind Ltd Steel member for soft nitriding
WO2012070349A1 (en) * 2010-11-22 2012-05-31 住友金属工業株式会社 Non-heat-treated steel for soft nitriding, and soft-nitrided component

Also Published As

Publication number Publication date
JP4010023B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
EP1746176A1 (en) Steel with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more, its shaped articles, and methods of production of the same
JP3562192B2 (en) Component for induction hardening and method of manufacturing the same
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP4403624B2 (en) Non-tempered steel for nitrocarburizing, non-tempered tempered crankshaft and manufacturing method thereof
JP3606024B2 (en) Induction-hardened parts and manufacturing method thereof
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP3915284B2 (en) Non-tempered nitriding forged parts and manufacturing method thereof
JP4010023B2 (en) Soft nitrided non-tempered crankshaft and manufacturing method thereof
JP6477904B2 (en) Crankshaft rough profile, nitrided crankshaft, and method of manufacturing the same
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JP4488228B2 (en) Induction hardening steel
JP3267164B2 (en) Method for producing steel for nitriding and nitrided steel products
JP3211627B2 (en) Steel for nitriding and method for producing the same
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP3467929B2 (en) High toughness hot forged non-heat treated steel for induction hardening
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JP3428282B2 (en) Gear steel for induction hardening and method of manufacturing the same
JP4041330B2 (en) Steel wire for hard springs and hard springs with excellent fatigue strength
JP2860789B2 (en) Spring steel with excellent hardenability and durability
JP3823413B2 (en) Induction hardening component and manufacturing method thereof
JP2003055741A (en) Oil tempered steel wire for cold formed coil spring
JP3617187B2 (en) Manufacturing method of high strength connecting rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040520

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees